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Introduction

The main objective of this PhD thesis is to explore the use of reduction methods in
multiscale modeling of complex systems to optimally model the phenomena underlying
the transmission of information in a neuron and inside the brain. The thesis is focused on
the electrical engineering aspects within the Computational Neuroscience, an emerging
area of the science and biotechnology. The electromagnetic phenomena are modeled at
several scales: ion channels from the Ranvier nodes, myelinated compartments, saltatory
conduction along axons. The global models of neurons, synapses, neuron collectivities
and the brain modeling are not subjects of this thesis. However, the induced voltage in
the brain by Transcranial Magnetic Stimulation systems is also modeled.

The research methodology used here is based on the Bio-Multi-Physics Modeling, us-
ing the Computational Science and Engineering (CSE) approaches, in particular High
Performance Scientific Computing (HPSC) techniques.

CSE (Fig. 1) is a relatively new multidisciplinary area that deals with the develop-
ment of computer–based models of natural phenomena and engineered systems. The CSE
pipeline encompasses ”domain expertise, mathematical modeling, numerical analysis, al-
gorithm development, software implementation, program execution, analysis, validation
and visualization of results” [1]. CSE has been described as the ”third mode of discovery”
(next to theory and experimentation), performing computational experiments to answer
questions that neither theory nor experiment alone is equipped to answer [2].

”Historically, simulation has been used as a qualitative guide for design and control,
but has often not been expected to provide accurate results for realistic physical systems”
[1]. As an emerging discipline, CSE has as goal the achievement of truly predictive
scientific capabilities, including but not limited to simulation-based weather and climate
prediction, simulation-based design of vehicles and aircraft, simulation-based decisions
in computational medicine. It is expected that the problem-solving methodologies and
robust tools developed under the CSE umbrella to play an important role in emerging
areas such as genomic sciences, computational neuroscience and bioengineering.

CSE differs from mathematics or computer science in that analysis is directed specifi-
cally at the solution of problem classes from science and engineering, ”and will generally
require a detailed knowledge or substantial collaboration from those disciplines. The com-
puting and mathematical techniques used by CSE may be more domain specific, and the
computer science and mathematics skills needed will be broader” [1].

The thesis is structured in 7 chapters, excepting this introductory section; the first
covers theoretical concepts and the last presents the conclusions. The content chapters
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Figure 1: The CSE pipeline, from physical problem to model and algorithms to efficient imple-
mentation in simulation software, with verification and validation driven by data. The pipeline
is actually a loop that requires multiple feedbacks [2].

2÷ 6 are described in the following paragraphs.

Chapter 2 – State of the Art in Multiscale Modeling of Neuronal Systems – provides
a detailed description of the state-of-the-art in neuronal systems modeling. A multitude
of methods have been developed in order to address the complexity of the phenomena
taking place in the brain, and multiscale approaches have become an implicit necessity.

One of the simplest models able to describe the electrical signal transmission in a
neuronal axon is studied in detail in Chapter 3 – One-dimensional Models for Neuronal
Signals’ Transmission. The model is one-dimensional and the equations are derived from
the transmission lines. The analysis goes through the important steps in modeling: con-
ceptual, physical and mathematical modeling, the analytical solution, the numerical mod-
eling, verification and validation of the model. Even if the model is quite simple, the study
is fundamental in understanding the underlying phenomena of the signal transmission that
will provide the basis for more complex models.

Chapter 4 – Reduced Order Models of Myelinated Axonal Compartments – deals with
different models of the myelinated compartments (2.5D, 1D) and the reduction of the
model’s order. The 2.5D field problem is solved using different techniques (analytical,
numerical – FEM, FIT, BEM). The most advanced methods of order reduction for the
generated models are explored and compared based on the relative errors of the reduced
models extracted and their computational efficiency.

In Chapter 5 – Saltatory Conduction in Neurons – the phenomena called ”saltatory
conduction” encountered in the transmission of neural signals along neurons’ myelinated
axons is modeled and simulated. The models are generated by interconnecting (reduced)
models of myelinated compartments with nonlinear models of the Ranvier nodes.

Chapter 6 – Transcranial Magnetic Stimulation – studies a medical procedure used to
investigate and to treat several brain diseases. An external system of coils with variable
currents induces electric field in the brain. Different methodologies to generate realistic
geometries are explored and a pipeline to extract them from MRI data is proposed.
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Chapter 1

Theoretical Concepts – Multiphysics
Modeling

This chapter provides the theoretical background of the multiphysics modeling and
correct formulation of multiphysics problems. The problems solved in this PhD thesis
follow the modeling procedure described below, with a focus on model order reduction as
a central part of modeling multiscale systems. Most of the theoretical concepts introduced
in this section are detailed in the next chapters.

The term multiphysics is increasingly used to denote a problem that presents one or
more of the following attributes (Fig. 1.1):

– ”multi-field”, meaning the simultaneous excitation and response of the system by
multiple physical fields;

– ”multi-domain”, involving the interaction among continuum representations of sys-
tems with drastically different properties (e.g. Fluid-structure interaction, moving
solidification boundary problems) through shared boundaries;

– ”multi-scale”, denoting the consistent bridging of various behavioral models of the
system, at various length scales and time rates.

In addition, any combination of these three possibilities generates four more meanings
of the term multiphysics including the one that reflects the co-existence of all three of
them [3].

Any discrete volume in the conceptual attribute space shown in Fig. 1.1 is defined by
a triplet of coordinates originating from each one of these attribute axes, and represents a
region encompassing certain classes of physical problems. This signifies that these prob-
lems can be modeled in a multiphysics sense as defined by their corresponding coordinates
[3].

The complex systems that represent most of the open problems nowadays are intrin-
sically multiphysics. Because the physical processes are interdependent, the key term to
describe the new multiphysics paradigm is the coupling between several problems, which
up to now were approached independently [4].
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Figure 1.1: Multiphysics attribute space [3].

The modeling and simulation of the systems studied in this thesis take into considera-
tion several coupled phenomena, the following electromagnetic field models being consid-
ered, corresponding to different domains:

– Electro-conductive (EC) field in the axoplasm (axon’s cytoplasm), where the capac-
itive effects are negligible;

– Electro-quasi-static (EQS) field through the cell’s membrane, where both capacitive
(displacement current) and transverse conductive effects (conduction current due to
losses) are important.

The saltatory conduction simulation assumes the coupling of a number of similar mod-
els, forming a large model with a different length scale than the incorporated models.

The multiphysics modeling procedure described in what follows was developed in the
Laboratory of Numerical Methods (LMN) – where most of this thesis research was devel-
oped – and comprises the main steps presented below (in this order) [5].

1.1 Conceptual Modeling

This first stage of modeling has the purpose of establishing the geometrical model and
the (multi) physical model. This implies describing the structure of the object and then
analyzing its grounding principle of functioning.

The geometrical modeling establishes the size, the shape and the materials of the
object and its constituent parts. The coordinate system is set at this point, with a
”computational geometrical” perspective in mind, already imagining the data structures,
as the model will be eventually described for a computer.

Another goal of this step is setting the computational domain. As many modeling
methods impose that their domain of definition to be bounded, the computational domain

4



Use of Reduction Methods in Multiscale Modeling of Complex Systems

will have a border, real or fictive. This truncation is also a simplifying assumption that
has to be made explicitly.

The geometry description of every component will obviously involve surface smoothing
and/or neglecting some geometric details, which means the idealization of the real forms.
All these simplifying assumptions should be recorded in a list at the end of the geometrical
modeling, because they are likely to generate modeling errors.

One of the most significant idealizations occurs when assuming that the local quantities
(data, unknowns) are not dependent on one or more spatial coordinates. This leads to
the following categories of models [6]:

– 1D: the local quantities depend on only one spatial coordinate (usually Cartesian);

– 2D: the local quantities depend on two spatial coordinates; if these coordinates are
Cartesian, the model is called plane-parallel;

– 3D: the quantities depend on three spatial coordinates;

– 1.5D: the local quantities depend only on r – the radius of a cylindrical coordi-
nate system; mathematically the model is 1D but from the physical point of view
we talk about a 2D model; this model is both plane-parallel (along Oz axis) and
axisymmetric (Oz is the axis of symmetry);

– 2.5D: the local quantities depend on the spatial coordinates z and r of a cylindrical
system; this means the model is still axisymmetric (with Oz the axis of symmetry);
the model is 2D mathematically and 3D physically;

– 1D/3D: the local quantities depend only on the coordinate r of a spherical sys-
tem (models with spherical symmetry); mathematically the problem is 1D whereas
physically it is 3D.

The physical modeling means identifying the fundamental physical phenomena the
functioning is based on. The main physical quantities are identified, as well as the causal
relations between them, describing the state and interactions within the model. The
physical phenomena lead to physical laws that lead to equations, which from the spatial
point of view have to be in accordance with the dimensional category established during
the geometrical modeling.

From the time point of view, the type of variation determines the operating mode
(also the physical regime in which the field functions) and the subsequent type of simula-
tion. The regimes usually considered are: stationary (assumes that the quantities do not
depend on time); harmonic (the quantities have a sinusoidal variation, with the same
frequency f); periodic (the variation is recurrent, with the same period T); transient
(the variation exists, but it is not known); modal analysis (seeks the eigenmodes of
oscillation, which can occur in some structures after the excitations end). For the electro-
magnetic field there is another differentiation, between the static and stationary regimes,
the first being a stationary regime without energy transfer. The quasi-stationary regime
is also used (inductive and capacitive); in this regime the quantities vary so slowly that
some effects can be neglected (such as the electromagnetic induction phenomenon or the
displacement currents effect).
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The problem’s solution can also be influenced by other characteristic data, such as
material constants and field sources, in which case this data appears in the equations
and has to be explicitly assessed. If the field sources are internal, then they are usually
described by the local physical quantities of the corresponding computing domain. The
external field sources are described using the boundary conditions, whereas the anterior
sources are described by the initial conditions.

In some cases the physical fields have different operating modes in distinct subdomains
of the computing domain. These should be identified, as they may be a valuable resource
for the subsequent order reduction of the extracted model. For multi-domain problems
it is also important to determine the relations describing the coupling between domains
(transfer relations, inter-connections). Together with the identification of the field regimes
and the field sources, establishing the coupling relations represents an important step for
making the transition from a qualitative description of the model to a quantitative one,
which is the main goal of the physical modeling stage.

1.2 Mathematical Modeling

This stage of modeling aims to formulate the problem in mathematical terms and
verify that the problem is well formulated. For a direct problem, its initial form means
solving a system of PDEs. Conversely, the verification of the well formulation conditions
enforces the reformulation of the original problem, which usually means passing from the
strong formulation to the weak form of the differential equations (also called variational
form). The reformulation has additional advantages as it facilitates the proof of some
theorems and the development of numerical approaches. In the weak form, the solution
is no longer a classical function, but a generalized one, for which the value in a point of
the computing domain has no meaning. This profound transformation requires the use
of modern mathematical approaches, such as functional analysis applied to PDEs and
therefore to the spaces of functions such as Lebesgue square-integrable, with generalized
derivatives or Sobolev [5].

The problem’s initial formulation requires the identification of the given data, the
identification of the unknowns and the equations that connect them. The given data is
comprised of:

– Information related to the spatial computing domain (shape and size), in mathe-
matical terms;

– Data describing the materials in every point of the computing domain; if the ma-
terials are linear this data is represented by material constants (real numbers for
isotropic and tensors for anisotropic materials); for nonlinear materials the charac-
teristic functions are given;

– Internal field sources in every point of the computing domain, which are sometimes
included in material characteristics;

– Boundary conditions, describing the effect of external field sources; they should be
known in every point on the border and at every moment in time (in the interval of
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simulation);

– Initial conditions, describing the effects of anterior evolution of the system; they are
required only for transient analysis.

The unknowns in a field analysis problem are local physical quantities, mathematically
represented by functions defined on the computing domain (spatial and temporal).

For a field analysis problem the well formulation means the concurrent fulfilling of the
following three conditions [7]:

– The existence of the solution – the problem must have a solution for every excitation
from a class of functions;

– The uniqueness of the solution – the problem must have a single solution in the
spatial and temporal computing domain;

– Well-conditioning of the problem – the solution depends continuously on the problem
given data, small deviations of data do not generate excessive deviations in the
solution (the error is not excessively amplified).

The first step in proving that a problem is well formulated is the precise identification
of the space containing the given data and the space where the solution lies. This action
is called ”setting the functional framework” of the problem to be solved.

The weak formulation is obtained by Galerkin projection on a test functions space,
which is isomorph with the trial / base functions space (the space where the solution is
searched for). In the static cases, the identification of the trial functions implies making
the distinction between natural boundary conditions (described in the expression of the
weak form of the equations – Neumann type) and essential boundary conditions (imposed
on the solution from the start, therefore satisfied by the trail functions – Dirichlet type)
[5], [6].

1.3 Analytical modeling

Most complex problems cannot be solved analytically. However, it is recommended
that before the numerical solving an analytical solution to be found, even if this means
the oversimplification of the original problem. The approximate analytical solution is used
to validate numerical methods and to better understand the way the solution depends on
the input data, by sensitivity analysis. Examples of analytical modeling are in what
follows [5]:

– Simplifying the geometry, usually to a 1D problem;

– For transient problems, finding the stationary solutions, which describe the initial
and final state of the system;

– For nonlinear systems, their linearization and subsequent application of perturbation
analysis, by considering small variations around the stationary solution [8];
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– For harmonic and transient problems, the analysis in the frequency domain (com-
plex/operational representation);

– Applying finite differences method for the spatial derivatives; the system obtained
is discrete, with a relatively small number of degrees of freedom and an approximate
analytical solution; this is a lumped parameters system, whereas the original system
has distributed parameters ;

– Applying separation of variables [9]; in order to find an analytical solution the
equation is rewritten so that each of the two variables occurs on a different side of
the equation.

The approximate modeling requires additional simplifying assumptions that are un-
likely to be realistically satisfied. However, the outcome of this stage of modeling is getting
a sense of the interactions within the model and its behavior in particular conditions.

1.4 Numerical Modeling

Numerical approaches are mandatory to find solutions to complex problems. The most
important numerical techniques are the following:

– FEM – Finite Element Method [10], [11], [12];

– FDM – Finite Differences Method, or some of its versions, such as Finite Volumes
Method (FVM) [13], [14] and Finite Integration Technique (FIT) – the correspond-
ing approach in electromagnetism [15], [16], [17];

– BEM – Boundary Element Method, also known as the Method of Moments (MoM)
[18], [19].

Table 1.1 synthesizes the characteristics of the methods enumerated above.

Table 1.1: The numerical methods compared (adapted from [5]).

Method Discretization mesh Equation form System matrix
FEM Unstructured, composed

of triangles, quadrangles,
tetrahedra, etc.

Weak, differen-
tial form

Sparse, symmet-
ric, positively
defined, diagonally
dominant

FDM/FVM,
FIT

Grid with regular topol-
ogy (tensor product of 1D
meshes); in the case of hy-
perbolic equations, pair of
interlaced dual networks.

Differential /
global form

Band matrix,
sparse, symmet-
ric, diagonally
dominant

BEM Unstructured 2D meshes on
domain border or on inter-
faces between homogenous
subdomains.

Integral form Full, positively de-
fined
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These numerical methods are extensively used to solve complex problems and for this
reason many software packages have been developed, both general purpose and specialized
on a particular set of problems. To select the most suitable modeling methodology for
a certain problem it is necessary to understand thoroughly the characteristics of the
analyzed model and to be acquainted with the existing software procedures and tools.

1.5 Extraction of Reduced Models

A comprehensive discussion about the necessity of model reduction in modeling mul-
tiscale systems is done in Chapter 2.

From the simulation time point of view, the complexity of a model is quantified in
the number of degrees of freedom (DoFs), which is in close connection with the number
of inner state variables of the model and the complexity of the discretization mesh. In
the general sense, model reduction aims at finding a model that retains to some degree
the behaviour and the predictive power of the original model, but has much lesser DoFs
and is therefore much easier to simulate. Concurrent advances in computing power and
simulation algorithms may appear to make model reduction a less essential process than
it was in the past [20], but in reality model reduction is as important as ever with the
growing ambition to simulate higher complexity models, especially in biology, where the
level of detail can generate models with thousands of state variables [21].

We can dissociate two phases in the process of model reduction. The first is based on
discretization, which transforms an infinite model to one with a finite order. Discretiza-
tion can be performed at several levels. For example, the solution of a linear, parabolic
PDE determined by separation of variables is a series of functions with exponential vari-
ation over time, with increasingly smaller time constants. We basically evaluate the
solution by truncating the series to a finite number of terms. These are the solutions of
linear ODEs, therefore by switching from PDE to ODE we perform a first reduction of
the model [5]. Another form of model reduction is expressed through numerical methods
such as FEM, as the inherent discretization transforms the original model to one with
a finite number of states. Moreover, all computational models require discretization not
just for the state variables but also for the boundary conditions, initial conditions, input
and output data (discrete signals). We can state that passing from a continuous mathe-
matical function to a data structure such as a vector or a matrix (discretization) denotes
and implies model reduction.

The second phase refers to model order reduction (MOR) of the mathematical
system of equations. The reduction of the original model order aims at identifying a
system described by ODEs with a number of states q � n but having the same number
of inputs and outputs as the original system and providing a relationship between the
input and output signals close to that of the original system. Also the existence of an
error bound is expected. In some situations it is desirable to preserve other properties
of the original system such as passivity or stability. The reduction procedure should be
computationally stable and efficient [22].

Many mathematicians have contributed to developing new and/or improved MOR
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methods, as this subject has generated a tumultuous and fertile literature in the last
decades [23], [24], [25]. There are two sets of methods that are currently in use, namely:
SVD based methods and moment matching based methods. One commonly used approach
is the so-called Balanced Model Reduction [26], whereas for nonlinear systems Proper
Orthogonal Decomposition (POD) is more suitable, both representing the former category.
From moment matching based methods Krylov subspace methods are to be mentioned.
All the methods analyzed and applied in this thesis are formally described in Chapter 4
and Chapter 5.

1.6 Models’ Verification and Validation

This is the final step of the modeling activity and it completes the circle of modeling
by returning to reality. Model verification checks if the solution satisfies the equations
and model validation ensures that the model formulation is in agreement with the reality,
in other words that the equations are correct.

An important issue in model verification is the formulation of deviation indicators,
in other words what are the criteria of interest and for each criterion how do we define
the deviation. In order to verify the solution of a field problem, the problem is solved
for a particular excitation (input, field source) and it is determined to what extend this
satisfies the field equations and the boundary conditions. Most often very specific or even
degenerated shapes are used for the excitation signal, such as step/pulse functions or even
constants. For these particular cases we are able to determine the analytical solution (see
the third step of the modeling procedure) that will act as the reference. During the model
reduction stage, the reduced model is compared with the original model, from which the
quantities of reference are chosen.

The result of the quantitative evaluation will be a vector, however it is desirable to
have only one numerical criterion to synthetically express this difference, i.e. to measure
the distance between what should be and what is actually obtained. From a mathematical
point of view, this dilemma is reduced to choosing a vector norm. Most often the error
is relative, as ratio between the deviation norm and the norm of the vector characteriz-
ing the quantity of reference. The most common vector norms used in practice are the
Euclidean norm (square root of the sum of the squares of the components) and Cebisev
norm (the maximum absolute value of the components). The first describes the mean
square deviation and the second describes the maximum deviation. The Euclidean norm
takes into account all the components, whereas the Cebisev norm refers only to the most
aberrant component. In order for them to be comparable the Euclidean norm should
be computed as an average (thus dividing the sum of the components’ squares by their
number before computing the square root). In some cases some components are more
significant than others, therefore a weighted norm should be defined.

In conclusion, the error definition plays a big role in the interpretation of the results
and should be under discussion for every particular case. For example, for a system of
equations the relative error can be defined as the ratio between the residue (the difference
between the free term and the vector obtained by replacing the solution in equations) norm
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and the free term norm. This error however might not be relevant for the quantitative
evaluation of the solution’s correctness, since there are many examples with a reasonably
small residue, but a significant actual deviation of the solution. This typically happens for
ill-conditioned systems, where small differences in the given data (field sources, described
by the free term) may cause big differences in the solution. The condition number should
be determined in order to estimate the solution’s variability, meaning the rate at which
the solution will change with respect to a change in the data. Depending of the equations,
the procedure may involve the analysis of the system matrix (conditioning is a property
of the matrix), sensitivity analysis (may be empiric), parametric analysis.

The last and possibly most important phase in modeling is the model validation,
which means confrontation with the reality. The validation can be performed experimen-
tally, but prototype design and execution may be very expensive and in some areas where
prototyping is not an option, such as biology, ethical issues may arise. The model can be
validated by the comparison with other models in the literature, preferably already vali-
dated by experiments. The tests should consider the behavior in typical conditions and the
behavior in particular situations. For the particular situations the analytic-approximate
model may be used as reference. The model should be able to reproduce at least qualita-
tively the behaviour in the particular situations considered in the analytical approximate
model. For complex problems however the results may be significantly different, but the
differences should have plausible explanations.
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Chapter 2

State of the Art in Multiscale Modeling
of Neuronal Systems

This chapter is dedicated to the state of the art in modeling of biological systems in
general and neuronal systems in particular. Model reduction is emphasized as an essential
part of efficient modeling, in the presence of the intrinsic particularity of multiscale of
complex biological systems [27].

2.1 Multiscale and reduced modeling of Biological Sys-
tems

Until recently, biology was a subject only for biologists. But as a change of paradigm
had taken place worldwide and many research fields had become interdisciplinary, the
research domains related to biology have aligned to this trend. There is a wide variety of
emerging fields involved, such as molecular biology, electro-biology, computational biology,
evolutionary biology, systems biology. All these are strongly related with the ”omics”
sciences – genomics, proteomics, interactomics – having as result an ”olome” – genome,
proteome, interactome – which aim at the collective characterization and quantification
of pools of biological molecules that translate into the structure, function, and dynamics
of organisms [27].

By this process, systems biology aims to be a system-level understanding of biology. In
the first book on this subject [28], Hiroaki Kitano said that systems biology ”is intended to
be biology for system-level studies, not physics, systems science, or informatics, which try
to apply certain dogmatic principles to biology”. Systems biology is a holistic approach
to biology, a bold attempt to understand not only the structures, but also the dynam-
ics, control and design methods of complex biological systems. The main reason is that
the components of biological systems act differently in isolation than they do when inte-
grated into a larger system [29]. As every interdisciplinary field, systems biology makes
use and becomes a pretext for the advances in theory, experiments and computational
modeling. Therefore systems biology became a hybrid; its theoretical foundation consists
of quantities, principles, laws and techniques from other fields such as biology, physics,
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Figure 2.1: The mapping between the three representations of biological systems.

biochemistry, mathematics, control and computational sciences. But their consequences
are beyond those of each discipline involved.

The interdisciplinary character of systems biology is underlined by the interactions of
its representations in the three worlds: the reality, the abstract and the virtual repre-
sentations. Any complete model should have these three related representations, in total
accordance with CSE. They are in strong relationships (Fig. 2.1) with mutual influences.

A suitable mathematical model should not just fit the experimental results, but should
explain the underlying phenomena, make predictions and generate experimentally testable
assumptions. These kinds of quantitative models are the theoretical fundament of valuable
computational models. Advances in IT allow the implementation and development of more
sophisticated models. However, the explosive evolution of computers cannot substitute
advanced abstract – mathematical modeling activity and deeper understanding of the
reality [27].

The biological complexity relies first in the fact that the collective properties of a system
are not equal to the sum of individual properties of its contained sub-systems. This is
the main reason for trying a system-level understanding of biological systems. Moreover,
complex systems are not static and their present behaviors are in part determined by
their history [30]. This is why one cannot eliminate time from the complete analysis of
biological systems.

Until the year 2000 most of the system-level analysis attempts were made at cell level
[31, 32, 33, 34]. The idea behind a system understanding at cellular level was to not only
identify the components (ex. genes, signal transduction networks, physical structures),
but also to consider the cell as a system, to try to determine the interaction between
these components and to describe the system properties, such as its dynamics, control
and design methods.

In the literature there are many attempts to analyze the modeling process in systems
biology, many of them stressing to the importance of multiscale approach [35, 36, 37, 38,
39, 40, 41, 42, 43, 44]. However the model reduction is not always properly identified as
an essential procedure for an effective multiscale analysis.

The multiscale approach to biological systems is based on the idea that the properties
of a system at a certain scale (e.g. cellular scale) are influenced by the interactions at
lower and higher scales (molecular and tissue-organ scales). In order to predict quantities
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Figure 2.2: Hierarchical levels in multiscale biological modeling.

at a macro level, it is necessary to use the information at a lower-scale. A system-level
understanding of biological systems (systems biology) implies a multiscale approach, for
”this is the uniform nature to incorporate complex bio mechanisms” [30]. Reference [45]
even defines systems biology as quantitative, post-genomic, post-proteomic, dynamic,
multiscale physiology.

The idea of multiple scales in biology is strongly connected with the principle of biolog-
ical organization on a hierarchy of scales from atomic level to organism, population and
ecosystem. Each level in the hierarchy brings an increase in complexity that is described
using the concept of emergence. Each level presents emergent properties – coherent struc-
tures, patterns and functions – which are not present or are irrelevant at lower levels.
Emergent properties reside in the properties of the ensemble rather than of any individ-
ual state. The challenge is to determine the interactions between scales and to conserve
relevant information from lower scales to higher scales [27].

A biological system should therefore be perceived as a four-dimensional entity spanning
over many spatial and time scales. In the three-dimensional space we can clearly differ-
entiate the molecular (10−10÷ 10−7 m), the cellular (10−6÷ 10−4 m) and the tissue/organ
level (10−2÷ 1 m). In the time domain biological systems range from the molecular inter-
action timescales (10−9÷ 10−6 s), through the cellular (10−1 s) to the macro (105÷ 109 s:
days to years) scale [38, 39, 42, 46]. The spatial scaling factor – of 9 orders of magnitude
– considered in Fig. 2.2 is unidirectional; but in the 3D physical space it becomes triple.
Consequently, the number of elementary structures from the first level contained in an
organism is 1027, which makes it impossible to model a biological system from the last
level by exclusively using structures from the molecular level. This is the obvious argu-
ment for the absolute need of a multiscale approach, even for just two consecutive levels,
having a scaling factor of 104÷ 106. The obvious conclusion of this image is the tight link
and correlation between multiscale (several spatial degrees of refinement) and multi-rate
(different speed of events, in time). Each spatial level has its characteristic time constant.

Although at the higher scales there can be uncovered some universal characteristics to
all biological systems, the lowest levels (genome, transcriptome, proteome, metabolome)
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Figure 2.3: Abstraction levels of hierarchical biological organization.

exhibit organism specificity [47]. Every spatial scale has its specific mechanisms, hap-
pening at their own time scale, so it has to be modeled with a suitable abstraction level
(Fig. 2.3).

Different scales imply different physical models, which imply different mathematical
models which imply different quantities. What happens at the genome level is described
by the quantum mechanics; at the cell metabolism level the biochemistry plays an essential
role while at the membrane level the electro-chemistry is important. There has to be a
multiphysics approach, and the key issue is to find the appropriate representation of the
behaviors at different scales and the proper interface between scales. It is apparent that
a model based on a single type of physics and using a uniform spatial scale would not
be capable of describing this multitude of biological processes and providing fundamental
understanding [44].

The diversity of methodologies and techniques applied in mathematical modeling and
the computational representation and simulation for different space and time scales of
biological systems are presented in the Table 2.1. These may be:

• Differential ODE/DAE equations in which time is the independent variable,
able to describe the dynamical behaviour of several variables. Generally they are
nonlinear, implicit or explicit, but many times they are linearized, mainly for an
easier solvability:

DAE : f(ẋ,x,u) = 0⇒ Eẋ = Ax + Bu,

where ẋ =
dx

dt
,x(t) ∈ Rn are state variables; (2.1)

ODE : ẋ = g(x,u) = 0⇒ ẋ = Ax + Bu,

where u(t) ∈ Rp describes stimuli. (2.2)

They are used to model the molecular dynamics of proteins, the dynamics of bio-
chemical reactions and many other biological aspects. By using these equations – at
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the cellular level – biological regulation networks can be modeled as electrical circuits
where signals are produced, propagated and sensed. Spice-like circuit simulators
such as Xyce may be used to simulate large control networks consisting of entire
cells or cell cultures in order to understand the dynamics and stability of such
systems [48].

• If there the spatial reaction-diffusion phenomena or heat and mass transfer are
modeled, then PDE equations are used, usually of parabolic type:

PDE : f(
∂x

∂t
,∇x,x,u) = 0⇒

⇒ D
∂x

∂t
+∇(C∇x) + Bu = 0,

where x(r, t) ∈ Rn are state variables. (2.3)

Other PDE equations are used, such as those of electric field, Navier-Stokes to
model several fluid dynamics or mechanical equations of solid body equations to
model structural elastic or viscous-plastic deformations and Schrödinger equations
at the atomic level.

• SM: Stochastic methods. The thermodynamic fluctuations of the proteins accu-
mulated in biological systems require the use of appropriate stochastic techniques
to model the cells and tissues. They are applied in the simulation of dynamical
aspects of chemical reactions, as in the well-known SSA (Stochastic Simulation
Algorithm, developed by Gillespie in 1977, based on Markov transitions), CME
(Chemical Master Equations, developed by Nicolis and Prigogine in 1977) or prob-
ability distribution described by Fokker-Plank PDE equation (developed by Risken
in 1989).

• DM: Discrete methods are more computationally efficient than the continuous
methods. They are based on temporal or spatial discretization, drastically redu-
cing the number of variables or the number of bits needed to represent a variable.
Difference equations (aka iterated maps) may be used:

DE : f(xk+1,xk,u) = 0⇒ xk+1 = g(xk,u),

where xk ∈ Rn are discrete state variables. (2.4)

Cellular automata (which describes the interactions between elements which are dis-
tributed over a spatial grid), Boolean networks (with elements having random state
and input, described by Boolean functions), agent-based methodology (an extension
of cellular automata, but their elements are agents complying more complex rules)
are other types of discrete techniques, known as rule-based modeling. Even if the
elements follow very simple rules, due to their interactions the entire community
has a complex behavior. Compared with the continuous models, they are easier to
simulate, but the result is less accurate.

The interdependence between two neighbor scales is a causality arrow in both directions
(Fig. 2.4). For example ion channels→ whole-cell→ heart [42, 52] and in reverse, proteins
are modulating gene expression [29, 42, 53]. This interdependence can be viewed as
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Table 2.1: Space and Time Scales, Mechanisms and Representative Modeling Methods.
Codes: Deterministic, STOCHASTIC , Discrete, Different Interpretations. Abbrevi-
ations Used: RDE: Reaction-Diffusion Equation; ODE: Ordinary Differential Equation;
PDE: Partial Differential Equation; MD: Molecular Dynamics; QM: Quantum Mechanics;
MM: Molecular Mechanics; ECM: Extra-Cell-Matrix, [36, 37, 42, 49, 50, 51]

.
Space scale Time scale Mechanism

Modeling Approach/Meth-
ods

Quantum 10-10 10-15
electron – electron interac-
tion

Schrödinger equation
QM

Atomic / Molecular 10-9 10-12

structural determination of
atom-atom force fields

MM

dynamics MD: Newton’s laws
dynamics + diffusion in
space

ODEs + RDEs → PDEs

Brownian motion Langevin equation

ion channels ”gating” –
electrical activity

Hodgkin & Huxley for-
malism
Markov chains (transitions) –
Gillepsie’s algorithm

Proteomic /
Macromolecular

10-6 10-9

gene expression / regula-
tion ODEs (law of mass action)
signaling pathways / net-
works
protein – protein interac-
tion networks
pattern formation RDEs

Sub-cellular
and
Cellular

10-4 10-5

metabolic reaction net-
works

ODEs (law of mass action)

action potential ODEs
flux of substances inside
cell – convection, diffusion

PDEs; spatial variable den-
sity functions

flux of substances through
cell membrane

ODEs (conservation laws)

whole-cell Ca transient in
Ca signaling

agent-based

thermodynamic fluctua-
tions

Gillepsie’s algorithm

Tissue 10-2 10-3

cell-cell interactions mechanical modelscell-ECM interactions
cell differentiation (with
position within the tissue)

PDEs
cellular automata

electric wave conduction
(cardiac, neurons)

PDEs(RDEs)

blood flow, coronary circu-
lation

Navier-Stokes equations

cardiac conduction
difference equations
(iterated maps)

Organ and
System of organs

10-1 10-1

Physiology of systems:
skeletal, muscular, cardio-
vascular, nervous, diges-
tive, respiratory, endocrine,
lymphatic/immune, excre-
tory, reproductive.

integrating time models to-
gether, by consideration of
real geometry of the organ
or system of organs
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Figure 2.4: Multiscale modeling and model reduction.

bidirectional coupled problems where in addition the two coupled systems are modeled
using different physical and mathematical relationships. Interactions can therefore occur
at the same scale or between scales, resulting in feedback loops between scales. There is
a clear difficulty in connecting these models in a correct and relevant way.

There are different strategies for the integration of several levels. They are sometimes
categorized according to the orientation, in Bottom-up and Top-down approaches. If we
consider for example only two adjacent scales, the Bottom-up approach tries to determine
the system’s behavior on the higher scale by analyzing the dynamics and interactions of its
components at the lower scale. These kinds of models are adaptive and robust, but they
are computationally intensive, especially if we have to consider more than just two scales
[42]. The Top-down approaches try to reverse-engineer underlying mechanisms (lower-
scale) from higher-scale observations. This approach can lead to a simpler and intuitive
model, where hypotheses can gradually increase their level of detail directly backed-up by
the data; but this model is less robust and one can argue that higher scale phenomena may
have multiple different potential underlying explanations on more fundamental scales, so
the interactions can become ambiguous [53].

In many models of physical systems there is an implicit multiscale modeling, where
governing equations capture the relevant properties of lower spatial and temporal scales.
As at this moment there are no governing equations for biological systems, we need to
explicitly consider assumptions across multiple spatial and time scales.

Several modeling challenges implied by a multiscale approach are described in [43].
According to [42], significant conceptual and practical gaps exist between scales, some of
them being irreducible, such as:

• Keizer’s paradox (an example of a system which modeled with SM always undergoes
extinction x = 0, while it is continuous-deterministic modeled, it tends to a nonzero
steady state);

• Noise-induced phase transitions (inducing qualitatively properties to systems, in
certain conditions);

• Crucial differences between 0D and 3D models (e.g. accuracy in modeling the spa-
tiotemporal dynamics of cells).

The authors have identified several techniques to close-up the gaps between scales, such
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as:

• Mean field theory (low-dimensional representation of high-dimensional systems
developed in statistical Physics to compute the macroscopic values of microscopic
variables);

• Coarse graining (an ensemble of neighboring elements are represented by their
average behavior, numerical discretization being a case of coarse graining);

• Nonlinear dynamics (allow the description of complex behavior of low-dimensional
systems such as chaos, cycles, bifurcation, self-organization);

• Systemic biology approach (holistic modeling to allow the identification of feed-
backs between several scales, which are characteristic to the living systems);

• Hierarchical modeling (reflecting the physical and spatial organization of the or-
ganism, from the intracellular to the intercellular level and beyond – tissues, organs,
etc.): identifying the dominant sub-system [54] or the use of Petri nets [43].

In the context of coarse-graining, different sub-techniques have been studied, such
as the Henderson theorem (which states that under rather weak conditions two pair
potentials which give rise to the same correlation functions cannot differ by more than a
constant), the Inverse Monte Carlo method [55] or the application of self-organizing maps
(i.e. a neural network type approach) for the analysis of conformations of molecules of
soft matter [38].

The process of identifying the different spatial/time scales for a complex biological
system (encapsulation) might be the most difficult part in the modeling process. Con-
sidering the hierarchical organization of biological systems, one can model a whole organ
by putting together millions of cells, every cell consisting of thousands of ion channels.
But this type of model will be by far numerically intractable using the existing compu-
tational power. This is why there is a close connection between multiscale modeling and
model reduction. In order to model multiscale systems it is mandatory to use different
spatial/time resolutions. One can create a medium high-dimensional scale model using
a high resolution model for a low-scale, which will generate many degrees of freedom for
the medium-scale model. Then one reduces the complexity of the medium-scale model by
creating a low-dimensional model which can be incorporated in a high-scale model that
makes use of the relevant information from the lowest modeled scale. Table 2.2 presents
the main multiscale methods for bio-systems modeling.

Model reduction techniques for deterministic models are classified in several ways. For
example in [54] they are:

• Trajectory based techniques: tries to find a small number of reduced variables
from integration of the dynamical equations (Proper Orthogonal Decomposition –
POD);

• Singular perturbations techniques: slow/fast decomposition (or master-slave
splitting, because it eliminates the fast variables whose dynamics is slaved by the
slower variables;
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Table 2.2: Multiscale Methods in Modeling of Biological Systems [27]

QM / MM
the region of interest is represented Quantum Mechanically;
surrounding protein/lipid/solvent is represented at atomic
scale with an empirical derived potential function.

Coarse-graining

represents an idealization of various kinds;
mean-field theory, rule-based modeling and numerical dis-
cretization can be considered as coarse-graining methods ; also
treating the cell as the smallest unit.

Mean-field

can be considered a particular version of coarse-graining;
treats a system by assuming that the elements are controlled
by a single mean field, which is created by all the elements
themselves [42];
appropriate when the elements are globally coupled or when
the system is well mixed.

Non-linear dynamics
iterated maps;
manifold reduction;
slaving principle.

• Aggregation or lumping techniques: replace the reactions mechanism by sim-
pler mechanisms in which some intermediate species are absent.

However [23, 56, 57] present different classifications, such as projection methods and
rational interpolations/fitting in the frequency domain. The goal of multiscale approach
is not only to develop models at several scales; they have to be linked in such a manner
to allow the transfer of information between levels. It is a challenging task. Results
obtained at each level have to be analyzed and simplified in order to be useful for the
higher level. This actually means the reduction of the model complexity. For instance, if
the current model is a continuous one in space and time – described by PDEs – it may
be discretized in order to be described by ODEs or DAEs. It is an important reduction,
because the system order goes from infinity to a finite number. Another example can be
the model order reduction from a high value to a lower one, as it happens in classical
MOR of systems described by DAEs, such as Krylov space methods, TBR or Rational
interpolation. Moreover, the change of modeling methodology, from complex to a simpler
one, e.g. PDEs to DAEs to ODEs to SMs to DMs as well as by linearization are definitely
procedures to reduce the model complexity and may be used as bridges between several
scales.

The parameters of biological networks can be extracted in a manner similar to the
extraction of reduced model from the electromagnetic field model with EMCE boundary
conditions [58]. By using Adaptive Frequency Sampling and Vector Fitting (AFS-VF), the
parameters of lumped circuits are extracted in parallel [48], equivalent to the components
with distributed parameters [59]. A similar approach is presented in [60], applied to
the thermal phenomena. Both [58] and [60] reveal the major importance of the terminal
reduction for an efficient complexity reduction. In this approach, the PDEs which describe
several bio-physical and bio-chemical fluxes are numerically solved by using advanced HPC
techniques suitable for multiscale and Domain Decomposition [61], [62], [63]. Multiscale
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and model reduction are therefore combined in a very efficient manner and the problem
becomes a complex multiphysics one, with all three attributes described in [3]: multiscale,
multi-field and multi-domain. The multipolar element with distributed parameters of
biological networks is the key concept. Such element is encapsulated in semipermeable
membrane or it is bordered by a virtual boundary. It describes the multiscale mass transfer
of several species, their flow or diffusion and reaction, as well as the electric potential
distribution and the electric current flow. Consequently, on the element boundary two
kinds of terminals are defined: electric and flow terminals. They represent exactly the
circulatory and neural structures that are the main concern in the transplant surgery.
These ideas are developed in [64].

2.2 Multiscale Modeling of Neuronal Systems

Neurons are the basic cells of the neural system, the most complex system in the
human organism. They consist in a soma, a dendritic tree and an axon ended with the
axonal tree, which are interconnected by means of synapses with the dendrites nodes
of other neurons (Fig. 2.5). Myelination is an essential process in the formation of
the nervous system. It begins before birth and continues until adolescence, resulting in
increased neuronal performance, primarily in the transfer of neural signals along axons.
Myelination consists of wrapping axons with an electrically insulating layer, built by a
series of glial cells. These cells have a lamellar shape and spiral wrap around the axons
(Fig. 2.6), being composed of myelin, a protein-rich fat substance with good insulating
properties. The space between two myelinated sections is called a Ranvier node. Having
a high density of ion channels, these nodes are essential in regenerating the neuronal
signal, previously attenuated during the transmission across myelinated compartments.
The electrical phenomena occurring are linear in the myelinated sections and nonlinear
in the Ranvier nodes. The neuronal signal transmitted along the myelinated axons seems
to jump from node to node, a phenomenon called saltatory conduction. Among the
first papers describing the saltatory conduction, [65] also presents how the characteristic
parameters of the nerve fiber can be experimentally determined [66].

Figure 2.5: The neuron as basic cell of the neural system [67].
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Although many consider the delay of inter-nodal transmission negligible to the delay
of signal reconditioning in the Ranvier nodes, it has been concluded that things are not
exactly so [68]. Extracting small size models with acceptable accuracy is essential for
the simulation of saltatory conduction and consequently for the efficient simulation of
impulse neural circuits, which are very complex circuits in the central and peripheral
nervous system. In order to extract precise models of myelinated compartments, an
exact knowledge of their morphology and material characteristics is necessary, and also
the complete understanding of the physico-chemical, bio-physiological phenomena taking
place inside them [66].

Table 2.3 contains a series of characteristic data of myelinated segments, experimentally
determined or used in simulations.

It is worth noting the large diversity of the parameter values, both between species and
within a species, but also for a single individual, between the behavior of the neurons in
different areas of the central and peripheral neural system [69]. This shows the importance
of identifying personalized features in diagnosis and treatment. The complexity of models
requires the use of advanced optimization techniques for the experimental determination
of parameter values describing each type of neuron [70].

Even with this great diversity, there are some general correlations between the pa-
rameters. Thorough statistical studies have revealed an increasing correlation between
the axon diameter and the thickness of the myelin layer (proportional) but also with the
inter-nodal distance (logarithmic) [71]. [72] demonstrates that these correlations are not
accidental, but have an optimal character. Increasing the thickness of the myelin layer
isolates the axon, lowering its linear capacitance and transverse conductance, of eddy
currents. This determines a lower attenuation of the neural signal, and consequently
increases the transmission length, and also the transmission speed of the signal.

The modeling of neurons and neuronal collections with high accuracy – by capturing the
essential aspects of their functioning – and efficient simulation have become central issues
of neuroscience. These topics are presented in monographs of theoretical neuroscience
[73], [74], [75], [76], [77], [78], [79], [80], [81], [82], in manuals of software simulators
dedicated to neural systems [83, 84], or in articles describing various aspects such as:
new neuronal models [85], measurement of characteristic parameters [70], computational
simulation methods [86].

The diversity of neural models reflects the complexity of the underlying problem of
theoretical neuroscience. The models have various forms: mathematical models described
with ordinary or partial derivative equations; electrical models described as systems or
electrical circuits with lumped or distributed parameters. Any of them may be linear or
nonlinear. In the linear case, the equations can be represented in the frequency domain
by applying suitable integral transformations (such as Fourier or Laplace), which allow
the definition of transfer functions (called circuit functions in an electrical model, e.g.
impedance, admittance, hybrid matrix), which greatly facilitate the study [96, 97, 72].

The complexity of a compact model is defined by its order, which is the number of
state variables, respectively the number of energy accumulators (capacitors in our case) in
the equivalent electric circuit. In the case of linear systems, the order corresponds to the
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Figure 2.6: The structure of a myelinated axon [87].

Table 2.3: The characteristics of myelinated axons.

Quantity Value Source
Length (inter-nodal distance) 100 µm [88]

250÷6000 µm. Test values,
typically 1500 µm

[89]

L/D = 100 length vs. outer
diameter

[69]

Thickness of myelin layer 1÷ 12 µm [90]
3 µm [72]
d/D = 0.75(0.6÷0.8) inner-
outer diameter

[69]

Axon diameter 1÷ 20 µm [91]
7 µm [72]
10 µm [92,

93]
0.5 ÷ 200 µm. Test values,
typically 10 µm

[89]

12.5 µm [94]
Cytoplasm resistivity 100 Ω · cm [92,

93]
0.924 Ω · cm [72]

Extracellular fluid resistivity 70 Ω · cm [93]
Myelin permittivity / capacitance 0.005÷ 1 µF/cm2 [92]

0.005÷ 1 µF/cm2 [95]
15.44 · 10−12 µF/m [72]

Myelin conductivity 1.5 µS/cm2 ÷ 10.3 mS/cm2 [92]
2.04 · 10−4 S/m [72]
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number of poles of the transfer functions. The models with lumped parameters, described
by ODEs have a finite order, whereas models with distributed parameters, described by
PDEs and transcendental transfer functions, have an infinite dimension of the state space.
The model is represented as a dynamic input-output system, and it can be with a single
input and a single output (SISO), such as transmission models for axons and dendrites, or
multiple inputs and multiple outputs (MIMO), e.g. the ones used in the study of neurons
with tree-like dendrites and axons. In order to describe the behavior of a multi-terminal
model, the circuits theory can be used, to derive hybrid transfer matrices whose meanings
depend on the way each terminal is controlled, either in current or in voltage. If the model
is linear, the system representation can be the standard state space system of equations,
with the matrices: A, B, C and D. This approach is suitable since the transmission
of neural signals occurs unidirectionally. Since a typical neuron has an average of 10,000
synapses, it is obvious that the order reduction of its models should be made by preserving
its tree-like structure. In particular, synapses, dendrites and axons are treated as SISO-
type systems, whereas soma is MISO (multiple-inputs, single-output) and the axonal tree
is SIMO (single-input, multiple-outputs). Otherwise, if the neuron would be treated as
a MIMO system, it would result in tens of millions of input-output connections, whose
descriptions would require important computing resources, even if they had a low order
[66].

The simplest models are therefore those of neuronal signal transmission through axon
or dendrite sections, RC models of minimal order, having lumped parameters describ-
ing longitudinal electrical conduction phenomena through axoplasm, and capacitive and
transverse conductive effects through the cell membrane. In reality, these phenomena are
distributed, so the precise model is the so-called "cable model", described by 1D PDEs of
parabolic type [74]. A common reduction method for these 1D models consists of segment-
ing the studied section into several compartments, each being minimally modeled with
lumped parameters. Typically this modeling uses 5÷ 10 compartments [92], so the global
model called ”behavioral” has the same number of capacitors included in the equivalent
circuit.

Another category of models takes into account the electrochemical phenomena that
occur in the ion channels distributed in the cell membrane and which are active and
nonlinear by excellence. The reference model in this category is Hodgkin-Huxley (HH)
[98], in which one describes a linear capacitive effect, having as state quantity the mem-
brane voltage, and the other three describe the degree of ion channels opening. Since
it does not contain any spatial variables to describe a spatial distribution, we say that
this model is lumped, of 0D type. The simplified modeling of the membrane has received
an intense scientific attention, so that there are several nonlinear 0D models, of which
the most commonly used are: FitzHugh-Nagumo (FN) [99], Frankenhaeuser-Huxley (FH)
[100], Izhikevich (Iz) [101]. These models can be regarded as low-order approximations of
the HH model, and are preferred in theoretical studies, precisely because of their relative
simplicity [66].

For the modeling of myelinated axons, the 1D models of myelinated parts are linked
with nonlinear 0D models of Ranvier nodes, resulting in non-linear PDEs [81]. This com-
bination, in which the myelinated compartments are segmented and replaced with the
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simplest model, is the standard approach currently used to simulate saltatory conduc-
tion [102], [85], [95]. This idea is implemented in most neural simulators (GENESIS,
NEURON, etc.) [83], [84].

Other complicated models are reported in the literature, describing various morpholog-
ical or structural details of neurons, such as the transition regions between Ranvier nodes
and the axon body, called paranodes and juxtanodes [95], [93], or the layered structure of
myelin [94], or the space between the neuron and this layer or between the layers [103].

Further development of these models is done by considering not only the spatial struc-
ture of neurons but also of the extracellular distribution of potential, which means the
development of either 2D or 3D models. A first step is modeling the tree structures [74].
For example, in [104], the spinal neurons and their collateral deviations are studied, con-
sidering the distribution of the extracellular potential estimated with finite differences.
The extracellular potential distribution is also studied in [102, 105, 73, 93, 106, 107, 108,
109, 110, 111, 112]. This distribution is important from several points of view: the in-
terpretation of measurements made with electrodes placed in the extracellular space, the
effect of partial demyelination and remyelination on the extracellular potential, the ef-
fect of stimulation by extracellular electrodes on the action potential. The problem of
a non-myelinated active conducting fiber found in an infinite conducting homogeneous
environment in which the scalar electric potential is harmonic is addressed in [113]. The
longitudinal component of the internal and external current was determined from the so-
lution of the Laplace equation written in cylindrical coordinates using Bessel functions in-
tegrals. The extracellular potential and the current generated by a myelinated active fiber
placed in a conductive medium is computed in [93]. The distribution of transmembrane
voltage is determined as a solution of the Laplace equation in cylindrical coordinates.
The distribution of the potential expressed as an integral of Bessel functions results after
imposing the boundary conditions [66].

By combining the tree-like axon and dendrite models with the neuronal cell body model
(soma), the multi-terminal model of the singular neuron is obtained. The nonlinear dy-
namic behavior plays an essential role in its functioning [80], [77]. It should be noted that
for the modeling of the cell body (soma), it is necessary to consider more complicated ef-
fects, including the summation of input signals, such as those described by the "integrate
and fire" model [114]. This is to mention the simplest model, because in reality the neuron
functioning is much more complicated, with effects specific to strongly nonlinear dynam-
ical systems, such as stable and unstable equilibrium, bifurcations, limit cycles, which
explain resting states, excitability with all-or-nothing type threshold, singular or burst
pulses, refraction period, etc. The bifurcations in the phase plane describe the essence of
the dynamical behavior of the neurons, which are categorized accordingly into four broad
categories: integrators, resonators, monostable and bistable. A good neural model must
reproduce not only its electrophysiological phenomena and especially the dynamics of its
bifurcations. The phase plane gives a relevant image for model characterization. Several
models with very different behaviors of neurons found in different areas of the nervous
system are presented in [80].

The next major step in neural system modeling is the study of neuronal collectivities.
This step involves the modeling of synapses [77], [81], [115], [116], [117]. But as the
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number of simulated neurons grows, the problem becomes more and more difficult to
solve, so it requires the use of a superior level of abstraction of single neuron behavior.
This is why new theories were developed, such as artificial neural circuits (ANN) [118],
[119] and spiking neural networks (SNN) [120], [121]. The goal is to be able to model
neural systems of the complexity of those found in the human brain. Simulations of
networks with 16.7 million neurons with 4 billion synapses were performed [122]. If we
only refer to the myelinated compartments, their number, virtually equal to that of the
Ranvier nodes, is according to [123] of 1011 only in the brain.

2.3 Conclusions regarding the State of the Art

This chapter presented the current state of research in systems biology in general and
in neuronal modeling in particular, as they are presented in [27] and [66].

Systems biology as a holistic approach to biology explains not only the structures,
but also the dynamics, control and design methods of complex biological systems. It
considers the components of biological systems acting differently in isolation than if they
are integrated into a larger system. Being an interdisciplinary field, systems biology is
based on the advances in theory, experiments and as well in computational modeling.

The biological systems are structured in an hierarchical manner, spanning spatial scales
from meters to nanometers (this means 3 times 9 magnitude orders, so 27 in 3D) and larger
time-rates from years to picoseconds. The multiscale and multi-rate are therefore intrin-
sically correlated in the case of biological systems. Properties of such systems at a certain
scale are strongly influenced by the interactions at lower and higher scales. The diversity
of phenomena taking place at such different space/time scales needs several methodolo-
gies and techniques for the mathematical modeling and/or computational representations
and simulation. However there are conceptual and practical gaps between scales, some of
them being irreducible. They require carefully developed methods to bridge these gaps,
their identification and integration being the most difficult part in the modeling process.

The hierarchical organization of biological systems may be modeled in principle, by
putting together millions of cells, every cell consisting of thousands of ion channels, but it is
obvious that this model is numerically intractable by nowadays computers. Consequently,
there is a close connection between multiscale modeling and model reduction.

This idea is even more apparent in the particular case of neuronal systems, the human
brain having around 100 billions neurons and ten times more glial cells. Without a
rigorous multiscale approach, based on high performance computing techniques, in which
passing from one level to another requires a careful effort to severely reduce the order of
the models from the first level, it is not possible to address the problem of brain modeling
[124]. It is obvious that without a careful reduction at lower levels one cannot master
the complexity of real neural structures, by keeping the essence of the behavior of each
element.
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Chapter 3

One-dimensional Models for Neuronal
Signals’ Transmission

This chapter describes the 1D model of a neuronal axon as a RC transmission line
(cable model). The analysis of a simple model will allow the understanding of concepts
and physical phenomena as well as the validation of the numerical methods and algorithms
within the modeling procedure. The chapter follows five of the six main steps of CSE
modeling, according to [5] (model reduction is covered in detail in Chapter 4):

– Conceptual modeling: establish the geometry, materials, physical principles of
functioning; decide on the simplifying hypotheses and the neglected aspects;

– Mathematical modeling: formulate a well defined problem in mathematical
terms;

– The (approximate) analytical modeling: solve a simplified version of the
model’s equations, in order to analytically determine the relationships between the
input and output quantities;

– Numerical and computational modeling: build a computer-based model cor-
responding to the mathematical model already defined;

– Model reduction: extract a reduced model from the numerical one, which ap-
proximates the solution of the original model with an acceptable error;

– Verification and validation of the model: verify the solution (compare the
numerical solution with the analytical one, compare the reduced model solution
with the full model solution), validate the model (compare the simulation results
with the experimental results).

This chapter is the development of the ideas presented in [125].

3.1 Conceptual modeling

At this stage of modeling we describe the axon to be modeled, we analyze its principles
of functioning in order to establish the geometrical model and the physical model. We
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Figure 3.1: a) The spatial domains. b) Mapping with segmented line model circuit.

first identify the shape, the dimensions and the structure of the studied object. If it can be
decomposed into parts then the shapes, the dimensions, the materials and the (geometric)
relations between them are determined: points, edges or contact surfaces. The computing
domain is set at this point, which is usually bounded by a real or fictional boundary (this
must be done because most modeling methods require the field on which physical fields
are defined to be finite).

3.1.1 Geometrical modeling

We consider the axon of cylindrical shape (Fig. 3.1a) and we assume that the studied
system has axial and radial symmetry, that is, all physical quantities depend on a single
spatial coordinate – the longitudinal one (Fig. 3.1b). Consequently, we have an axisym-
metric (1.5D) computing domain, which physically is 3D and mathematically is 1D. In
the cylindrical domain – D1 – we assume that the electric potential V is dependent on
the x coordinate. The axon cylinder is surrounded by its membrane – D2.

3.1.2 Simplifying hypotheses

All the geometrical shapes are considered ideal, no roughness of the surfaces is con-
sidered. In each subdomain, the media is considered homogeneous. Any deviation from
axial symmetry is neglected; therefore any angular variation of the data or of the solution
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Figure 3.2: Diagram of causal connections in general variable field (left), EQS field (center)
and case study (right).

is neglected accordingly. The electric field inside the membrane is considered radially ori-
ented and with constant intensity in any cross section. Within the cytoplasm, the electric
field is considered axially oriented, with no transversal variation.

3.1.3 Physical modeling

The objective of this modeling step is to make the transition from a qualitative, phe-
nomenological, natural language description, to a quantitative representation. At this
stage we identify the main physical quantities describing the state and interactions of
the modeled object, the causal relations between them, thus identifying the fundamental
physical phenomena based on which the object functions. The field sources and the con-
nections between domains are emphasized. The quantities’ variation over time determines
the regime of functioning. As shown in Fig. 3.1b, in D1 only conductive effects are consid-
ered, while in D2 both resistive and capacitive effects are taken into account. Therefore,
D1 is operating in Electro Conduction region (EC), whereas D2 is modeled with Electro
Quasi Static (EQS) field. In EQS regime the bodies are immobile; the electromagnetic
field varies with time, but slow enough to be able to neglect the electromagnetic induction.
Formally, we can consider in equations B = 0; there will be no quantity characteristic to
the magnetic field.

The causal connections between the physical quantities in the general case (left), in
the particular case – EQS regime (center) and the case study (right) are presented in Fig.
3.2.

The Maxwell’s equations satisfied by the electromagnetic field in the general case (ED)
and in the particular case of the EQS regime are presented in Table 3.1. The last column
contains the local form of the equations in the EQS field, where the media are linear, both
from dielectric and conduction points of view.

The fundamental equations of the EQS regime have the following local form [126],
[127]:
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Table 3.1: The Maxwell’s equations satisfied by the electromagnetic field (first order
equations).

ED EQS Case study
1 The electric flux law ∇D = ρ ∇D = ρ ∇D = ρ

2 The magnetic flux law ∇B = 0 – –
3 The law of electro-

magnetic induction
(Faraday law)

∇× E = −∂B
∂t

∇× E = 0 ∇× E = 0

4 The magnetic circuit
law

∇×H = J + ∂D
∂t

– –

5 The polarization law D = εE + Pp D = εE + Pp D = εE

6 The magnetization
law

B = µH +µ0Mp – –

7 The conduction law J = σ (E + Ei) J = σ (E + Ei) J = σE

8 The energy transfer
law

p = EJ p = EJ p = EJ

9 The mass transfer law δ = kJ δ = kJ δ = kJ

10 The charge conserva-
tion theorem

∇J = −∂ρ
∂t

∇J = −∂ρ
∂t

∇J = −∂ρ
∂t

∇D = ρ′;

∇J = −∂ρ
′

∂t
⇒ ∇

(
J +

∂D

∂t

)
= 0;

∇× E = 0⇒ E = −gradV ;

D = εE;

J = σ (E + Ei) .

Note that this differential form of equations is only valid if local quantities are derivable,
hence with continuous variation in space. In D1 the field is electro conductive (EC), and
the capacitive effect becomes negligible, a condition not fulfilled in our case on the border
between D1 and D2, which is a discontinuous surface. Here we apply either the global
form of the equations (3.1) [126], [127], or the form valid on discontinuity surfaces (3.2).

∫
∂Ω

D · dA =

∫
Ω

ρdv

∫
∂Ω

J · dA = −
∫

Ω

∂ρ

∂t
dv =⇒

∫
∂Ω

Jt · dA = 0

=⇒
∫
∂Ω

Jt · dA = 0; Jt = J + Jd = J +
∂D

∂t
;∫

∂S

E · dr = 0.

(3.1)
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∇SD = ρS ⇔ n12 · (D2 −D1) = ρS ⇒ ur ·D2 = ρS ⇒ D2r = ρS;

∇SJ = −∂ρS
∂t
⇔ n12 · (J2 − J1) = −∂ρS

∂t

⇒ ur · J2 = −∂ρS
∂t
⇒ J2r = −∂ρS

∂t
;

∇S × E = 0⇒ Et1 = Et2 ⇒ Ex1 = Ex2 ⇒ V1 = V2.

(3.2)

Consequently, the solution V (x, r, t) must be a continuous function on the union be-
tween D1 and D2. It is assumed that this function does not depend on r in D1 and that in
D2 it decreases affinely with the radius from the inner value to zero, depending on x as in
D1. To ensure the continuity of the potential and implicitly of the tangential component
of the electric field strength, this is not perfectly radial in the membrane, having a small
longitudinal component that tends to zero as the radius increases. On the discontinuity
surface, due to the accumulation of charges, the normal components of electric flux density
and current density are not preserved, being null in D1 and not null in D2. In fact, these
behaviors of the potential and the field in the membrane are not very relevant because
they are ”crushed” when the thickness of the membrane tends to zero (for unmyelinated
axons), and the solution V (x, t) remains dependent on just two variables, one spatial and
one temporal.

If the medium is homogeneous, as each of D1 and D2 is respectively, we have:

ε∇E = ρ⇒ −ε∆V = ρ;

σ∇E = −∂ρ
∂t
⇔ σρ

ε
= −∂ρ

∂t
=⇒ ρ(t) = ρ(0)e−

t
τ ; τ = ε/σ;

∇× E = 0⇒ E = − gradV

⇒ −σ∆V = −∂ρ
∂t

= ε∆
∂V

∂t
=⇒ ∆

(
σV + ε

∂V

∂t

)
= 0.

Since the cytoplasm has a relatively good conductivity, its time constant is small,
which makes its internal charge to relax practically instantaneously. Consequently, the
charge in the cytoplasm has null volume density and tends to be superficially distributed.
This explains why in D1 the field is electro-conductive, and the capacitive effect becomes
negligible. Instead, inside the membrane things are different, here both capacitive and
conductive effects are important. The membrane is traversed by a total current, which
has a resistive component (conduction current due to losses) and a capacitive one (the
displacement current):

Jt = J + Jd = J +
∂D

∂t
= σE + ε

∂E

∂t
.

These current densities are radially oriented and their sum is preserved (it is solenoidal,
meaning it has a null divergence).
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Table 3.2: The material parameters used in the case study.

Parameter Computed value
The dielectric permeability of the
membrane

ε = 15.44 · ε0 = 15.44 · 8.85 · 10−12 F/m

The membrane conductivity σ = 2.04 · 10−4 S/m

The resistivity of the cytoplasm ρ = 0.924 Ω ·m

Table 3.3: The line parameters used in the case study.

Parameter Expression Numeric value
Line capacity c = C

L
= επ2a

b
c = 2 · 10−12 F/mm =

2 pF/mm

Line resistance r = R
L

= ρ
πa2

r = 6 · 106 Ω/mm =

6 MΩ/mm

Line conductance
of the membrane

g = G
L

= σπ2a
b

g = 0.003 mS/mm

3.2 Mathematical modeling

The mathematical modeling aims to formulate the field analysis problem in mathe-
matical terms and verify that the problem is well formulated.

3.2.1 Problem data

The geometry of the computing domain

a = 7 µm – axon’s radius (inner diameter d = 2a, outer diameter D = 2(a+ b))

b = 3 µm – membrane thickness

Material constants

In the literature there are various values for material parameters, sometimes varying
with the frequency [128], [129], [130].

Timotin considered in his study [72] the line parameters r, g and c used by FitzHugh
[102] and previously measured by Tasaki [131]. Table 3.2 contains the computation of the
material parameters for which the line parameters have the values used by Timotin and
by us in the case study.

Note: from this moment on we will denote by ρ the resistivity (in the previous section
this symbol was used for the charge density).

Using these geometrical and material data, the line parameters’ values can be com-
puted, the values are contained in Table 3.3.
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3.2.2 The problem unknowns and the equation to be solved

The main unknown is the electric potential distribution V (x, t) in the computing do-
main 0 < x < L, at any moment in time 0 < t < T . The equations are those of the linear
1D model (RC transmission line). According to Kirchhoff’s relation (deduced from the
charge conservation theorem) written on the line segment in Fig. 3.1b, we have:

i(x) = i(x+ ∆x) + g∆xV (x, t) + c∆x
∂V (x, t)

∂t
.

Dividing by ∆x we obtain:

i(x+ ∆x)− i(x)

∆x
= gV (x, t) + c

∂V(x, t)

∂t
,

and then when ∆x→ 0:

−∂i(x, t)
∂x

= gV (x, t) + c
∂V(x, t)

∂t
. (3.3)

On the other hand, according to Kirchhoff II relation (consequence of the potential
theorem), it follows that:

V (x)− V (x+ ∆x) = i(x+ ∆x)r∆x.

If we divide this relation by ∆x, having this elementary length tend to 0, we obtain a
second relation:

−∂V (x, t)

∂x
= ri(x, t). (3.4)

The relations (3.3) and (3.4) represent the first order equations of the RC transmission
lines. After derivation by x and using (3.3), the current is eliminated and the second
order equation satisfied by the potential is obtained:

∂2V (x, t)

∂x2
= rgV (x, t) + rc

∂V (x, t)

∂t
, (3.5)

form that allows the writing using relative, dimensionless spatial and temporal variables.
The relation (3.5) is a linear equation with partial derivatives of parabolic type, which
describes the diffusion phenomenon (it is also called the heat equation). It is the RC
transmission line equation, which represents the foundation of the neural model in ”cable
theory” [132], [133], [134].

Having defined the time constant τ = c
g

= 0.6 µs and the length constant λ0 = 1√
rg

=

223 µm, (3.5) is rewritten as:

λ2
0

∂2V (x, t)

∂x2
= V (x, t) + τ

∂V (x, t)

∂t
. (3.6)

The time constant indicates the time at which the initial condition is attenuated e

times, having the boundary conditions null and the space constant indicates the distance
at which the step signal applied at the initial point (x = 0) is attenuated e times.
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Figure 3.3: The charge conservation theorem applied on two cross sections.

The relations (3.3) and (3.4) and the manner in which they were obtained show that
the studied system is a distributed parameter circuit. It is very important to note that
(3.3) and (3.4) can be obtained directly from the EQS field equations, without the need to
use Kirchhoff’s relations. This alternative approach has the advantage of emphasizing the
simplification assumptions of physical modeling, and it is more natural to be generalized
for 2D and 3D geometric models.

In order to obtain (3.3), we will consider two cross sections S1 and S2, spaced by ∆x

(Fig. 3.3) and we will apply on the cylinder with this height the global form of the charge
conservation theorem:∫

∂Ω

Jt · dA = 0 =⇒
∫
∂Ω

(
J +

∂D

∂t

)
· dA = 0

=⇒
∫
S1

J · dA +

∫
S2

J · dA +

∫
Sl

J · dA +

∫
Sl

∂D

∂t
· dA = 0

=⇒ −i(x) + i(x+ ∆x) + 2πa∆xσE + 2πa∆xε
∂E

∂t
= 0

=⇒ gV (x, t) + c
∂V

∂t
= − ∂i

∂x
, (3.7)

with g = σ2πa
b

, c = ε2πa
b

, where E = V (x, t)/b is the field strength in the membrane.

The relation (3.4) is a consequence of the potential theorem:

∇× E = 0⇒ E = − gradV = ρI⇒ −∂V
∂x

=
ρi

πa2

⇔ −∂V
∂x

= ri; r =
ρ

πa2
(3.8)

Note that this approach allows not only the proof of transmission line equations, but
also the extraction of line parameters’ expressions. Considering the problem domain as
the reunion between D1 and D2, on the outer surface the boundary condition is Dirichlet
with V = 0. If the thickness of the membrane b is negligible, we can assume that the
domain of our problem is only D1, and in this case the boundary condition on the outer

34



Use of Reduction Methods in Multiscale Modeling of Complex Systems

surface r = a is a superficial admittance BC.

−Jx(x)πa2 + Jx(x+ ∆x)πa2 + 2πa∆xJrt = 0

⇔ div J1 +
2

a
divs J2t = 0

⇒ ∂Jx
∂x

+
2

a
Jrt = 0

⇒ div J1 = −2

a
divs J2t = −2

a

(
σ
V

b
+
ε

b

∂V

∂t

)
In reality, the computing domain of the problem is a two-dimensional rectangle: 0 <

x < L; 0 < t < T , the solution V (x, t) of equation (3.5) being defined on this domain.
Boundary conditions must be added to the equation, in order for the problem to be well
formulated. The BCs are described in the following section.

3.2.3 Boundary conditions

The boundary conditions are set as follows:

– At the left side of the cylinder (x = 0): non-null Dirichlet conditions V = e(t),
where e(t) is a known excitation signal (standard). For the standard neural signal
the following approximate expression is used [135], [136]:

V (0, t) = e(t) = V0 + Vm
(
e−t/τ1 − e−t/τ2

)
(3.9)

The numerical values are:
V0 = −70 mV;

Vm = 700 mV;

τ1 = 0.3 · 10−3 s;

τ2 = 0.2 · 10−3 s.

This input signal is represented graphically in Fig. 3.4.

– At the right side of the cylinder (x = L): null Neumann BCs:

∂V

∂x
= 0, (3.10)

which correspond to an open-circuited line (negligible output current).

3.2.4 Initial conditions

The distribution of the electric potential at the initial time t = 0 corresponds to the
equilibrium value, when no signal is traveling [137], [138]:

V (x, 0) = V0 = −70 mV (3.11)

for the entire spatial domain 0 < x < L.
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Figure 3.4: The standard excitation signal V (0, t) = e(t).

3.3 The analytical solution

We are dealing with a linear model, so the problem can be also solved with analytical
methods. The analytical solution of the partial differential equation will be used to
validate the numerical methods. This validation is timely, as the nonlinear models to
be analyzed later – describing Ranvier nodes and ion channels – can only be solved
numerically, so we need reliable numerical procedures.

3.3.1 The operational solution

The solution can be determined using the Laplace transforms:

V (0, t) = e(t) = V0 + Vm
(
e−t/τ1 − e−t/τ2

)
L→ E(s) =

V0

s
+ Vm

(
1

s+ 1/τ1

− 1

s+ 1/τ2

)
.

The equation (3.5) has the following operational form:

d2V (x, s)

dx2
= rgV (x, s) + rcsV (x, s)− rcV0

=⇒ d2V (x, s)

dx2
= r(g + cs)V (x, s)− rcV0

=⇒ V (x, s) =
cV0

g + sc
+

1

r(g + sc)

d2V (x, s)

dx2

This is a second order ordinary differential equation, with constant coefficients and the
independent variable x, having the characteristic equation:

1 =
λ2

r(g + sc)
,
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with the roots +/− λ where:
λ =

√
r(g + sc).

The general solution is:

V (x, s) =
cV0

g + sc
+ C1 sh(λx) + C2 sh(λ(x− L)).

It is verified that:

C1 sh(λx) + C2 sh(λ(x− L)) =
1

r(g + sc)
(r(g + sc)V (x, s)− rcV0)

=⇒ C1 sh(λx) + C2 sh(λ(x− L)) = V (x, s)− V0

s+ g/c
.

The boundary conditions at x = 0 and x = L are used to determine the two constants
C1 and C2:

x = 0 =⇒ V(0, s) =
V0

s+ g
c

− C2 sh(λL) = E(s)

=⇒ C2 =
−E(s) + V0

s+g/c

sh(λL)
;

x = L =⇒ dV

dx
= C1λ ch(λx) + C2λ ch(λ(x− L)) = C1λ ch(λL) + C2λ = 0

=⇒ C1 = −C2/ ch(λL).

V(x, s) =
V0

s+ g/c
+
−E(s) + V0

s+g/c

sh(λL)

(
− 1

ch(λL)
sh(λx) + sh(λ(x− L))

)
V(L, s) =

V0

s+ g/c
+

1

ch(λL)

(
E(s)− V0

s+ g/c

)
=⇒ V (L, s) =

E(s)

ch(λL)
+
V0(1− 1/ ch(λL))

s+ g/c
.

t→ 0⇒ s→∞;λ→∞;V (x, 0) = lim
s→∞

sV(L, s)→ V0;

t→∞⇒ s→ 0;λ→ √rg = 1/λ0;V (x,∞) = lim
s→0

sV(L, s)→ V0/ ch(L
√
rg);

V(L, s) =
V0

s · ch(λL)
+

Vm
ch(λL)

(
1

s+ 1/τ1

− 1

s+ 1/τ2

)
+

V0

s+ g/c
− V0

ch(λL)(s+ g/c)
,

with λ =
√
r(g + sc), therefore:

V(L, s) =
1

ch(λL)

(
V0

s
+

Vm
s+ 1/τ1

− Vm
s+ 1/τ2

− V0

s+ g/c

)
+

V0

s+ g/c
. (3.12)

The term 1
ch(λL)

makes it harder to shift into the time domain, because ch(λL) = 0 has
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an infinity of solutions λL = 1
2
jπ(2n− 1), n ∈ Z, with the corresponding time constants:

λL = jπ(2n−1)
2

=⇒ λ2L2 = −
(
π(2n−1)

2

)2

=⇒ r(g + sc) = −
(
π(2n−1)

2L

)2

=⇒ sc = −(π(2n−1)
2L )

2

r
− g

=⇒ τn = −1
s

= c

(π(2n−1)
2L )

2

r

+ g.

The largest of them is the first one:

τ1 =
c

( π
2L)

2

r
+ g

.

The transfer function of the studied system is:

F(s) =
V(L, s)

E(s)

∣∣∣∣
V0=0

=
1

ch(λL)
, (3.13)

and the effect of the initial condition is described by the transfer function:

G(s) =
V(L, s)

V0

∣∣∣∣
E(s)=0

=
1− 1/ ch(λL)

s+ g/c
.

3.3.2 The transfer function of the system: F(s)

The transfer function F(s) = V(L,s)
E(s)

∣∣∣
V0=0

= 1
ch(λL)

has no zeros and an infinity of poles,
all of them real:

sF∞ = − 1

rc

(
π(2n− 1)

2L

)2

− g

c
. (3.14)

All the values r, c, and g are positive, so all the poles are negative.

The effect of the line length L

To represent the Bode diagram, a series of nodes in the frequency domain was con-
sidered and the system response was computed (the value of the transfer function having
s = jω) in those points:

freq=[0,100,1000,5000,10000,20000,1e5,2e5,5e5,1e6,2e6,3e6,4e6,5e6] Hz.

Fig. 3.5 represents the Bode diagram of F (s) for three values of the line length L:

a) L = 0.25λ0 = 0.25 · 223 µm = 0.0558 mm

b) L = λ0 = 223 µm = 0.223 mm

c) L = 4λ0 = 4 · 223 µm = 0.892 mm

An important characteristic parameter is represented by the value in origin of the
transfer function F (0) = 1

ch(L
√
rg)

= 1
ch(L/λ0)

with λ0 = 1√
rg

the characteristic length. This
describes the stationary attenuation of the output signal against the input signal. The
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Figure 3.5: The Bode diagrams of F(jω) for 3 line lengths.

denominator expression has the asymptotic behavior ch (L/λ0) = eL/λ0−e−L/λ0

2
→ eL/λ0

2
, for

L� λ0, with an exponential growth with the line length. Consequently, the input signal
is almost completely attenuated, if the line length is much larger than the characteristic
length λ0.

From the Bode diagrams it can be deducted that the signal attenuation is similar to
the stationary attenuation, as long as the signal is slowly variable over time.

If the signal frequency exceeds the value of f1 = 1
τ1

=
(
π

2L

)2 1
rc

+ g
c
≈ 1.51 · 106,

corresponding to the first time constant, the magnitude decreases with 20 dB in a decade,
following that at high frequencies, much higher than that corresponding to the 3rd-4th

time constant, the output signal to be negligible to the input signal. The line therefore
has a low-pass filter behavior of superior order.

The conclusion is that the modeling system transmits the signal from input to output
without attenuation if the line length is below the characteristic length and the signal
frequency is below the frequency corresponding to the first time constant. Outside this
scope, the transmitted signal is attenuated and dispersed (changes shape, the impulse
having the tendency to widen), the farther away we are from the undisturbed transmission
range.

The standard neural signal has a time constant of a millisecond, which is much larger
than τ1, so we can say that this signal is not attenuated due to its dynamic character,
but because of the line length. As the threshold level is about 1/4 of the amplitude of
the signal, it follows that signals that are four times attenuated will not trigger the action
potential once they have reached the end of the line.

This happens when eL/λ0 = 8, so for L = 2λ0, meaning for L of about 0.5 mm. We
can state that axons with geometric and material characteristics as in this case study will
not be able to transmit neural signals over distances greater than 0.5 mm if they do not
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Figure 3.6: The input signal and the exact response V (L, t) for 3 line lengths, around the
length constant λ0 = 1√

rg = 223 µm.

have ion channels to recondition these signals.

3.3.3 Transition to time domain

In the operational domain we have:

V(L, s) =
V0

s · ch(λL)
+

Vm
ch(λL)

(
1

s+ 1/τ1

− 1

s+ 1/τ2

)
+

V0

s+ g/c
− V0

ch(λL)(s+ g/c)
.

The response V (L, t) corresponding to this operational representation was determined
in MATLAB using the procedure INVLAP [139]. In Fig. 3.6 this response is represented
for three line lengths L, around the length constant λ0 = 1√

rg
= 223 µm.

For a line length shorter than the length constant (L = 0.25λ0 < λ0), the time response
is close to the input, this is apparent in Fig. 3.5 (lines blue and red).

The deviation between input and output is computed using the Euclidean norm as:

errabs = ‖e− Ve‖ =

√∑
k |ek − Vek |

2

n
,

with n the size of the array e, and

errrel =
errabs

|max(e)|
.

The absolute and relative errors for L = 0.25λ0 have the values:

errabs = 2.02;

errrel = 0.06.
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Figure 3.7: The electric potential distribution along the line, in post-transient stationary mode.

The output signal represented in Fig. 3.5 starts from equilibrium value V0, increases
to the maximum value and then decreases to the asymptotic value of:

V (L, t)→ V0

ch
(
L
λ0

) ≈ 2V0e
− L
λ0 , for L� λ0,

which is smaller as the length L is larger. In other words, in the case of relatively long
lines, we find that in our model, after the impulse, the output signal in the stationary
mode following the transient mode tends to zero, and not to the equilibrium value V0,
as is actually the case when the ion pumps reestablish the balance. In our model, the
electrical potential has an increasing variation along the line from V0 = −70 mV to
V0/ ch (L/λ0) ≈ 0 with the expression:

sV(x, s) =
sV0

s+ g/c
+
−E(s) + V0

s+g/c

sh(λL)

(
− 1

ch(λL)
sh(λx) + sh(λ(x− L))

)
;

s→0→ V (x,∞) = − V0

sh(λL)

(
− 1

ch(λL)
sh(λx) + sh(λ(x− L))

)
.

When t→∞⇒ s→ 0;λ→ √rg;V (x,∞) = lim
s→0

sV(x, s);V (L, t)→ V0/ ch(L
√
rg).

The distribution of potential along the line in the stationary mode V (x,∞) is repre-
sented in Fig. 3.7.

3.3.4 Modeling the ion pumps

The observed behavior is obviously a modeling deficiency that can be corrected if we
consider the effect of the ion pumps, adding in Fig. 3.1b – in series with the transversal
resistor – an ideal voltage source E = V0 (Fig. 3.8).
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Figure 3.8: The new model which takes into account the effect of ion pumps [125].

In these conditions the current through the source is:

V (x, t) = E +
i′

g∆x
⇒ i′ = (V (x, t)− V0) g∆x.

According to Kirchhoff’ relation (resulted from the charge conservation theorem) writ-
ten on the line segment, it follows that:

i(x) = i(x+ ∆x) + g∆x (V (x, t)− V0) + c∆x
∂V (x, t)

∂t
.

Dividing by ∆x we obtain:

i(x+ ∆x)− i(x)

∆x
= g (V (x, t)− V0) + c

∂V(x, t)

∂t
,

and having ∆x→ 0, then we have:

−∂i(x, t)
∂x

= g (V (x, t)− V0) + c
∂V(x, t)

∂t
, (3.15)

which replaces (3.3). From Kirchhoff II, it results:

∂V (x, t)

∂x
= ri(x, t). (3.16)

These relations lead to the second order equation satisfied by the potential:

∂2V (x, t)

∂x2
= rg (V (x, t)− V0) + rc

∂V (x, t)

∂t
, (3.17)

or equivalently:

λ2
0

∂2V (x, t)

∂x2
= V (x, t)− V0 + τ

∂V (x, t)

∂t
, (3.18)

with the time constant τ = c/g = 0.6 µs and length constant λ0 = 1√
rg

= 223 µm and
V0 = −70 mV.

The equation (3.17) has the following operational form:

∂2V(x, s)

dx2
= rgV(x, s) + rcsV(x, s)− r

(
c+

g

s

)
V0

=⇒ d2V(x, s)

dx2
= r(g + cs)V(x, s)− r

(
c+

g

s

)
V0

=⇒ V(x, s) =
cV0

s
+

1

r(g + sc)

d2V (x, s)

dx2
.
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Figure 3.9: The input signal and the exact response V (L, t) for 3 line lengths, around the
length constant λ0 = 1√

rg = 223 µm, for the model with ion pumps.

This second order ordinary differential equation with constant coefficients has the
general solution of the form deducted below (to which a particular solution of the shape
of the free term is added).

C1 sh(λx) + C2 sh(λ(x− L)) = V (x, s)− V0

s
;

x = 0 =⇒ V (0, s) =
V0

s
− C2 sh(λL) = E(s)

=⇒ C2 =
−E(s) + V0

s

sh(λL)
;

x = L =⇒ dV

dx
= C1λ ch(λx) + C2λ ch(λ(x− L)) = C1λ ch(λL) + C2λ = 0

=⇒ C1 = −C2/ ch(λL).

V(x, s) =
V0

s
+
−E(s) + V0

s

sh(λL)

(
− 1

ch(λL)
sh(λx) + sh(λ(x− L))

)
; (3.19)

V(L, s) =
V0

s
+

1

ch(λL)

(
E(s)− V0

s

)
=

E(s)

ch(λL)
+
V0(1− 1/ ch(λL))

s
. (3.20)

t→ 0⇒ s→∞;λ→∞;V (L, 0) = lim
s→∞

sV (L, s)→ V0;

t→∞⇒ s→ 0;λ→ √rg = 1/λ0;V (L,∞) = lim
s→0

sV (L, s)→ V0.

This time the signals have the asymptotic values as expected. The variation of V (L, t)

over time for three line lengths is represented in Fig. 3.9.
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Figure 3.10: The signal amplitude vs. line length.

This model, which includes the effect of ion pumps, is present in the literature [140],
[141], although the standard cable model does not contain this correction [132], [133],
[134], [142].

3.3.5 Characteristic parameters: line attenuation and maximum
transmission length

Numerical approach

We compute the maximum line length for which the signal amplitude reaches the
threshold Vt = −55 mV (typical value). We start by representing the signal amplitude as
a function of the line length (Fig. 3.10). For line lengths below the characteristic length,
the signal amplitude (Vmax − Vmin) is close to the amplitude of the input signal (100 mV
= (30 – ( – 70)) mV). As the line length increases, the amplitude decreases so that over
a certain line length, the amplitude is no longer enough to reach the threshold potential
((– 55 – ( – 70)) mV = 15 mV) and trigger an action potential.

The signal magnitude was computed using INVLAP with the relation (3.20) for eight
line lengths between 0.5λ0 and 4λ0 and the results were interpolated for 100 intervals
(Fig. 3.10).

The line length corresponding to the threshold is Lmax = 0.6136 mm, meaning 2.6λ0.
Fig. 3.11 shows the variation of V (L, t) over time for four line lengths, including Lmax.

Analytical approach

As stated earlier, one of the characteristic parameters is the attenuation factor of
the stationary line, defined by the value in origin of the transfer function:

F (0) =
1

ch(L
√
rg)

=
1

ch (L/λ0)
∼=
e−L/λ0

2
, with λ0 =

1
√
rg

the characteristic length.
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Figure 3.11: The input signal and the exact response V (L, t) for 4 line lengths, around the
length constant λ0 = 1√

rg = 223 µm, including the computed Lmax, for the model with ion
pumps [125]. The dotted line represents the threshold potential of −55 mV.

Due to its dynamic nature, the neural signal has a greater attenuation than this be-
cause the RC line behaves as a low-pass filter, which attenuates furthermore the higher
frequencies. The maximum transmission length Lmax (the second characteristic parame-
ter) can be computed approximately as the length of the line for which the standard neural
signal is attenuated until its maximum value reaches the threshold potential: Vt = −55

mV:

F (0) =
1

ch
(
L
λ0

) =
Vt − V0

Vmax − V0

;λ0 =
1
√
rg

=

√
ab

2σρ
;

Lmax = λ0 arg cosh

(
Vmax − V0

Vt − V0

)
=

√
ab

2σρ
argcosh

(
Vmax − V0

Vt − V0

)
.

In this case study, the value of Lmax computed with this approximate analytical relation
is:

Lmax = λ0 argch

(
Vmax − Vmin
Vt − Vmin

)
= 0.223 · argcosh

(
100

15

)
= 0.5764 mm, (3.21)

6% lower than the numerical value previously computed.

It should be noted that Lmax is in agreement with the Schwann cell length reported
in literature, of approximately 100 µm, more precisely between 20 µm and 400 µm [88],
[143], but the value obtained is less than the value of 2 mm used in several simulations
[144], [145], [146].

The same effect can be obtained by simulating the model without ion pumps, with an
excitation of the form e(t) + V0. In this case, the threshold potential will be Vt = 15 mV,
and the amplitude that the signal must reach to reach the threshold potential is also 15
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Figure 3.12: The input signal and the exact response V (L, t) for 4 line lengths, around the
length constant λ0 = 1√

rg = 223 µm, including the computed Lmax, for the model without ion
pumps. Input: e(t) + V0. The dotted line represents the threshold potential of 15 mV.

mV (15 mV – 0 mV = 15 mV). The length value corresponding to threshold is the same
in this case as for the ion pumps model. Fig. 3.12 represents the time response for four
line lengths, including Lmax. The absolute and the relative errors for a line length shorter
than the length constant L = 0.25λ0 < λ0 are:

errabs = 0.64;

errrel = 0.006.

3.3.6 Characteristic parameters: signal delay and transmission
speed

Numerical approach

Note that the time needed for the signal at the end of the line to reach the threshold
potential depends on the line length L. Therefore the delay time can be defined as the
amount of time needed for the signal to reach the threshold, assuming that the input
signal reaches the threshold instantaneously (Fig. 3.13).

Fig. 3.14 represents the signal delay (defined as the moment the signal reaches the
threshold), for different line lengths between 0.5λ0 and Lmax. The signal delay was com-
puted using (3.20) for 6 line lengths (including Lmax) and the values were interpolated for
100 points; for line lengths beyond Lmax the delay cannot be computed, as these signals do
not reach the threshold at all. The derivative of the inverse of this function is actually the
local transmission speed of the signal. We find that the local transmission speed decreases
as the line length grows (Fig. 3.15). For L = Lmax, the transmission speed (computed
as dL

d(td)
(using regressive first order finite differences) has the value of 0.43 m/s (0.37 m/s
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Figure 3.13: Definition of delay time, as the time needed for the signal to reach the threshold.

Figure 3.14: The signal’s delay vs. the line length (between 0.5λ0 and Lmax, using (3.20).

using interpolated values), and for L = L0, the transmission speed is around 19.66 m/s
(52.86 m/s using interpolation). These values are in agreement with the ones reported
in literature: [147], where for neurons having the axon’s diameter of 5-8 µm the speed is
between 4 and 24 m/s and for diameters of 13-20 µm, the speed is between 80 and 120
m/s.

An additional way to compute the delay and the transmission speed is by using (3.19),
so as dx

d(td)
, with L fixed. Fig. 3.16 and Fig. 3.17 present the delay and the transmission

speed for 5 line lengths between 0.5λ0 and Lmax, computed using (3.19), with L = Lmax

and x ∈ [0.5λ0, Lmax]. From Fig. 3.16 it can be deducted that by using this method
the slope of the function delay vs. line length is higher in the vicinity of 0.5λ0, so the
derivative of the inverse, the transmission speed respectively, will be smaller. Conversely,
near Lmax the situation is the opposite, which makes that the values of the transmission
speed along the line to be closer to each other. For L = Lmax, the transmission speed
is about 1.91 m/s (1.76 m/s using interpolated values) and for L = L0 the transmission
speed is around 6.55 m/s (9.58 m/s using interpolation).
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Figure 3.15: The local transmission speed vs. the line length (between 0.5λ0 and Lmax, using
(3.20).

Figure 3.16: The signal’s delay vs. the line length (between 0.5λ0 and Lmax, using (3.19).

Figure 3.17: The local transmission speed vs. the line length (between 0.5λ0 and Lmax, using
(3.19).
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Analytical approach

The transmission speed can be approximated analytically by estimating td – the time
with which the impulse is delayed by the RC line. The time td can be expressed by
replacing the RC line with its Π equivalent scheme, consisting of the longitudinal resistance
R = rL in parallel with a capacitor C/2 = cL/2 at one end and a conductanceG/2 = gL/2

at the other end placed transversally. In this simplified model, the transfer function of
the line has the approximate expression (reduced model of order 1):

Fa(s) =
2

(G+ sC)(R + 2/(G+ sC))
=

1

sRC/2 +RG/2 + 1
=

2/(RC)

s+ 1/τ0

. (3.22)

• Model 1.1 – approximation with rectangular impulse

If we approximate the input signal with a rectangular impulse of amplitude Vmax,
then the output signal is rising monotonously over time during the impulse:

E(s) =
Vmax

s
⇒ V (L, s) = Fa(s)E(s) =

Vmax

s(sRC/2 +RG/2 + 1)
=

2Vmax

RC

1

s (s+ s0)
,

with

s0 =
RG+ 2

RC
;

1

s (s+ s0)
=
A

s
+

B

s+ s0

=
A (s+ s0) +Bs

s (s+ s0)
;

A+B = 0, As0 = 1⇒ A = −B = 1/s0.

Then:

V (L, t) = L−1(V (L, s)) =
2Vmax

s0RC
L−1

(
1

s
− 1

s+ s0

)
=

2Vmax

RG+ 2

(
1− e−s0t

)
.

This expression for the output signal allows us to compute the delay time of the
impulse as:

V (L, td) = Vt − V0 =⇒ 1− e−s0td =
(Vt − V0) (RG+ 2)

2Vmax

=⇒ e−s0td = 1− (Vt − V0) (RG+ 2)

2Vmax

⇒ td = −
ln
(

1− (Vt−V0)(RG+2)
2Vmax

)
s0

= −
ln
(

1− (Vt−V0)(RG+2)
2Vmax

)
RC

RG+ 2
.

The delay time is small in comparison with the rising time:

V (L, t) =
2Vmax

RG+ 2

(
1− e−s0t

)
≈ 2Vmaxs0t

RG+ 2
= Vt − V0

=⇒ td ≈
(Vt − V0)RC

2Vmax

=
(Vt − V0) rcL2

2Vmax

.

(3.23)

With this value for the delay, the transmission speed has the expression:

vt =
L

td
=

2Vmax

(Vt − V0) rcL
=

Vmaxab

(Vt − V0) ρLε
, (3.24)
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where the line capacity and resistance have the values in Table 3.3.

In particular, for a line of 0.1 mm, the speed has the value of:

vt =
2Vmax

(Vt − V0) rcL
=

200

15 · 6 · 109 · 2 · 10−9 · 10−4
=

106

90
= 104 m/s.

In this model the transmission speed increases proportionally to the diameter of
the axon and inversely proportional to the line length. The value obtained is much
higher than the values reported in the literature, which shows that the model is not
accurate. The explanation lies in the fact that in this model the rising time of the
excitation signal is considered null.

• Model 1.2 – approximation with triangular impulse

It is expected to get better results if we approximate the excitation signal with a
triangular impulse of magnitude Vmax and rising time τ . Now the excitation signal
is the integral of the signal in Model 1.1:

e1(t) =
Vmax
τ

t =
1

τ

∫ t

0

e (t′) dt′

=⇒ E1(s) =
E(s)

sτ

=⇒ V1(L, s) =
V (t, L)

sτ

=⇒ V1(L, t) =
1

τ

∫ t

0

V (t′, L) dt′ =
2Vmax

τ(RG+ 2)

∫ t

0

(
1− e−s0t

)
dt′

=⇒ V1(L, t) =
2Vmax

τ(RG+ 2)

(
t+

1

s0

(
e−s0t − 1

))
≈ Vmaxs0t

2

τ(RG+ 2)
.

V1 (L, td) = Vt − V0 ⇒
Vmaxs0t

2
d

τ(RG+ 2)
= Vt − V0

=⇒ td =

√
τRC (Vt − V0)

Vmax

= L

√
τrc (Vt − V0)

Vmax

= L

√
2τρε (Vt − V0)

Vmaxab
.

In this model the transmission speed (which we call ”the speed of thought” :-) ) has
the expression:

vt =
L

td
=

√
Vmaxab

2τρε (Vt − V0)
. (3.25)

For the test case studied, which has an outer diameter of 2(a+ b) = 20 microns, the
speed has the value:

vt =
L

td
=

√
Vmaxab

2τρε (Vt − V0)
=

√
100 · 7 · 3 · 10−12

2 · 10−3 · 0.92 · 136 · 10−12 · 15
= 23 m/s,
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independent of the line length and proportional with the square root of the axon’s
diameter [125]. This kind of growth is also met in the specialized literature [148],
[149].

Another aspect emphasized by (3.25) is the dependence between the speed and mem-
brane thickness b, and in the case of myelinated axons the thickness of the myelin layer
of the glial cell, respectively. The speed increase is proportional to the square root of b.

The thickness of the unmyelinated axon’s membrane b is 1000 times smaller than the
Schwann cells’ thickness, which explains why the velocity in the saltatory conduction is
about 30 times greater than in the unmyelinated axons. In the case of myelinated axons,
the thickness b is in correlation with the diameter D (D = 2(a+b) ≈ 5b), so the velocity
will be proportional to the outer diameter, this correlation also being reported in
the literature: ”The ratio of the inner (axon) perimeter to the outer (myelin) perimeter
remains constant at or near the optimal value of 0.6 for conduction in all groups of fibres”
[150]. Timotin considers in [72] a ratio close to d/D = 0.7.

The relation (3.25) underlines the speed’s sensitivity to the geometric and material
parameters: the speed does not depend on the length of the fiber, increases proportion-
ally with the diameter of the myelinated segment (for which the thickness of the myelin
layer is proportional to the diameter of the cytoplasm) and decreases proportionally with
the cytoplasmic resistivity’s square root and with the permeability of the myelin layer.
These results are in full agreement with those obtained numerically in [92]. The relative
sensitivity (defined as the ratio between percentage change of velocity and percentage
change of the parameter) is null for the fiber length (L), 1 for the outer diameter (D),
−1/2 for the cytoplasmic resistivity (ρ) and for the permeability of the myelin layer (ε).

Thus, in a neuron with an outer diameter of 80 microns the transmission speed becomes
100 m/s. An increase in velocity can be obtained by considering other factors besides the
thickness, such as the duration τ of the neural signal rising front or the material constants,
especially the resistivity ρ of the neuron’s membrane.

A different approach that allows the estimation of the minimum transmission
speed uses the following approximate expression, valid for axons of maximal length:

vt =
Lmax
tm + td

=
λ0

tm + td
arg cosh

(
Vmax − Vmin

Vt − Vmin

)
≈ 0.576

0.243
= 2.37 m/s,

where
e′ (tm) = 0⇒ 1

τ1

e
− tm
τ1 =

1

τ2

e
− tm
τ2 ⇒ e

tm
(

1
τ2
− 1
τ1

)
=
τ1

τ2

=⇒ tm =
ln
(
τ1
τ2

)
1
τ2
− 1

τ1

=
10−4 ln

(
3
2

)
1
2
− 1

3

= 0.243 ms.

The quantity tm represents the time the signal needs to reach its peak (maximum
amplitude). As expected, the speed has lower values in this model. If the fiber length
is less than the maximum value, then the speed is lower because the threshold value is
reached before the signal peak. Then we have:

vt =
Lmax
tm + td

=
1

tm + td

√
ab

2σρ′
argcosh

(
Vmax − V0

Vt − V0

)
. (3.26)
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Table 3.4: The geometrical values for unmyelinated and myelinated axons.

a – inner radius b – thickness of membrane /
Schwann cell

Unmyelinated axons a = D/2− b ≈ D/2 b = 3 nm
Myelinated axons a = 2b/2 b = 0.2D

Figure 3.18: The conduction speed as a function of axon’s diameter; the dotted black line is
the dependence for Mammalian myelinated reproduced from [151].

In this model the speed also grows proportionally with the axon’s diameter.

A more careful analysis of the delay time may find its value smaller than the time
constant τ0 and therefore a higher speed. References [148], [149] and [151] report the
transmission speed values vs. fiber diameter for different species. For diameters around
7 microns the speeds are between 2 m/s and 30 m/s.

Local Transmission Speed vs. axon’s outer diameter – numerically and
analytically

We have determined numerically the dependence between the local conduction speed
and axon’s diameter by calculating the velocity for different outer diameters. The calcu-
lation of the speed was based on the delay defined as in Fig. 3.13, by varying the line
length between 0.5λ0 ÷ 3λ0 from the variation over time for:

V (L, s) =
E(s)

ch(λL)
+
V0(1− 1/ ch(λL))

s
.

The numerical values used to determine the conduction speed are presented in Table
3.4.

The values obtained for the transmission parameters are shown in Table 3.5. It is
interesting to remark that although the characteristic length λ0 changes with diameter
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Table 3.5: The transmission parameters computed numerically for axons of different di-
ameters, for myelinated and unmyelinated axons.

D[µm] 1 3.1 5.2 7.3 9.4 11.6 13.7 15.8 17.9 20

U
nm

ye
lin

at
ed λ0 [mm] 0.002 0.004 0.005 0.005 0.006 0.007 0.007 0.008 0.008 0.009

Lmax [mm] 0.005 0.009 0.012 0.014 0.016 0.018 0.019 0.021 0.022 0.023
Lmax
λ0

[-] 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6
vitλ0 [m/s] 0.166 0.293 0.380 0.450 0.511 0.565 0.615 0.660 0.703 0.743
vitLmax

[m/s]
0.033 0.059 0.077 0.09 0.1 0.113 0.123 0.132 0.141 0.15

M
ye
lin

at
ed

λ0 [mm] 0.013 0.039 0.066 0.093 0.119 0.146 0.172 0.199 0.226 0.252
Lmax [mm] 0.033 0.102 0.171 0.241 0.31 0.379 0.448 0.518 0.587 0.656
Lmax
λ0

[-] 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6
vitλ0 [m/s] 1.051 3.271 5.490 7.710 9.929 12.148 14.368 16.587 18.807 21.026
vitLmax

[m/s]
0.21 0.654 1.10 1.54 1.99 2.43 2.87 3.32 3.76 4.21

(this is normal because the parameters depend on a and b), the ratio between λ0 and
Lmax remains constant. Fig. 3.18 shows the transmission speed vs. the axon’s diameter
for myelinated axons and unmyelinated axons. The dependency was determined both
analytically and numerically, using the numerical values in Table 3.4. The analytical
values were determined using (3.25).

The values computed for different diameters are close to the values reported in the
literature for myelinated axons ([151], Figure 3, Mammalian myelinated); Fig. 3.18 is
missing the dependence for unmyelinated axons reported in literature, due to the fact
that the reported values are very diverse. It is found that the numerical values are
close to those determined analytically; for myelinated axons, the values obtained (both
analytically and numerically) are smaller than those reported in the literature, but the
slope of growth (double logarithmic scale) is the same.

3.3.7 Simulation of the transmission line in LTspice

LTspice [152] provides a component called ”Lossy Transission Line” (symbol: LTLIN)
for the simulation of transmission lines, documented in [153]. This component allows the
definition of the line parameters (resistance, capacity, inductivity, conductance) and the
simulation of the transmission line (TL). We defined as input a voltage source variable
over time by an exponential expression, so the form of the signal would be similar to
the one resulting from (3.9), but with null initial condition V0 = 0. Considering the
length unit of 1 µm, the values of the line parameters (per unit length) are as follows:
c = 2 fF/µm, r = 6 kΩ/µm, g = 3 nS/µm. In order to simulate a line length of about
4λ0 = 892 µm the number of length units (the parameter Len) needed is 1000.

We found that LTSpice does not allow the definition of a capacitor and a conductance
at the same time (error: ”Nonzero G (except RG) line not supported yet” and the RG
parameter is not recognized).
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Figure 3.19: The simulation of the transmission line in LTspice – 1 mm.

Fig. 3.19 shows the netlist file and the results of the TL (with RC parameters) simu-
lation for the time domain [0–2] ms.

As shown in Fig. 3.19, the amplitude of the output signal is very close to that of
the input signal for the simulated line length, although according to previous calculations
the output should be below the threshold of 15 mV. This may be due to the missing
conductance in the LTspice model. Fig. 3.20 shows the simulation results for Len =
10000, which corresponds to a line length of 10 mm. The amplitude decreases to half and
the delay is significantly higher compared to previous case.

Figure 3.20: The simulation of the transmission line in LTspice – 10 mm.
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Figure 3.21: The companion circuit generated by the spatial discretization with centered dif-
ferences.

3.4 Numerical 1D model

Apparently, the numerical solution is not necessary, since the problem allows finding
an analytical solution. As the analytical solving can only be done in linear cases, the
numerical study will be useful in nonlinear problem solving, such as those encountered in
simulating the saltatory conduction in myelinated axons, in which Ranvier nodes introduce
strong nonlinearities.

3.4.1 Discretization of the line equation with finite differences

By discretizing the second order derivative from (3.18) using finite centered differences,
we get:

Vk−1(t)− 2Vk(t) + Vk+1(t)

∆x2
=

1

λ2
0

(Vk(t)− V0) +
τ

λ2
0

dVk(t)

dt

=⇒ Vk−1(t)− 2Vk(t) + Vk+1(t) =
∆x2

λ2
0

(Vk(t)− V0) + ∆x2 τ

λ2
0

dVk(t)

dt
.

With ∆x2

λ20
= rg∆x2 = RG,∆x2 τ

λ20
= rc∆x2 = RC, where R = r∆x,G = g∆x,C = c∆x,

it follows that:

Vk−1(t)− 2Vk(t) + Vk+1(t) = RG (Vk(t)− V0) +RC
dVk(t)

dt

=⇒ − 1

R
Vk−1(t) +

(
2

R
+G+ sC

)
Vk(t)−

1

R
Vk+1(t) = GV0 (3.27)

The expression (3.27) represents the nodal analysis equation for the circuit in Fig.
3.21.

Consequently, the numerical model generated is a reduced model having the order
equal to the number of internal nodes of the spatial grid.

This model is not an optimal one, so the numerical resolution should be done with
control of the numerical error while keeping the computational effort to a minimum.
Order reduction through optimal segmentation is based on intelligent meshing with error
control. This is done by estimating the dependence between the truncation error and the
spatial step (which gives the order of the reduced system).
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3.4.2 Discretization error

The dependence between the error and the refinement of the spatial mesh can be
estimated analytically.

From the Taylor expansion of the solution in the grid nodes having the step h = ∆x

we obtain the relation [154]:

ui+1 = ui + u
(1)
i h+

1

2
u

(2)
i h2 +

1

6
u

(3)
i h3 +

1

24
u

(4)
i h4 +O

(
h5
)
,

ui−1 = ui − u(1)
i h+

1

2
u

(2)
i h2 − 1

6
u

(3)
i h3 +

1

24
u

(4)
i h4 +O

(
h5
)
.

By summation, this gives:

ui+1 + ui−1 = 2ui + u
(2)
i h2 +

1

12
u

(4)
i h4 +O

(
h5
)

=⇒ u
(2)
i =

ui+1 − 2ui + ui−1

h2
− h2

12
u

(4)
i +O

(
h3
)
.

By naming Vk and Uk the numerical and the analytical solutions in the node k, quanti-
ties that in stationary regime satisfy λ0

Vk−1−2Vk+Vk+1

h2
= Vk, respectively λ2

0
∂2U
∂x2

∣∣∣
x=xk

= Uk,

it follows that the deviation between them has the expression:

Ek = Vk − Uk = λ2
0

(
Vk−1 − 2Vk + Vk+1

h2
− ∂2U

∂x2

∣∣∣∣
x=xk

)
= λ2

0

h2

12
u

(4)
k +O

(
h3
)

=⇒ Ek = Vk − Uk = λ2
0

h2

12
u(4) (ξ)|ξ∈(xk,xk+1)

and consequently the numerical error is bounded by:

|Ek| = |Vk − Uk| ≤
(λ0h)2

12
c4 = kh2, where c4 = max

0<x<L

∣∣∣∣∂4V

∂x4

∣∣∣∣ , so k =
λ2

0c4

12
.

As previously shown, the stationary solution has for unitary potential input the ex-
pression:

V (x) = − 1

sh(λL)

(
− 1

ch(λL)
sh(λx) + sh(λ(x− L))

)
, with λ = 1/λ0.

By derivation, we determine c4:

∂4V

∂x4
=

λ4

sh(λL)

(
1

ch(λL)
sh(λx)− sh(λ(x− L))

)
⇒ c4 = 1/λ4

0.

In conclusion, the error bound can be estimated as:

|Ek| = |Vk − Uk| ≤
(h/λ0)2

12
=

(L/ (λ0(N − 1)))2

12
=

(L/λ0)2

12(N − 1)2
=

0.6188

(N − 1)2
. (3.28)

For 50 nodes, the error should have the order 2.6 · 10−4 and for 10 nodes it should be
less than 1%.
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This result can also be used to estimate the error of reduced order models obtained by
segmentation. Consequently, the 10-segment models have acceptable accuracy for most
practical applications. In fact, this is the recommendation made by several papers on
numerical simulation for the number of compartments for myelinated section [92].

Since the fourth derivative is proportional to the solution (with the ratio of 1/λ4
0), we

expect that the local error to be maximal at the beginning of the line, and at the end to
have values up to 15% of the maximum value. The expression of the error margin has a
local nature and is valid for any node, so the inequality is also satisfied by the Cebisev
norm of the error:

‖E‖∞ = max
k=1,N

|Vk − Uk| ≤
(h/λ0)2

12
c4 = kh2.

A similar relationship is satisfied by the Euclidean norm (more precisely by the root
mean square deviation):

‖E‖2 =

√√√√ 1

N

N∑
k=1

(Vk − Uk)2 ≤

√√√√ 1

N

N∑
k=1

(kh2)2 ≤
√

(kh2)2 ≤ kh2 =
(λ0h)2

12
c4.

If we take into account the approximation:

∂4V

∂x4
=

λ4

sh(λL)

(
1

ch(λL)
sh(λx)− sh(λ(x− L))

)
≈

≈ λ4

exp(λL)

(
2(exp(λx)− exp(−λx))

exp(λL)
− exp(λ(x− L)) + exp(λ(L− x))

)
=

= λ4((exp(λx)− 2 exp(−λx)) exp(−2λL) + exp(−λx)) ≈ λ4 exp(−λx),

we obtain a smaller bound for the error:

‖E‖2 =

√√√√ 1

N

N∑
k=1

(Vk − Uk)2 ≤

√√√√ 1

N

N∑
k=1

(
(λ0h)2

12
c4

)2

≤ (λ0h)2

12

√
1

L

∫ L

0

c2
4(x)dx =

=
(h/λ0)2

12

√
1

L

∫ L

0

exp (−2x/λ0) dx =
(h/λ0)2

12

√
λ0

2L
(1− exp (−2L/λ0)) =

(h/λ0)2

28
,

(3.29)
which is at least two times smaller than previously estimated by (3.28).

The truncation error depends on the spatial discretization step through the relation
[155]:

TErel = kx ·∆x2, with kx fixed .

In order to determine the constant kx we solved the electric potential equation in
stationary regime with null initial conditions, considering a step input E=1 mV.

3.4.3 Verification of numerical model accuracy

In stationary regime with null initial conditions, (3.17) becomes:

∂2V (x, t)

∂x2
= rgV (x, t). (3.30)

57



Use of Reduction Methods in Multiscale Modeling of Complex Systems

Figure 3.22: Discretization with constant step using centered finite differences, network 1.

Equation (3.30) is discretized using centered finite differences as:

2

(xk−1 − xk) (xk−1 − xk+1)
Vk−1 +

2

(xk − xk−1) (xk − xk+1)
Vk+

+
2

(xk+1 − xk−1) (xk+1 − xk)
Vk+1 = rgVk.

We defined two dual networks as follows:

– Network 1: N nodes, constant step ∆x, as in Fig. 3.22.

The equation (3.30) becomes:

Vk−1 − 2Vk + Vk+1

(∆x)2
= rgVk.

The boundary condition at x = L is Neumann and is determined from the first
derivative as follows:

f(x) = ax2 + bx+ c

with f(−h) = ah2 − bh+ c = f1; f(0) = c = f2; f(h) = ah2 + bh+ c = f3

=⇒ ah2 − bh = f1 − f2; ah2 + bh = f3 − f2

=⇒ a = (f1 − 2f2 + f3) /
(
2h2
)

; b = (−f1 + f3) /(2h)

=⇒ f ′(x) = 2ax+ b

with f ′(h) = 2ah+ b = (f1 − 2f2 + f3 − f1/2 + f3/2) /h = (f1/2− 2f2 + 3f3/2) /h.

This expression for the boundary condition provides an error of order O(h2) which is
similar to that provided by the other equations. If regressive differences were used,
in which only the last two nodes intervene, then the error would have the order O(h)

and the solution of the whole linear system would be compromised.
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Figure 3.23: Discretization with network 2.

The system to be solved has the unknowns Vk, k = 1 : N , the free term is null (with
the exception of the first position = 1 mV) and the coefficients matrix is tridiagonal
A1 ∈ RN×N of the following form (example for N = 5):

A1 =


1 0 0 0 0
1

∆x2
− 2

∆x2
− rg 1

∆x2
0 0

0 1
∆x2

− 2
∆x2
− rg 1

∆x2
0

0 0 1
∆x2

− 2
∆x2
− rg 1

∆x2

0 0 1/2 −2 3/2


– Network 2: the nodes are at the middle between the nodes of network 1, therefore

we have N + 1 nodes, a constant step ∆x between the nodes 2 and N ; between
nodes 1→ 2 and N → N + 1, the step will be ∆x/2 (Fig. 3.23).

This time the coefficients matrix A2 ∈ R(N+1)×(N+1) will have the following form
(example for N = 5):

A2 =


1 0 0 0 0
2

3(∆x/2)2
− 1

(∆x/2)2
− rg 1

3(∆x/2)2
0 0

0 1
∆x2

− 2
∆x2
− rg 1

∆x2
0

0 0 1
3(∆x/2)2

− 1
(∆x/2)2

− rg 2
3(∆x/2)2

0 0 1/2 −2 3/2


Table 3.6 represents the stationary potential along the line for the dual networks and

the distribution of the stationary potential along the line, computed analytically with the
following expression:

V (x) = − 1

sh(2L)

(
− 1

ch(λL)
sh(λx) + sh(λ(x− L))

)
, with λ = 1/λ0.
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Table 3.6: The stationary potential along the line for dual spatial networks.

3 nodes 6 nodes

12 nodes 25 nodes

50 nodes 100 nodes

200 nodes
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Table 3.7: The relative deviations between the potential at the end of the line (x = L),
numerical and exact.

no. of nodes 3 6 12 25 50 100 200
bound of rel-
ative error

0.17129 0.06312 0.03435 0.01757 0.00911 0.00465 0.00235

deviation
from exact
value

0.10388 0.00147 0.00039 0.00014 0.00004 0.00001 0.000003

Figure 3.24: The relative error and its upper bound as a functions of the number of nodes of
the spatial network.

The number of nodes increases in geometric progression: 3, 6, 12, 25, 50, 100, 200.

Table 3.7 contains the relative deviation between the potential at the end of the line
(x = L) computed numerically with the primary and the dual network, and the deviation
between the primary network and the analytically computed value, with the expressions:

bound of relative error =
|Vx=L, net1 − Vx=L,net2|

Vx=0, net1
; (3.31)

deviation from exact value =
|Vx=L, net1 − Vx=L,analyt|

Vx=0, analyt
. (3.32)

Fig. 3.24 shows the dependence of the relative error margin in Table 3.7 vs. the number
of nodes in the spatial network. Note that the margin of the relative difference between
the potentials obtained using the dual networks is less than 10% at 6 nodes and at most
1% starting from 50 nodes. In reality the deviation between the numerical simulation and
the exact result is much smaller.

For each spatial network we have checked if the values at the middle and the end of
the line of the analytically determined stationary potential line are framed by the values
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Figure 3.25: The relative error vs. the refinement of the spatial network (experimentally and
theoretically).

determined by the two networks (for even numbers of nodes we computed the middle
value by linear interpolation of the neighboring nodes). For 3 and 6 nodes, the analytical
values at the end of the line are not framed, but for all other cases, the analytical value
is framed between network 1 (higher value) and network 2 (lower value). The absolute
errors at the end of the line between network 1 and analytical are very small, even at 12
nodes, as illustrated by Fig. 3.24.

Based on the dependence between the relative error bound and the number of inter-
nal nodes of the spatial mesh, we can determine the minimal network that provides an
acceptable error. With a 6-nodes mesh, an acceptable error of about 0.1% is obtained.

If the Neumann boundary condition for x = L would have been discretized with
regressive finite differences of first order, then just the last two nodes would be used in
the BC, therefore the last line of the matrices A1 and A2 would be:[

0 0 0 1 −1
]

Since in this case the error of the last equation has the order O(h) (unlike the other
equations in the system for which the error has the order O(h2)), then the slope of the
relative error margin is approximately 2, and not 1 as theoretically approximated.

Fig. 3.25 shows the dependence of the relative error on the spatial network step, theo-
retically (red) – calculated with (3.29) – and experimentally – calculated as the deviation
between the exact and numerical solutions (for Neumann BC at x = L discretized with
regressive finite differences of order 1 (magenta) and with regressive finite differences of
order 2 (blue)).

Fig. 3.25 points out that the numerical method has the order of convergence two, if
the Neumann BC is discretized with the same order as that of the internal nodes and that
the whole solution has the order one, when the Neumann condition is discretized with
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Figure 3.26: Obtaining An from A1.

regressive finite differences of the first order, thus the order of the BC monopolizes the
entire solution.

Another aspect that deserves to be analyzed is that concerning the characteristics of
the matrix system, both in the case of A1 and A2. These are tridiagonal matrices, none
of them being symmetric, even if the nodal matrix of the electric circuit in Fig. 3.21 has
these two remarkable properties.

The nodal matrix (An) can be extracted from A1 by eliminating the first and last
column and line (Fig. 3.26), in which case the free term of the system would have on the
first position the short-circuit current e(t)/R; also, if we were to modify An(N−1, N−1) =

−1/(∆x)2−rg, it would mean having a Neumann BC of order 1, so the numerical method
would have the order of convergence 1 (the solution values would overlay the magenta
markers in Fig. 3.25).

In order to determine a symmetrical matrix An that preserves the equation coefficients
of A1 we proceeded as follows:

– The first line of A1 represents the equation V1 = excitation = 1 mV. Thus by
eliminating the first line and column, the new first position of the free term would
be − 1

(∆x)2
.

– The last two lines encode the equations:

1

(∆x)2
VN−2 +

(
− 2

(∆x)2
− rg

)
VN−1 +

1

(∆x)2
VN = 0;

VN−2 − 4VN−1 + 3VN = 0⇒ VN =
(4VN−1 − VN−2)

3
.

By eliminating VN from the first equation, it follows that:

VN−2
2

3(∆x)2
+ VN−1

(
− 2

3(∆x)2
− rg

)
= 0.

We wish that the coefficient of VN−2 to be 1
(∆x)2

, for the matrix An to remain
symmetrical, we thus rewrite the previous equation as:

2

3

(
VN−2

1

(∆x)2
+ VN−1

(
− 1

(∆x)2
− 3rg

2

))
= 0.
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Figure 3.27: The relative error vs. the refinement of the spatial network for the solution
obtained using system matrices A1, A2 and An.

In conclusion, An ∈ R(N−2)×(N−2) will have the following form:

An =


− 2

∆x2
− rg 1

∆x2
0 0 0

1
∆x2

− 2
∆x2
− rg 1

∆x2
0 0

0 1
∆x2

− 2
∆x2
− rg 1

∆x2
0

0 0 1
∆x2

− 2
∆x2
− rg 1

∆x2

0 0 0 1
∆x2

− 1
∆x2
− 3rg

2


The free term will be bn ∈ R(N−2)×1, having on the first position the value − 1

∆x2
and

zero in rest. After determining the solution ∈ R(N−2)×1, we will complete it with the
values V1 and VN from the eliminated equations.

In Fig. 3.27 the relative deviations from the exact values depending on the network
refinement for the matrices A1, A2 and An are compared. The solution obtained with An

is identical to that obtained with A1. This was expected since the equations solved are
the same. Therefore we can obtain the same solution by using a symmetrical tridiagonal
system matrix.

3.4.4 Discretization of the standard neuronal signal

Up until this moment we considered an input signal approximated with the expression
(3.9). It is possible that the transmission parameters previously determined depend on the
form of the excitation signal. To check this hypothesis we chose from the literature four
neural signals that we will consider as excitation signal. We will compare the transmission
parameters computed by solving the equation (3.17) for these signals and for the excitation
previously used, which will be considered as reference signal. The standard neural signals
selected appear in the form of curves in figures, so they have to be digitized in order to
be used in the numerical procedure.
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Figure 3.28: The theoretical signal represented in Fig. 15 from [98] and the signal digitized
(100 points).

In most references just the scale is provided, but not V0. In the first reference ([98])
the potential starts at 0 because the authors make a variable change; in the next two
references only the reference unit is given, since the shape and the amplitude are more
important. The signals were translated vertically to have the initial value V0 = −70 mV
as the reference signal.

For digitization we used the digitizeGraph.m, a semi-interactive tool that can be found
at [156].

1. Digitizing Fig. 15 from [98].

Two variations were reported in [98], one experimental and one theoretical. As the
two signals are very similar, we use in what follows only the theoretical signal. Fig.
3.28 shows this signal and the digitized signal with 100 points.

2. Digitizing Figure 3C from [95].

The original and digitized signals are shown in Fig. 3.29. The measure unit in this
case is 50 mV (0y) and the total simulation time is 2 ms (0x).

3. Digitizing Figure 1B from [157].

The original and digitized signals are shown in Fig. 3.30.

4. Digitizing Figure 2 from [96].
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Figure 3.29: The original signal represented in Fig. 3C from [95] (right: zoom from C) and
the signal digitized with 100 points.

Figure 3.30: The original signal represented in Fig. 1B from [157] (right: zoom from C) and
the signal digitized with 100 points.

The original and digitized signals are shown in Fig. 3.31.

The four signals digitized, before any processing, are represented in Fig. 3.32.

3.4.5 The results of the numerical simulation

We computed the transmission parameters (maximum transmission length, transmis-
sion speed) for 10 nodes, with two different excitations: the reference signal and one of
the four signals obtained by discretization of the standard signal in the previous section.

The transmission parameters were calculated from the numerical solving of the equa-
tion (3.17), using the definitions in Section 3.3, with the difference that here, in the
calculation of the derivative of the delay inverse to determine the transmission speed, we
consider the origin (0, 0) as the first node. If two successive nodes were used it would
mean dx(idxx − idxx + 1)/(dt(idxt − idxt + 1)), so the speed would always be equal to
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Figure 3.31: The original signal represented in Fig. 2 from [96] and the signal digitized with
100 points.

Figure 3.32: The four signals digitized with 100 points, with no post-processing.

dx/dt. For this reason, the derivative thus calculated is less precise than the previously
calculated numerical value. However the purpose of this section is to compare the trans-
mission parameters computed in the same way for different excitations, for this reason
the precision of the computation is not very important.

For the excitation signal obtained by digitization to be consistent with the excitation
signal used as reference, a correction of the discretized signals (vertical translation) is
required by moving them down on the Oy axis, as follows: signals 1 and 3 with V0, signal
3 with V0− 17 mV, signal 4 with −12 mV. The time domain of the 4 signals is considered
2 ms.

Table 3.8 contains the transmission parameters calculated numerically for pairs of
excitations: the reference signal and the signal obtained by discretizing the standard
signal. Because the speed is a local quantity, we give the results for the delay time around
the characteristic length λ0 and around the maximum length Lmax.

The maximum line length for which the signal can reach the threshold is the same for
all signals, and in accordance with Lmax computed analytically and with literature data.

The conduction speed for the reference signal around the characteristic length λ0 is
approximately 5 times smaller than the analytical velocity previously computed (23 m/s).
However the comparison is limited since the speed computed here is a local quantity, which
depends on the line length, whereas the analytical speed does not.

We remind the reader that in the computation of the delay time and transmission

67



Use of Reduction Methods in Multiscale Modeling of Complex Systems

Table 3.8: The transmission parameters numerically computed for different excitation
signals.

Excitation
Parameter

Lmax Amplitude td at λ0 Speed at
λ0

td at
Lmax

Speed at
Lmax

[mm] [mV] [ms] [m/s] [ms] [m/s]

Reference signal 0.5507 100 0.051 4.67 0.192 2.86
Digitized signal 1 0.5507 113.94 0.576 0.41 0.778 0.71
Digitized signal 2 0.5507 122.41 0.535 0.44 0.758 0.72
Digitized signal 3 0.5507 114.18 0.394 0.6 0.515 1.07
Digitized signal 4 0.5507 124.43 0.434 0.54 0.677 0.81

velocity in Section 3.3, we considered that the delay time of the standard signal is null
because it was negligible. But here we deal with excitation signals that have delay times
that cannot be neglected. To avoid a horizontal translation (to the left) of the digitized
signals, we determined their delay time with respect to the delay time of the reference
signal.

For each digitized signal an approximation obtained by exponential regression was

extracted. The general model has the form a1e
−
(
x−b1
c1

)2
+ a2e

−
(
x−b2
c2

)2
. Table 3.9 shows

the regression for each of the four digitized signals and the values for the coefficients of
the general model (in the parenthesis the trust interval of 95%).

Table 3.10 shows the transmission parameters computed numerically for pairs of exci-
tations: the reference signal and the signal obtained by discretizing the standard signal,
this time by taking into account the delay time of the reference signal, thus computing
the delay time of the response as the difference between the moment when it reaches the
threshold and the time when the excitation signal reaches the threshold.

The conclusions concerning Lmax and the transmission speed are similar to those drawn
for Table 3.8. Compared to the local speed previously computed, these values lie between
the value around Lmax of 0.816 m/s and the value around λ0 of 34.4 m/s. The difference
may be due to the way the derivative was computed, less precise than if we considered
closer nodes.

We find that the delay time and implicitly the transmission speed depend on the
behavior of the input signal. The difference between the delay times of the output signals
is explained by the delay time of the input signals (Table 3.11). The transmission speed
is, as expected, inversely proportional to the delay time.

3.4.6 Numerical time integration

The equation (3.17) is parabolic, which means that unlike for hyperbolic equations
(such as the wave equation), the explicit numerical integration methods are not very
appropriate [154]. However, it is expected that the explicit and implicit methods (based on
regressive differences, Crank-Nicolson) to have similar truncation errors for small enough
time steps [155].
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Table 3.9: The exponential regression for different excitation signals.

a1 = 101.7 (91.27, 112.1)

b1 = 0.0007879 (0.0007472, 0.0008286)

c1 = 0.0001925 (0.0001556, 0.0002295)

a2 = 38.63 (12.02, 65.24)

b2 = 0.001021 (0.000966, 0.001076)

c2 = 0.000129 (7.704 · 10−5, 0.000181)

a1 = 91.87(72.65, 111.1)

b1 = 0.0007525(0.0007235, 0.0007815)

c1 = 0.0002411(0.0002174, 0.0002647)

a2 = 63.32 (54.62, 72.02)

b2 = 0.001145(0.001065, 0.001225)

c2 = 0.0003364(0.0002722, 0.0004006)

a1 = 86.61 (68.66, 104.6)

b1 = 0.001909(0.001878, 0.00194)

c1 = 0.0004611(0.0003824, 0.0005398)

a2 = 67.41 (60.51, 74.31)

b2 = 0.002818(0.002622, 0.003014)

c2 = 0.001107(0.0009403, 0.001274)

a1 = 47.78(−18.36, 113.9)

b1 = 0.001303(0.001221, 0.001386)

c1 = 0.0002248(0.0001261, 0.0003234)

a2 = 89.65(58.47, 120.8)

b2 = 0.0009933(0.0008311, 0.001155)

c2 = 0.0003414(0.0002365, 0.0004464)
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Table 3.10: The transmission parameters numerically computed for different excitation
signals, with taking into account the delay time of the excitation signal.

Excitation
Parameter

Lmax Amplitude td at λ0 Speed at
λ0

td at
Lmax

Speed at
Lmax

[mm] [mV] [ms] [m/s] [ms] [m/s]

Reference signal 0.5507 100 0.01 23.36 0.152 3.63
Digitized signal 1 0.5507 113.94 0.051 4.67 0.253 2.18
Digitized signal 2 0.5507 122.41 0.071 3.33 0.293 1.87
Digitized signal 3 0.5507 114.18 0.030 7.78 0.152 3.63
Digitized signal 4 0.5507 124.43 0.071 3.33 0.313 1.75

Solving the equation (3.17) by discretization with three numerical time integration
methods assumes meshing as follows:

V
(j)
k−1 − 2V

(j)
k + V

(j)
k+1

(∆x)2
= rgV

(j)
k − rgV0 + rc

V
(j+1)
k − V (j)

k

∆t
,

where k is the spatial index and j represents the temporal index.

a) Backward-Time, Centered Space – BTCS (implicit method, a system of equa-
tions is solved at every time step), the system of equations is given by:

V
(j)
k−1 − 2V

(j)
k + V

(j)
k+1

(∆x)2
= rgV

(j)
k − rgV0 + rc

V
(j)
k − V

(j−1)
k

∆t
.

The system matrix and the free term are as follows (example for size 5):

A1 =


1 0 0 0 0
1

∆x2
− 2

∆x2
− rg − rc

∆t
1

∆x2
0 0

0 1
∆x2

− 2
∆x2
− rg − rc

∆t
1

∆x2
0

0 0 1
∆x2

− 2
∆x2
− rg − rc

∆t
1

∆x2

0 0 1/2 −2 3/2

 ;

TL1 =


e(t)

..

− rc
∆t
V

(j−1)
k − rgV0

..

0

 .

From A1 we can extract the symmetrical matrix An (the vector of free terms will
be modified in consequence) which represents the matrix of coefficients for the same
system of equations. Then, for N = 5, the size of matrix An will be 3:

An=

− 2
∆x2
− rg − rc

∆t
1

∆x2
0

1
∆x2

− 2
∆x2
− rg − rc

∆t
1

∆x2

0 1
∆x2

− 1
∆x2
− 3rg

2
− 3rc

2∆t

 ;
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Table 3.11: Numerical results for different excitation signals (input-output and reference-
digitized).
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TLn =


− 1

∆x2
e(t)− rgV0 − rc

∆t
V

(j−1)
2

..
rc
∆t
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(j−1)
k − rgV0

..

−1.5 rc
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V

(j−1)
N − 1− 1.5rgV0

 .

b) Crank-Nicolson – CN (implicit method, a system of equations is solved at every
time step), the system of equations is given by:

1

2

[
V

(j)
k−1 − 2V

(j)
k + V
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(∆x)2

]
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V
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k − V

(j−1)
k
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.

We deduce the system matrix and the free term as:

A1 =
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1
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with the same notations as for BTCS.

The symmetrical matrix An and the vector of free terms extracted are the following:
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c) Forward-Time Centered Space – FTCS (explicit method).
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Table 3.12: Number of nodes and discretization steps.

∆
x
fix

ed

space time

∆
t
fix

ed

space time
N ∆x [m] M ∆t [s] N ∆x [m] M ∆t [s]

10 1.049e-4

112200 1.783e-8 5 2.360e-4

448800 4.456e-9
448800 4.456e-9 10 1.049e-4
1009800 1.981e-9 15 6.743e-5
1795200 1.114e-9 20 4.969e-5

The two implicit methods (BTCS and CN) are unconditionally stable, whereas, ac-
cording to [155] and [158], FTCS is stable for:

r =
∆t

(∆x)2
<

1

2
, (3.33)

which means extremely small steps in the time domain 0, tmax = [0, 2 ·10−3] sec and in the
space domain [0, 4λ0]. In addition, the truncation error for all three methods is dependent
on the time and spatial discretization steps, as follows [155], [158]:

errrel,FTCS = O(∆t) +O
(
∆x2

)
; (3.34)

errrel,BTCS = O(∆t) +O
(
∆x2

)
; (3.35)

errrel,CN = O(∆t2) +O
(
∆x2

)
. (3.36)

We compare the three methods based on the difference from the exact solution and
on the solving time, with ∆t fixed and ∆x variable and vice versa. Using each of the
three methods, we determine the transmission parameters: Lmax, the delay time, the
transmission speed.

For the stability constraint to be satisfied for FTCS, we choose ∆x, then compute
∆t = (∆x)2

2
. The discretization steps used in tests are contained in Table 3.12.

The error was computed for the values corresponding to the last moment in time
([155]), as deviation from the exact solution, using the expression:

errrel =
‖Ve (:, tmax)− Vn (:, tmax)‖

max (Ve (:, tmax))
=

√∑
k|Ve(k,tmax)−Vn(k,tmax)|2

N

max (Ve (:, tmax))
,

with Vn – numerical value of the electric potential; N – number of spatial nodes.

The transmission parameters computed have values close to one another, Lmax = 0.45

mm, the delay time td ∈ [1.36 · 10−5, 2 · 10−4] sec, the time increasing with the spatial
variable (the lowest delay time is recorded for the smallest x, the highest for Lmax), the
transmission speed vt ∈ [2, 6] m/s.

The figure 3.33 shows the relative error vs. the discretization step (∆x, ∆t) for the
three methods discussed and another numerical integration method from Matlab: pdepe
[159]. It is found that the truncation errors for the four methods are almost identical for
∆t fixed. For ∆x fixed at 1.049 ·10−4 and ∆t between 1.11 ·10−9 and 1.78 ·10−8 (Fig. 3.33
left), the spatial truncation error has the order 10−4 and its contribution is significant
in comparison to the temporal one, of order 10−6, this is why according to (3.34-3.36)
the three methods have comparable total truncation errors, with the order for ∆t fixed
between 10−4 and 10−2.

In terms of computing time FTCS is relatively faster (Fig. 3.34). Because the dis-
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Figure 3.33: The relative errors vs. ∆x (left) / vs. ∆t (right) (methods: FTCS, BTCS, CN
and pdepe); ∆t fixed (left), ∆x fixed (right).

Figure 3.34: Total computing time vs. ∆x (left) / vs. ∆t (right) (methods: FTCS, BTCS,
CN and pdepe); ∆t fixed (left), ∆x fixed (right).

Figure 3.35: The relative errors vs. ∆x (left) / vs. ∆t (right) (methods: BTCS and CN); ∆t

fixed (left), ∆x fixed (right).
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Figure 3.36: Total computing time vs. ∆x (left) / vs. ∆t (right) (methods: BTCS and CN);
∆t fixed (left), ∆x fixed (right).

cretization steps are relatively close, the dependence time vs. step does not matter as
much as the order of the computing time. The difference in time between the explicit
method and the implicit ones is due to the fact that FTCS does not require solving a
system of equations at each time point. However, the FTCS method has the disadvantage
that it is not stable for time and space steps that do not respect the constraint (3.33).

The BTCS and CN methods are unconditionally stable, which means they can be
used for coarser time and space meshes. This allows the comparison between the two
implicit methods for time and space steps of comparable size. Figures 3.35 and 3.36
show the relative error and the computing time vs. the discretization step (∆x, ∆t) for
BTCS and CN, having ∆t fixed at 5 · 10−6 sec (400 nodes) and ∆x varying between
[2.366 ·10−6, 1.888 ·10−4] m (5÷400 nodes) and vice versa, having ∆x fixed at 2.366 ·10−6

m (400 nodes) and ∆t varying between [5.013 · 10−6, 4 · 10−4] sec (5÷ 400 nodes).

It is surprising that for this configuration BTCS has significantly lower errors than CN
whereas the computing times are approximately equal.

3.4.7 Efficient implementation in Matlab

The system solved at each time step has the matrix (An) tridiagonal, which means
that of N2 total elements, only 3N − 2 are not null. This suggests that the use of Matlab
sparse matrix techniques will prove extremely effective. The implementation using sparse
matrices assumes that for a matrix only nonzero elements and their positions are stored
in memory (triplets: value, row, column). The storing technique influences the shape of
the algorithms and therefore the execution speed, as the complexity of the algorithm will
depend on the number of non-zero elements and not on the size of the system matrix.

The algorithms presented in the previous section were implemented with the classical
technique for full matrices and the sparse matrix technique in Matlab. Figures 3.37
show the computing time dependence for FTCS, BTCS, CN and pdepe methods for the
algorithms modified to use sparse matrices (having temporal and spatial discretization
steps from Table 3.12). In Figures 3.38 only the computing time of sparse matrices
algorithms for the second configuration (coarser mesh) is shown, for which only BTCS
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Figure 3.37: Total computing time vs. ∆x (left) / vs. ∆t (right) (methods: FTCS, BTCS,
CN and pdepe); ∆t fixed (left), ∆x fixed (right); sparse matrices code.

Figure 3.38: Total computing time vs. ∆x (left) / vs. ∆t (right) (methods: BTCS and CN);
∆t fixed (left), ∆x fixed (right); sparse matrices code.

and CN are stable.

Following sparse matrix implementation, the numerical results are the same, but the
total computing time is significantly lower. Table 3.13 contains the computing times for
FTCS, BTCS, CN and pdepe. For the implicit methods it is also given the total time
for the second configuration (time and space steps of comparable size), corresponding to
Figures 3.38.

As expected, the FTCS method does not show any improvement in computing time,
because it does not use a system matrix at every time step. Neither the pdepe method
has improved because there are no sparse matrices options in its call parameters. In
contrast, for BTCS and CN, the improvement of the computing time is significant, about
3 times for the initial configuration (from Table 3.12) and 50 to 120 times for the coarser
configurations.

The study of efficient implementation in Matlab, but especially the study of time inte-
gration methods is closely related to order reduction and computation time minimization,
which becomes relevant when the simulation procedure is incorporated into simulation of
large-scale neural networks. Explicit numerical time integration methods such as FTCS
are very easy to develop and show small truncation errors but cannot be used for any
temporal and spatial configuration due to their instability. Implicit methods such as
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Table 3.13: The computing times – full and sparse matrices.

Full matrices code [s] Sparse matrices code [s]

FTCS
∆t fixed 4.11 4.15
∆x fixed 8.05 8.258

BTCS

∆t fixed 2nd config. 3.16 0.06
∆t fixed 36.64 12.03
∆x fixed 2nd config. 4.31 0.04
∆x fixed 69.86 23.1

CN

∆t fixed 2nd config. 3.01 0.05
∆t fixed 32.90 9.88
∆x fixed 2nd config. 4.4 0.034
∆x fixed 52.23 17.56

pdepe
∆t fixed 30 30.9
∆x fixed 61.1 56.5

BTCS or CN are unconditionally stable and have acceptable truncation errors for larger
discretization steps. As the system matrix is intrinsically sparse, using sparse matrices
implementation in Matlab can reduce the computational effort generated by the solving
of systems of equations.

3.5 Conclusion regarding One-dimensional Models for
Neuronal Signals’ Transmission

This chapter was dedicated to the one-dimensional model for neuronal signals’ trans-
mission. The analytical solution and the transmission parameters determined analytically
are compared to the data reported in literature. Next, the analytical model is used as a
reference, thus validating the numerical model and methods.

The problem is formulated as a field problem (EC+EQS) from which the mathemat-
ical equations are deducted, as well as the boundary conditions. As the model is linear
the analytical solution is found for the problem previously formulated. The observed be-
haviour leads to a modification to the original model in order to take into account the
effect of ion pumps. Several characteristic parameters are determined for the analytical
model: the line attenuation, the maximum transmission length for the signal, the signal
delay and the transmission speed. An analytical expression validated by the literature for
the transmission speed is deducted (”the speed of thought”).

The numerical model is obtained by discretization of the model’s equations. The sta-
tionary potential along the line is obtained using dual spatial networks, whose values
frame the analytical values of the potential. As it is based on discretization, the numer-
ical model’s accuracy depends on the meshing step. This dependence is determined for
different discretization methods of the boundary conditions. The nodal matrix An of the
equivalent electric circuit (tridiagonal and symmetric) is determined from the coefficients
matrix A1.
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In order to verify the assumption that the transmission parameters previously deter-
mined depend on the form of the excitation signal, four neural signals were chosen from
the literature in order to replace the initial excitation signal, obtained with the difference
of two exponentials. The standard neural signals selected appeared in the form of curves
in figures, so they had to be digitized in order to be used in the numerical procedure.

Numerical time integration such as FTCS, BTCS and Crank-Nicholson are used to find
the variation of the solution over time. They are compared in terms of accuracy (relative
errors), stability and efficiency (computation time). The last part of this chapter stresses
the importance of efficient implementation of the algorithms. The use of sparse matrices
implementation in Matlab reduces the computational effort generated by the solving of
systems of equations at every time step in numerical integration.
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Chapter 4

Reduced Order Models of Myelinated
Axonal Compartments

This chapter is dedicated to the order reduction of models for myelinated axonal com-
partments. Model reduction consists in the approximation of a high complexity input/out-
put system with a lower complexity one, which describes the relation between the input
and the output signals with acceptable differences. In the time domain the complexity
is given by the number of state variables and in the frequency domain by the number of
poles of the transfer function. Models of very high complexity are generated for the anal-
ysis of complicated installations and devices, or after discretizing with numerical methods
the PDEs of physical fields. Considering that such models have thousands, tens of thou-
sands, hundreds of thousands, and even millions of degrees of freedom, the objective is
that the model extracted from the reduction to be simulated without losing the essence
of the model with minimal computation effort, by reducing the complexity order to a few
hundred or even dozens of units.

Order reduction methods have been developed in the systems theory, applied math-
ematics, numerical methods and circuit theory, following the requirements of designers
of large integrated electronic circuits (VLSIs), which needed to model the capacitive and
inductive parasitic effects and high speed interconnection lines. The aim was to simulate
the models of these devices as efficiently as possible within reasonable accuracy bounds
for design validation and potential optimal redesign. Meanwhile, reduction methods ap-
plied to structural analysis have been developed, in the study of mechanical structures
or devices, of complex installations, in aerospace and even in biology. Books, collections
of articles, doctoral theses and thousands of articles have been dedicated to this field,
which proves the importance and timeliness of this topic. This chapter deals with model
reduction in computational neuroscience, particularly in modeling the signal transmission
in neuronal circuits.

Three classes of models are considered in this chapter, either with distributed param-
eters (2.5D EQS–ElectroQuasiStatic, 1D TL-Transmission Lines) or with lumped param-
eters (0D). The bio-multi-physics procedure is applied once more, every model being sys-
tematically analyzed from the conceptual, mathematical, analytical and numerical points
of view, and finally being reduced to low-order models with different reduction procedures

79



Use of Reduction Methods in Multiscale Modeling of Complex Systems

a)

b)

Figure 4.1: The myelinated axon; a) simplified geometrical model; b) circuit mapping.

a)

Figure 4.2: Simplified geometrical model of the myelinated compartment.

and error control (which is closely connected to the reduced model order and complexity).
The main goal of this part of research is to identify the best procedure for order reduction
of each case. An appropriate error estimator is proposed in order to assess the accuracy
of the models. This is the foundation of a procedure able to find the simplest reduced
model having an imposed precision.

This section is a development of the ideas presented in [66].

4.1 Axisymmetric (2.5D) models

4.1.1 Conceptual 2.5D model

The conceptual modeling of the axon starts from the simplified geometrical model
presented in Fig. 4.1, from which the model of a cylindrical myelinated compartment is
extracted (Fig. 4.2). The model is described by the following geometrical parameters:
the cytoplasm radius – a, the outer radius of the compartment – b, the length of the
myelinated compartment – L.

A reference test case, with the following values is considered:

a = 7µm; b = 10µm; L = 0.25λ0 or λ0 or 4λ0, λ0 = 223µm;
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σ1 = 1.0824 S/m; σ2 = 2.04 · 10−4 S/m; ε = 15.44 · ε0.

The model is analyzed in the frequency range fm ≤ f ≤ fM , with the limits fm = 103

Hz, and fM = 107 Hz.

By carrying out a dimensional analysis of the material constants σ, ε, µ, the following
characteristic times of the electromagnetic phenomena can be defined [160]:

• τe = ε/σ, the relaxation time of the charge and thus of the electric field in a
conductor;

• τm = µσL2, the diffusion time of the current and thus of the magnetic field in a
conductor;

• τem = L/c, having c2 = 1/(εµ), τ 2
em = τeτm, the time in which an electromagnetic

wave with velocity c travels along the line of length L.

If we use the characteristic time τ (defined as duration, period, or time constant) to
describe the speed of the phenomena analyzed, then it is possible to distinguish between
rapid and slow EM field regimes. By considering the minimal and maximal values of the
five characteristic parameters (σ, ε, µ, L, τ), we are able to generate the map of EM
field regimes function of characteristic times (Fig. 4.3). As a point is closer to the left
boundary of the domain, the modeling error is higher, being inversely proportional to the
distance to the border. The map in Fig. 4.3 indicates that the cytoplasm is operating
in the ElectroConduction (EC) region, whereas the membrane has to be modeled with
ElectroQuasiStatic (EQS) field.

Consequently, within the cytoplasm, of conductivity σ1, an EC field regime is con-
sidered, while the myelinated layer, between r = a and r = b, of conductivity σ2 and
permittivity ε, is considered to be in the EQS regime. In more accurate models, the
myelinated layer is modeled as an anisotropic domain, in which the conductivity σ2 is a
tensor, principal directions being radial (σ′2) and axial (σ′′2).

4.1.2 Mathematical 2.5D model

In both domains of the compartment model the electric field is irrotational and thus
an electric scalar potential can be defined. Due to the axial symmetry of the domain,
this potential depends only on two spatial coordinates, the radius r and the axial position
x. We will denote by V1 the potential that corresponds to the cytoplasm and by V2 the
potential that corresponds to the membrane:

V (r, x) =

{
V1, for 0 < r < a.

V2, for a < r < b.

The field equations in the two sub-domains are:

EC :


divJ = 0

curlE = 0⇒ E = −gradV1 ⇒ ∆V1 = 0

J = σ1E.

(4.1)
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a)

Figure 4.3: Map of electromagnetic field regimes for membrane and cytoplasm of the myelinated
axon.

EQS :


divJ = −∂ρ/∂t
divD = ρ

curlE = 0⇒ E = −gradV2 ⇒ ∆V2 = 0

J = σ2E,D = εE,

(4.2)

where ρ is a generalized function of space. Therefore, ∆V2(s) = 0 (harmonic) in each
subdomain, but not on the entire computing domain since on the discontinuity surface r
= a the following interface conditions are met:

V1(a, x, t) = V2(a, x, t)⇒ V1(a, x, s) = V2(a, x, s);

σ1
∂V1

∂n
= (σ2 + εs)

∂V2

∂n
.

(4.3)

The solution V (x, r, t) for 0 < x < L, 0 < r < b, 0 < t < tmax satisfies mixed boundary
conditions: 

V (0, r, t) = V1, 0 < r < a;

V (L, r, t) = V2, 0 < r < a;

V (x, b, t) = 0, 0 < x < L;

dV (0, r, t)/dn = 0, a < r < b;

dV (L, r, t)/dn = 0, a < r < b

and V (x, r, 0) = 0.

(4.4)

In reality, due to the ion pumps, in resting state (which in the formulation above
would affect the initial condition) the potential has non-null value V0 = −70 mV. We
carried out the study for variations of the potential from this state of equilibrium, so the
obtained dynamical system to be modeled and reduced is linear and not affine. These
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boundary conditions define a linear multipolar Electric Circuit Element (ECE, [161])
with distributed parameters, with three terminals, one being the ground and the other
two voltage-controlled. Its dynamic behavior is fully described by the symmetrical ma-
trix of operational admittances Y, which has only two independent elements: the input
admittance Y11(s) = Y22(s) and the transfer admittance Y12(s) = Y21(s), both complex
functions of complex frequency s:

I(s) = Y(s)V(s),

with I(s) =

[
I1

I2

]
; V(s) =

[
V1

V2

]
; Y(s) =

[
Y11 Y12

Y21 Y22

]
.

(4.5)

Here the input signals are the Laplace transforms of the terminals’ potentials: V1(s) =

L[V (0, 0, t)], V2(s) = L[V (L, 0, t)] and the output signals are the terminals’ currents:
I1(s) = L[I1(t)], I2(s) = L[I2(t)].

If the circuit element is excited in current, then the impedance matrix Z = Y−1

describes it [66].

4.1.3 Analytical 2.5D model

If the boundary conditions are slightly modified, so that on x = 0 and x = L Neumann
boundary conditions are set:

dV
dx

∣∣
x=0

= I1(t)
πa2σ1

, 0 < r < a;
dV
dx

∣∣
x=L

= I2(t)
πa2σ1

, 0 < r < a;

V (x, b, t) = 0, 0 < x < L;
dV
dx

∣∣
x=0

= 0, a < r < b;
dV
dx

∣∣
x=L

= 0, a < r < b;

V (x, r, 0) = 0,

(4.6)

the solution can be analytically determined, using the separation of variables. This change
introduces a modeling error, due to the assumption that the current is uniformly dis-
tributed on each terminal, and therefore the terminal is no longer strictly equipotential.
In reality, it is very likely that neither the potential nor the current density be perfectly
constant on the terminal. The simplifying hypothesis of ignoring the radial variation of
the current, which allows the derivation of an analytical solution, is acceptable, as this
variation is expected to be small. The obtained radial variation of the potential can be
used to compute an error estimator for the analytical method applied to this model called
”non-ECE” in what follows. Since is excited in current, it will be characterized by an
impedance matrix Z = Y−1. The input impedance Z11 of the near terminal is computed
as the ratio between the central potential V (0, 0, s) and the injected current I1(s) under
the assumption that the current of the far end terminal is null. The transfer impedance
Z21 is the ratio of the potential at the center of the far end terminal V (L, 0, s) and the
current I1(s) injected into the near terminal, under the condition that the far end terminal
current is null (I2 = 0).

The equation div(σgradV ) = 0, satisfied by the potential V in each homogeneous
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subdomain, has the following form in cylindrical coordinates:

div (σgradV ) =
1

r

∂

∂r

(
rσ
∂V

∂r

)
+

∂

∂x

(
σ
∂V

∂x

)
= 0, (4.7)

where the axial symmetry of the function (i.e. independence on the azimuthal angle)
was taken into account. In each homogeneous subdomain the potential V is a harmonic
function, a solution of the Laplace equation. According to the separation of variables
method [9], in each homogeneous subdomain the potential V is assumed to have the
form:

V (x, r) = X(x)R(r). (4.8)

Substituting (4.8) in (4.7) it follows that the PDE can be decomposed in two linear
ODEs satisfied by the two functions X and R:

X
1

r

d

dr

(
σr

dR

dr

)
+ Rσ

d2X

dx2 = 0

=⇒ X
1

r
(σrR′)

′
+ σRx′′ = 0 | : (XRσ)

=⇒ −1

r

(σrR′)′

σR
=
X ′′

X
.

(4.9)

The left side of this equality is only dependent on r, whereas the right side is dependent
only on x. We can therefore deduce that both terms are constant and equal with a positive
real constant λ2, called constant of separation:{

X′′

X
= λ2

− (σrR′)′

σrR
= λ2

. (4.10)

The first is an ODE with constant coefficients having real characteristic roots (±λ).
Consequently, its solution is a linear combination of eλx and e−λx:

X(x) = A sh(λx) +B ch(λx) (4.11)
where A and B are integration constants.

In (4.10) σ is piecewise constant (σ1 for 0 < r < a and σ2 for a < r < b). Therefore, on
each homogeneous subdomain, the function R is the solution of the differential equation:

−R′ − rR′′ = λ2rR | · r
=⇒ r2R′′ + rR′ + λ2r2R = 0,

(4.12)

which is a combination of zero order Bessel functions with the following form for the
general solution:

R(r) = CJ0(λx) +DY0(λx). (4.13)

In conclusion, the general solution of the Laplace equation V (r, x) has the form:
V (r, x) = (CJ0(λx) +DY0(λx)(A sh(λx) +B ch(λx)). (4.14)

The parameter λ and the integration constants are derived by imposing the boundary
conditions:
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• on terminal 2 (x = L, 0 < r < a)
∂V

∂n

∣∣∣∣
x=L

= 0⇒ ∂V

∂x

∣∣∣∣
x=L

= 0⇒ ∂X

∂x

∣∣∣∣
x=L

= 0

=⇒ Aλ ch(λL) +Bλ sh(λL) = 0

=⇒ B =
−A ch(λL)

sh(λL)
.

We derive the new form for X(x) as:

X(x) = Ash(λx)− Ach(λL)

sh(λL)
ch(λx) =

A(sh(λx) sh(λL)− ch(λx) ch(λL))

sh(λL)

=⇒ X(x) = −Ach(λ(x− L))

sh(λL)
.

By making the notation B′ = − A
sh(λL)

and using the fact that cosh is an even function
we get that:

X(x) = B′ ch(λ(L− x)). (4.15)

V (0, x) needs to be finite, so in the first subdomain (0 < r < a) D has to be 0 and
thus:

V (r, x) = CJ0(λx) ch(λ(L− x)), (4.16)

where CB′ = C.

In the second subdomain (a < r < b) the solution also contains the Bessel function
Y , because it does not include the axis:

R(r) =

{
C1J0(λr), 0 < r < a

C2J0(λr) +D2Y0(λr), a < r < b
. (4.17)

After renaming the constants above, the potential has the general form:

V (r, x) =

{
BJ0(λr) ch(λ(L− x)), 0 < r < a

(CJ0(λr) +DY0(λr)) ch(λ(L− x)), a < r < b
(4.18)

with B = B′C, C = C2B
′, D = D2B

′.

• on the interface r = a:
V1(a, x) = V2(a, x), 0 < x < L;

∂V 1

∂n
(σ1 + jωε1) =

∂V 2

∂n
(σ2 + jωε2)

=⇒ ∂V 1

∂n
=
σ2 + jωε2

σ1 + jωε1

∂V 2

∂n
.

(4.19)

With the notation:
β =

σ2 + jωε2

σ1 + jωε1

(4.20)

we can write that:
∂V 1

∂n

∣∣∣∣
r=a

= β
∂V 2

∂n

∣∣∣∣
r=a

. (4.21)

In EC regime, ω = 0⇒ β = σ2
σ1
∈ R.

In EQS regime, ω 6= 0⇒ β ∈ C.
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The two expressions of potential (4.18) satisfy on the boundary (4.19) and (4.21):

BJ0(λa) = (CJ0(λa) +DY0(λa))⇒ B = C +D
Y0(λa)

J0(λa)
;

BJ ′0(λa) = (CJ ′0(λa) +DY ′0(λa)) β

(4.22)

⇒ B = β

(
C +D

Y ′0(λa)

J ′0(λa)

)
⇒ B = β

(
C +D

Y1(λa)

J1(λa)

)
. (4.23)

The system consisting of (4.22) and (4.23) has two equations and three unknowns,
therefore the system must be rewritten using ratios B

C
and D

C
:

B
C

= 1 + D
C
Y0(λa)
J0(λa)

B
C

= β
(

1 + D
C
Y1(λa)
J1(λa)

) . (4.24)

By eliminating the constant B from (4.24) it follows that:
D

C

β

1− β
=

1
Y1(λa)
J1(λa)

− 1
β
Y0(λa)
J0(λa)

. (4.25)

• on the boundary r = b:
V (b, x) = 0,∀x ∈ [0, L]⇒ CJ0(λb) +DY0(λb) = 0. (4.26)

Eliminating D
C

from (4.25) and (4.26) leads to the eigenvalues equation:
(1− β)Y0(λb)J0(λa)J1(λa) + J0(λb) (βY1(λa)J0(λa)− Y0(λa)J1(λa)) = 0, (4.27)

which has an infinite number of solutions λk, k = 1, 2, . . .∞.

After finding the solutions of this equation (the proper values λk), DkCk is determined
from (4.25) and Bk

Ck
from (4.24) as:

B

C
= 1 +

1− β
β Y1(λa)
J1(λa)

− Y0(λa)
J0(λa)

Y0(λa)

J0(λa)
= 1 +

(1− β)J1(λa)Y0(λa)

βJ0(λa)Y1(λa)− J1(λa)Y0(λa)
. (4.28)

The general solution of the problem V (r, x) is obtained by superposition of all
possible general forms:

V (r, x) =


∑

k Ck
Bk
Ck
J0 (λkr) ch (λk(L− x)) , 0 < r < a∑

k Ck

(
J0 (λkr) + Dk

Ck
Y0 (λkr)

)
ch (λk(L− x)) , a < r < b

(4.29)

Using the notations R(r) from (4.17) and X(x) from (4.15), it follows that:
V (r, x) =

∑
k

CkR (λkr) ch (λk(L− x)) , (4.30)

where R are eigenfunctions given by:

R (λkr) =

{
Bk
Ck
J0 (λkr) , 0 < r < a

J0 (λkr) + Dk
Ck
Y0 (λkr) , a < r < b

. (4.31)

The constant Ck is computed by imposing the Neumann boundary condition

• at x = 0:
∂V

∂x

∣∣∣∣
x=0

= − I1

σ1πa2
h(a− r), (4.32)

where h is the Heaviside function (unit step). The function f(r) can be expanded
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into Fourier-Bessel series of eigenfunctions:

f(r) =
∑
k

λkCkR (λkr) sh (λkL) = − I1

σ1πa2
h(a− r) (4.33)

=⇒ − I1

σ1πa2
h(a− r) =

∑
k

FkR (λkr) (4.34)

with Fk = λkCk sh (λkL).

Then the expression of Ck is derived as:

Ck =
Fk

λk sh (λkL)
. (4.35)

Substituting (4.35) in (4.16), the potential becomes:

V (r, x) =
∑
k

Fk
λk sh (λkL)

R (λkr) ch (λk(L− x)) . (4.36)

The potential on every terminal has the expressions:

– on terminal 1: x = 0, 0 < r < a:

V (r, 0) =
∑
k

Fk
λk th (λkL)

R (λkr) ; (4.37)

– on terminal 2: x = L, a < r < b:

V (r, L) =
∑
k

Fk
λk sh (λkL)

R (λkr) . (4.38)

The Fourier coefficients Fk of this series result from the orthogonality property of the
eigenfunctions:

〈R0 (λjr) , R0 (λkr)〉 =

∫ b

0

rσ(r)R (λjr)R (λkr) dr.

In EC regime and with j = k this relation becomes:

‖Rk‖2 = σ1

∫ a

0

r
B2
k

C2
k

J2
0 (λkr) dr + σ2

∫ b

a

r

(
J0 (λkr) +

Dk

Ck
Yo (λkr)

)2

dr. (4.39)

Considering the following:∫ a

0

rJ2
0 (λkr) dr =

a2

2

(
J2

0 (λka) + J2
1 (λka)

)
(4.40)∫ b

a

rJ2
0 (λkr) dr =

1

2

(
b2
(
J2

0 (λkb) + J2
1 (λkb)

)
− a2

(
J2

0 (λka) + J2
1 (λka)

))
, (4.41)

it follows that:∫ b

a

rJ0 (λkr)Y0 (λkr) dr =

∫ λkb

λka

x

λk
J0(x)Y0(x)

dx

λk

=
1

2

(
b2 (J0 (λkb)Y0 (λkb) + J1 (λkb)Y1 (λkb))− a2 (J0 (λka)Y0 (λka) + J1 (λka)Y1 (λka))

)
(4.42)
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The expression (4.39) becomes [66]:

‖Rk‖2 = σ1
B2
k

C2
k

a2

2
(J2

0 (λka) + J2
1 (λka))

+ σ2
1

2
(b2(J2

0 (λkb) + J2
1 (λkb))− a2(J2

0 (λka) + J2
1 (λka)))

+ σ2
D2
k

C2
k

1

2
(b2(Y 2

0 (λkb) + Y 2
1 (λkb))− a2(Y 2

0 (λka) + Y 2
1 (λka)))

+ σ2
Dk

Ck
(b2(J0(λkb)Y0(λkb) + J1(λkb)Y0(λkb))−

+ a2(J0(λka)Y0(λka) + J1(λka)Y0(λka))).

(4.43)

The scalar product between R(λkr) and f(r) leads to the expression of Fk as follows:
〈R (λkr) , f(r)〉 = Fk ‖Rk‖2

=⇒ Fk =

∫ b
0
rσ(r)R (λkr)

I1
σ1πa2

h(a− r)dr
‖Rk‖2 =

∫ a
0
rσ1R (λkr)

I1
σ1πa2

dr

‖Rk‖2 dr

=⇒ Fk =
I1

πa2 ‖Rk‖2

∫ a

0

rR (λkr) dr =
I1

πa2 ‖Rk‖2

∫ a

0

r
Bk

Ck
J0 (λkr) dr

=⇒ Fk =
I1

πa ‖Rk‖2

Bk

Ck

1

λk
J1 (λka) . (4.44)

In conclusion, the potential has the following values in the electrodes centers:

V1 = V (0, 0) =
m∑
k=1

Fk
λk th (λkL)

R(0) =
I1

πa

m∑
k=1

(
Bk
Ck

)2

J1 (λka)

‖λkRk‖2 th (λkL)
(4.45)

V2 = V(0,L) =
m∑
k=1

Fk
λk sh (λkL)

R(0) =
I1

πa

m∑
k=1

(
Bk
Ck

)2

J1 (λka)

‖λkRk‖2 sh (λkL)
(4.46)

They define the element’s impedances Z11 = V1/I1; Z12 = V2/I1. The Fourier-Bessel
series are truncated to m terms in MATLAB. The radial variation of the potential on the
near and far electrodes is shown in Fig. 4.4. This variation is relatively negligible for
the near electrode ε∞ = εm = (V (0, 0) − V (a, 0))/V1 = (1.66537 − 1.66493)/1.66537 =

2.6 · 10−4 = 0.0026%.

The computational estimation of the analytical value is not affected only by this error
but also by the method error of truncating the series and its approximation with a finite
sum. Numerical tests show that the series (4.46) corresponding to the far end electrode
has an exponential convergence, much faster than that corresponding to the near elec-
trode (4.45). Table 4.1 shows the partial sums and the last term added to the sum of the
analytical computation of potential V(0,0). Note that even from the first term six signifi-
cant digits are correct, and the fourth term adds another significant digit. The truncation
error (computed as εt = |Vm| /V1, where Vm is the mth term added to the sum) is so small
εt = V4/V1 = 6.13 · 10−6 � εm, that the error of the analytical method εa = εt + εm is
given by the method error. Therefore, the summation of more than 2 terms in the series
is useless, since the gain in accuracy is covered by the method error [66]. The MATLAB
code that solves this problem analytically is found in Appendix A2.
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Table 4.1: The convergence of the series for impedance Z11.

m Partial sum Last term added

1 1.6653661913809199e+06 1.6653661913809199e+06
4 1.6653657945109792e+06 7.8181849318044057e+00
10 1.6653659660544212e+06 6.4287806450348339e-01

Figure 4.4: The radial variation of the potential at x = 0 (left) and x = L (right), computed
analytically and numerically (FIT and FEM).

4.1.4 Numerical 2.5D model

The EC field problem was solved with an in-house Finite Integration Technique (FIT)
code developed in MATLAB and with FEM (COMSOL) with three variants of boundary
conditions: ECEv (ECE with voltage controlled equipotential terminals), ECEc (current
controlled equipotential terminals), nonECEc (current controlled terminals, not equipo-
tential, on which Neumann BCs are imposed).

In order to have a relevant comparison we have used for FIT and FEM the same
discretization grid/mesh, regular and orthogonal, with quadrilateral FEM cells. Both
FIT and FEM give in the case of the nonECEc boundary conditions very similar results
with the analytical solution, as shown in Fig. 4.4, where the three curves overlap, which
validates both numerical methods. The relative difference of V (0, 0) of FEM from the
analytical solution is 5 · 10−7. The values extracted from the ECE field problem have
six significant digits common to those extracted from the nonECE field problem, which
shows that the nonECE method error compared to ECE is even lower than εm = 0.0026%

estimated earlier.

The advantage of numerical methods is that they also allow the problem solving with
ECE BCs. The difference between FIT and FEM solutions is as small as in the case of
the nonECEc BCs. The two Dirichlet boundary conditions ECEv and ECEc give almost
identical results, with 10 identical decimals for FEM, and 12 for FIT, respectively, which
shows as expected that the excitation type (voltage or current) is not relevant in the
ECE models. The final results of the FIT and FEM numerical models were obtained by
using component-wise Richardson extrapolation, of the results obtained for two discretiza-
tion steps (0.5 µm and 1 µm). The errors obtained lead us to consider the Richardson
extrapolation for FEM as reference for computing the method errors (Table 4.2).
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Table 4.2: Extrapolated values of conductances matrices (Y11 and Y12) and resistances
matrices (Z11 and Y12) in d.c., for FIT and FEM, with 3 BCs.

FEM-extrapolated ECEv ECEc nonECEc

G11 = Y11(0) 3.055380119410954e-6 3.055380119435735e-6 3.055379595174662e-6
G12 = Y12(0) -2.955775083424355e-6 -2.955775083450317e-6 -2.955775163682430e-6

R11 = Z11(0) 5.103005195720960e+6 5.103005195779775e+6 5.103035666943246e+6
R12 = Z12(0) 4.936647820764425e+6 4.936647820824645e+6 4.936678279699712e+6

FIT-extrapolated

G11 = Y11(0) 3.055380366776102e-6 3.055380366775098e-6 3.055620224050163e-6
G12 = Y11(0) -2.955775284972939e-6 -2.955775284973135e-6 -2.956014815660698e-6

R11 = Z11(0) 5.103002880458375e+6 4.936645517927767e+6 5.103002880519714e+6
R12 = Z11(0) 4.936645517989167e+6 5.102979781604875e+6 4.936635698549963e+6

Rel. diff. between
extrap. values

‖GFIT −GFEM‖/‖GFEM‖

G = Y(0) 7.4680e-8 7.4686e-8 7.9980e-5

R = Z(0) 4.5998e-7 4.5999e-7 9.8077e-6

Table 4.3: The values of the constants c and p in the estimation εrel = c · hp.

errrel = c · hp ECE(v or c) nonECE (c)

FIT
c = 4535e+3 c = 2.96e+14
p = 1.95 p = 2.96

FEM
c = 39e+3 c = 14067e+3
p = 2.00 p = 2.11

The relative error is approximated by an expression of type c · hp, where c and p are
constants that describe the convergence rate and h is the discretization step. Considering
two levels of mesh refinement, each halving the step h comparing to the precedent, the
convergence rate p was derived. Table 4.3 holds the approximated constants c and p for
FIT and FEM, with two different boundary conditions, ECE and nonECE. We can see
that both FIT and FEM have a quadratic convergence order, FEM in the case of ECE
having a relative error lower than FIT with about 2 orders of magnitude. In theory,
quadratic FEM should have a higher convergence rate, but in practice it is limited be-
cause the boundary condition is not smooth at all being a non-continuous function [162].
Consequently, the reference values for the extracted circuit functions were given by the
Richardson extrapolation of the FEM solution, for p = 2. The resulted values seem to
have at least 8 exact significant figures. A better reference value may be obtained by
using FEM with an adaptive mesh refinement.

Details on numerical solution with FEM.

The two subdomains with axial symmetry have rectangular shape in the coordinates
(r, x) and start from radius eps: D1 = (eps, a) × (0, L); D2 = (a, b) × (0, L). They
were meshed with a regular grid of squares with a step of 0.5µm. For the axon radius of
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Figure 4.5: Left: Contour plots of the electric potential (FEM). The scales on the at the surface
of the computing axis are not equal. Right: The variation of the potential at the surface of the
computing domain (FEM). The 3D image is obtained by rotating the 2D solution.

b = 10µm, the radial mesh has (nxa+nxb-1) = 15+7-1 = 21 nodes and for longitudinal
length L = 0.25 ·λ0 = 215µm/4 = 54µm, the mesh has nx = 109 nodes, so a total of n =
2289 nodes. The mesh contains 2230 quadrilateral elements and 2×2289−109−21 = 4448

edges.

In FEM, the base functions (also known as trial functions) for potential are second-
order Lagrange polynomials, making each cell to have 9 degrees of freedom associated
with the four vertices, edges’ centers and cell center. The weak form of the equation
solved is as follows: find v ∈ HD = {v ∈ L2(D)|∇v ∈ [L2(D)]3, v(SD) = fD}, where
D = D1 ∪D2. The affine Sobolev space, satisfying Dirichlet BC, so that:

a(v, u) = 2π

∫
D

J · ErdA

=

∫ b

0

∫ L

0

(σ + εs)(∇v · ∇u)rdxdr

(4.47)

is null for any u having Dirichlet null BC. The number of DOFs is 9837, about four times
larger than the number of nodes, as we expected. The use of second order elements makes
the solution more precise than in the case of the first order, where the number of unknowns
is the number of floating nodes (i.e. the inner ones plus those on the Neumann boundary,
so that those with essential boundary conditions (Dirichlet) with known potential are
excluded.

The boundary conditions are as follows: null Dirichlet for r = b, r < a and x = L,
non-null Dirichlet of value V0 = 1 for r < a and x = 0 (essential), null Neumann in rest
(natural). The system of linear algebraic equations obtained from a(u, v) = 0 by replacing
u and v with their expansion in trial functions was solved with a direct method in 5 sec
on a two-core MacOS system. The solution is graphically represented in Fig. 4.5.

The EQS analysis in the frequency range [1 kHz, 10 MHz] gives the frequency charac-
teristics shown in Fig. 4.6.

Details on numerical solution with FIT.

The computing domain has been discretized with a mesh similar to that used in FEM.
In stationary d.c. mode, each cell (r1, r2) × (z1, z2) contributes to the equations system
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Figure 4.6: The variation of Y11 and Y12 with frequency (FIT and FEM).

with four conductances, placed on its four edges, having the expressions:
Gr1 =

πσ((r1+∆r1)2−r21)

2∆z

Gr2 =
πσ(r22−(r2−∆r2)2)

2∆z
for axial oriented

Gz1 = Gz2 = πσ∆z
ln(r2/r1)

for radial oriented

(4.48)

where the cell dimensions are: ∆z = z2 − z1; ∆r = r2 − r1; ∆r1 = ∆r2 = ∆r/2;
Gz1 = Gz2 = 0, if r1 = 0.

The simplest implementation method in MATLAB uses the nodal technique to write
the equations of this resistive electric circuit: (AGAT)V = J, where A is the edges-nodes
incidence matrix, G is the diagonal matrix of conductances (4.48) and J is the array of
injected currents into nodes.

The code is executed extremely fast since it does not contain for loops, but makes use
of sparse matrices. The implementation is simplified if the nodes are numbered system-
atically from 1 to N, for example starting along the axis and then similarly for increasing
radius, so that going through the nodes i = 1 : nr − 1 and j = 1 : nz − 1, all cells
k = (i− 1)nz+ j are covered. If the edges are numbered in agreement with the nodes, for
example the axial ones having double indices (2k) than the initial node (k) and the radial
ones an uneven index (2k + 1), a total of 2N edges is obtained. Thus virtual edges are
introduced on one side of the boundary, which are removed eventually. They correspond
to null columns in matrix A. By splitting the node set into those floating, with unknown
potentials (V1) and those placed on the Dirichlet boundary, with known potentials (V2)
and considering the corresponding split of nodal conductances matrix:{

G11V1 + G11V2 = J1

G21V1 + G22V2 = 0
⇒ G11V1 = J1 −G11V2 (4.49)

leads to the system of linear equations that is solved to determine the unknown poten-
tials (V1). Actually, this technique is also used in FEM to handle essential boundary
conditions.

Under nonECEc boundary conditions, the injected current on the terminal is known,
so the vector J is no longer null. The current injected into a circular crown between two
successive nodes can be assigned to the initial node (case v1 in Fig. 4.7), to the final node
(case v2), or the current injected into the node is calculated using the dual network edges
as in dFIT [163] (option 3). The results are presented comparatively in Fig. 4.7. The
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Figure 4.7: Electrical potential of the near (left) and far (right) end electrodes for various
implementations of the nonECE boundary conditions.

Table 4.4: The relative errors of the models reduced with VF.

εrel[%],Y11 εrel[%],Y12

L q = 1 q = 2 q = 3 q = 9 q = 1 q = 2 q = 3 q = 9

λ0/4 0.69 1.5 · 10−5 9.24 · 10−8 4.8 · 10−11 2.77 0.97 · 10−5 2.75 · 10−7 5.88 · 10−13

λ0 39 1.21 0.03 5.00 · 10−9 23.87 2.81 0.05 1.02 · 10−10

2.5λ0 23.79 3.38 0.4 1.00 · 10−7 7.42 4.57 1.52 3.86 · 10−10

two alternatives 1 and 2 are bounds for the correct distribution, but the best numerical
solution is obtained using the final version based on a dual network [66].

The EQS analysis requires minimal changes of the MATLAB code (available in Ap-
pendix A1), namely the cell conductances G are replaced with their admittances, which
are obtained by simply replacing the membrane conductivity σ2 with σ2+jωε. The results
now depend on the frequency, and their representation in Fig. 4.6 overlaps those obtained
with FEM, which validates both numerical methods FEM and FIT, in the case of ECE
boundary conditions. The FEM solution is more accurate, but the computational effort is
higher, since the system has four times more equations. To overcome this drawback, the
dFIT approach can be used [163], in which the unknowns are not only the potentials in
nodes but also those in the center of the cells. The number of unknowns doubles, but the
advantage is that two independent systems, each with n equations, are separately solved
in parallel or sequentially for the two sets of potentials. Moreover, the two solutions re-
alize a bracketing of the exact solution, allowing the control of the numerical computing
error, since their difference is an upper bound of that error.

The EQS analysis needed a solving time of around 1.42 sec on a two-core MacOS
system and used 1.604 MB of memory.

4.2 Order reduction of the 2.5D model

In order to obtain simpler models valid for a large range of frequencies, methods such
as Vector Fitting (VF) may be used [164], [165]. VF is a data-oriented reduction method,
which searches for a rational approximation of the frequency characteristic given as a set
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Figure 4.8: The relative errors of the reduced model (Y11 and Y12) with VF vs. order q.

of samples.

The order of the reduced system is imposed by the user and the result represents
the best approximation of that order. Starting from a set of Ns circuit matrices H =

{H1,H2, ...,HNs} of size p × p (in this case p = 2 and the matrices are positive defined
and symmetrical), representing the admittances corresponding to the frequencies s =

[s1, s2, ..., sNs ] with sk = j2πfk, it is aimed to iteratively determine the parameters of the
rational matrix function in s:

Y(s) = D + sE +

q∑
k=1

Rk

s− pk
, (4.50)

which approximates the data. It has q poles pk, with residues Rk which are symmetrical
complex matrices of dimension p × p and the real symmetrical matrices D and E of the
same size. Using the data from the Ns = 10 frequency samples represented in Fig. 4.6,
reduced models of orders q = 1, 2, 3, ..., 9 were successively retrieved. The relative errors
of the reduced models for different compartment lengths are presented in Table 4.4.

Fig. 4.8 shows the relative errors of the reduced 2.5D model (with admittances Y11

and Y12) with VF, for different line lengths and different orders q. Errors less than 10−10

are obtained for orders ranging from 4 to 8. For practical applications a order q = 3÷ 5

provides acceptable accuracy. For example, for q = 3 and L = 2.5λ0, the three poles
of the reduced model are p1 = −2.25 · 108, p2 = −2.30 · 107, p3 = −4.26 · 106 and
the zeros are z1 = −2.61 · 107, z2 = −4.42 · 106. The real and negative values of the
poles guarantee the stability and non-oscillating character of the reduced model. The
conductance G11 = 0.782 · 10−6 of the reduced model has a deviation of 0.2% from the
d.c. value of Y11(s).
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Table 4.5: The asymptotic limits for Y11 and Y12.

Length L Y11, Y12 for f → 0 Y11, Y12 for f →∞
L→ 0 Y11 →∞, Y12 →∞ ∞,∞
L = λ0 Y11 = th(1)/Z0, Y12 = 1/Z0 ∞, 0

L→∞ Y11 = 1/Z0, Y12 → 0 Y11 →∞, Y12 → 0

4.3 Models of reduced order for Cable (1D) model

For the 1D case, we generate four categories of models: analytical, analytical reduced,
numerical and numerical reduced.

4.3.1 Analytical 1D model

Considering the one-dimensional model in Chapter 3 (Fig. 3.8), with length L as
a two-port, excited in terminal voltages, the global dynamic admittance matrix can be
extracted, after solving (3.17) with zero initial conditions [166]:

Y(s) =

[
Y11 Y12

Y21 Y22

]
=

[
ch(γL)

ZCsh(γL)
− 1
ZCsh(γL)

− 1
ZCsh(γL)

ch(γL)
ZCsh(γL)

]
; (4.51)[

I(0, s)

I(L, s)

]
=

[
Y11 Y12

Y21 Y22

] [
V(0, s)− V0/s

V(L, s)− V0/s

]
. (4.52)

The characteristic line parameters γ =
√
r(g + sc) =

√
1 + τs/λ0 and ZC =

√
r/(g + sc) =

1/(gλ0

√
1 + τs) do not depend on the line length. In the static regime (s = 0), γ =

√
rg =

4.64 · 103 m−1 and ZC = Z0 =
√
r/g = 1/(gλ0) = 1.29 MΩ.

The linear model described by these complex admittances has an equivalent circuit
with an infinite number of capacitances and resistances. Voltage sources having e.m.f.
E = V0 have to be connected in series with the input ports to satisfy (3.18). Table 4.5
contains the asymptotic values of admittances vs. frequency.

The frequency characteristics of the 1D model Y11(f) = |Y11(jω)|, Y12(f) = |Y12(jω)|,
ω = 2πf , for two lengths: L = λ0/4 and L = 2.5λ0, are shown in Fig. 4.9. The dotted
lines are the reference values, extracted from the numerical 2.5D FEM model. The two
models give similar results over the entire frequency range.

The two circuit functions Y11 and especially Y12 determine the voltage attenuation
factor of the transmitted signal, which is the system’s transfer function when the output
terminal has a null current:

I(L, s) = Y21(s)V(0, s) + Y22(s)V(L, s) = 0

=⇒ Av(s) =
V(L, s)

V(0, s)
= −Y21(s)

Y22(s)
=

1

ch(
√

1 + sτL/λ0)
.

(4.53)

In stationary regime, the signal attenuation is A0 = Av(0) = 1/ch(L/λ0). The system
acts as a low-pass filter, with Av(s)

s→∞−−−→ 0 and an infinity of poles sk, all real and negative
and satisfying the relation: skτ + 1 = ((k − 1/2)πλ0/L)2, the first being essential. The
small length compartment does not attenuate the input voltage in stationary regime, Y11
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Table 4.6: The global relative errors of the analytical 1D model.

Length L εrel[%], Y11 εrel[%], Y12

L = λ0/4 0.079 0.09
L = λ0 0.055 0.027
L = 2.5λ0 0.057 0.003

Figure 4.9: The frequency characteristics, Y11(f), Y12(f) for L = λ0/4 (top) and L = 2.5λ0

(bottom), computed with (4.51).

and Y12 being practically equal. As expected, the attenuation is higher for larger line
lengths, six times higher for L = 2.5λ0 than for short line.

Low frequency errors are very different from errors computed at high frequencies.
Under these conditions, the global error estimate by the classical method gives completely
irrelevant results. Therefore it is necessary to define the error differently. The typical
neuronal signal has a spectrum in which the low frequency components are much more
significant than the high frequency ones. In order to correctly quantify the error, a
weighted norm w(f), adequately defined is proposed [167]:

‖Y‖w ∼=
∫ fM

fm

w(f)‖Y(f)‖2df ∼=
M∑
k=0

w(fk)‖Y(fk)‖2∆fk. (4.54)

Here ‖Y‖2 is the Euclidian norm of the matrix Y and the weight w(f) is computed from
the spectrum w′(f) of the standard neuronal signal s(t):

w′(f) =

∣∣∣∣∫ ∞
0

s(t)e−j2πftdt
∣∣∣∣

∼=
tmax
N

∣∣∣∣∣
N∑
k=0

s (ktmax/N) e−j2πfktmax/N

∣∣∣∣∣ ;
W =

∫ ∞
0

w′(f)df ∼=
∫ fM

fm

w′(f)df ∼=
M∑
k=0

w′(fk)∆fk.

(4.55)

Thus the normalized weight w(fk) = w′(fk)/W has a unitary integral. Considering the
weighted norm, the global error is defined as:

εrel = Z0 ‖Y1D −Y2.5D‖w , (4.56)
where Z0 = 1/(gλ0) is the d.c. characteristic impedance of the line.

Table 4.6 contains the relative errors between the 1D model and the reference 2.5D
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FEM model for Y11 and Y12, computed with (4.56) for 10 frequencies between fm and
fM , for different line lengths.

The general conclusion is that the 1D ”cable model” correctly describes the transmission
of the neuronal signal through the myelinated compartment, having numerical deviations
from the field model of under 0.1%, even smaller for optimal lengths of real compartments
(which is larger than the characteristic length). Consequently, if a better accuracy is
required, the cable model is not acceptable and 2.5D field models should be used, but for
the most practical cases this accuracy is acceptable [66].

4.3.2 Order reduction of the Analytical 1D model – simple frac-
tions, Taylor-Padé, truncated products

The hyperbolic functions which compose the analytical model can be expanded in
different infinite series and products [168]:

1

sh(z)
=

1∑∞
k=0

z2k+1

(2k+1)!

=
1

z
+ 2z

∞∑
k=1

(−1)k

z2 + α2
k

=
1

z
∏∞

k=1

(
1 +

(
z
αk

)2
) , αk = kπ; (4.57)

cth(z) =

∑∞
k=0

z2k

(2k)!∑∞
k=0

z2k+1

(2k+1)!

=
1

z
+ 2z

∞∑
k=1

1

z2 + α2
k

=

∏∞
k=1

(
1 +

(
z
βk

)2
)

z
∏∞

k=1

(
1 +

(
z
αk

)2
) , βk = (2k − 1)π/2.

(4.58)

The first way of expressing the hyperbolic functions in (4.57) and (4.58) is a series of
powers (Taylor-Padé for the numerator and denominator), the second is a series of simple
fractions, and the last is a product of poles and zeros. Consequently, this model has
an infinite divergent sequence of poles, distributed in an arithmetic progression on the
negative semi-axis, the zeros being intercalated in-between the poles. We should notice
that αk are exactly the proper values of the spatial operator of the transmission equation,
so they represent the modal characteristics of this equation.

Different reduced models – characterized by rational functions – are obtained by trun-
cating these series to q terms. The first q poles of these functions have the smallest
absolute value and they represent the most relevant poles of the original function. The
truncation of the power series modifies the position of the poles, possibly generating com-
plex poles, as it happens very early in the test case, for q = 3. The big advantage of
these reducing approaches is that the reduced model is natively parametric. For example,
reducing with simple fractions gives:

Y11(s)=
cth(γL)

ZC
∼=
gλ2

0

L

(
1 + 2

q∑
k=1

sτ + 1

sτ + 1 + (αkλ0/L)2

)
.

Unfortunately, the truncation in simple fractions of Y12 has a very slow convergence;
therefore it is preferable to use Taylor-Padé or infinite product truncation for this circuit
function. Besides the methods presented above, there is also the possibility to use con-
tinuous fractions expansion (authentic Padé) [169], which ensures moments’ conservation
and is expected to have the fastest convergence. In our test case, this method gave best
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Figure 4.10: Left: Frequency characteristics of the reduced 1D model of different orders, at
L = 2.5λ0; the reference values, extracted from the analytical 1D model are represented with a
black continuous line. Right: relative error of the 1D cable model reduced by series truncation
vs. order of the reduced model, L = 2.5λ0.

results (minimal errors) for order 10, but for order 3 the errors were between Taylor-Padé
and simple fractions.

For the line lengths of interest, truncating the series of powers and truncating the
infinite products proved to be the best reducing methods. The latter may be because
truncating the infinite products takes into account both poles and zeros of original transfer
functions. It balances both perspectives: current and voltage excitation. Fig. 4.10 shows
the frequency characteristics of the reduced model and the way the relative error varies
with the order, for different methods and L = 2.5λ0.

Table 4.7 shows the relative errors of the reduced models (Y11 and Y12, obtained by
simple fractions, Taylor-Padé truncation and product truncation) for different line lengths
and different orders (q), considering the analytical 1D model as reference.

With simple fractions reduction, Y12 has small relative errors, of less than 3% for large
line and order 3. However, the deviations of Y11 for lengths of interest such as 2.5λ0 are
much larger, of about 40% for order 1 and 20% for order 3. With Taylor-Padé reduction,
both Y11 and Y12 have small relative errors, of 8% and 0.1% respectively, for large line and
order 3. However, the deviation of Y11 for lengths of interest – such as 2.5λ0 – at order
1 is still quite large, of 31%. With product truncation reduction, Y11 has the smallest
deviation at order 1, of less than 25%. For larger orders, the deviations of both Y11 and
Y12 are similar and relatively small, but larger than the relative errors obtained with
Taylor-Padé.

Therefore, the Taylor-Padé method gives the best approximation:

Y11(s) = gλ0

1 +
∑q

k=1
(L/λ0)2k(1+sτ)k

(2k)!

L/λ0 +
∑q

k=1
(L/λ0)2k+1(1+sτ)k

(2k+1)!

;

Y12(s) = gλ0
1

L/λ0 +
∑q

k=1
(L/λ0)2k+1(1+sτ)k

(2k+1)!

,

excepting Y11, for order 4-7 where truncated products give better results.

For example, for q = 4 and L = 2.5λ0, the four poles of the reduced model with

98



Use of Reduction Methods in Multiscale Modeling of Complex Systems

Table 4.7: The relative errors of the reduced analytical 1D model vs. its order, Y11 and
Y12.

Length L εrel[%] εrel[%] εrel[%]

q = 1 q = 3 q = 10

Y11

λ0/4, simple fractions 4.81 2.11 0.71
λ0, simple fractions 18.83 8.45 2.84
2.5λ0, simple fractions 40.61 20.52 7.09

λ0/4, Taylor-Padé 0.36 1.68e-4 1.2e-13
λ0, Taylor-Padé 9.13 1.04 8.28e-9
2.5λ0, Taylor-Padé 31.62 7.85 0.05

λ0/4, truncated products 1.11 0.18 0.018
λ0, truncated products 7.82 1.39 0.14
2.5λ0,truncated products 24.57 7.00 0.81

Y12

λ0/4, simple fractions 1.32 0.28 0.03
λ0, simple fractions 5.04 1.14 0.13
2.5λ0, simple fractions 9.11 2.64 0.33

λ0/4, Taylor-Padé 0.09 2.08e-5 1.4e-13
λ0, Taylor-Padé 1.71 0.073 1.85e-10
2.5λ0, Taylor-Padé 3.34 0.096 5.18e-5

λ0/4, truncated products 2.38 1.04 0.35
λ0, truncated products 7.35 3.19 1.06
2.5λ0,truncated products 8.15 3.30 1.05

Table 4.8: The global relative errors of the numerical 1D model for L = 2.5λ0, with
respect to the analytical 1D model.

εrel[%] q = 1 q = 3 q = 10 q = 100

Y11 73.39 43.17 16.68 1.83
Y12 24.83 2.75 0.25 1.96e-03

Table 4.9: The local relative errors of the numerical 1D model at fm and fM .

L εrel[%], q=3 εrel[%], q=10 εrel[%], q=100

at fm at fM at fm at fM at fm at fM

λ0/4 25.1 24.7 9.13 8.63 0.99 0.93
λ0 26.8 66.7 9.75 27.8 1.06 3.1
2.5λ0 32.5 81.5 11.5 61.8 1.22 7.78
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truncated products are p1 = −3.85 ·106, p2 = −1.09 ·107, p3 = −2.27 ·107, p4 = −3.92 ·107

and the zeros are z1 = −2.08 · 106, z2 = −6.79 · 106, z3 = −1.62 · 107, z4 = −3.03 · 107,
whereas G11 has a deviation of 0.35% from the d.c. value of admittance Y11(s).

4.3.3 Numerical 1D model: reduction by segmentation

As stated in Chapter 3, solving the equation (3.18) numerically implies the discretiza-
tion of the interval 0 < x < L in a grid with q nodes (plus the peripheral ones, indexed
0 and q + 1), which are assumed to be spaced with the step h = ∆x. By finite centered
differences, a system of q ODEs is obtained:

Vk−1(t)− 2Vk(t) + Vk+1(t)

∆x2
=

1

λ2
0

(Vk(t)−V0) +
τ

λ2
0

dVk(t)

dt

k = 1, .., q;
∆x2

λ2
0

=rg∆x2=RG, ∆x2 τ

λ2
0

=rc∆x2=RC,

with R = r∆x,G = g∆x,C = c∆x,

which after Laplace transform becomes:

− 1

R
Vk−1(t)+

(
2

R
+G+sC

)
Vk(t)−

1

R
Vk+1(t)=GV0.

These are actually the nodal equations of the circuit in Fig. 3.21, with V0 = 0 and we
call this approach ”reduction by segmentation”. This circuit has q capacitors, so it is a
linear circuit with q state variables.

Having null internal sources (V0 = 0) and controlling the terminals with Vk = E = 1V ,
for k = 0 and Vq+1 = 0, the admittances are extracted by solving the linear system of
nodal equations, from which only the first and the last potential are of interest: Y11 =

Y22 = (E − V1)/R and Y12 = Y21 = Vq/R, numerically equal with the terminal currents.
Table 4.8 shows the relative errors computed with (4.56) of the numerical models with 1,
3, 10, 100 segments (q), considering the analytical model (4.51) as reference, in the case
of L = 2.5λ0.

Table 4.9 shows the relative errors of the numerical model at fm and fM for different
line lengths and different orders (q), considering the analytical 1D model as reference.

Second order finite centered differences have the order of error [154]:

|Ek| = |Vk − Uk| ≤
(λ0h)2

12
=

(L/λ0)2

12q2
,

c4 = max0<x<L

(∣∣∣∣∂4V

∂x4

∣∣∣∣) ≤ 1

λ4
0

,

quadratic to the discretization step. It is therefore expected that as q increases, the error
decays inversely proportional to its square.

4.3.4 Order reduction of Numerical 1D model – BT, Krylov, POD

The numerical solving of the TL equation implicitly reduces the order, from infinite
(the system order before meshing) to a finite number q. This technique of reducing the
order is very widespread in the literature, and there are recommendations for choosing
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the value 5 ÷ 10 for q [92]. We are not aware of any credible study referring the error
induced by this choice. However it is clear that the reduction by segmentation does not
necessarily lead to an optimal result for a given order. We aim to find that smaller errors
can be obtained for the same order if we reduce the state system of the circuit with n

segments to a system with q � n state variables. The equivalent circuit with refined
segmentation has the state equations:

d

dt


V1

..

..

..

Vn

=


.. .. .. .. ..

..−2−RG 1 0 ..

.. 1 −2−RG 1 ..

.. 0 1 −2−RG..

.. .. .. .. ..




V1

..

..

..

Vq

+


1

0

..

..

0


E

R

⇔ dv

dt
= Av + Be; v ∈ Rn×1,A ∈ Rn×n; B ∈ Rn×1.

The potentials V1 and Vn are output signals, whereas E is the input signal of the
system. This state system may be reduced by different model order reduction techniques,
such as [170], [22], [171]:

1. Balanced truncation

From the MOR methods, balanced truncation (BT) has the most solid theoretical
foundation [172]. It is a projection method, based on the calculation of observability
and controllability Gramian matrices of the system. Consequently, the cost of this
method is relatively high, but the result is of optimal quality, ensuring accuracy
control for the reduced model.

If the system is stable, controllable and observable, then the Gramian observability
and controllability matrices can be computed: Wc = Wo = diag(σ1, . . . , σn) with
σ1 ≤ σ2 ≤ . . . ≤ σn ≤ 0 as solutions of the Lyapunov equations:

AWc + WcA
T = −BBT;

ATWo + WoA = −BTC.

The spectrum of the matrix WcWo is given by the Hankel singular of the system:√
λ(WcWo) = {σ1, . . . , σn}.

An arbitrary system is transformed into a balanced one (Ã, B̃, C̃) through the
transformation (Ã, B̃, C̃) = (TAT−1,TB,CT−1), which has the Gramian matri-
ces Wc = TW̃cT

T = Wo = T−TW̃oT
−1.

The balanced systems are descending ordered internally into parts les and less ob-
servable and controllable:

(Ã, B̃, C̃) =

([
Ã11 Ã12

Ã21 Ã22

]
,

[
B̃1

B̃2

]
,
[
C̃1 C̃2

])
After eliminating the least important part the truncated reduced system results:
(Σ̃ = Ã11, B̃1, C̃1). The projection matrix is obtained by truncating the transfor-
mation matrix used for balancing. The truncation error for a reduced system of
order r is bounded by:

‖Σ− Σ̃‖2 ≤ 2‖u‖2

n∑
k=r+1

σk (4.59)
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both in Euclidean and Cebisev norm.

The transformation for balancing can also be determined by singular value decom-
position technique [22]. MATLAB has several functions for order reduction by
balancing [173], [174], [175]. Suplimentary information on this reduction method
can be found in [176] (for the interpretation of Gramians) and [177] (for history and
alternatives).

The high complexity of this approach makes it impossible to apply to large-scale sys-
tems. An approximate low cost approach that links the balanced truncation (TBR)
approximations and multipoint rational approximation approaches in frequency do-
main is Poor man’s TBR [178].

In our case, the Bode diagrams of the 100-segments system and the characteristics of
the reduced systems using balanced truncation to orders from 1 to 10 tend to close
in as the q order rises. The poles and zeros of the reduced model of order 3 have
the values: z1 = −405.54 · 106, p1 = −69.66 · 106; z2 = −10.13 · 106, p2 = −9.66 · 106;
p3 = −2.21 ·106, real, negative and alternate, and G11 = 0.812 ·10−6 has a deviation
of 4.91% from the d.c. value of admittance Y(s).

The model error drops below 1% only for orders q > 6, whereas for q = 3 it is
about 10%, values about three times smaller than for the model obtained by simple
segmentation.

2. Krylov Subspace (projection) methods

In this class of methods, the state equations of large systems are reduced by projec-
tion on a Krylov subspace. They are considered to be among the best methods for
order reduction from a quality – cost (computing effort) ratio point of view [179],
[180].

For a square matrix A the Krylov subspace is the linear space generated by the
basis vectors:

Kq(A, r) = span
{
r,Ar,A2r, . . . ,Aq−1r

}
,

where r is the first basis vector. A projection on this subspace of dimension q is a
polynomial in matrix A. If A is not symmetrical the left Krylov subspace can be
defined, having AT replacing A.

The Krylov subspaces are important, since their coordinates are related to the co-
efficients of the Taylor series of the transfer function, expanded around the point
s = 0 (they are called the system’s moments, being matrices in the MIMO case and
vectors in the SISO case):

Mi = CA−(i+1)B, i = 0, 1, . . . .

The moments can be defined around a different point of expansion s0 other than
the origin, including infinity (in this cased they are called Markov parameters).
The Krylov space has a much wider importance, in the iterative solving of linear
algebraic systems, since the solution of the system of linear equations Ax = b

lies in the Krylov space Kq(A,b) of dimension equal to the degree of the minimal
polynomial P of matrix A, for which P (A) = 0 [181].

102



Use of Reduction Methods in Multiscale Modeling of Complex Systems

The reduced order model is obtained through the projection realized by the linear
transformation V, which reduces the state vector size from n to q:

x = Vxr.

Multiplying the state equations with the transpose of W (of size q × n, often equal
to V), having WTV = I, leads to the reduced system of order q:{

x = Ax + bu

y = cTx
,

x = Vxr =⇒

{
Vẋr = AVxr + bu

y = cTVxr

=⇒

{
ẋr = Arxr + bru

y = cT
r xr

,

with Ar = WTAV,br = WTb, cT
r = cTV.

The fundamental theorem at the basis of this reduction procedure states that if V

is the basis of the Krylov space Kq (A−1,A−1b) and Ar is non-singular, then the
original and the reduced system have the first q moments equal.

By conveniently choosing the matrix W and the start vector, it is possible to have
the equality of more than q characteristic parameters (Markov moments or parame-
ters) between the original and the reduced system. For example, if W is a base of a
left Krylov space Kq

(
A−T,A−Tc

)
, then the two systems have the first 2q moments

equal in origin and we say that we have applied a bilateral procedure.

In most cases, the basis vectors defining the Krylov subspace tend to become almost
linearly dependent even for small values of q, which is why they cannot be used
as such in numerical calculations. Robust (stable and computationally efficient)
algorithms of order reduction use procedures to generate a base as close as possible
to an orthogonal one (Lanczos and Arnoldi procedures). In the Arnoldi algorithm,
the basis vectors are orthogonal, which ensures good accuracy. Another popular
algorithm is Lanczos, which is a bilateral procedure with two orthogonal Krylov
spaces, thus ensuring 2q equal moments. A detailed description of these algorithms
can be found in several documents, including [170].

If the algorithm also ensures the equality of Markov parameters (the expansion is
done at infinity), then we say that we have made a Padé approximation, and if
the expansion point is an arbitrary point in the complex plane s0, then we say
we have a ”rational interpolation”, rational Lanczos / Arnoldi procedures provid-
ing efficient solutions with good accuracy around the frequency of interest. Among
the algorithms in this category we mention three: PvL (”Padé via Lanczos”) pre-
sented in [182], ”multipoint rational interpolation” [183] and ”implicitly restarted
dual Arnoldi” [184].

PvL exploits the close connection between the Lanczos process and the moment
fitting technique, being very successful in the rapid simulation of large electrical
circuits. The multipoint rational interpolation ensures that the transfer function
moments are in a selected frequency range, providing a good approximation for a
wider range of frequencies, even with low-order functions. These approaches also
have limitations, such as the absence of rigorous error bounds and the non-automatic
choice of sampling frequencies by the user. The Arnoldi dual approach seeks to
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achieve a reduction performance similar to that obtained by balanced truncation,
using bilateral Krylov spaces both for input/controllability and for output/observ-
ability. The reduction methods based on Krylov spaces have to be chosen with care
to ensure the desired accuracy in the frequency of interest for each application; this
is not necessary in the case of the balanced truncation, which for this reason is said
to have a global character. But obviously this advantage also has a considerable
cost. This is the reason why several techniques have been proposed that attempt
to combine the advantages of both approaches: TBR and Krylov. More details on
reduction algorithms based on projection on Krylov subspaces are available in [185],
[186], [187].

The reduction procedure used on our case is RKFUN [180], an algorithm based on
Rational Krylov.

The model reduced with this method from the state system with 100 degrees of
freedom to q = 2, 4, 6, 8, 10 has the frequency characteristics practically overlayed
with the full model, starting from q = 4. The errors are comparable with those
obtained with the BT method, slightly smaller for q = 4 but larger for q = 10. In
particular, the poles and zeros of the 4th order reduced system: p1 = −3055.81 · 106;
p2 = −73.27·106; p3 = −12·106; p4 = −3.85·106; z1 = −5119.28·106; z2 = −357.91·
106; z3 = −4.57 · 106 show the stable character of this model, and G11 = 0.781 · 10−6

is deviated by 0.85% from the d.c. value of admittance Y(s).

3. Proper Orthogonal Decomposition (POD)

POD is a MOR method based on processing input and solution samples at different
time moments. As opposed to the methods analyzed before, which operate on the
system’s equations and its structure, POD is data-oriented. This gives POD the
extra advantage of being suitable to nonlinear systems as well. It is a relatively
superficial approach that does not analyze the system in depth, but only some
of its characteristics, reflected in its behavior towards a particular input signal.
However, this is what makes POD easy to use in many situations at a low cost, even
though not always with the best accuracy. It is known that in the case of linear
systems, knowing the response to some particular input signals is sufficient to fully
characterize the system.

Consider the nonlinear system described by:
ẋ = f(x(t), u(t)) (4.60)

and X = [x(t1),x(t2), ...,x(tN)] ∈ RM×N (4.61)
a collection of solution samples x ∈ RM (the state variables at different moments in
time tj, j = 1, . . . , N). The samples matrix is decomposed in singular values (SVD):

X = UΣV∗ (4.62)

where the matrices U, UU∗ = IM and V, VV∗ = IN are orthogonal, their columns
being the left and right singular vectors of X and Σ is a diagonal matrix of the
singular values of X.

The singular values give information on the linearly independent character of matrix

104



Use of Reduction Methods in Multiscale Modeling of Complex Systems

X, thus implicitly on the rank of the matrix. If σr > 0 and σr+1 = 0, then the rank
of matrix X is r. The SVD factorization expresses X as a sum of dyadic products
X = σ1u1v

∗
1 + σ2u2v

∗
2 + . . .+ σrurv

∗
r .

The decomposition is then truncated by keeping only the first k � r most important
singular values. SVD allows the identification and elimination of the ”almost singu-
lar” part of the matrix, that is the lines that are almost linearly dependent and keep-
ing the best conditioned part. The low-rank approximation matrix X̃ = UkΣkV

∗
k

has the same size as X and the rank k.

Moreover, the deviation norm between the initial matrix and the truncated matrix
satisfies the inequality:

σk+1(X) <
∥∥∥X− X̃

∥∥∥
2
< σk(X) (4.63)

In this manner a subspace is identified from the state space where the solution’s time
dependency path is located. The other directions of the state space are basically lin-
ear combinations of elements in the selected subspace, so they can be approximated
with directions from this space. More details on the order reduction algorithms with
POD are found in [188], [189].

We used an in-house POD code based on Matlab’s singular value decomposition
method [190].

A standard neuronal signal was used as training excitation and the snapshots matrix
contains solution values in M = 100 spatial nodes for N = 100 time samples.

The snapshots were generated with an in-house program based on BTCS integration
(implicit backward finite difference in time, centered differences in space). The
responses of the full system and the reduced one virtually overlap from order 3.
For Y11, the approximation is quite accurate, whereas for Y12, the characteristic of
the full system is concave, whereas for the reduced system is convex. The reduced
system of order 3 has the poles: p1 = −38.12 ·106; p2 = −4.14 ·106; p3 = −1.49 ·106,
with much smaller absolute values than in previous cases, indicating that this model
is slower. The conductance G11 = 0.796 · 10−6 has a deviation of 2.82% compared
to the d.c. value of admittance Y(s). This method’s error is higher than for the
previous methods.

By comparing the results obtained with the three reduction methods, we conclude that
the most efficient method for the studied case is the BT method.

4.4 Equivalent circuits for 0D models

The simplest model of an axonal compartment is based on the lumped parameters:
R = L/(σ1πa

2); (4.64)

C = Lε22π/ln(b/a); (4.65)

G = Lσ22π/ln(b/a), (4.66)
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Figure 4.11: The equivalent circuits of the 0D model; left: T-type circuit; right: Π-type circuit.

Table 4.10: The admittance relative errors of 0D minimal order models.

εT[%] εΠ[%]

local global local global
L at fm at fM Y11 Y12 at fm at fM Y11 Y12

λ0/4 0.5 24.7 3.3 2.9 1.0 38.4 6.2 6.0
λ0 7.5 81.1 19.8 6.1 15.5 271 33.5 19.2
2.5λ0 32.1 91.5 48.7 1.2 73.9 748 114 24.8

extracted from uniform EC field in the cytoplasm and ES+EC fields in the axisymmetric
membrane.

The equivalent circuit with these parameters has two possible symmetric topologies
(Fig. 4.11): T-type and Π-type circuits, with the admittances matrices:

YT =

[
2R(G+sC)+4
R2(G+sC)+4R

− 4
R2(G+sC)+4R

− 4
R2(G+sC)+4R

2R(G+sC)+4
R2(G+sC)+4R

]
;

YΠ =

[
RG+sRC+2

2R
− 1
R

− 1
R

RG+sRC+2
2R

]
.

The advantages of these models lie in their simplicity and in the fact that they are
inherently parametric. Within the accuracy of the calculation, these models are exact;
therefore their analytical character make their numerical models alike. Even though the
0D model has large errors, it is frequently used in practice as reduced order model, due
to its simplicity, even though its error is often not mentioned [191], [192]. It is the model
of order 1 with the smallest modeling error.

The relative errors of these two models, for 3 values of compartment lengths and
2 frequencies are given in Table 4.10, which contains also the global error for the two
components Y11 and Y12. The lumped parameter models with simpler Γ or Γstructures:

YΓ =

[
RG+sRC+1

R
− 1
R

− 1
R

1
R

]
;

Y Γ=

[
1
R

− 1
R

1
R

RG+sRC+1
R

]
.

have higher global errors for L = 2.5λ0, of 298% for Y11 and 24.8% for Y12 (Γ) and of
73.3% for Y11 and 24.8% for Y12 ( Γ).

The data contained in Table 4.10 shows that this model has increasingly larger errors
as the compartment length grows or as the frequency grows. The T-scheme behaves better
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Table 4.11: Values of relative method errors for different models (analytical: the reference
is extrapolated 2.5D FEM; numerical: the reference is the analytical model; reduced: the
reference is the numerical model) [66].

Size Analytical Numerical Reduced

2.5D 0.026% 7.5 · 10−6% VF: 0.5% for q = 3; 3 · 10−8% for q = 9

1D 0.057% 43% for q = 3; 16% for q = 10 Truncated products: 7% for q = 3; 0.8% for q = 10

BT: 10% for q = 3; 0.1% for q = 10

0D 48.7% (for T-scheme)

for longer compartments, which are of practical interest (2.5λ0 is the typical compartment
length [125]), having a global error of 48.7% for Y11 and 1.2% for Y12. If a better accuracy
is required, higher order models, extracted by order reduction of 1D models should be
used.

4.5 Conclusion regarding the Reduced Order Models of
Myelinated Axonal Compartments

In this chapter low-order models of myelinated compartments were identified. A hi-
erarchical series of models has been developed, corresponding to three spatial geometry
classes (2.5D, 1D and 0D) and three computational approaches for each geometry (an-
alytical, numerical and reduced order models). These models are hierarchized based on
modeling errors, which are closely related to the complexity of the models.

The relative method errors for different types of models of the test problem are sum-
marized in Table 4.11 (for L = 2.5λ0). The simplest model is the circuit with lumped
parameters (0D), but this model is not very accurate. The model with distributed pa-
rameters (cable model – 1D) is more accurate and was analyzed analytically by Laplace
transformation from time domain to frequency and numerically with FDM for spatial vari-
ation. The order reduction was performed with several methods, such as: BT, projection
on Krylov subspaces, POD and truncation of Taylor series or transfer function products.
The most accurate model, the EQS axisymmetric (2.5D) was studied analytically using
the method of variables separation (which leads to modal decomposition) and numerically
with FEM, FIT and BEM methods (the most common methods used to solve PDEs). In
this case, a data-driven approach (VF), was applied for order reduction.

The numerical studies conducted show that the cable model (1D) is sufficiently accurate
for practical requirements and it is not worth the effort to use 2.5D models in simula-
tion. In the mathematical literature many methods of order reduction are presented and
studied, but according to our knowledge, there is no systematic study referring to their
hierarchy in neuroscience applications, leading to recommendations on which is the most
appropriate method in a given context, such as the one studied here.

Fig. 4.12 shows how the relative method errors depend on the order of the reduced sys-
tem, for different techniques of order reduction applied to various models. The conclusion
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Figure 4.12: Relative error vs. order of the reduced model [66].

is that the most efficient reduction is done by the VF method, for which even for the first
order the error is around 5%, and for orders 3 and 4 the error decays to 1% and to 0.1%
respectively, which is satisfactory in the vast majority of practical cases. The next best
method is the truncation (products and Taylor-Padé) of the transfer function (Fig. 4.12).
The segmentation, which is currently the standard technique, provides results worse with
at least two orders of magnitude.

Finding the best low order model for myelinated compartments is an essential step in
the modeling of neuronal signals transmission along myelinated axons through saltatory
conduction. The 2.5D-FEM model is the most accurate, but the 1D cable model (in
analytical form) is the most computationally efficient. Since the 1D and 2.5D responses
are almost identical, for the modeling of the myelinated compartments we recommend the
use of the analytical 1D model (4.51), followed by reduction to order 3 ÷ 4, with vector
fitting (VF).
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Chapter 5

Saltatory Conduction in Neurons

This chapter deals with the reduced modeling of saltatory conduction in neurons. We
propose a procedure for the extraction of a reduced axon model, where reduced models
of myelinated compartments are connected with nonlinear models of Ranvier nodes and
the global model thus obtained is again reduced. This chapter is the development of the
ideas presented in [193].

A myelinated axon has alternating sequencies of myelin covered compartments and
Ranvier nodes (Fig. 5.1). The myelin sheath surrounding the axon made of glial cells
works like an insulating layer, increasing the transmission speed of the action potential
along the axon and reducing the energy loss across the membrane. However, the diffusion
of potential in this section decreases its magnitude at the far end. If the axon were long
enough, the signal at the end would not be strong enough to reach the threshold and
to trigger an action potential in the next myelinated compartment. The Ranvier nodes
are evenly spaced gaps in the myelin sheath, therefore uninsulated and highly rich in ion
channels, allowing the exchange of ions required to regenerate the action potential.

This optimal design allows the axons to be no matter how long, provided that the
myelinated compartments’ length is not greater than the maximum transmission length
[125], so that the potential is eligible for regeneration when entering a Ranvier node

Figure 5.1: Simplified geometrical model of a myelinated axon, consisting of a chain of myeli-
nated compartments and Ranvier nodes [193].
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Figure 5.2: The procedure proposed for the extraction of a reduced axon model: reduced
models of myelinated compartments are connected with models of Ranvier nodes and the global
model thus obtained is again reduced.

(that is, the magnitude is above the threshold). The transmission of action potential
in myelinated axons is called ”saltatory conduction” (from the Latin word saltare, which
means to hop), because the potential seems to jump from one Ranvier node to another.

Since it has been experimentally observed, the phenomenon of saltatory conduction
has been described [102], [194] and modeled in the literature on several occasions [146],
[89], [195], [85], [95]. However, for the efficient simulation of impulse neural circuits,
which are very complex circuits in the central and peripheral nervous system, reduced
order models should be developed, able to accurately reproduce the saltatory conduction
in low simulation times.

We propose a method (Fig. 5.2) that concatenates reduced models of myelinated
compartments with 0D models of Ranvier nodes, with accuracy control. The myelinated
compartments are replaced with reduced models from a hierarchical series of spatially
distributed linear models developed before and described in Section 4 [66]. For the Ranvier
nodes we use the famous nonlinear 0D model (Hodgkin-Huxley – HH) described below.
The resulted model reproduces the saltatory conduction with acceptable accuracy. The
global model, which is also nonlinear, is further subjected to a reduction procedure and
the reduced model of a myelinated axon is generated.

5.1 Modeling of components

5.1.1 Modeling of myelinated compartments

The myelinated compartments are replaced with a reduced model from a hierarchical
series of models developed before and presented in Chapter 4. This series contains 9 types
of models, of three spatial geometry classes: 2.5D, 1D and 0D. In each class there are
three categories of models: analytical, numerical and reduced order models. The series is
hierarchized based on modeling errors, which are closely related to the complexity of the
models [193].
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Figure 5.3: The electric potential of a myelinated compartment: excitation, at far end before
the reduction, at far end after the reduction [193].

The best model from this series proved to be the analytical 1D model reduced with
the vector fitting (VF) technique [164]. Different lengths were considered for the myeli-
nated compartment: 0.25λ0, λ0, 2.5λ0, with λ0 = 0.215 mm representing the charac-
teristic length (the length constant of the line). Figure 5.3 shows the electric poten-
tial at the end of the compartment of length λ0 before and after reduction (order 3).
The excitation potential e(t) is approximated with an expression of two exponentials
e(t) = V0 + Vm(e−t/τ1 − e−t/τ2), with V0 = −80 mV, Vm = 2800 mV, τ1 = 1 ms, τ2 = 0.9

ms. The potential decreases in amplitude as it diffuses along the insulated compartment.
The compartment model used in what follows corresponds to length λ0 and order 3.

5.1.2 Non-linear 0D models of the Ranvier nodes

The simplified modeling of the Ranvier nodes membrane has had an intense scientific
interest, so that there are several non-linear 0D models, of which the most commonly
used are: FitzHugh-Nagumo (FHN) [99], Frankenhaeuser-Huxley (FH) [100], Izhikevich
(Iz) [101]. These models can be regarded as low-order approximations of the highly non-
linear Hodgkin-Huxley (HH) model [98], and are preferred in theoretical studies, precisely
because of their relative simplicity. However, these non-dimensional reduced models are
not able to retain the physical and biological significance of the inner parameters. For
this reason in this case study the Ranvier nodes in this study are modeled with the HH
model.

The mathematical HH model consists of four nonlinear ODEs, in which one describes
a linear capacitive effect, having as state quantity the membrane voltage V , and the other
three characterize the voltage-gated channels opening, by the state variables n, m and h.
They are dimensionless quantities between 0 and 1 that describe the potassium channel
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Figure 5.4: Equivalent circuit for the Hodgkin-Huxley model of a Ranvier node.

activation (n), sodium channel activation (m) and sodium channel inactivation (h).

C
dV

dt
= −GK(V − EK) +−GNa(V − ENa) + i(t)

dn

dt
= αn(V )(1− n)− βn(V )n

dm

dt
= αm(V )(1−m)− βm(V )m

dh

dt
= αh(V )(1− h)− βh(V )h

(5.1)

The equivalent circuit described by (5.1) is shown in Fig. 5.4. The outside of the cell
is considered to have null potential, therefore the only state variables are the potential
inside the cell V and the gating variables n (activation variable for potassium channel), m
(activation variable for sodium channel) and h (inactivation variable for sodium channel).

• The quantity C is a constant value representing the capacitance of the node, the
corresponding capacitor being initially charged at a resting potential of a typical
value of −80 mV.

• i(t) is the input signal, the current that travels and reaches the node.

• GK and GNa are the conductances of the potassium and sodium channels respec-
tively and they depend nonlinearly with respect to the node potential and the gating
variables: GK = ḠKn

4, GNa = ḠNam
3h (where ḠK and ḠNa are constants).

• The gating variables n, m and h are dimensionless quantities between 0 and 1 that
describe the degree of ion channels opening. Their initial values are also known, they
correspond to a resting state of the node, in which no signal is traveling: n0 = 0.317,
m0 = 0.052, h0 = 0.596.

• Coefficients α∗ and β∗ are rate parameters related to the steady state value of the ac-
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Figure 5.5: The HH model: variation of V (t) and i(t) = pulse of 10 µA/cm2 for 2.4 ms
(V0 = −70 mV).

Figure 5.6: The HH model: variation of V (t) for i(t) step functions of different values, V0 = −70

mV.

Figure 5.7: The HH model: electric potential activation for injected current i(t) pulse of
different durations and different initial values for V .
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tivation and its time constant for reaching this value; they have known dependencies
with respect to the node voltage V .

• Each ion species has a equilibrium (reversal) potential known as battery potential
and denoted by EK and ENa (constant values).

The node is thus described by a compact 0D model, it involves no space variables.

The reproduction of the HH model in MATLAB and simulation of the electric potential
– with numerical values for the HH parameters taken from [196] – is illustrated in the
figures, as follows:

• Fig. 5.5: the variation of the electric potential V , for injected current i(t) a pulse of
10 µA/cm2 for 2.4 ms (simulation time 30 ms). The signal is delayed, as it happens
in reality in the Ranvier nodes.

• Fig. 5.6: the variation of the electric potential V (t), for i(t) step functions of
different values. The delay of the signal depends on the magnitude of the injected
current (the delay is larger if the current is weaker).

• Fig. 5.7: the electric potential activation for injected current i(t) pulse of different
durations and different initial values for V . The action potential is not triggered if
the excitation pulse does not last long enough (for a pulse of 10 µA/cm2 and initial
value V0 = −70 mV, the duration has to be at least 2.4 ms).

5.2 Coupled macromodels of myelinated axons

The saltatory conduction in myelinated axons implies the simulation of a nonlinear
system obtained by coupling linear models of myelinated compartments with nonlinear
models of the Ranvier nodes. For an efficient simulation, model reduction is compulsory.
The simulation can be done either by coupling reduced models or by formulating the
problem with full models and reduce the coupled system. For both alternatives, the
components can be described either as circuit netlists (and use circuit simulators, such as
Spice [197]) or by using a systemic approach (which can be described in Simulink). We
present here the circuit macromodel and the systemic approach.

5.2.1 Circuit coupling

The blocks in Fig. 5.8 represent sub-circuits. A chain of sections Nx-Lx are generated
and the model is completed with a nonlinear bloc. Appendix A3 contains the MATLAB
code for the generation of the coupled model for Spice and the resulted Spice circuit
corresponding to the global mode. The circuit describing the linear blocks is extracted
from the VF reduction procedure and the nonlinear circuit for the Ranvier nodes is the
one in Fig. 5.4. The coupling is illustrated in Fig. 5.9. The electric potential at the output
of every nonlinear node for a 6 sections (Nx-Lx) interconnection is shown in Fig. 5.10,
when the left end of the axon is excited with an impulse current of 20 nA, having a width
of 5 ms. The solution was obtained using the second-order implicit Modified trapezoidal
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Figure 5.8: The coupling of models in the circuit macromodel. The figure represents the
interconnection of 2 sections Nx–Lx. The blocks represent sub-circuits.

Figure 5.9: The macromodel obtained by the coupling of circuits N1–L1–NF.

Figure 5.10: Circuit macromodel: the electric potential at the output of every nonlinear node
for an axon with 6 sections Nx–Lx. The quantities are scaled: the time is in [ms], the potentials
are in [mV] and the current in [nA].

integration method, with a relative tolerance of 0.001. Note that the potential is delayed
at every nonlinear node. This behavior describes the phenomena of saltatory conduction
and is validated with the literature [146].

115



Use of Reduction Methods in Multiscale Modeling of Complex Systems

Figure 5.11: The systemic coupling for blocks N1–L1–NF.

Figure 5.12: The coupled macromodel in Simulink: N1–L1–NF.

5.2.2 Systemic coupling

The nonlinear circuit can be defined as a nonlinear SISO system having as input the
current and the output the electric potential VN , described by:

VN = Z(IN) (5.2)
where Z is a nonlinear operator.

The linear block is a state space system, with the state space matrices (A, B, C and
D) extracted from the VF reduction procedure.

The coupling of a N1–L1 section (nonlinear system–linear system) with a final nonlinear
block NF is illustrated in Fig. 5.11. The coupling conditions are:

• For the interconnection N1–L1:{
VL1,1 = VN1

IN1 = −IL1,1 + I

• For the interconnection L1–NF: {
VL1,2 = VNF

INF = −IL1,2

The global system obtained has as input the current I and as output the electric
potential VNF, while we are also interested in the electric potential at the output of every
nonlinear node VNx. This system implemented in Simulink/Matlab is shown in Fig. 5.12.
The blocks are sub-systems, where Nx are modeled as nonlinear systems and the time
integration is performed in a Matlab procedure and L1 is described by the state space
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Figure 5.13: The macromodel in Simulink, with 6 coupled sections: (6× Nx–Lx)–NF.

Figure 5.14: Systemic macromodel: the electric potential at the output of every nonlinear node
for an axon with 6 sections Nx–Lx.

matrices of the reduced order model extracted from VF.

This coupling formulation can be generalized for a chain of many Nx–Lx sections
connected with a final NF system. Then for an inner node k the coupling conditions are:{

VL(k−1),2 = VLk,1 = VNk

INk = −IL(k−1),2 − Ik,1
to which the coupling conditions at the beginning and end of the chain are added:

VL1,1 = VN1

IN1 = −IL1,1 + I

VLx,2 = VNF

INF = −ILx,2

The model with 6 sections Nx–Lx implemented in Simulink is shown in Fig. 5.13. The
electric potentials at the output of every nonlinear block (including the last) are shown in
Fig. 5.14. This behavior is validated qualitatively with the circuit model in the previous
formulation. The solver used is ode15s from Matlab, with variable-step and a relative
tolerance of 0.001.

The two macromodels of the saltatory conduction in myelinated axons are obtained
by concatenating reduced order models of the myelinated compartments with nonlinear
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models of the Ranvier nodes. The first is a circuit macromodel, implemented in a circuit
simulator. In this case, the equivalent circuit for the linear blocks has to be generated by
the reduction procedure. Chains with a large number of sections can be easily generated
afterwards, with the help of short codes. Yet the success of the solving method for the
global model is restricted by the facilities offered by the circuit simulator.

The systemic formulation is more advantageous because one could use directly the
reduced order models obtained from the model order reduction procedure, without the
need to realize them as circuits and thus artificially increase the degrees of freedom of the
circuit model, as usually this realisation includes a lot of controlled sources. Moreover,
in such an approach the user has direct access to the library of available robust nonlinear
ODE solvers. However, in this approach procedures to couple the models are required
and they have to be tailored for the specific significance of the input/output signals that
are considered for each constitutive part. Also, the lack of code generation makes this
model hard to scale up to tens or hundreds of Nx-Lx sections. In what follows we apply
the reduction procedure for the circuit macromodel.

5.3 Reduction of full axon models

The model reduction uses Proper Orthogonal Decomposition (POD), a data-oriented
reduction method based on processing solution samples at different time moments. This
approach is suitable to reduce nonlinear systems as it only analyzes the behavior towards
a particular input signal.

In our case the matrix X contains samples for every state variable (V , n, m, h) from
the initial model at different time moments, resulting in a dimension of 56×556 and rank
56. The full model is reduced to models of orders 1 to 10; the responses are shown in Fig.
5.15 for a simulation time of 30 ms. The relative error (Fig. 5.16) is computed as follows:

εrel =
εabs

|max(Fe)|
=

1

|max(Fe)|

√∑
k |Fek − Fak|2

N
, (5.3)

where Fe and Fa represent the responses before (exact) and after (approximated) trunca-
tion, respectively. The error drops under 10% from order 7 (relative error of 7.88%).

The exact same results are obtained for all reduction orders for a matrix containing
only the electric potential V samples, meaning a matrix X of size 14× 556. This suggests
that a proper reduction can be performed without needing information about all the state
variables from the initial model, which is advantageous for longer axons, with a larger
number of Ranvier nodes.

A real axon can however reach a length of 1 meter and the myelinated compartments
have around 2 mm [69], [198], [146]. Neglecting the length of the nonlinear node leads
to axons with up to 500 Nx-Lx sections. The reduction details for models with 100 and
500 Nx-Lx sections are given in Table 5.1. The simulation of 320 ms for the model with
500 sections took 15 minutes on a two-core 3GHz, 2GB of RAM, whereas the reduction
of this global model to a model of order 70 needed under 30 seconds. The time responses
are shown in Fig. 5.17. Errors smaller than 10% are obtained from order 10 for the 100
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Figure 5.15: The response of the full and reduced models of orders 1 ÷ 10. The displayed
voltage corresponds to the last Ranvier node in the chain (the 14th) [193].

Figure 5.16: The relative error of the full and reduced models of orders 1÷ 10 [193].

Table 5.1: Details of the model reduction with POD for global models with 100 and 500
sections.

Nx-Lx Period Size of X Rank Order at which
sections simulated of X errors drop below 10%

13 30 ms 14× 556 13 7
100 250 ms 101× 1648 100 10
500 320 ms 501× 2049 500 63

sections chain and from order 63 for the 500 sections chain. The results improve if the
period simulated, from which the samples matrix is extracted, is larger [193] (but this
means a higher offline cost) and/or we use a non-uniform snapshots grid, denser around
the spike and sparser in the rest (the spike is differently located for every Ranvier node).
The reduction procedure code in MATLAB is available in Appendix A3.
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Figure 5.17: The response of the full (500 sections Nx-Lx) and reduced models of orders 1÷70.
The displayed voltages correspond to the middle and the last Ranvier node in the chain (the
250th and the 501st) [193].

This chapter has presented a method for the efficient modeling of saltatory conduction
in neuronal axons. The main function of an axon is the transmission of information. The
saltatory conduction is a proof for the optimality of the myelinated fiber. In order to
efficiently simulate complex circuits, it is important to find the equilibrium between the
complexity and the accuracy of the comprised models. The extracted model is able to
reproduce the saltatory conduction with controlled accuracy. The myelinated compart-
ments are selected from the series based on the imposed modeling error and the Ranvier
nodes are modeled with HH zero-dimensional nonlinear model. The hierarchy of myeli-
nated compartments ordered by their modeling error allows the control of accuracy, which
is closely related to the models’ complexity. The 0D nonlinear models are able to regen-
erate the signal, so that the resulting reduced model gives control on the inner model
parameters (geometrical data, material constants, excitation type and value, 0D system
parameters). This model is a basis for more complex simulations, of the electric potential
measured in the extracellular 3D space of axons and neural circuits.
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Chapter 6

Transcranial Magnetic Stimulation

This chapter presents the modeling of Transcranial Magnetic Stimulation (TMS). The
human head is first modeled as a homogenous conductive sphere and a procedure is
proposed, to extract a hierarchy of models of varying accuracy for TMS based on MG-
EC(t) field. The second part of this chapter describes a pipeline for the generation of
a 3D geometrical model from medical imaging data. The proposed approach for TMS
modeling is extended for the geometrically realistic 3D model of the human head. This
chapter is the development of the ideas presented in [64].

6.1 TMS, Induced Field

TMS is a noninvasive medical procedure that consists of bringing a coil near the scalp.
There is a current that flows in the coil, which can be pulses of low frequency, sinusoidal
or non-sinusoidal. The time variable magnetic field produced by this winding penetrates
the skull where an electric field is induced. Consequently, eddy currents are generated,
which overlap the natural neural signals and influence the brain functioning. A coherent
activation of neurons is generated in the stimulated area, as well as in other areas by
synaptic transmission. At a microscopic level, the induced electric field affects the trans-
membrane potential in neurons and, consequently, it influences the ion channels. This
alters the metabolism and blood flow, which is visible by medical imaging tools [64].

TMS has now become an important tool for early diagnosis and treatment of neurolog-
ical and psychiatric diseases [199], in the treatment of depression through deep transcra-
nial magnetic stimulation (dTMS) [200]. In the last decade, the number of applications
of the TMS procedure increased dramatically and there are new paradigms concerning
its simulation, as well as technical advances that have led to new devices and integra-
tors of TMS with EEG, PET and fMRI [201]. TMS can provide information on motor
cortex excitability, on the functional integrity of neural inter-cortical structures, or corti-
cospinal conduction. It is also used in neurosurgery for preoperative evaluation, in order
to establish optimized surgical procedure. During the pre-surgical planning, the risk of
post-surgical deficiencies is minimized by identifying the areas responsible for language
and movement [202]. In [203] a noninvasive technique of combining TMS with EEG is
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presented, which correlates the evoked potentials by TMS with the activity described by
EEG in order to study the connectivity.

The correct understanding of the effects of TMS implies computer modeling to deter-
mine the induced field/currents in different anatomical structures of the brain by several
coil types. Clinical experience has shown that TMS procedure has positive therapeutic
effects, if applied properly with respect to duration, intensity, type of time variation of
excitatory currents, shape and position of the coils. Since there is no coil configuration
capable to produce both deep and shallow focused field, clinical applications search for a
balance between these two conflicting requirements [204]. Several coil shapes were studied
[205], [206], such as: circular coils, 8-shaped coils (field focus properties) [207], [208], H-
coil type (with best ability to produce profound stimulation without affecting superficial
cortical areas [209]), arbitrary coil shapes [210].

The magnetic field can be calculated by curvilinear integrals along the wire of the
winding [210], wire that is approximated by a polygonal line as in [211]. The head has been
modeled as a sphere in [210], with three layers of different conductivity, which represent
the scalp, skull, and brain [207]. Realistic models of the skull are used in [204], [212], [213],
offering the possibility of validation with experimental data and also to analyze the effect
of the geometry and shape of tissues and their conductivity on the induced field [212].
Since these models are patient dependent, a balance between generality and relevance
should be found. In order to adequate the general procedure to a particular patient [199]
proposed the use of a accurate solver, based on the 3D impedances method (IM) based on
decomposition of volume extracted from MRI in rectangular cells described by electrical
circuits similar to that of finite integral method, with edge impedances that depend on
local material properties placed on each edge of the orthogonal grid/cells.

Most numerical models of TMS use MG+EC(t) regimes of the electromagnetic field
[200], where the secondary electric field is computed using classical numerical methods,
such as Finite Element Method (FEM) [204], [208], [214], Finite Difference Method (FDM,
IM) [199], or Boundary Element Method (BEM) [212], [215].

6.1.1 The geometrical model

The simplest model of the head was considered, i.e. a homogenous conductive sphere
of radius 8.5 cm, with a conductivity of 0.33 S/m, as in [206], [216]. For the excitation
winding we consider three test cases: 1) a circular coil (Fig. 6.1), 2) a double circular
8-shaped coil, 3) a winding with three circular sections, two forming figure eight and the
third placed perpendicular with a common tangential point. Each winding has a radius
of 23 mm, is placed 10 mm above the scalp and it carries a current varying with a speed
of 25 A/µs as in [207]. We assume each coil rotated from the z-axis with angle β, small
enough so not to collide with the skull. In general, the wire is a curve Γ described by its
parametric equation:

rs = f(t), f : (tmin, tmax)→ R (6.1)

The function f gives, for each value of parameter t = θ, the position of the point on

122



Use of Reduction Methods in Multiscale Modeling of Complex Systems

Figure 6.1: The geometry of the first test case [64].

the curve. The head’s Σ is described by the function:
rc = F (u, v), F : (umin, umax)× (vmin, vmax)→ R3 (6.2)

Denoting by: r – the radius of the circular coil, R – the radius of the sphere, h – the
height from the sphere center to which the coil is placed, the implicit equations for the
two varieties are:

Γ : x2 + y2 = r2; z′ = 0

β : x = x′, y = y′ cos(β), z = h+ y′ sin(β)

Σ : x2 + y2 + z2 = R2 < r2 + h2

(6.3)

Using the spherical coordinates, v = θ (azimuthal angle) and u = ϕ (zenithal angle),
the parametric equations of the two varieties are [217]:

Γ :


x = r cos(θ)

y = r sin(θ) cos(β) ; θ ∈ (0, 2π)

z = h+ r sin(θ) sin(β)

(6.4)

Σ :


x = R cos(θ) sin(φ)

y = R sin(θ) sin(φ) ; θ ∈ (0, 2π), φ ∈ (0, π)

z = R cos(φ)

(6.5)

6.1.2 The physical model

Since the fields have a variation in time of relatively low speed, the dynamical effects
can be neglected. That is why the distributions of both magnetic and electric field can be
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Figure 6.2: The diagram of causal relationships in MG+EC(t) approach.

computed as in a steady state regime, without eliminating the effect of electromagnetic
induction law, according to which the time varying magnetic field induces an electric field.

The problem to be studied is therefore a sequence MG-EC(t), in which the magneto-
steady state regime (MG) determines the distribution of the magnetic field caused by
excitatory currents. The distribution of induced currents in the head is determined using
equations of electro-conductive regime (EC), by neglecting their magnetic effects. This ap-
proach is simpler than that of the Magneto-Quasi-Static regime (MQS) since the induced
currents do not influence the distribution of the magnetic field [64].

The causal diagram in Fig. 6.2 shows that unlike the MQS regime, in the case of
MG+EC(t), the source current density Js and the induced current density J = Jc are
different (one is a known source and the other is unknown). Consequently the diagram is
fluent, without cycles. Thus, the solving of PDEs is simplified, since the equations to be
solved are elliptic and not of parabolic type [64].

6.1.3 The mathematical model. Analytical solution.

The mathematical model is based on the first order fundamental equations in differ-
ential form of the MG field regime given by (6.6) and EC(t) regime supplemented with
electromagnetic induction law (6.7). Assuming that the TMS system does not have any
ferromagnetic parts for field strengthening, the space is homogeneous from the magnetic
point of view, with permeability equal to that of vacuum. The EC equations are valid
within the conductive domain Ω, assumed homogeneous from the conduction point of
view, so with constant conductivity.

div B = 0;

curl H = Js;

B = µ0H.

(6.6)


div J = −∂ρ

∂t
;

curl E = −∂B
∂t

;

J = σE.

(6.7)

Inside the EC domain the charge is relaxed, so its volume density is null, which makes
the current density solenoidal (div J = 0). Using the magnetic vector potential A, with
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Coulomb gauge, a Poisson’s equation is obtained for A:


B = curl A;

curl H = Js ⇒ curl curl A = µ0Js ; div A = 0⇒ ∆A = −µ0Js;

H = B/µ0 = curl A/µ0.

(6.8)

Then the induced field is:

curl E = −∂B

∂t
⇒ curl

(
E +

∂A

∂t

)
= 0;

J = σE⇒ J = −σ
(

gradV +
∂A

∂t

)
, with E′ = −∂A

∂t
and E′′ = − gradV

div J = 0⇒ div

(
σgradV + σ

∂A

∂t

)
= 0⇒ ∆V = 0. (6.9)

where E′ is the primary component of the electric field (solenoidal) and E′′ is the secondary
component (Coulombian, non-rotational). In homogeneous domains, the secondary field
is described by a harmonic scalar potential V , the solution of Laplace equation.

Problem formulation

The field problem is reduced to solving the Laplace equation inside the conductor, with
Neumann boundary conditions:

divs J = −∂ρs
∂t
⇒ n12 · (J2 − J1) = −∂ρs

∂t
⇒ n · J = −∂ρs

∂t

=⇒ σn ·
(
∂A

∂t
+ gradV

)
= −∂ρs

∂t
⇒ σ

dV

dt
= −∂ρs

∂t
− σ∂(n ·A)

∂t
.

(6.10)

Assuming there are no external charged bodies, the human body charge is null, the
superficial charge density is negligible, and the boundary condition of Neumann type
becomes as in [212]:

dV

dn
= −∂(n ·A)

∂t
= −∂An

∂t
= E ′n. (6.11)

In order to have a unique solution, a reference point on the boundary is chosen. If the
problem is homogeneous and axisymmetric (i.e. β = 0) then the magnetic vector potential
is oriented tangentially to the surface, so its normal component is zero and therefore the
solution of Laplace equation is null so there is no secondary electric field (E′′ = 0).

The primary component of the induced field: magnetic vector potential A

The solution of equation (6.8) valid for the entire 3D space is given by the Biot-Savart-
Laplace integral on the domain D, in which the source current flows. If the coil is a wire,
the domain D reduces to a curve Γ and:

A (rc, t) =
µ0

4π

∫
D

Js (rs, t)

|rs − rc|
dvs =

µ0i(t)

4π

∫
Γ

drs
|rs − rc|

. (6.12)

The time derivative of this vector potential is, according to (6.9), the primary induced
field.
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Figure 6.3: The magnetic potential generated by a circular wire. A similar image is obtained
by using the numerical method.

The secondary component of the induced field: the scalar potential V

The general solution of the Laplace’s equation (6.9) inside a sphere can be obtained
by separation of variables and it has the form [218]:

V (ρ, θ, ϕ) =
∞∑
l=0

rl
l∑

m=−l

almY
m
l (θ, ϕ). (6.13)

The spherical complex harmonics are defined from the associated Legendre polynomials
Y and are orthogonal on the surface of the unit sphere. This remarkable property allows
the Fourier expansion in a series of any arbitrary L2 function:

f(θ, ϕ) =
∞∑
l=0

l∑
m=−l

flmY
m
l (θ, ϕ). (6.14)

The Fourier coefficients are:
fml =

∫
Ω

f(θ, ϕ)Y m∗
l (θ, ϕ)dΩ

=

∫ 2π

0

dθ

(∫ π

0

dϕ sin(ϕ)f(θ, ϕ)Y m∗
l (θ, ϕ)

)
.

(6.15)

Therefore, the potential inside a conductive sphere has the analytical expression given
by (6.13), where the coefficients are obtained by imposing the boundary condition:

∂V

∂n
= −∂An

∂t
⇒ ∂V

∂ρ

∣∣∣∣
Σ:ρ=R

=
∞∑
l=0

lRl−1

l∑
m=−l

almY
m
l (u, v)

=⇒ alm = − 1

lRl−1

∫ 2π

0

(∫ π

0

∂An
∂t

sin(u)Y m∗
l (u, v)du

)
dv.

(6.16)

In (6.16), An(u, v) is the normal component of the magnetic vector potential computed
with (6.12).
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Table 6.1: The relative error of numerical integration for different number of nodes: Err1
using quadrature, Err2 using approximation by a polygon.

nt 10 14 18 22 26 30 34 38

Err1 5.3 · 10−3 4.6 · 10−4 4.2 · 10−5 3.9 · 10−6 3.7 · 10−7 3.6 · 10−8 3.5 · 10−9 3.4 · 10−10

Err2 2.1 · 10−1 1.1 · 10−1 6.8 · 10−2 4.6 · 10−2 3.3 · 10−2 2.4 · 10−2 1.9 · 10−2 1.5 · 10−2

Figure 6.4: Error of the numerical integral vs. number of nodes.

6.1.4 Numerical results. Model verification.

The parameters of Γ and Σ are discretized as:
T = [t1 = tmin, t2, . . . , tnt = tmax] ;

U = [u1 = umin, u2, . . . , unu = umax] ;

V = [v1 = vmin, v2, . . . , vnv = vmax] .

their size nt, nu, nv giving the refining level of the model.

The magnetic vector potential A. The error control.

The integral (6.12) is approximated by numerical quadrature:

An (ui, vj, t) ∼=
µ0i(t)

4π

nt−1∑
k=1

ck
nij ·∆rk
|rk − rij|

. (6.17)

The vector potential on the wire is unbounded. The numerical computation was carried
out using the quadrature coefficients ck = 1, as in the composite trapezoidal rule for
periodic functions. The numerical values of the vector potential were checked against the
analytical values, for a circular wire with uniform distributed nodes (Fig. 6.3).

Another approach to compute A is to approximate the wire with a polygon. The field
produced by a circular wire approximated by a polygon was computed in the point on
the sphere surface where the maximum field is induced. Table 6.1 and Fig. 6.4 show the
convergence results of the numerical integration.

The errors were computed with respect to the analytical values of the vector potential
produced by a circular coil [219]. When using quadrature, by doubling the number of
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Figure 6.5: Induced field intensity in three test cases (isovalues starting at 0 – the darkest blue,
with a step of 1 V/m) [64].

Figure 6.6: The tangential component of the primary induced electric field on the surface of
the sphere, along a meridian line [64].

nodes, the relative error decreases 414 times.

This rate of convergence is impressive, with an order greater than 7. In fact the
convergence is better than this with an exponential dependence εnt < c1 · cnt2 , where
c2 < 0.6 (Fig. 6.4). This is due to the high smoothness of the function, which is infinitely
differentiable. Therefore, the numerical integration achieved even with a small number of
nodes, of approximately 20, gives an admissible numerical error [64].

A minimal error is expected for nodes that are uniformly distributed along the circle,
because of its constant curvature. In contrast, when a curve of arbitrary shape is con-
sidered, adaptive methods will give better results. In the case of the approximation with
a polygon, the error falls only 4 times when the number of nodes on a circle is doubled.
Convergence seems to be of second order, as shown in the graph in Fig. 6.4.

In conclusion, the results obtained using numerical quadrature based on the composite
trapezoidal rule have to be preferred to polygonal approximations proposed in [211], since
that has a much better order of convergence [64]. From Table 6.1 and Fig. 6.4 it follows
that the relative error is bounded by:

εnt < (c1/nt)
p1 , with c1 = 4.2, p1 = 8. (6.18)
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Figure 6.7: a) Variation of the normal derivative of induced scalar potential [V/m]; b)+c):
Variation of potential on the surface of the sphere [64].

The induced electric field.

The strength of the primary induced electric field in the three cases studied is plotted
in Fig. 6.5. Let there be noted that the third configuration induces a deeper field, while
the second configuration better focuses the induced electric field.

Fig. 6.6 shows the variation of the tangential component of the electric field induced
on the surface of the sphere, along a meridian line. The field has a maximum value at
approximately 75 degrees from the horizontal, therefore relatively close to the point of
tangency, located near the zenith. As expected, the maximum field is double in the second
test case and 2.5 times higher in the third test case.

The determination of secondary induced field starts from the value dV/dn of the Neu-
mann boundary conditions on the sphere surface, which is proportional to the time deriva-
tive of An as in (6.11). Its distribution is plotted in Fig. 6.7a.
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Figure 6.8: The relative error of numerical integral over the sphere [64].

The potential of the sphere’s surface satisfies the BEM equation [64]:
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Fig. 6.7b shows the primary component (single layer) of the potential on the surface
with the expression obtained from the integral equation of the potential [220]. If both
terms of the integral equation of the potential are discretized a (nu×nv) system of linear
algebraic equations satisfied by the potential in the nodes on the surface is obtained.

The single layer potential (Fig. 6.7b) and the double layer potential (Fig. 6.7c) have
been determined for several values of nu and nv and the results were extrapolated with
a Richardson procedure. Using this extrapolation the bound of the relative error of the
numerical integration VmaxR was deducted:

ε < (c2/nu)
p2 + (c2/nv)

p2 , with c2 = 15, p2 = 2. (6.20)

In addition to the composite trapezoidal rule (6.19), the numerical integration was
done also with Romberg [2] and Lebedev [221], [222] methods. The convergence of these
approaches is shown in Fig. 6.8. The numerical integration over the sphere’s surface is
necessary in both analytical (6.16) and numerical – BEM (6.19) approaches. Still there is
a difference, in (6.16) the function is smooth, whereas (6.19) is an improper integral. The
best approach to compute it is FMM, based on exact computing [220] of close interactions
and multi-pole approximation of far-away ones, e.g. 1/R as in [219].
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6.2 TMS and realistic geometries

6.2.1 Pipeline for the generation of a 3D geometrical model from
medical imaging data

Medical imaging techniques such as MRI (Magnetic Resonance Imaging) or CT (Com-
puted Tomography) consist of non-invasive procedures with the purpose of understanding
the anatomy and physiological processes of the body. MRI scanners use powerful mag-
netic fields, radio waves and field gradients to form images of an organ. These images
represent the characteristics of the fluids in shades of gray, as follows: fats, melanin, high-
protein-rich fluids are represented by open shades, whereas bones, tumors, sore areas in
dark shades; in the brain, gray matter is represented with a darker shade than the white
matter. More details about MR can be found at [223]. Different kinds of MRI exist,
depending on their purpose: structural MRI, diffusion MRI (dMRI) or functional MRI
(fMRI).

In [224] it is described a procedure for extracting a model for COMSOL, with WM
(white matter), GM (gray matter) and CSF (cerebrospinal fluid) sections, which uses
source files from BrainWeb (.mnc) database [225], [226] and the BrainSuite segmentation
program [227] (BrainSuite is also used in [228]). However the procedure for extracting
the 3D model is not described here.

Reference [228] starts from MR images created with a 3T scanner (Magnum 3.0,
Medinus Inc., Republic of Korea). The sections segmented are scalp, skull, CSF, GM,
WM. From the diffusion-weighted MR scans the tensor matrix (DT) and the fractional
anisotropy map (FA) are determined. The programs used are SPM5 [229], BrainSuite
(for segmentation) and CGAL [230] (mesh generation library). [214] takes into account
different conductivities for the scalp, skull, brain and ventricular system.

The effect of heterogeneity and anisotropy on the distribution of field and currents
induced in the brain by magnetic stimulation is also studied in [231]. The model incorpo-
rates data regarding the conductivity tensor extracted from diffusion measurements, but
the head is modeled with a sphere, not with realistic 3D models.

The source files in [232] consisted of MR images of a healthy 38-year-old male subject
generated with the Siemens Magneton Vision 1.5 T scanner and saved in the Analyze
format. A soft simulation package was used to extract the initial geometry of the CAD
model. The sections generated were skin, skull, CSF, GM, WM.

An ample study that highlights the extent to which realistic geometries are relevant
for the accuracy of TMS simulation is presented in [212]. It is stated that the level of
anatomic detail of a study must be large enough to highlight the secondary component
of the induced electric field. For the realistic geometries it was found that the secondary
component of the induced field has a weight of about 20-35% from the total induced
field. In most cases the direction of the secondary field is opposite to the primary one,
decreasing its value. MR (for soft tissue) and CT (for bone) images of a neurologically
healthy male subject were used. The MR images (T1-weighted) were created with a 1.9 T
GE/Elscint Prestige MRI (Haifa, Israel) scanner at the RIC (Research Imaging Institute)

131



Use of Reduction Methods in Multiscale Modeling of Complex Systems

Figure 6.9: The process of creating a 3D FEM model from MR/CT files.

and the CTs were taken from the Cancer Therapy and Research Center, UTHSCSA, being
previously generated with a PQ5000 CT Scanner. The segmentation was performed with
FAST (FMRIb’s Automated Segmentation Tool, part of the FMRIb Library). The in-
house MANGO program was used to visualize the 3D images. CT images were used for
the skull, segmented based on a bone threshold (greater than 1500HU). The individualized
sections were scalp, skull, CSF, GM, WM and ventricles (having the same conductivity
as CSF). Different conductivity values were considered for each class of tissue as follows:
scalp 0.33 S/m, skull 0.0042 S/m, CSF 1.79 S/m, GM 0.33 S/m, WM 0.14 S/m, ventricles
1.79 S/m.

In [215] the MR images were obtained from a male subject using a 3T scanner (Tim
Trio, Siemens Medical Solutions, Erlangen, Germany). The segmented compartments
were: scalp, skull and intracranial space. The cortical surface was extracted from a
MPRAGE T1-weighted volume with the FreeSurfer program [233].

The anatomical model in [204] is a 26-year-old female subject, ”Ella” from the Virtual
Family [234]. The MR images were segmented into 76 different tissues throughout the
body. In the brain, the structures identified were the cortex, WM, cerebellum and deep
brain. The dielectric properties of each tissue were selected from the literature [128], [235].

A male volunteer was used by [236], the resolutions for CT and MR being 0.488/1.0
mm and 0.5/4.0 mm respectively. For the segmentation the procedure from [233] and
[237] was used. The brain was segmented into cerebellum, GM, WM, ventricular system,
midbrain, brainstem, and CSF all around. For the muscles of the neck, nose, etc. the
Atlas of Human Anatomy [238] was used.

Reference [239] is a review of several real anatomical models manufactured with the
purpose of analyzing the effects of an impact in the event of an accident. Material data
is presented for different types of tissues.

The dataset in [240] consists of MR (T1 weighted) images of a 55-year-old female sub-
ject generated at University Hospital, Jena, Germany, obtained with a 3-tesla Siemens
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Figure 6.10: Proposed pipelines. a) using segmentation; b) using a segmented model.

MR scanner. A detailed and hybrid (automatic and manual) 3D segmentation was per-
formed and the following tissues were identified: WM, GM, cerebellum, CSF, cortical
bone, trabecular bone, dura mater, skin, eye, crystalline.

Four FEM models were extracted in [241] from MR images of the same human subject
with different degrees of segmentation (with 11, 10, 9, 5 sections) for which resistivity and
conductivity are given. The MR images are obtained with a 1.5 Tesla GE Signa scanner.
The segmentation was performed with a semi-automated in-house program [242], then
checked by a radiologist and modified accordingly.

There are dozens of programs that can be used to process MR/CT files, which encom-
passes 3D visualization, segmentation (partitioning and labeling), defining the regions of
interest. After the creation of the so-called CAD model a 3D FEM model can be gener-
ated in a specific program such as COMSOL or MATLAB. Fig. 6.9 summarizes the steps
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Figure 6.11: Itk-SNAP – preprocessing with thresholding.

Table 6.2: Values of thresholding indicators in itk-SNAP – pre-processing.

Threshold Smoothness Smoothing curvature force
Skull Lower = 2,300,000 2 0.1
CSF Upper = 2,800,000 3 0.15, after 230 iterations 0.23,

until 430 iterations
GM Two-sided = 1,004,926 to 3,818,718 3 0.05 for 700 iterations
WM Lower = 3,818,718 3 0.1 for 700 iterations

identified for generating a FEM model from MRI/CT images, the most frequently used
programs, and the file types at each stage.

More information on the extraction of CAD models and on mesh generation and pro-
cessing algorithms for the whole human body can be found in [243]. Details about seg-
mentation methods and their validation are given in [244].

The visualization and analysis programs usually describe the volumes with three 2D
images, representing the three planes (frontal, transversal and sagittal) in the orthogonal
volume slicing [245].

The purpose of segmentation is to divide the image into a set of disjoint regions con-
taining voxels with the same characteristics (intensity, depth, color, texture). The seg-
mentation’s result may be an image with labels for each homogeneous region or a set of
contours that represent the regions’ borders. In the brain, the MR images are usually
segmented into three major types of tissue: white matter (WM), gray matter (GM) and
cerebrospinal fluid (CSF).

Before the segmentation stage an image preprocessing is usually performed, which acts
as a filter of the original image; the most used preprocessing methods (pre-segmentation)
are Bias Field Correction and Image Registration – the removal of the non-brain tissue.

The segmentation methods can be divided into [246]:
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Figure 6.12: Segmentation in itk-SNAP; a) CSF, placing the seeds for region growing; b) GM
after 400 iterations; c) WM after 700 iterations (final); d) all the domains.

– Manual segmentation;

– Intensity based methods (using intensity histograms, including threshold values,
region growing, classification – needs Bias Field Correction, clustering);

– Atlas based methods (need Image registration), which fail if the anatomy of the
subject differs significantly from the average, or if it presents deformations or ab-
normalities;

– Surface based methods (including active contours);

– Hybrid methods.

The two pipelines we propose for the generation of a CAD model are described in Fig.
6.10.

Pipeline 1 – Fig. 6.10a

The large number of methods and programs makes it very difficult to choose a single
segmentation program. A comparison between SPM, FAST and BrainSuite is presented
in [247].
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Figure 6.13: Pipeline 1 – Inner layer extracted from the segmented model; yellow: skull, brown:
CSF, blue: GM, green: WM, indian blue: empty spaces.

Figure 6.14: Pipeline 1 – The nodes (vertices) in the 3D mesh after segmentation.

The program itk-SNAP [245] is often used in studies, has a relatively good docu-
mentation, it is open-source and it seems intuitive for understanding MR segmentation.
Unfortunately, one of the drawbacks of graphical user interface programs is that the user
has no control over some (pre-)segmentation parameters. Thus, the segmentation quality
depends on the available parameters and the user’s ability to use them efficiently.

The segmentation in itk-SNAP is performed by associating a label to each volume
element (voxel from the MR image). The union of all the images (slices) reproduces the
3D object consisting of volume elements with the same label.

STL (STereoLithography) is a 3D file format created by the company 3D Systems.
The representation can be ASCII or binary. A STL file describes an unstructured surface
with triangles, for each triangle having the normal and the Cartesian (3D) coordinates
of the three points in the corners. STL coordinates are usually positive numbers, and
the units of measurement are relative. The ASCII files can become very large (my GM
file exported from itk-SNAP has almost 200 MB). COMSOL can import both STL and
ASCII as well as binary files.

Preprocessing

We used a preprocessing method that offers the user more control than others: thresh-
olding. This gave better results than the alternative method of classification provided by
itk-SNAP. Thresholding involves image filtering based on the pixel intensity histogram,
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Figure 6.15: Pipeline 1 – The 3D mesh with the four segmented regions colored differently –
overview and section view.

Figure 6.16: Pipeline 1 – The four regions shown separately, in the following order:
SCALP/SKULL, GM, WM, CSF – overview, CSF – section view.

the user can choose the lower and/or upper boundary and the increase/decrease slope
(Fig. 6.11). Unfortunately, the images are not perfect and there is no clear definition
of a threshold for every domain. A certain intensity may correspond to several domains.
The decision is left to the intuition of the user. Table 6.2 contains the values of the
program-specific indicators we set for every domain.

Segmentation

We identified the domains in the following order: SK (skull), CSF, GM, WM. The
anatomical model resulted is shown in Fig. 6.12. In Fig. 6.13 a single layer is depicted,
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Figure 6.17: Pipeline 1 – The skull (SK) domain: a) geometry imported in COMSOL; b) mesh
generated in COMSOL from the previously imported geometry.

the model shows empty spaces, meaning regions that are not allocated to any domain.

To Matlab (.img, Analyze format)

We created the FEM model with iso2mesh [248], [249], an open-source package for
Matlab/Octave for mesh generation and processing. With iso2mesh, 3D FEM meshes can
be created from surfaces, 3D binary files (as this case) and segmented volumetric images
(for the latter case, you cannot use the cgalmesh method, details below).

As options of cgalmesh – considered the most robust function in the documentation –
the maximum size of a triangle has 15 pixels and the maximum volume of a tetrahedron
is 100 voxels. The function v2m created 871,468 triangles and 1,056,979 tetrahedra from
202,158 nodes.

In Fig. 6.14 the mesh nodes are displayed in three dimensions and in Fig. 6.15 is
shown the 3D mesh with the four identified regions – overview and section on Oz axis.
The four regions and a section through CSF are represented separately in Fig. 6.16.

To COMSOL (.stl, .vrml)

Geometries and meshes (.stl, .vrml v1 and .vtu (VTK format) can be imported in
COMSOL. If the files with these extensions represent 3D volumes, they can be imported
into COMSOL as geometries and then used to generate volumetric meshes for a single do-
main. If the files represent meshes, they should be imported directly as meshes. Whether
as geometry or mesh, just a few file formats are supported.

We were able to import in COMSOL only the SK (skull/scalp) domain as a geometry
(2,293 boundaries, 8,954 edges, 6,619 vertices), which is shown in Fig. 6.17a.

It was then possible to generate the mesh associated with the geometry imported (6,619
vertex elements, 52,130 edge elements, 308,484 boundary elements), the mesh is shown in
Fig. 6.17b.

The other three domains could not be imported in COMSOL as geometries (errors
in COMSOL: ”Face cannot be parametrized” or ”Failed to analyze local face topology”).
This might be due to the faults in the segmented (CAD) model or the values of the
program-specific indicators.

Pipeline 2 (start from the Colin27 CAD model) – Fig. 6.10b

An already segmented CAD model is available online [250] as a volumetric mesh model,
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Figure 6.18: Pipeline 2 – The nodes (vertices) in the 3D mesh after segmentation (Colin27).

Figure 6.19: Pipeline 2 – The 3D mesh with the four segmented regions colored differently –
overview and section view (Colin27).

created from the Colin27 MRI atlas [251]; the source atlas consists of MR images of the
same individual, scanned 27 times; the geometrical model data is stored in a .mat file
representing a mesh.

After eliminating some of the options (the use of proprietary programs such as Mimics
from Materialise and ScanIP from Simpleware, both accepted by COMSOL [252], [253],
finding programs that generate geometries/meshes from .mat geometries, creating a model
in COMSOL from Matlab through LiveLink – it can be used only for creating a geometry
from scratch), we have found a package for Matlab that processes .stl [254] (reading,
writing in binary/ascii format, minor processing, visualizing).

The Colin27 model (.mat) consists of the following data structures:
node: a matrix with 3 columns representing the node coordinates (in mm);
face: describes the triangles; a matrix with 4 columns, 3 columns containing the indices
of the nodes forming a triangle and the last column representing the domain index as
follows: 1-scalp/skull, 2-CSF, 3-gray matter, 4-white matter;
elem: describes the tetrahedra; a matrix with 5 columns, 4 columns containing the indices
of the nodes forming a tetrahedron and the last column representing the domain index as
follows: 1-scalp/skull, 2-CSF, 3-gray matter, 4-white matter.

The Colin27 mesh (which includes the scalp/skull domain) presents obvious differences
from the mesh previously segmented in Pipeline 1. The Colin27 mesh is compact; it does
not have ”holes” or other ”defects”. This is due to the techniques for accuracy improvement
previously applied to the Colin27 mesh [250]. The representations are in Fig. 6.18, 6.19
and 6.20 whereas the details of the mesh are specified in [250]: 70,226 nodes, 423,375
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Figure 6.20: Pipeline 2 – The four regions shown separately, in the following order:
SCALP/SKULL, GM, WM, CSF – overview, CSF – section view (Colin27).

Figure 6.21: Pipeline 2 – The Colin27 model, nodes and faces.

tetrahedra and 119,554 triangles (6,916 for the scalp surface, 12,780 for CSF including
ventricles, 61,026 for the GM surface and 38,832 for WM). Note that the number of
tetrahedra is close to the mesh generated in Pipeline 1, but the latter has a much larger
number of triangles, probably because of the ”holes” in the 3D volume so that many
triangles do not get shared by the tetrahedra.

The whole mesh (nodes and faces) is represented in Fig 6.21.

After writing four STL files corresponding to the four domains, we tried to import
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Figure 6.22: Pipeline 2 – The Colin27 model, geometry import into COMSOL, SK and CSF
(zOy plane).

Figure 6.23: Pipeline 2 – The Colin27 model, GM domain, imported mesh and the associated
geometry.

Figure 6.24: Pipeline 2 – The Colin27 model, WM domain, imported mesh, associated geometry
and generated geometry from mesh (yOx plane).

them as geometry into COMSOL. We have succeeded this only for SK and CSF (Import
Geometry, without the Simplify mesh checkbox), shown in Fig. 6.22.

Given that even for this very ”clean” mesh the import of geometries into COMSOL
was not successful for all the domains, we decided to import the models as meshes into
COMSOL. COMSOL starts from the coordinates of the nodes and triangles and interpo-
lates to build the continuous 3D object. The ”Create Geometry from Mesh” option only
succeeded for WM, but for GM we can see the geometry associated with the imported
mesh. In WM, the associated and generated geometry seem identical. Fig. 6.23 and 6.24
show the GM and WM domains, geometry and mesh.

6.2.2 TMS for realistic models

The realistic geometrical model extracted in Section 6.2.1 can replace the sphere used
in Section 6.1 to represent the human head. We solved the TMS problem described in
Section 6.1 with FEM (in COMSOL), in order to validate the TMS procedure and to
extend it for the realistic geometrical models developed in Section 6.2.1.

We developed three FEM numerical models for the first test case (with one circular
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Figure 6.25: The three geometric models in COMSOL.

coil above the head):

– an axysimmetrical 2.5D model, describing one circular coil placed above a sphere –
called sphere2.5Daxi (Fig. 6.25a)

– a 3D model, with one circular coil placed above a sphere – called sphere3D (Fig.
6.25b)

– a 3D model, with one circular coil placed above a realistic geometrical model (the
CSF domain from Fig. 6.22) – called real3D (Fig. 6.25c)

The coil (modeled as a torus) and the sphere domain (for models 1 and 2) have the
geometrical and material properties in Section 6.1.1 (with angle β = 0). The two domains
(coil and head) are surrounded by a domain of air, modeled as a cylinder for model 1 and
as a sphere for models 2 and 3, with the radius of 0.5 m.

The equations are those describing a MQS field, with magnetic insulation on the bound-
ary of the air domain and gauge fixing for the A-field. The coil carries a current with a
varying rate of 25 MA/s, as in Section 6.1.1. The coil and air domains should have null
conductivity, but in order to avoid numerical instabilities, we use a small value for σ = 1

S/m. The simulation of 10 µs took on a 1.4GHz Intel Core i5, RAM 4 GB 8 seconds for
model 1, 15 minutes for model 2, and 8 minutes for model 3, the differences being due to
the different meshes needed for their solving, described below.

The tetrahedral mesh uses the predefined size for the elements, consisting of:

– 1,666 domain elements and 129 boundary elements (coarser element size for all three
domains) for the sphere2.5Daxi model, resulting in 3,410 DoFs.

– 13,066 domain elements, 1,214 boundary elements, and 220 edge elements (normal
element size for air domain, fine element size for coil and head-sphere) for the
sphere3D model, resulting in 103,273 DoFs.

– 17,084 domain elements, 1,676 boundary elements, and 153 edge elements (normal
element size for all three domains) for the real3D model, resulting in 134,115 DoFs.

The induced electric field in the head for the three FEM models is represented in Fig.
6.26, whereas in Fig. 6.27 is shown the tangential component of the induced field on an
upper right quarter of a meridian line for the sphere2.5Daxi model (left), on the upper
half of a meridian line for the sphere3D model (middle) and on the whole head’s surface
for the real3D model (right). Fig. 6.26 reproduces the induced electric field in the head
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Figure 6.26: Induced field intensity for the three models. The figures are to be compared with
Fig. 6.5 in Section 6.1.

Figure 6.27: The tangential component of the induced electric field on the head’s surface: left:
on an upper right quarter of a meridian line; middle: on the upper half of a meridian line; right:
on the whole head’s surface. The figures are to be compared with A1 from Fig. 6.6 in Section
6.1.

(to be compared with Fig. 6.5) and Fig. 6.27 reproduces A1 from Fig. 6.6. These results
validate qualitatively and quantitatively both the numerical model in Section 6.1 and the
FEM model, in particular the FEM model for the realistic geometries extracted in Section
6.2.1. The differences in the values are due to the different meshes needed for the proper
solving of every model.

6.3 Conclusion regarding TMS

This chapter proposes a procedure based on MG+EC(t) field to extract a hierarchy
of models of varying accuracy for TMS, which can be further used for efficient optimiza-
tion of the TMS device. These models can be successfully used as surrogate models for
optimization of customized TMS systems with accuracy control. This approach is one
of the most important research topics in CSE, as is noted in [2]: ”recent years have seen
increasing recognition of the critical role of uncertainty quantification (UQ) in all phases
of the CSE lifecycle, from inference to prediction, to optimization [...] the traditional ap-
proach to theory in numerical analysis provides only an insufficient basis to quantify the
efficiency of algorithms and software, since many theorems are only qualitative and leave
the constants unspecified”.

We deducted precise expressions for the upper bound of the relative numerical errors
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(6.18), (6.20), resulting in the upper bound of the global relative error:
ε < (c1/nt)

p1 + c3/M, where c1 = 4.2, c3 = 15, p1 = 8, M = nu × nv (6.21)

The algorithms complexities are for MG: O (nt · nu · nv); for EC: O (ny · nu · nv)2; for
EC-BEM: O (nu · nv)2 and reduced to a linearithmic one by FFT-FMM.

This dependence allows the identification of the necessary level of refinement for an
acceptable tolerance of the model. The reference model is simple, but it does not neglect
the essential aspects of TMS. The head is modeled as a conductive sphere and the drive
coil is a wire of arbitrary shape. The relatively small time variation of the coil current
allows the calculation of field induced by a MG+EC(t) regimes sequence, coupled by
Faraday’s law of induction. This approach, which neglects the magnetic effects of eddy
currents, is more effective than considering the MQS regime. The magnetic field produced
by the excitation coil does not depend on what happens inside the head, and is calculated
by Biot-Savart-Laplace integral, which is estimated by numerical quadrature.

The accuracy study performed enables the control of approximation error. The pro-
posed method is superior to the method of approximating the wire by a polygon [211].
The result of numerical integration is then used to determine the induced field, which
has two components: a solenoidal component determined by the time derivative of mag-
netic vector potential and a irrotational component, expressed with a scalar potential. In
the case of homogenous conductor the scalar potential is a harmonic function, solution
of the Laplace equation, which has an analytical expression, obtained by Fourier series
expansion of spherical harmonics. In the axisymmetric case, this secondary component
does not exist, because the magnetic potential is tangential and it does not have normal
component. In the nonsymmetrical cases studied, such as the coil with three sections,
this component is about 5 times smaller than the primary one. Another important as-
pect found is that the double layer potential is about 40 times smaller than the single
layer one, which leads to a rapid solving method for the iterative BEM equation. The
proposed MG+EC(t) approach reduces the problem of field computing to two numerical
integrations: one 1D along the coil’s wire, and other 2D, over the head surface.

A pipeline for the generation of a realistic 3D geometrical model for the human head
from medical imaging data (EEG) is then proposed. The procedure has two options, either
involving segmentation of EEG images using dedicated software, or by starting from a
segmented model. Whatever option is used, the resulted CAD model can subsequently
be used in simulation software such as Matlab or Comsol.

The approaches proposed for TMS modeling in the first part of the chapter are cus-
tomized for the realistic modeling of TMS, with the more complex geometry of the 3D
CAD model extracted from EEG. The modeling can become more realistic when the
conductive domain is heterogeneous and anisotropic, this approach being suitable for
personalized treatment. The analysis of these complicated cases can be performed by
perturbation of the model of the head and it has advantages over direct solving of the
complicated problems.
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Chapter 7

Conclusions

This chapter presents the original contributions of the research underlying this thesis,
the papers in which the results were disseminated and future research topics.

7.1 Original contributions

1. Critical discussion on the state of the art in multiscale modeling of biological systems
in general and neuronal systems in particular, stressing on the importance of model
reduction within this procedure.

2. Study of a 1D-EQS transmission line model for the neuronal axon. Extraction
of approximate analytical expressions and an innovative numerical procedure for
the computation of the characteristic parameters of the 1D-EQS linear model: the
nerve conduction velocity, attenuation and maximum transmission length, based on
an original definition of the delay time. Estimation of upper and lower boundaries
of the transmission velocity. Analytical and numerical prediction of the dependence
velocity vs. axon diameter in myelinated and unmyelinated axons. Realistic numer-
ical simulation by digitization of the standard neuronal signal.

3. Development of a hierarchical series of 9 types of models for myelinated compart-
ments, corresponding to three spatial geometry classes (2.5D, 1D and 0D) and three
computational approaches for each geometry (analytical, numerical and reduced or-
der models). These models are hierarchized based on modeling errors, which are
closely related to the complexity of the models. Introduction of an error estimator
suitable to neural signals, based on a weighted norm, in order to correctly assess
the models’ accuracy.

4. A procedure for the efficient extraction of a reduced model of a myelinated axon:
reduced models of myelinated compartments are connected with models of Ranvier
nodes and the global model thus obtained is again reduced. The extracted model is
able to reproduce the saltatory conduction with controlled accuracy.

5. Extraction of a model of Transcranial Magnetic Stimulation (TMS) from the field
equations MG+EC(t); the human head is modeled as a homogenous conductive
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sphere and the magnetic vector potential is computed by approximating the Biot-
Savart-Laplace integral with numerical quadrature. Introduction of a BEM proce-
dure to extract a hierarchy of models of varying accuracy for TMS, by deducting
precise expressions for the upper bound of the relative numerical errors, leading to
the upper bound of the global relative error.

6. Two efficient pipelines for the generation of a 3D geometrical CAD model from
medical imaging data (MR/CT images). Extension of the proposed approach for
TMS modeling to the geometrically realistic 3D model of the human head.

Most of the results presented here are published in the papers listed in Section 7.3 (the
author of this thesis being first author for 7 of them).

7.2 Future research

1. Extraction of the analytical solution for the EQS 2.5D problem formulated in Chap-
ter 4 and the numerical solution with BEM, based on the Green function previously
extracted.

2. Modeling the extracellular 3D space of axons and large-scale neural circuits in the
brain.

3. Study the effects of pathologies such as demyelination on the normal functioning of
the neural system, due to the impact on the transmission parameters (attenuation,
velocity, maximum transmission length, delay time).

4. Extension of TMS modeling approach to heterogeneous and anisotropic conductive
domain, which is more suitable for personalized treatment.

5. Validation of the segmented model from Pipeline 1 with the model Colin27 as refer-
ence, based on similarity indicators such as Dice coefficient or Tanimoto coefficient.
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Appendix

A1. 2.5D – EQS model FIT code

c l e a r a l l ;
c l o s e a l l hidden ;
c l c ;
% prepare path
r e s t o r ed e f au l t pa th ;
sourcespath = genpath (pwd) ;
addpath ( sourcespath ) ;

debug = ' o f f ' ; %' o f f ' ; %'on ' ; % i f ' on ' i t draws a l l s o r t s o f f i g u r e s
t i c
\% t e s t s
f l a g = 'LMicECEc ' ; % 'LMicECEc ' / 'LMicNonECEc ' , ' LMicAll ' ;

i f (1==1)
vector_pas = [5 e−7] ;
idx1 = 1 ;
idx2 = 2 ;

end

no_pasi = length ( vector_pas ) ;
nr_noduri = ze ro s ( s i z e ( vector_pas ) ) ;

f o r idx_pas = 1 : no_pasi
pas = vector_pas ( idx_pas ) ;
[ t e s t e , pasnou , nrNoduri ] = citeste_teste_axonEQS ( f l ag , pas ) ;
nr_teste = length ( t e s t e ) ;

f o r idx_teste = 1 : nr_teste
f p r i n t f ( '−−> te s t %d : \n ' , idx_teste ) ;
model = t e s t e { idx_teste } ;
model . term = find_idx_terminals_axon (model ) ; % te rmina l s i n f o with r e spe c t to nodes index
model . f i gno = idx_teste ∗10 ;
model . draw = ' o f f ' ;

i f s trcmpi ( debug , ' on ' )
f i g u r e (model . f i gno ) ; c l f ;
draw_domain_axon(model . geom) ;
hold on ;
draw_grid_axon (model . geom , model . g r id ) ;
draw_terminals_axon (model . geom , model . term ) ;
%number_nodes_axon (model . geom , model . g r id ) ;
%show_nodes_terminals_axon (model ) ;

end

[ out , Vterm1 , Vterm2 ] = solve_EQS_axon_MsiC_omogene_izotrope (model ) ;

%% for Richardson extrapolation
% Vterm11{ idx_pas}=Vterm1 ( : , 1 ) ;
% Vterm12{ idx_pas}=Vterm2 ( : , 1 ) ;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
end

end

%% Richardson extrapolation
% i f ( l ength (Vterm11{1})∗2−1 == length (Vterm11{2}) )
% f o r kk=1: l ength (Vterm11{1})
% matrR11 (1 , kk ) = Vterm11{1}( kk ) ;
% matrR11 (2 , kk ) = Vterm11{2}(2∗kk−1) ;
% matrR12 (1 , kk ) = Vterm12{1}( kk ) ;
% matrR12 (2 , kk ) = Vterm12{2}(2∗kk−1) ;
% end
% extRe = extrapo lareRichardson ( vector_pas , r e a l (matrR11 ) , r e a l (matrR12 ) )
% extIm = extrapo lareRichardson ( vector_pas , imag (matrR11 ) , imag (matrR12 ) )
% end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
toc

func t i on [ t e s t e , pasnou , nrNoduri ] = citeste_teste_axonEQS ( f l ag , pas )
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idx_test = 1 ;

a = 7e−6; %m
b = 10e−6; %m
sigC = 1 . 0823 ; % S/m − cytoplasm
sigR = 2.04 e−4; % S/m − membrane (may be an i s o t r op i c )
s igZ = 2.04 e−4; % S/m − membrane (may be an i s o t r op i c )
epsi lonVID = 8.854187817 e−12; % F/m
epsrM = 15 . 4 4 ;

r = 1 / ( sigC∗ pi ∗a^2) ;
g = ( sigR ∗2∗ pi ) / log ( ( b−a ) /a+1) ;
% c = (epsM∗2∗ pi ) / log ( a/b+1) ;

l 0 = 1/ sq r t ( r ∗g ) ;
lmic = 0.25∗ l 0 ;
lmediu = l0 ;
lop = 2.5∗ l 0 ;
lmare = 4∗ l 0 ;
loptim = 9∗ l 0 ;

l t e s t = lmic ;

%x0 = 0 ; % s t i c k to ax i s
x0 = eps ; % model with a smal l ho le in the middle

[ nx1 , nx2 , nz , pasnou ] = get_noduri_mesh ( pas , a , b−a , l t e s t ) ;
nrNoduri = ( nx1+nx2−1)∗nz ;

fmin = 1e3 ; % Hz
fmax = 1e7 ; % Hz
nop = 10 ; % number o f f requency po int s

i f or ( strcmpi ( f l ag , 'LMicECEv ' ) , strcmpi ( f l ag , ' LMicAll ' ) )

%% test 1 axon , small length , sparse grid , excitation ECE in voltage

model . f r e c v . fmin = fmin ;
model . f r e c v . fmax = fmax ;
model . f r e c v . nop = nop ;
model . f r e c v . f i l ename = 'LMicECEv ' ; % f i l ename root
model . f r e c v . f o l d e r = ' out ' ; % f o l d e r name ( r e l a t i v e to main program f o l d e r ) f o r f requency

re sponse s

% geometry
model . geom . a = a ; % m
model . geom . b = b ; % m

model . geom . l = l t e s t ;
model . geom . x0 = x0 ;
model . geom . z0 = 0 ;
%model . geom . sim = 'xy ' ; % 'xy ' or ' axi ' ( r o t a t i on ax i s i s Oz)
model . geom . sim = ' ax i ' ;

model .matC . s i g = sigC ;

model .matM. sigR = sigR ;
model .matM. s igZ = sigZ ;
model .matM. eps = epsrM ∗ epsi lonVID ;

% te rmina l s : the re has to be one ' g ' − ground ;
% type o f e x c i t a t i o n : ECEv, ECEc, nonECEc

tipExc = 'ECEv ' ; %'nonECEc ' ; %'ECEv ' ;

model . term {1} . exc = ' g ' ; % ground
model . term {1} . poz = 'xmax ' ; % 'xmax ' , ' zmin ' , 'xmax ' , ' zmax '
model . term {1} .min = model . geom . z0 ;
model . term {1} .max = model . geom . z0 + model . geom . l ;
%
model . term {2} . exc = tipExc ;
model . term {2} . poz = 'zmax ' ; % 'xmax ' , ' zmin ' , 'xmax ' , ' zmax '
model . term {2} .min = model . geom . x0 ;
model . term {2} .max = model . geom . x0 + model . geom . a ;
%
model . term {3} . exc = tipExc ;
model . term {3} . poz = ' zmin ' ; % 'xmax ' , ' zmin ' , 'xmax ' , ' zmax '
model . term {3} .min = model . geom . x0 ;
model . term {3} .max = model . geom . x0 + model . geom . a ;
%

% gr id
model . g r id . nx1 = nx1 ; % d i s c r e t i z a t i o n on [ 0 , a ]
model . g r id . nx2 = nx2 ; % d i s c r e t i z a t i o n on [ a , b ]
model . g r id . nz = nz ;
model . i n f o = s t r c a t ( ' l = ' , num2str (model . geom . l ) , ' nx1 = ' , num2str (model . g r id . nx1 ) , ...

' nx2 = ' , num2str (model . g r id . nx2 ) , ...
' nz = ' , num2str (model . g r id . nz ) ) ;

model . f r e c v . f i l ename = s t r c a t (model . f r e c v . f i l ename , '_' , num2str (model . g r id . nx1 ) , '_ ' , num2str (model .
g r id . nx2 ) , '_ ' , num2str (model . g r id . nz ) ) ;

t e s t e { idx_test } = model ;
idx_test = idx_test + 1 ;
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end

i f or ( strcmpi ( f l ag , 'LMicECEc ' ) , strcmpi ( f l ag , ' LMicAll ' ) )

%% test 1 axon , small length , sparse grid , excitation ECE in current
model . f r e c v . fmin = fmin ;
model . f r e c v . fmax = fmax ;
model . f r e c v . nop = nop ;
model . f r e c v . f i l ename = 'LMicECEc ' ; % f i l ename root
model . f r e c v . f o l d e r = ' out ' ; % f o l d e r name ( r e l a t i v e to main program f o l d e r ) f o r f requency

re sponse s

% geometr ie
model . geom . a = a ; %m
model . geom . b = b ; %m
model . geom . l = l t e s t ;
model . geom . x0 = x0 ;
model . geom . z0 = 0 ;
%model . geom . sim = 'xy ' ; % 'xy ' sau ' axi ' ( r o t a t i on ax i s i s Oz)
model . geom . sim = ' ax i ' ;

model .matC . s i g = sigC ;

model .matM. sigR = sigR ;
model .matM. s igZ = sigZ ;
model .matM. eps = epsrM ∗ epsi lonVID ;

% te rmina l s : the re has to be one ' g ' − ground ;
% type o f e x c i t a t i o n : ECEv, ECEc, nonECEc

tipExc = 'ECEc ' ; %'nonECEc ' ; %'ECEv ' ;

model . term {1} . exc = ' g ' ; % ground
model . term {1} . poz = 'xmax ' ; % 'xmax ' , ' zmin ' , 'xmax ' , ' zmax '
model . term {1} .min = model . geom . z0 ;
model . term {1} .max = model . geom . z0 + model . geom . l ;
%
model . term {2} . exc = tipExc ;
model . term {2} . poz = 'zmax ' ; % 'xmax ' , ' zmin ' , 'xmax ' , ' zmax '
model . term {2} .min = model . geom . x0 ;
model . term {2} .max = model . geom . x0 + model . geom . a ;
%
model . term {3} . exc = tipExc ;
model . term {3} . poz = ' zmin ' ; % 'xmax ' , ' zmin ' , 'xmax ' , ' zmax '
model . term {3} .min = model . geom . x0 ;
model . term {3} .max = model . geom . x0 + model . geom . a ;
%

% gr id
model . g r id . nx1 = nx1 ; % d i s c r e t i z a t i o n on [ 0 , a ]
model . g r id . nx2 = nx2 ; % d i s c r e t i z a t i o n on [ a , b ]
model . g r id . nz = nz ;
model . i n f o = s t r c a t ( ' l = ' , num2str (model . geom . l ) , ' nx1 = ' , num2str (model . g r id . nx1 ) , ...

' nx2 = ' , num2str (model . g r id . nx2 ) , ...
' nz = ' , num2str (model . g r id . nz ) ) ;

model . f r e c v . f i l ename = s t r c a t (model . f r e c v . f i l ename , '_' , num2str (model . g r id . nx1 ) , '_ ' , num2str (model .
g r id . nx2 ) , '_ ' , num2str (model . g r id . nz ) ) ;

t e s t e { idx_test } = model ;
idx_test = idx_test + 1 ;

end

i f or ( strcmpi ( f l ag , 'LMicNonECEc ' ) , strcmpi ( f l ag , ' LMicAll ' ) )

%% test 1 axon , small length , sparse grid , excitation nonECE in current
model . f r e c v . fmin = fmin ;
model . f r e c v . fmax = fmax ;
model . f r e c v . nop = nop ;
model . f r e c v . f i l ename = 'LMicECEc ' ; % f i l ename root
model . f r e c v . f o l d e r = ' out ' ; % f o l d e r name ( r e l a t i v e to main program f o l d e r ) f o r f requency

re sponse s

% geometr ie
model . geom . a = a ; %m
model . geom . b = b ; %m
model . geom . l = l t e s t ;
model . geom . x0 = x0 ;
model . geom . z0 = 0 ;
%model . geom . sim = 'xy ' ; % 'xy ' sau ' axi ' ( r o t a t i on ax i s i s Oz)
model . geom . sim = ' ax i ' ;

model .matC . s i g = sigC ;

model .matM. sigR = sigR ;
model .matM. s igZ = sigZ ;
model .matM. eps = epsrM ∗ epsi lonVID ;

% te rmina l s : the re has to be one ' g ' − ground ;
% type o f e x c i t a t i o n : ECEv, ECEc, nonECEc

tipExc = 'nonECEc ' ; %'nonECEc ' ; %'ECEv ' ;

model . term {1} . exc = ' g ' ; % ground
model . term {1} . poz = 'xmax ' ; % 'xmax ' , ' zmin ' , 'xmax ' , ' zmax '
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model . term {1} .min = model . geom . z0 ;
model . term {1} .max = model . geom . z0 + model . geom . l ;
%
model . term {2} . exc = tipExc ;
model . term {2} . poz = 'zmax ' ; % 'xmax ' , ' zmin ' , 'xmax ' , ' zmax '
model . term {2} .min = model . geom . x0 ;
model . term {2} .max = model . geom . x0 + model . geom . a ;
%
model . term {3} . exc = tipExc ;
model . term {3} . poz = ' zmin ' ; % 'xmax ' , ' zmin ' , 'xmax ' , ' zmax '
model . term {3} .min = model . geom . x0 ;
model . term {3} .max = model . geom . x0 + model . geom . a ;
%

% gr id
model . g r id . nx1 = nx1 ; % d i s c r e t i z a t i o n on [ 0 , a ]
model . g r id . nx2 = nx2 ; % d i s c r e t i z a t i o n on [ a , b ]
model . g r id . nz = nz ;

model . f r e c v . f i l ename = s t r c a t (model . f r e c v . f i l ename , '_' , num2str (model . g r id . nx1 ) , '_ ' , num2str (model .
g r id . nx2 ) , '_ ' , num2str (model . g r id . nz ) ) ;

t e s t e { idx_test } = model ;
idx_test = idx_test + 1 ;

end

func t i on [ out ] = extrapo lareRichardson ( pasi , matrR11 , matrR12 )
%% Richardson extrapolation
% steps : 1xnr_pasi , conta ins the va lues o f the s t ep s used f o r
% ex t r apo l a t i on
% matrR11 : matrix l ength ( pas i ) x nr_puncte : R11 at step 1 , 2 , . .
% matrR12 : matrix l ength ( pas i ) x nr_puncte : R12 at step 1 , 2 , . .

h1 = pas i (1 ) ;
h2 = pas i (2 ) ;
h1p = h1^2;
h2p = h2^2;
d i f = h2p−h1p ;

f o r i =1: l ength (matrR11 )
R11 (1) = matrR11 (1 , i ) ;
R11 (2) = matrR11 (2 , i ) ;
R12 (1) = matrR12 (1 , i ) ;
R12 (2) = matrR12 (2 , i ) ;

R11extrap = (R11 (1) ∗h2p−R11 (2) ∗h1p ) / d i f ;
R12extrap = (R12 (1) ∗h2p−R12 (2) ∗h1p ) / d i f ;

Rextrap = [ R11extrap R12extrap ; R12extrap R11extrap ]
Gextrap = inv ( Rextrap ) ;
out . R11extrap ( i ) = Rextrap (1 , 1 ) ;
out . R12extrap ( i ) = Rextrap (1 , 2 ) ;
out . G11extrap ( i ) = Gextrap (1 ,1 ) ;
out . G12extrap ( i ) = Gextrap (1 ,2 ) ;

end
end

Functions for solving

f unc t i on term = find_idx_terminals_axon (model )
geom = model . geom ;
term = model . term ;
g r id = model . g r id ;

xs = geom . x0 ;
xd1 = geom . x0 + geom . a ;
xd2 = geom . x0 + geom . b ;
zs = geom . z0 ;
zd = geom . z0 + geom . l ;
nx1 = gr id . nx1 ;
nx2 = gr id . nx2 ;
nz = gr id . nz ;

grid_x1 = l i n spa c e ( xs , xd1 , nx1 ) ;
grid_x2 = l i n spa c e ( xd1 , xd2 , nx2 ) ;
grid_z = l i n spa c e ( zs , zd , nz ) ;
grid_x = [ grid_x1 grid_x2 ( 2 : end ) ] ;

nx = nx1 + nx2 − 1 ;

not = length ( term ) ; % no o f t e rmina l s
f o r i = 1 : not

vmin = term{ i } . min ;
vmax = term{ i } .max ;
switch term{ i } . poz

case ' xmin '
idx_j = f ind ( and ( grid_z>=vmin , grid_z<=vmax) ) ;
term{ i } . idx = idx_j ;

case 'xmax '
idx_j = f ind ( and ( grid_z>=vmin , grid_z<=vmax) ) ;
term{ i } . idx = (nx−1)∗nz + idx_j ;

case ' zmin '
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idx_i = f ind ( and ( grid_x>=vmin , grid_x<=vmax) ) ;
term{ i } . idx = ( idx_i−1)∗nz + 1 ;

case ' zmax '
idx_i = f ind ( and ( grid_x>=vmin , grid_x<=vmax) ) ;
term{ i } . idx = ( idx_i−1)∗nz + nz ;

% case ' zmi j loc '
% idx_i = f ind ( and ( grid_x>=vmin , grid_x<=vmax) ) ;
% term{ i } . idx = ( idx_i−1)∗nz + round ( nz /2) ;

o therwi se
e r r o r ( ' unknown poz i t i on o f te rmina l ' ) ;

end
end

end

func t i on [ nxa , nxb , nz , pasnou ] = get_noduri_mesh ( pas , a , b , z )

n r in ta = [ f l o o r ( a/pas ) round ( a/pas ) ] ;
pasao = a ./ nr in ta ;
[ pasa , i dx in ta ] = min ( pasao ) ;
nxa = nr in ta ( idx in ta )+1;

nr intb = [ f l o o r (b/pas ) round (b/pas ) ] ;
pasbo = b ./ nr intb ;
[ pasb , idx in tb ] = min ( pasbo ) ;
nxb = nr intb ( idx in tb )+1;

n r i n t z = [ f l o o r ( z/pas ) round ( z/pas ) ] ;
paszo = z . / n r i n t z ;
[ pasz , i dx i n t z ] = min ( paszo ) ;
nz = nr in t z ( i dx i n t z )+1;

pas i = [ pasa pasb pasz ] ;
pasnou = mean( pas i ) ;

end

func t i on A = Matr i ce Inc identaLatur iNodur i ( g r id )

nx = gr id . nx ;
nz = gr id . nz ;

N = nx∗nz ;
noRows = N + nz ;
noCols = 2∗N;

A = spar se (noRows , noCols ) ;

% Ox − towards E
% Oz − towards N
f o r k = 1 :N % browse the nodes

doik = 2∗k ;
doikm1 = doik−1;
A(k , doik ) = 1 ; % current node , edge towards N
A(k , doikm1 ) = 1 ; % current node , edge towards E
A(k+1, doik ) = −1; % node N, edge towards N
A(k+nz , doikm1 ) = −1; % node E, edge towards E

end
% co r r e c t f a l s e nodes , N border
f o r i = 1 : nx

idx_nod = nz∗ i ;
idx_lat = 2∗ idx_nod ;
A( idx_nod , idx_lat ) = 0 ; % was 1
A( idx_nod+1, idx_lat ) = 0 ; % was −1

end
% co r r e c t f a l s e nodes , E border
f o r j = 1 : nz

idx_nod = (nx−1)∗nz + j ;
idx_lat = 2∗ idx_nod − 1 ;
A( idx_nod , idx_lat ) = 0 ; % was 1
A( idx_nod+nz , idx_lat ) = 0 ; % was −1

end
% era s e unnecessary nodes from the r i gh t o f E border
A(N+1:end , : ) = [ ] ;

f unc t i on P = PermeanteLaturiDomeniuDiscret izat (geom , g r id )
% domain permeance

% domain po s i t i o n
x1 = geom . x0 ;
x2 = geom . x0 + geom . lx ;
z1 = geom . z0 ;
z2 = geom . z0 + geom . l z ;

% domain d i s c r e t i z a t i o n
nx = gr id . nx ;
nz = gr id . nz ;

vector_x = l i n spa c e ( x1 , x2 , nx ) ;
vector_z = l i n spa c e ( z1 , z2 , nz ) ;

N = nx∗nz ;
L = 2∗N; % number o f edges
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doinz = 2∗nz ;
P = ze ro s (L , 1 ) ;

% browse the c e l l s and add con t r i bu t i on s to P_lat
f o r i = 1 : nx−1

r1 = vector_x ( i ) ;
r2 = vector_x ( i +1) ;
f o r j = 1 : nz−1

k = ( i −1)∗nz + j ; % node/ c e l l index
dz = vector_z ( j +1) − vector_z ( j ) ; % c e l l p o s i t i o n c e l u l e i
%[ lambda_long_r1 , lambda_long_r2 , lambda_rad ] = PermeantaCelula ( r1 , r2 , dz , geom . sim ) ;
lambda = PermeantaCelula ( r1 , r2 , dz , geom . sim ) ;
lat_stg = 2∗k ;
l a t_jos = lat_stg − 1 ;
lat_sus = lat_stg + 1 ;
lat_dr = lat_stg + doinz ;
P( lat_stg ) = P( lat_stg ) + lambda . xmin ;
P( lat_dr ) = P( lat_dr ) + lambda . xmax ;
P( la t_jos ) = P( la t_jos ) + lambda . z ;
P( lat_sus ) = P( lat_sus ) + lambda . z ;

end
end
end

func t i on lambda = PermeantaCelula ( x1 , x2 , dz , sim )
% geomet r i ca l permeances o f one c e l l
% between r1 and r2>r1>=0 and he ight dz>0

switch sim
case ' ax i '

dr = x2 − x1 ;
dr2 = dr /2 ;
lambda . xmin = pi ∗( ( x1+dr2 )^2 − x1^2)/dz ;
lambda . xmax = pi ∗( x2^2 − ( x2−dr2 ) ^2)/dz ;
i f x1 < eps

% x1 = eps ;
% lambda . z = pi ∗dz /( log ( x2 )−l og ( x1 ) ) ;

lambda . z = 0 ;
e l s e

lambda . z = pi ∗dz /( log ( x2 )−l og ( x1 ) ) ;
end

case ' xy '
dx = x2 − x1 ;
lambda . z = dz /(2∗dx ) ;
lambda . xmin = dx/(2∗ dz ) ;
lambda . xmax = lambda . xmin ;

o therwi se
e r r o r ( ' unknown symmetry , i t should be e i t h e r xy or ax i ' ) ;

end
end

func t i on [ out , Vterm1 , Vterm2 ] = solve_EQS_axon_MsiC_omogene_izotrope (model )

% cytoplasm
modelC . g r id . nx = model . g r id . nx1 ;
modelC . g r id . nz = model . g r id . nz ;
modelC . geom . x0 = model . geom . x0 ;
modelC . geom . z0 = model . geom . z0 ;
modelC . geom . lx = model . geom . a ;
modelC . geom . l z = model . geom . l ;
modelC . geom . sim = ' ax i ' ;
AC = Matr i ce Inc identaLatur iNodur i (modelC . g r id ) ;
PC = PermeanteLaturiDomeniuDiscret izat (modelC . geom , modelC . g r id ) ; % vector
LC = length (PC) ;
PC = spd iags (PC, 0 ,LC,LC) ;
PnodalC = AC∗PC∗AC' ;
NC = length (PnodalC ) ;

% membrane
modelM . g r id . nx = model . g r id . nx2 ;
modelM . g r id . nz = model . g r id . nz ;
modelM . geom . x0 = model . geom . x0 + model . geom . a ;
modelM . geom . z0 = model . geom . z0 ;
modelM . geom . lx = model . geom . b − model . geom . a ;
modelM . geom . l z = model . geom . l ;
modelM . geom . sim = ' ax i ' ;
AM = Matr i ce Inc identaLatur iNodur i (modelM . g r id ) ;
PM = PermeanteLaturiDomeniuDiscret izat (modelM . geom , modelM . g r id ) ; % vector
LM = length (PM) ;
PM = spdiags (PM,0 ,LM,LM) ;
PnodalM = AM∗PM∗AM' ;
NM = length (PnodalM) ;

%%% in the g l oba l numbering , we deduct the i n d i c e s corresponding to the
%%% termina l s , ground and shared nodes

idx_com = NC−model . g r id . nz+1:NC; % i nd i c e s o f the shared nodes
N = NC + NM − model . g r id . nz ; % t o t a l number o f nodes

idx_gnd = ze ro s (N, 1 ) ;
i_gnd = 0 ;
idx_term = zero s (N, 1 ) ;
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i_term = 0 ;
not = length (model . term ) ;
no_term_exc = 0 ;
exc i tat ionType = ' ' ;
f o r k = 1 : not

exc = model . term{k } . exc ;
switch exc

case 'ECEv '
i f isempty ( exc i tat ionType )

exc i tat ionType = 'ECEv ' ;
e l s e i f ~strcmp ( excitat ionType , 'ECEv ' )

e r r o r ( ' Al l t e rmina l s have to be exc i t ed in a s im i l a r way ' ) ;
end
no_term_exc = no_term_exc + 1 ;
i n d i c i = model . term{k } . idx ;
noi = length ( i n d i c i ) ;
idx_term ( i_term+1: i_term+noi ) = i n d i c i ;
i_term = i_term+noi ;
i f no_term_exc == 1

l a s t i d x = length ( i n d i c i ) ;
end

case 'ECEc '
i f isempty ( exc i tat ionType )

exc i tat ionType = 'ECEc ' ;
e l s e i f ~strcmp ( excitat ionType , 'ECEc ' )

e r r o r ( ' Al l t e rmina l s have to be exc i t ed in a s im i l a r way ' ) ;
end
no_term_exc = no_term_exc + 1 ;
i n d i c i = model . term{k } . idx ;
noi = length ( i n d i c i ) ;
idx_term ( i_term+1: i_term+noi ) = i n d i c i ;
i_term = i_term+noi ;
i f no_term_exc == 1

l a s t i d x = length ( i n d i c i ) ;
end

case 'nonECEc '
i f isempty ( exc i tat ionType )

exc i tat ionType = 'nonECEc ' ;
e l s e i f ~strcmp ( excitat ionType , 'nonECEc ' )

e r r o r ( ' Al l t e rmina l s have to be exc i t ed in a s im i l a r way ' ) ;
end
no_term_exc = no_term_exc + 1 ;
i n d i c i = model . term{k } . idx ;
noi = length ( i n d i c i ) ;
idx_term ( i_term+1: i_term+noi ) = i n d i c i ;
i_term = i_term+noi ;
i f no_term_exc == 1

l a s t i d x = length ( i n d i c i ) ;
end

case ' g '
i n d i c i = model . term{k } . idx ;
noi = length ( i n d i c i ) ;
idx_gnd ( i_gnd+1: i_gnd+noi ) = i n d i c i ;
i_gnd = i_gnd+noi ;

o therwi se
e r r o r ( ' t e rmina l type not implemented ' ) ;

end
end
idx_term ( i_term+1:end ) = [ ] ;
i f no_term_exc ~= 2

e r r o r ( ' exac t l y two te rmina l s have to be exc i ted , in the same way : ECEv, ECEc, or nonECEc ' ) ;
end
no_term1 = l a s t i d x ; % number o f nodes that belong to termina l 1
no_term2 = i_term − no_term1 ; % number o f nodes that belong to termina l 2
idx_term1 = idx_term ( 1 : l a s t i d x ) ; % i nd i c e s o f the nodes that belong to termina l 1
idx_term2 = idx_term ( l a s t i d x +1:end ) ; % i nd i c e s o f the nodes that belong to termina l 1

idx_gnd ( i_gnd+1:end ) = [ ] ;
idx_nec = 1 :N;
idx_nec = idx_nec ' ;
idx_nec ( [ idx_term ; idx_gnd ] ) = [ ] ;
no_nec = length ( idx_nec ) ; % number o f degree s o f freedom
f p r i n t f ( 'No o f DOFs = %d \n ' , no_nec ) ;

%% assembling Gnodal mixed
Gnodal = spar se (N,N) ;
dimC = length (PnodalC ) ;
Gnodal ( 1 : dimC , 1 : dimC) = PnodalC∗model .matC . s i g ;
dimcom = length ( idx_com) ; % number o f shared nodes
idx = dimC−dimcom+1;
Gnodal ( idx : end , idx : end ) = Gnodal ( idx : end , idx : end ) + PnodalM∗model .matM. sigR ;

Gnn = Gnodal ( idx_nec , idx_nec ) ;
Gnt1 = Gnodal ( idx_nec , idx_term1 ) ;
Gnt2 = Gnodal ( idx_nec , idx_term2 ) ;
Gtt1 = Gnodal ( idx_term1 , idx_term1 ) ;
Gtt2 = Gnodal ( idx_term2 , idx_term2 ) ;
Gtt12 = Gnodal ( idx_term1 , idx_term2 ) ;

%% assembling Cnodal mixed
Cnodal = spar se (N,N) ;
Cnodal ( idx : end , idx : end ) = PnodalM∗model .matM. eps ;

Cnn = Cnodal ( idx_nec , idx_nec ) ;
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Cnt1 = Cnodal ( idx_nec , idx_term1 ) ;
Cnt2 = Cnodal ( idx_nec , idx_term2 ) ;
Ctt1 = Cnodal ( idx_term1 , idx_term1 ) ;
Ctt2 = Cnodal ( idx_term2 , idx_term2 ) ;
Ctt12 = Cnodal ( idx_term1 , idx_term2 ) ;

nop = model . f r e c v . nop ;
% frecvHz = l i n spa c e (model . f r e c v . fmin , model . f r e c v . fmax , nop ) ;
f recvHz = logspace ( log10 (model . f r e c v . fmin ) , log10 (model . f r e c v . fmax ) , nop ) ;
frecvRad = frecvHz ∗2∗ pi ;
f recv_resp = ze ro s (2 ,2 , nop ) ;

switch exc i tat ionType
case 'ECEv '

Vterm1 = [ ones ( no_term1 , 1 ) z e ro s ( no_term1 , 1 ) ] ; % e x c i t a t i o n s o f the two s imu la t i on s
Vterm2 = [ ze ro s ( no_term2 , 1 ) ones ( no_term2 , 1 ) ] ;

d i sp ( ' Exc i ta t i on ECE in voltage , computing the matrix o f t r a n s f e r conductances ' ) ;
i f no_nec == 0

f o r k = 1 : nop
Ytt1 = Gtt1 + 1 i ∗ frecvRad (k ) ∗Ctt1 ;
Ytt12 = Gtt12 + 1 i ∗ frecvRad (k ) ∗Ctt12 ;
Ytt2 = Gtt2 + 1 i ∗ frecvRad (k ) ∗Ctt2 ;

I t 1 = Ytt1∗Vterm1 + Ytt12∗Vterm2 ;
I t 2 = Ytt2∗Vterm2 + conj ( Ytt12 ) '∗Vterm1 ;
%Vnec = [ ] ;
out = [ sum( I t1 ) ; sum( I t2 ) ] ; % merging , the output r ep r e s en t s complex admittances
f recv_resp ( : , : , k ) = out ;

end
e l s e

f o r k = 1 : nop
Ytt1 = Gtt1 + 1 i ∗ frecvRad (k ) ∗Ctt1 ;
Ytt12 = Gtt12 + 1 i ∗ frecvRad (k ) ∗Ctt12 ;
Ytt2 = Gtt2 + 1 i ∗ frecvRad (k ) ∗Ctt2 ;
Ynn = Gnn + 1 i ∗ frecvRad (k ) ∗Cnn ;
Ynt1 = Gnt1 + 1 i ∗ frecvRad (k ) ∗Cnt1 ;
Ynt2 = Gnt2 + 1 i ∗ frecvRad (k ) ∗Cnt2 ;

Vnec = −Ynn\(Ynt1∗Vterm1+Ynt2∗Vterm2 ) ;
I t 1 = Ytt1∗Vterm1 + Ytt12∗Vterm2 + conj (Ynt1 ) '∗Vnec ;
I t 2 = Ytt2∗Vterm2 + conj ( Ytt12 ) '∗Vterm1 + conj (Ynt2 ) '∗Vnec ;
out = [ sum( I t1 ) ; sum( I t2 ) ] ; % merging , the output r ep r e s en t s complex admittances
f recv_resp ( : , : , k ) = out ;

end
end

case 'ECEc '
Gtt1 = sum(sum( Gtt1 ) ) ; % merge be f o r e s o l v i ng ( c on s t r a i n t o f equal p o t e n t i a l s f o r the

t e rmina l s nodes )
Gtt2 = sum(sum( Gtt2 ) ) ;
Gnt1 = sum(Gnt1 , 2 ) ;
Gnt2 = sum(Gnt2 , 2 ) ;
Gtt12 = sum(sum( Gtt12 ) ) ;
Gnodal = [ Gtt1 Gtt12 Gnt1 ' ; ...

Gtt12 ' Gtt2 Gnt2 ' ; ...
Gnt1 Gnt2 Gnn ] ;

%
Ctt1 = sum(sum( Ctt1 ) ) ; % merge be f o r e s o l v i ng ( c on s t r a i n t o f equal p o t e n t i a l s f o r the

t e rmina l s nodes )
Ctt2 = sum(sum( Ctt2 ) ) ;
Cnt1 = sum(Cnt1 , 2 ) ;
Cnt2 = sum(Cnt2 , 2 ) ;
Ctt12 = sum(sum( Ctt12 ) ) ;
Cnodal = [ Ctt1 Ctt12 Cnt1 ' ; ...

Ctt12 ' Ctt2 Cnt2 ' ; ...
Cnt1 Cnt2 Cnn ] ;

%
I t1 = [1 0 ] ;
I t 2 = [0 1 ] ;

I = [ I t 1 ; I t 2 ; z e ro s ( no_nec , 2 ) ] ;
d i sp ( ' Exc i ta t i on ECE in current , computing the matrix o f t r a n s f e r conductances ' ) ;

f o r k = 1 : nop
Ynodal = Gnodal + 1 i ∗ frecvRad (k ) ∗Cnodal ;
x = Ynodal\ I ;
Vterm1 = x ( 1 , : ) ;
Vterm2 = x ( 2 , : ) ;
%Vnec = x ( 3 : end , : ) ;
out = [ Vterm1 ; Vterm2 ] ;
f recv_resp ( : , : , k ) = out ;

end

case 'nonECEc '
I t 1 = [ ones ( no_term1 , 1 ) /no_term1 ze ro s ( no_term1 , 1 ) ] ; % ex c i t a t i o n s o f the two s imu la t i on s
I t 2 = [ z e ro s ( no_term2 , 1 ) ones ( no_term2 , 1 ) /no_term2 ] ;
Gnodal = [ Gtt1 Gtt12 Gnt1 ' ; ...

Gtt12 ' Gtt2 Gnt2 ' ; ...
Gnt1 Gnt2 Gnn ] ;

Cnodal = [ Ctt1 Ctt12 Cnt1 ' ; ...
Ctt12 ' Ctt2 Cnt2 ' ; ...
Cnt1 Cnt2 Cnn ] ;

I = [ I t 1 ; I t 2 ; z e ro s ( no_nec , 2 ) ] ;
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% average vo l tage
d i sp ( ' Exc i ta t i on nonECE in current , computing the matrix o f t r a n s f e r conductances , by averag ing

the p o t e n t i a l s ' ) ;
f o r k = 1 : nop

Ynodal = Gnodal + 1 i ∗ frecvRad (k ) ∗Cnodal ;
x = Ynodal\ I ;
Vterm1 = x ( 1 : no_term1 , : ) ;
Vterm2 = x(no_term1+1:no_term1+no_term2 , : ) ;
%Vnec = x(no_term1+no_term2+1:end , : ) ;
out = [ sum(Vterm1 ) /no_term1 ; sum(Vterm2 ) /no_term2 ] ;
f recv_resp ( : , : , k ) = out ;

end
otherwi se

e r r o r ( 'Unknown ex c i t a t i o n type ' ) ;
end
f p r i n t f ( ' %d f r e qu en c i e s \n ' , nop ) ;
filenameY_RI = s t r c a t (model . f r e c v . f i l ename , '_' , exc itat ionType , '_Y_RI. s2p ' ) ;
filenameY_MA = s t r c a t (model . f r e c v . f i l ename , '_' , exc itat ionType , '_Y_MA. s2p ' ) ;
filenameZ_RI = s t r c a t (model . f r e c v . f i l ename , '_' , exc itat ionType , '_Z_RI. s2p ' ) ;
filenameZ_MA = s t r c a t (model . f r e c v . f i l ename , '_' , exc itat ionType , '_Z_MA. s2p ' ) ;
filenameS_DB = s t r c a t (model . f r e c v . f i l ename , '_' , exc itat ionType , '_S_DB. s2p ' ) ;
chd i r (model . f r e c v . f o l d e r ) ;
i f strcmp ( exc itat ionType , 'ECEv ' )

writesnp_v2 ( filenameY_RI , frecvHz , frecv_resp , 'Y ' , 'Hz ' ,50 , 'RI ' ) ;
snp2snp ( ' ' , filenameY_RI , 'Z ' , 'RI ' , filenameZ_RI ) ;

e l s e
writesnp_v2 ( filenameZ_RI , frecvHz , frecv_resp , 'Z ' , 'Hz ' ,50 , 'RI ' ) ;
snp2snp ( ' ' , filenameZ_RI , 'Y ' , 'RI ' , filenameY_RI ) ;

end
snp2snp ( ' ' , filenameY_RI , 'Y ' , 'MA' , filenameY_MA) ;
snp2snp ( ' ' , filenameZ_RI , 'Z ' , 'MA' , filenameZ_MA) ;
snp2snp ( ' ' , filenameY_RI , 'S ' , 'DB' , filenameS_DB) ;
chd i r ( ' . . ' ) ;
end

Functions for drawing

f unc t i on draw_domain_axon(geom)
xs = geom . x0 ;
xd1 = geom . x0 + geom . a ;
xd2 = geom . x0 + geom . b ;
zs = geom . z0 ;
zd = geom . z0 + geom . l ;
x = [ xd1 xd1 xs xs xd1 xd2 xd2 xd1 ]∗1 e6 ;
z = [ zs zd zd zs zs zs zd zd ]∗1 e6 ;
p l o t (x , z , '−k ' , ' Linewidth ' ,2 ) ;
ylim ( [ 0 . 9 ∗ min ( z ) , 1 . 1∗max( z ) ] ) ;
xlim ( [ 0 , 1 . 1 ∗max(x ) ] ) ;
x l ab e l ( ' r [ {\mu}m] ' ) ;
y l ab e l ( ' z [ {\mu}m] ' ) ;
t i t l e ( ' 2 . 5 D, Oz i s the ax i s or r o t a t i on ' ) ;
% hold on ;
% p lo t ( [ 0 0 ] , [ 0 . 9 ∗ min ( z ) , 1 . 1∗max( z ) ] , '− r ' , ' Linewidth ' , 1 ) ;

end

func t i on draw_grid_axon (geom , g r id )
xs = geom . x0 ;
xd1 = geom . x0 + geom . a ;
xd2 = geom . x0 + geom . b ;
zs = geom . z0 ;
zd = geom . z0 + geom . l ;
nx1 = gr id . nx1 ;
nx2 = gr id . nx2 ;
nz = gr id . nz ;

grid_x1 = l i n spa c e ( xs , xd1 , nx1 ) ;
grid_x2 = l i n spa c e ( xd1 , xd2 , nx2 ) ;
grid_z = l i n spa c e ( zs , zd , nz ) ;
grid_x = [ grid_x1 grid_x2 ( 2 : end ) ] ;

nx = nx1 + nx2 − 1 ;
f o r i = 1 : nx

p lo t ( [ grid_x ( i ) grid_x ( i ) ] ∗1 e6 , [ zs , zd ]∗1 e6 , ' :m' ) ;
end
f o r i = 1 : nz

p lo t ( [ xs xd2 ]∗1 e6 , [ grid_z ( i ) grid_z ( i ) ] ∗1 e6 , ' :m' ) ;
end

end

func t i on draw_terminals_axon (geom , term )
xs = geom . x0 ;
%xd1 = geom . x0 + geom . a ;
xd2 = geom . x0 + geom . b ;
zs = geom . z0 ;
zd = geom . z0 + geom . l ;

not = length ( term ) ; % no o f t e rmina l s
f o r i = 1 : not

exc = term{ i } . exc ; % type o f e x c i t a t i o n (ECEv, ECEc, nonECEc , g )
x = [ term{ i } . min term{ i } .max ] ;
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y = x ;
switch term{ i } . poz

case ' xmin '
x = [ xs xs ] ;

case 'xmax '
x = [ xd2 xd2 ] ;

case ' zmin '
y = [ zs zs ] ;

case ' zmax '
y = [ zd zd ] ;

o therwi se
e r r o r ( 'unknown poz i t i on o f te rmina l ' ) ;

end
x = x∗1 e6 ;
y = y∗1 e6 ;
switch exc

case 'ECEv '
p lo t (x , y , '−r ' , ' Linewidth ' , 3 ' ) ;

case ' g '
p l o t (x , y , '−k ' , ' Linewidth ' , 6 ' ) ;

case 'ECEc '
p lo t (x , y , '−g ' , ' Linewidth ' , 3 ' ) ;

case 'nonECEc '
p lo t (x , y , '−b ' , ' Linewidth ' , 3 ' ) ;

o therwi se
e r r o r ( 'Unknown ex c i t a t i o n o f te rmina l ' ) ;

end
end
end

func t i on number_nodes_axon (geom , g r id )
xs = geom . x0 ;
xd1 = geom . x0 + geom . a ;
xd2 = geom . x0 + geom . b ;
zs = geom . z0 ;
zd = geom . z0 + geom . l ;
nx1 = gr id . nx1 ;
nx2 = gr id . nx2 ;
nz = gr id . nz ;

grid_x1 = l i n spa c e ( xs , xd1 , nx1 ) ;
grid_x2 = l i n spa c e ( xd1 , xd2 , nx2 ) ;
grid_z = l i n spa c e ( zs , zd , nz ) ;
grid_x = [ grid_x1 grid_x2 ( 2 : end ) ] ;

nx = nx1 + nx2 − 1 ;
f o r i = 1 : nx

f o r j = 1 : nz
k = ( i −1)∗nz + j ;
t ext ( grid_x ( i ) ∗1e6 , grid_z ( j ) ∗1e6 , num2str ( k ) ) ;

end
end

end

func t i on show_nodes_terminals_axon (model )
geom = model . geom ;
g r id = model . g r id ;
term = model . term ;

xs = geom . x0 ;
xd1 = geom . x0 + geom . a ;
xd2 = geom . x0 + geom . b ;
zs = geom . z0 ;
zd = geom . z0 + geom . l ;
nx1 = gr id . nx1 ;
nx2 = gr id . nx2 ;
nz = gr id . nz ;

grid_x1 = l i n spa c e ( xs , xd1 , nx1 ) ;
grid_x2 = l i n spa c e ( xd1 , xd2 , nx2 ) ;
grid_z = l i n spa c e ( zs , zd , nz ) ;
grid_x = [ grid_x1 grid_x2 ( 2 : end ) ] ;

nx = nx1 + nx2 − 1 ;

not = length ( term ) ; % no o f t e rmina l s
f o r idx_t = 1 : not

exc = term{ idx_t } . exc ; % type o f e x c i t a t i o n (ECEv, ECEc, nonECEc , g )
switch exc

case 'ECEv '
c o l o r = ' r ' ;

case ' g '
c o l o r = 'm' ;

case 'ECEc '
c o l o r = ' g ' ;

case 'nonECEc '
c o l o r = 'b ' ;

o therwi se
e r r o r ( ' t e rmina l type not implemented ' ) ;

end

f o r k = model . term{ idx_t } . idx
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j = rem(k , nz ) ;
i f j == 0

j = nz ;
end
i = (k−j ) /nz + 1 ;
text ( grid_x ( i ) ∗1e6 , grid_z ( j ) ∗1e6 , num2str ( k ) , ' Color ' , c o l o r ) ;

end
end

end

snp functions

f unc t i on [ ok ] = writesnp_v2 ( f i l ename , freq_points , data , ptype , units , Z0 , pformat )

% Saves to a snp f i l e

% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% Writing header
% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

[ n ,m,nm] = s i z e ( data ) ;
i f strcmpi ( units , 'HZ ' )

f req_points = freq_points ./1 e9 ;
e l s e i f strcmpi ( units , 'KHZ' )

f req_points = freq_points ./1 e6 ;
e l s e i f strcmpi ( units , 'MHZ' )

f req_points = freq_points ./1 e3 ;
e l s e i f strcmpi ( units , 'GHZ' )

%disp ( ' Freq i s in GHz' ) ;
e l s e% i f strcmpi ( units , 'RAD/S ' )

f req_points = freq_points ./2/ pi /1 e9 ;
end ;

un i t s = 'GHz ' ;

i f m > 6
nports = m;
newname = s t r c a t ( f i l ename , ' . mat ' ) ;
pformat = 'RI ' ;
save (newname , ' ptype ' , ' pformat ' , ' f r eq_points ' , ' data ' , 'Z0 ' , ' un i t s ' , ' nports ' , '−mat ' ) ;
f p r i n t f ( ' ! ! ! ! ! ! ! ! ! READ THIS ! ! ! ! ! ! ! ! ! Output wr i t t en in %s \n ' ,newname) ;
ok = 0 ;

e l s e
f i d = fopen ( f i l ename , 'w ' ) ;
i f f i d == −1

e r r o r ( ' Error in opening f i l e %s ' , f i l ename ) ;
end
f p r i n t f ( f id , '%s %s %s %s %s %s ' , '#' , units , ptype , pformat , 'R ' , num2str (Z0 ) ) ;

dim = length ( f req_points ) ;
ok=0;
img = sqr t (−1) ; % ju s t to be sure

i f m == 1
A( : , 1 ) = freq_points ;
data = squeeze ( data ) ;
r e a l p a r t = r e a l ( data ) ;
imagpart = imag ( data ) ;
switch upper ( pformat )

case 'RI '
A( : , 2 ) = r e a l p a r t ;
A( : , 3 ) = imagpart ;

case 'MA'
datac = r e a l p a r t+img∗ imagpart ;
A( : , 2 ) = abs ( datac ) ;
A( : , 3 ) = angle ( datac ) ∗180/ pi ;

case 'DB'
datac = r e a l p a r t+img∗ imagpart ;
A( : , 2 ) = 20∗ log10 ( abs ( datac ) ) ;
A( : , 3 ) = angle ( datac ) ∗180/ pi ;

end
f o r index = 1 : dim

f p r i n t f ( f id , ' \n%1.16 e %1.16 e %1.16 e ' ,A( index , 1 ) ,A( index , 2 ) ,A( index , 3 ) ) ;
end ;
%f p r i n t f ( f id , '\n%s ' , ' ! end o f data ' ) ;
f c l o s e ( f i d ) ;
f p r i n t f ( 'Output wr i t t en in %s \n ' , f i l ename ) ;
f p r i n t f ( ' Current d i r e c t o r y i s %s \n ' ,pwd) ;

e l s e % MIMO
noval = m∗m∗2 ;
A = ze ro s (nm, noval+1) ;
A( : , 1 ) = freq_points ;
index = 1 ;
f o r j = 1 :m

f o r i = 1 :m
r e a l p a r t = squeeze ( r e a l ( data ( i , j , : ) ) ) ;
imagpart = squeeze ( imag ( data ( i , j , : ) ) ) ;
switch pformat

case 'RI '
index = index+1;
A( : , index ) = r e a l p a r t ;
index = index+1;
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A( : , index ) = imagpart ;
case 'MA'

datac = r e a l p a r t+img∗ imagpart ;
index = index+1;
A( : , index ) = abs ( datac ) ;
index = index+1;
A( : , index ) = angle ( datac ) ∗180/ pi ;

case 'DB'
datac = r e a l p a r t+img∗ imagpart ;
index = index+1;
A( : , index ) = 20∗ log10 ( abs ( datac ) ) ;
index = index + 1 ;
A( : , index ) = angle ( datac ) ∗180/ pi ;

end
end

end

f o r k = 1 : dim
f p r i n t f ( f id , ' \n ' ) ;
f p r i n t f ( f id , '%1.16 e ' ,A(k , 1 ) ) ;
%f p r i n t f ( f id , '%2.20g ' ,A(k , 1 ) ) ;
f o r i = 2 : noval+1

f p r i n t f ( f id , ' %1.16 e ' ,A(k , i ) ) ;
%f p r i n t f ( f id , ' %2.20g ' ,A(k , i ) ) ;

end
end ;
%f p r i n t f ( f id , '\n%s ' , ' ! end o f data ' ) ;
f c l o s e ( f i d ) ;
f p r i n t f ( 'Output wr i t t en in %s \n ' , f i l ename ) ;
f p r i n t f ( ' in the f o l d e r %s \n ' ,pwd) ;

end ;
end

func t i on [ ] = snp2snp ( snp_pathname , snp_filename , type , r ep r e s en ta t i on , ...
new_filename )

numein = snp_filename ;
[ ptype , p f o rmat f i l e , f requency_points , value , Z0 , ...

f req_unit , nports ] = ...
loadsnp ( s t r c a t ( snp_pathname , snp_filename ) ) ;

ext = s t r c a t ( ' . s ' , num2str ( nports ) , 'p ' ) ;
l e x t = length ( ext ) ;

i f isempty ( new_filename )
new_filename = numein ;
l l = length ( new_filename ) ;
newf = new_filename ;
new_filename = s t r c a t ( newf ( 1 : l l−l ength ( ext ) ) , '_from_ ' , ptype , ...

'_to_ ' , type , ext ) ;
e l s e

l l = length ( new_filename ) ;
i f l l > l e x t

i f ~strcmp ( new_filename ( l l−l e x t +1: l l ) , ext )
% wrong extens ion − add co r r e c t extens ion
new_filename = s t r c a t ( new_filename , ext ) ;

end
e l s e

new_filename = s t r c a t ( new_filename , ext ) ;
end

end

i f strcmp ( ptype , type ) ==0
disp ( s p r i n t f ( ' Conversion from %s to %s ' , ptype , type ) ) ;
switch ptype

case 'S '
switch type

case 'Z '
[ va lue ] = mys2z ( value , Z0 ) ;

case 'Y '
[ va lue ] = mys2z ( value , Z0 ) ;
[ va lue ] = myz2y( value ) ;

o therwi se
d i sp ( ' snp2snp .m: Inva l i d parameter . Only S , Z or Y implemented ' ) ;

end
case 'Z '

switch type
case 'S '

[ va lue ] = myz2s ( value , Z0 ) ;
case 'Y '

[ va lue ] = myz2y( value ) ;
o therwi se

d i sp ( ' snp2snp .m: Inva l i d parameter . Only S , Z or Y implemented ' ) ;
end

case 'Y '
switch type

case 'S '
[ va lue ] = myy2z ( value ) ;
[ va lue ] = myz2s ( value , Z0 ) ;

case 'Z '
[ va lue ] = myy2z ( value ) ;

o therwi se
d i sp ( ' snp2snp .m: Inva l i d parameter . Only S , Z or Y implemented ' ) ;

end
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otherwi se
d i sp ( s p r i n t f ( ' Format %s in f i l e %s ' , ptype , snp_pathname ) ) ;
d i sp ( 'Compute i nv e r s e ' ) ;
[ va lue ] = myy2z ( value ) ;
type = 'H ' ;
new_filename = s t r c a t ( newf ( 1 : l l−l ength ( ext ) ) , '_from_ ' , ptype , ...

'_to_ ' , type , ext ) ;
end

end

[ ok ] = writesnp_v2 ( s t r c a t ( snp_pathname , new_filename ) , frequency_points , value , type , freq_unit , Z0 ,
r ep r e s en t a t i on ) ;

i f ok == 0
disp ( s p r i n t f ( '%s f i l e was wr i t t en s u c c e s f u l l y ' , new_filename ) ) ;
d i sp ( ' snp2snp − DONE' ) ;

e l s e
d i sp ( ' snp2snp − FAILURE ' ) ;

end

A2. 2.5D – EC analytical solution, nonhomogeneous case
c l e a r a l l ;
c l o s e a l l hidden ;
c l c ;
date . a = 7e−6 ; % e l e c t r od e rad ius
date . b = 10e−6; % axons outer rad ius
date . L = 223e−6; % length o f axon compartment
date . n = 500 ; % number o f harmonics
date .m = 20 ; % number o f r a d i a l samples
date . s i g 1 = 1 . 0824 ; % cytoplasm conduct iv i ty
date . s i g 2 = 1.04 e−4; % membrane conduct iv i ty
eps0 = 8.854187817 e−12; % F/m
date . eps2 = 15.44∗ eps0 ; % membrane abso lute p e rm i t t i v i t y
%
% parameters used by the non l inea r procedure to compute lambda
date . maxit = 200 ;
date . e r r e l = 1e−15;
%
date . f = 0 ; % s ta t i ona ry
%e r r = v e r i f i c a 2 ( date ) ; % with common f a c t o r D
e r r = ver i f i ca2_v2 ( date ) ; % with common f a c t o r C − a l s o works in homogeneous case

format long e ;
[ Z11r0 , Z21r0 , Z11m ,Z21m ] = impedantaNeomogena ( date )

func t i on e r r = ver i f i ca2_v2 ( date )
a = date . a ;
b = date . b ;
a2 = a^2;
b2 = b^2;
% L = date .L ;
n = date . n ;
m = date .m;
s i g 1 = date . s i g 1 ;
s i g 2 = date . s i g 2 ;
eps2 = date . eps2 ;
f = date . f ;
omega = 2∗ pi ∗ f ;
beta = ( s i g 2 + 1 i ∗omega∗ eps2 ) / s i g 1 ;

r = l i n s pa c e (0 , b ,m) ; % array o f r a d i a l samples
lk = va l p r o p r i i (n , date , ' yes ' ) ; % lambda_k
lkb = lk ∗b ;
lka = lk ∗a ;

J0a = b e s s e l j (0 , lka ) ;
J1a = b e s s e l j (1 , lka ) ;
J0b = b e s s e l j (0 , lkb ) ;
J1b = b e s s e l j (1 , lkb ) ;
%
Y0a = be s s e l y (0 , lka ) ;
Y1a = be s s e l y (1 , lka ) ;
Y0b = be s s e l y (0 , lkb ) ;
Y1b = be s s e l y (1 , lkb ) ;

DpeC_v1 = − J0b . /Y0b ;
DpeC_v2 = (1−beta ) ∗J0a . ∗ J1a . / ( beta ∗J0a . ∗Y1a − J1a . ∗Y0a) ;
DpeC = (DpeC_v1+DpeC_v2) /2 ;

BpeC_v1 = 1 + DpeC.∗ Y0a . / J0a ;
BpeC_v2 = beta ∗(1 + DpeC.∗Y1a . / J1a ) ;
BpeC = (BpeC_v1+BpeC_v2) /2 ;

f i g u r e (101) ; c l f ;
p l o t ( abs (DpeC_v1−DpeC_v2) , '−m' ) ;
f i g u r e (102) ; c l f ;
p l o t ( abs (DpeC_v1−DpeC_v2) . / abs (DpeC) , '−−m' ) ;

f i g u r e (101) ; hold on ;
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p lo t ( abs (BpeC_v1−BpeC_v2) , '−k ' ) ;
l egend ( ' Di f abs in DpC ' , ' Di f abs in BpC ' ) ;
f i g u r e (102) ; hold on ;
p l o t ( abs (BpeC_v1−BpeC_v2) . / abs (BpeC) , '−−k ' ) ;
l egend ( ' Di f r e l in DpC ' , ' Di f r e l in BpC ' ) ;

J0a2 = J0a .^2 ;
J1a2 = J1a .^2 ;
J0b2 = J0b .^2 ;
J1b2 = J1b .^2 ;
Y0a2 = Y0a .^2 ;
Y1a2 = Y1a .^2 ;
Y0b2 = Y0b .^2 ;
Y1b2 = Y1b .^2 ;

term1 = a2 /2 . ∗ ( J0a2 + J1a2 ) ;
%
term2JJ = (b2∗( J0b2 + J1b2 ) − a2 ∗( J0a2 + J1a2 ) ) /2 ;
term2YY = (b2∗(Y0b2 + Y1b2) − a2 ∗(Y0a2 + Y1a2) ) /2 ;
term2JY = (b2∗( J0b . ∗Y0b + J1b . ∗Y1b) − a2 ∗( J0a . ∗Y0a + J1a . ∗Y1a) ) /2 ;
term2 = term2JJ + DpeC.^2 . ∗ term2YY + 2∗DpeC.∗ term2JY ;
%
Rk2 = s i g1 ∗BpeC.^2 . ∗ term1 + s i g2 ∗term2 ;

F = BpeC.∗ J1a . / ( lk . ∗Rk2) ;
F = F/( pi ∗a ) ;
f t = ze ro s (1 ,m) ;
h = ze ro s (1 ,m) ; % exact func t i on ( un i tary pu l se with support 0<r<a )
f o r j = 1 :m

l r = lk ∗ r ( j ) ;
i f r ( j ) < a

h( j ) = 1 ;
R = BpeC.∗ b e s s e l j (0 , l r ) ;

e l s e
R = b e s s e l j (0 , l r ) + DpeC.∗ be s s e l y (0 , l r ) ;

end
f t ( j ) = sum(F.∗R) ;

end
f t = f t ∗ p i ∗a2∗ s i g 1 ;
e r r = sum(( h−f t ) .^2) ; % e r r o r
e r r = sq r t ( e r r /m) ;
f i g u r e (10) ; c l f ;
p l o t ( r ∗1e6 , h , '−−b ' ) ; hold on ;
p l o t ( r ∗1e6 , f t , '−∗r ' ) ;
x l ab e l ( ' r [ {\mu}m] ' ) ;
l egend ( 'h ' , ' f t ' ) ;
%ylim ( [ 0 , 1 . 2 ] ) ;
t i t l e ( s p r i n t f ( ' V e r i f i c a t i o n o f the truncated Four ie r s e r i e s f o r the func t i on 1(a−r ) where a = %g um

' , a∗1 e6 ) ) ;
end

func t i on [ Z11r0 , Z21r0 , Z11m ,Z21m ] = impedantaNeomogena ( date )
a = date . a ;
b = date . b ;
a2 = a^2;
b2 = b^2;
L = date .L ;
n = date . n ;
m = date .m;
s i g 1 = date . s i g 1 ;
s i g 2 = date . s i g 2 ;
eps2 = date . eps2 ;
f = date . f ;
omega = 2∗ pi ∗ f ;
beta = ( s i g 2 + 1 i ∗omega∗ eps2 ) / s i g 1 ;

r = l i n s pa c e (0 , a ,m) ; % array o f r a d i a l samples on the terminal , to compute the average
lk = va l p r o p r i i (n , date , ' yes ' ) ; % lambda_k
lkb = lk ∗b ;
lka = lk ∗a ;
%
J0a = b e s s e l j (0 , lka ) ;
J1a = b e s s e l j (1 , lka ) ;
J0b = b e s s e l j (0 , lkb ) ;
J1b = b e s s e l j (1 , lkb ) ;
%
Y0a = be s s e l y (0 , lka ) ;
Y1a = be s s e l y (1 , lka ) ;
Y0b = be s s e l y (0 , lkb ) ;
Y1b = be s s e l y (1 , lkb ) ;
%
DpeC_v1 = − J0b . /Y0b ;
DpeC_v2 = (1−beta ) ∗J0a . ∗ J1a . / ( beta ∗J0a . ∗Y1a − J1a . ∗Y0a) ;
DpeC = (DpeC_v1+DpeC_v2) /2 ;
%
BpeC_v1 = 1 + DpeC.∗ Y0a . / J0a ;
BpeC_v2 = beta ∗(1 + DpeC.∗Y1a . / J1a ) ;
BpeC = (BpeC_v1+BpeC_v2) /2 ;
%
J0a2 = J0a .^2 ;
J1a2 = J1a .^2 ;
J0b2 = J0b .^2 ;
J1b2 = J1b .^2 ;
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Y0a2 = Y0a .^2 ;
Y1a2 = Y1a .^2 ;
Y0b2 = Y0b .^2 ;
Y1b2 = Y1b .^2 ;
%
term1 = a2 /2 . ∗ ( J0a2 + J1a2 ) ;
%
term2JJ = (b2∗( J0b2 + J1b2 ) − a2 ∗( J0a2 + J1a2 ) ) /2 ;
term2YY = (b2∗(Y0b2 + Y1b2) − a2 ∗(Y0a2 + Y1a2) ) /2 ;
term2JY = (b2∗( J0b . ∗Y0b + J1b .∗Y1b) − a2 ∗( J0a . ∗Y0a + J1a . ∗Y1a) ) /2 ;
term2 = term2JJ + DpeC.^2 . ∗ term2YY + 2∗DpeC.∗ term2JY ;
%
Rk2 = s i g1 ∗BpeC.^2 . ∗ term1 + s i g2 ∗term2 ;
%
F = BpeC.∗ J1a . / ( lk . ∗Rk2) ;
F = F/( pi ∗a ) ;
%
lkL = lk ∗L ;
Cx0 = F. / ( lk . ∗ tanh ( lkL ) ) ;
CxL = F. / ( lk . ∗ s inh ( lkL ) ) ;

f tx0 = ze ro s (1 ,m) ;
ftxL = ze ro s (1 ,m) ;
f o r j = 1 :m

l r = lk ∗ r ( j ) ;
i f r ( j ) < a

R = BpeC.∗ b e s s e l j (0 , l r ) ;
e l s e

R = b e s s e l j (0 , l r ) + DpeC.∗ be s s e l y (0 , l r ) ;
end
f tx0 ( j ) = sum(Cx0 . ∗R) ;
ftxL ( j ) = sum(CxL.∗R) ;

end
f i g u r e (11) ; c l f ;
p l o t ( r ∗1e6 , ftx0 , '−−b ' ) ;
t i t l e ( ' Po t en t i a l at x=0 ' ) ;

f i g u r e (12) ; c l f ;
p l o t ( r ∗1e6 , ftxL , '−∗r ' ) ;
x l ab e l ( ' r [ {\mu}m] ' ) ;
t i t l e ( ' Po t en t i a l at x=L ' ) ;

% va lues f o r r = 0
Z11r0 = f tx0 (1) ;
Z21r0 = ftxL (1) ;

% averaged va lues
grid_x1 = r ' ; % po int s o f d i s c r e t i z a t i o n f o r the termina l
grid_x1dupl = [ grid_x1 grid_x1 ] ;
V1oriR = [ ftx0 ' ftxL ' ] . ∗ grid_x1dupl ;
no_term1 = m;
apatrat = a^2;
co e f = 2/ apatrat ∗( grid_x1 ( end )−grid_x1 ( end−1) ) ;
Vmediu11 = coe f ∗(sum(V1oriR ( 2 : no_term1−1 ,1) )+ V1oriR ( end , 1 ) /2 + V1oriR (1 ,1 ) /2) ; % t rapeze s
Vmediu21 = coe f ∗(sum(V1oriR ( 2 : no_term1−1 ,2) )+ V1oriR ( end , 2 ) /2 + V1oriR (1 ,2 ) /2) ;
Z11m = Vmediu11 ;
Z21m = Vmediu21 ;

end

A3. Saltatory conduction – Coupled model generation
in Matlab (Spice circuit of interconnected blocks)

f unc t i on [ ] = main_createcir_VF_scaled_forSpice (N)

% main_createcir_VF_scaled_forSpice = automatic genera t i on o f c i r c u i t n e t l i s t f o r
% N∗(NonLIN−LIN)−NonLIN_OPEN
% input = number o f segments NonLIN−LIN
% output = Spice n e t l i s t
% idxnod f i na l − index o f the f i n a l node ,
% −1 i f f i l e c r e a t i on f a i l e d ;
%
% NODE: c i r c u i t HH ( non l inea r )
% INTERNODE: c i r c u i t ext rac ted from VF ( l i n ea r , reduced )
%
% Name o f f i l e : main_createcir_VF_scaled_forSpice .m
% Vers ion : 1 .0
% Last update : 11 July 2018
%=======================
%
idxnodes = {} ;
f i l ename = s t r c a t ( ' c i r c u i t ' , num2str (N) , ' segm_spice3 . c i r ' ) ;

% s e t parameters
ArieComuna = 200e−6; % cm^2
params .Cm = 1 ; % uF/cm^2
params .Arie_Cm = ArieComuna ; % cm^2
params . gbar l = 0 . 3 ;
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params . Arie_gbarl = ArieComuna ; % cm^2
params . gbarK = 36 ;
params . Arie_gbarK = ArieComuna ; % cm^2
params . gbarNa = 120 ;
params . Arie_gbarNa = ArieComuna ; % cm^2

% Arie_I1 = 75e−6; % cm^2

% crea t e NODE sub c i r c u i t (HH model )
createcirNODE_scaled_forSpice ( params ) ;

f i d=fopen ( f i l ename , 'w ' ) ;
f p r i n t f ( f id , ...

' ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗\n ' ) ;
f p r i n t f ( f id , ...

' ∗ SPICE c i r c u i t o f %i ∗(NonLIN−LIN)−NonLIN_OPEN\n ' ,N) ;
f p r i n t f ( f id , ...

' ∗ Number o f segments NonLIN−LIN = %i \n ' ,N) ;
f p r i n t f ( f id , ...

' ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗\n ' ) ;

f p r i n t f ( f id , ' \n \n ' ) ;

f p r i n t f ( f id , ' . t ran 0 .03 30\n ' ) ;
f p r i n t f ( f id , ' I1 0 2 PULSE(0 2e−2 10 1e−9 1e−9 5 30 0) \n ' ) ;
%f p r i n t f ( f id , ' I1 0 2 PULSE(0 {10∗Arie_I1} 10 1e−9 1e−9 5 30 30) \n ' ) ;
f p r i n t f ( f id , ' . i nc subcktNODE_Comsol . c i r \n ' ) ;
f p r i n t f ( f id , ' . i nc internode_VF_L1_scaled . c i r \n ' ) ;

% f p r i n t f ( f id , 'R2 1 0 1E100\n ' ) ;

idx = 1 ; % index root node f o r NonLIN−LIN segment , f o r the f i r s t segment i s 1
idxs = 1 ; % index root s ub c i r c u i t f o r NonLIN−LIN segment , f o r the f i r s t segment i s 1
f o r i =1:N

f p r i n t f ( f id , ' \n∗node%i \n ' , i ) ;
f p r i n t f ( f id , ' xsub%i %i %i %iout NODE\n ' , idxs , 0 , idx+1, idx+3) ;
f p r i n t f ( f id , 'Vaux%i1 %iout %i i n −80\n ' , idxs , idx+3, idx+3) ;
f p r i n t f ( f id , ' xsub%i %i i n %iout %i INTERNODE_VF_L1_scaled\n ' , idxs +1, idx+3, idx +5 ,0) ;
f p r i n t f ( f id , 'Vaux%i2 %iout %i 80\n ' , idxs , idx+5, idx+5) ;
idxnodes { i } = s t r c a t ( num2str ( idx+3) , ' out ' ) ;
idx = idx + 4 ;
idxs = idxs + 2 ;

end

% l a s t b loc : NonLIN open−c i r c u i t
f p r i n t f ( f id , ' \n∗node%i \n ' ,N+1) ;
f p r i n t f ( f id , ' xsub%i %i %i %i NODE\n ' , idxs , 0 , idx+1, idx+3) ;

f p r i n t f ( f id , ' .END\n ' ) ;
f p r i n t f ( f id , ' \n ' ) ;

f c l o s e ( f i d ) ;
idxnodes {N+1} = num2str ( idx+3) ;

f p r i n t f ( ' \ nCreation o f SPICE f i l e ( c i r c u i t (% i ∗NonLIN−LIN)−NonLIN_OPEN) − DONE' ,N) ;
f p r i n t f ( ' \n\ n Ind i c e s o f output nodes f o r NonLIN are : \n ' ) ;
d i sp ( idxnodes ) ;

f unc t i on [ ok ] = createcirNODE_scaled_forSpice ( params )

% createcirNODE_scaled_forSpice = automatic genera t i on o f c i r c u i t n e t l i s t as s ub c i r c u i t f o r
% an HH model ( with parameters from Comsol model )
%
% g loba l model , s c a l ed quan t i t i e s
%
% output = Spice n e t l i s t
% ok − output f l a g ; ok = 0 means normal ( s u c c e s s f u l ) top
%
% Name o f f i l e : createcirNODE_scaled_forSpice .m
% Vers ion : 1 .0
% Last update : 11 July 2018
%=======================
%
ok = 0 ;
f i l ename = 'subcktNODE_Comsol . c i r ' ;

f i d=fopen ( f i l ename , 'w ' ) ;
f p r i n t f ( f id , ...

' ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗\n ' ) ;
f p r i n t f ( f id , ...

' ∗ SPICE c i r c u i t o f NODE\n ' ) ;
f p r i n t f ( f id , ...

' ∗ HH model with parameters from Comsol model\n ' ) ;
f p r i n t f ( f id , ...

' ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗\n ' ) ;
f p r i n t f ( f id , ' ∗ time i s in [ms ] \ n ' ) ;
f p r i n t f ( f id , ' ∗ equat ions are s ca l ed and g l oba l \n ' ) ;
f p r i n t f ( f id , ' ∗ cu r r en t s are in [uA]\ n ' ) ;
f p r i n t f ( f id , ' ∗ p o t e n t i a l s are in [mV]\ n ' ) ;
f p r i n t f ( f id , ' \n \n ' ) ;

f p r i n t f ( f id , ' .SUBCKT NODE 100 99 102\n ' ) ;
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f p r i n t f ( f id , 'CE 99 100 %2.5e IC=−80\n ' , params .Cm∗params .Arie_Cm) ;
f p r i n t f ( f id , 'CN n 0 1 IC=0.317\n ' ) ;
f p r i n t f ( f id , 'B1_GAN 0 n I =0.01∗((V(99)−V(100) )+55)/(1−exp (−((V(99)−V(100) )+55) /10) ) ∗(1−V(n) ) \n ' ) ;
f p r i n t f ( f id , 'B2_GBN 0 n I=−0.125∗exp (−((V(99)−V(100) )+65) /80) ∗V(n) \n ' ) ;

f p r i n t f ( f id , 'CM m 0 1 IC=0.052\n ' ) ;
f p r i n t f ( f id , 'B2_GAM 0 m I =0.1 ∗( (V(99)−V(100) )+40)/(1−exp (−((V(99)−V(100) )+40) /10) ) ∗(1−V(m) ) \n ' ) ;
f p r i n t f ( f id , 'B1_GBM 0 m I=−4∗exp (−0.0556∗((V(99)−V(100) )+65) ) ∗V(m)\n ' ) ;

f p r i n t f ( f id , 'CH h 0 1 IC=0.596\n ' ) ;
f p r i n t f ( f id , 'B1_GBH 0 h I =0.07∗ exp (−0.05∗((V(99)−V(100) )+65) ) ∗(1−V(h) ) \n ' ) ;
f p r i n t f ( f id , 'B2_GAH 0 h I=−1/(1+exp(−((V(99)−V(100) )+35) /10) ) ∗V(h) \n ' ) ;

f p r i n t f ( f id , ' Rleak 99 Naux %2.5e\n ' , ...
1/( params . gbar l ∗params . Arie_gbarl ) ) ;

f p r i n t f ( f id , ' Vleak Naux 100 −54.4\n ' ) ;

f p r i n t f ( f id , ...
'B1_GK 99 100 I=%2.5e ∗( (V(99)−V(100) )−(−77) ) ∗V(n) ∗V(n) ∗V(n) ∗V(n) \n ' , ...
params . gbarK∗params . Arie_gbarK ) ;

f p r i n t f ( f id , ...
'B2_GNa 99 100 I=%2.5e ∗( (V(99)−V(100) )−50)∗V(m)∗V(m)∗V(m)∗V(h) \n ' , ...
params . gbarNa∗params . Arie_gbarNa ) ;

f p r i n t f ( f id , 'Vaux1 99 102 0\n ' ) ;
%f p r i n t f ( f id , ' Raux2 100 0 1e−22\n ' ) ;

f p r i n t f ( f id , ' .ENDS\n ' ) ;
f p r i n t f ( f id , ' \n ' ) ;

f c l o s e ( f i d ) ;
ok = 1 ;

d i sp ( ' Creat ion o f SPICE f i l e ( s ub c i r c u i t NODE) − DONE' ) ;

Reduction procedure (POD)
f unc t i on reduce_v2 ( )

% Name o f f i l e : reduce_v2 .m
% Vers ion : 2 .0
% Last update : 23 July 2018
%=======================

nr_poles_max = 70 ;
f i l ename .V = ' tabel55_500_320 . txt ' ;
% f i l ename . n = 'n_de_t . txt ' ;
% f i l ename .m = 'm_de_t . txt ' ;
% f i l ename . h = 'h_de_t . txt ' ;
dim . dim1 = 2049; % 14 % 555 % 626 % 1648 % 3561 % timp
dim . dim2 = 501 ; % number o f s t a t e v a r i a b l e s
dim . s l i c e = 501 ;
Ferr_rel_F_Fredus_mijloc = ze ro s ( nr_poles_max , 1 ) ;
Ferr_rel_F_Fredus_end = ze ro s ( nr_poles_max , 1 ) ;
legm = {} ; l e g e = {} ; l e g = {} ;
time = l i n spa c e (0 ,320 , dim . dim1 ) ;
% change the format here
% fm = { 'o− . ' , ' s−− ' , 'p−− ' , '∗−− ' , 'd−− ' , 'o−− ' , ' s − . ' , ' p− . ' } ;
fm = { '−− ' , '−− ' , '−− ' , '−− ' , '−− ' , '−− ' , '−− ' , '−− ' , '−− ' , '−− ' } ;
co = get ( gca , ' c o l o r o rd e r ' ) ;
t i c
[A, svdm ] = preproce sa r e ( f i l ename , dim) ;
toc

idx = 0 ;
f o r k=1:nr_poles_max

t i c
[~ , respFredus ] = morPODbySVD(A, svdm , dim , k ) ;
toc
[~ , Ferr_rel_F_Fredus_mijloc (k ) ] = getEr ro r s (A( ( dim . s l i c e −1) / 2 , : ) , respFredus . m i j l o c ) ;
[~ , Ferr_rel_F_Fredus_end (k ) ] = getEr ro r s (A(dim . s l i c e , : ) , respFredus . end ) ;

f p r i n t f ( ' Re la t ive e r r o r between Fexact and Fredus (% i p o l i ) : ( from time resp . ) middle : %2.2e , f i n a l
: %2.2e\n ' ...
, k , Ferr_rel_F_Fredus_mijloc (k ) , Ferr_rel_F_Fredus_end (k ) ) ;

i f (mod(k , 1 0 )==0)
idx = idx + 1 ;
f i g u r e (100) ;
p l o t ( time , respFredus . mi j loc , fm{ idx } , ' LineWidth ' , 2 . 5 , ...

' Color ' , co ( idx , : ) ) ;
legm{ length ( legm )+1} = ...

s t r c a t ( 'Red . model ( middle node )−order ' , num2str ( k ) ) ;
hold on ;

% f i g u r e (200) ;
hh = p lo t ( time , respFredus . end , fm{ idx } , ' LineWidth ' , 2 . 5 , ...

' Color ' , co ( idx , : ) ) ;
l egv ( idx ) = hh ;
l e g e { length ( l e g e )+1} = ...

s t r c a t ( 'Red . model ( middle & l a s t node )−order ' , num2str ( k ) ) ;
hold on ;

end
end
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f i g u r e (100) ;
p l o t ( time ,A( ( dim . s l i c e −1) / 2 , : ) , ' k ' , ' LineWidth ' ,2 ) ;
% legm{ length ( legm )+1}=' Ful l model ( middle & l a s t node ) ' ;
% x l ab e l ( ' time [ms ] ' ) ;
% y l ab e l ( ' E l e c t r i c p o t en t i a l [mV] ' ) ;
% l l=legend ( legm ) ; l l . FontSize =14; s e t ( gca , ' FontSize ' , 1 6 ) ;
% gr id on ;
hold on ;

% f i g u r e (200) ;
l egv ( end+1) = p lo t ( time ,A(dim . s l i c e , : ) , ' k ' , ' LineWidth ' ,2 ) ;
l e g e { length ( l e g e )+1}= ' Ful l model ( middle & l a s t node ) ' ;
x l ab e l ( ' time [ms ] ' ) ;
y l ab e l ( ' E l e c t r i c p o t en t i a l [mV] ' ) ;
l l=legend ( legv ' , l e g e ) ; l l . FontSize =14; s e t ( gca , ' FontSize ' ,16) ;
g r id on ;

f i g u r e (300) ;
semi logy (...

1 : nr_poles_max , Ferr_rel_F_Fredus_mijloc , ' o ' ...
, ' MarkerSize ' , 8 , ' MarkerEdgeColor ' , ' k ' ...
, ' MarkerFaceColor ' , 'b ' ) ;

hold on
semi logy (...

1 : nr_poles_max , Ferr_rel_F_Fredus_end , ' o ' ...
, ' MarkerSize ' , 8 , ' MarkerEdgeColor ' , ' k ' ...
, ' MarkerFaceColor ' , ' r ' ) ;

g r id on
l e g { length ( l e g )+1} = ' Re la t ive e r r o r between Fe and Fa − middle node ' ;
l e g { length ( l e g )+1} = ' Re la t ive e r r o r between Fe and Fa − l a s t node ' ;
l e g l=legend ( l e g ) ; l e g l . FontSize = 16 ; s e t ( gca , ' FontSize ' ,16) ;
x l ab e l ( ' Order o f approximation ( no . o f po l e s ) ' ) ;
y l ab e l ( ' Re la t ive e r r o r [− ] ' ) ;

end

func t i on [ domain , respFPODbySVD ] = morPODbySVD(A, svdm , dim , order )
f p r i n t f ( ' \n Reduce model with POD by SVD . . . \n ' ) ;

U = svdm .U;
S = svdm . S ;
V = svdm .V;

%% build matrix of small rank
X = zero s ( s i z e (A) ) ; % rank (X) <= r
f o r i =1: order

X = X + S( i , i ) ∗kron (U( : , i ) ,V( : , i ) ' ) ;
f p r i n t f ( ' idx=%i norm : %2.3e , current_singular_value : %2.3e \n ' ...

, i , norm(A−X) , S( i , i ) ) ;
end

% respFPODbySVD = X( end , : ) ;
respFPODbySVD . mi j l o c = X(( dim . s l i c e −1) / 2 , : ) ;
respFPODbySVD . end = X(dim . s l i c e , : ) ;

%% find optimal rank(X)
% bui ld X so that sigma_(k+1) (nA) < | |A−X| | _2 < sigma_(k ) (A)
% th e r e f o r e rank (X) = k ;
X = ones ( s i z e (A) ) ; % rank (X) <= r
X = X + S(1 ,1 ) ∗kron (U( : , 1 ) ,V( : , 1 ) ' ) ;

idx = 2 ;
nritmax = s i z e (A, 1 ) ;
whi le ( (norm(A−X) > S( idx−1, idx−1) ...

| | norm(A−X) < S( idx , idx ) ) ...
&& idx < nritmax )

X = ze ro s ( s i z e (A) ) ;
% bu i ld X us ing f i r s t idx s i n gu l a r va lues o f A
f o r i = 1 : idx

X = X + S( i , i ) ∗kron (U( : , i ) ,V( : , i ) ' ) ;
end

f p r i n t f ( ' idx=%i norm : %2.3e , current_singular_value : %2.3e \n ' ...
, idx , norm(A−X) , S( idx , idx ) ) ;

idx = idx+1;
end

f p r i n t f ( ' Optimal rank o f X i s %i \n ' , rank (X) ) ;

domain = ' time ' ;

f p r i n t f ( ' \n Reduce model with POD by SVD: DONE \n ' ) ;
end

func t i on i sMatr ixUnitary (U, s t r )
% v e r i f i e s U i s un i tary
Uinverse = inv (U) ;
UConjTran = U' ;
t o l=10e−6;
er=abs (UConjTran−Uinverse ) ;
i f sum( er ( : ) )<t o l
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f p r i n t f ( ' \nMatrix %s i s un i tary \n ' , s t r )
e l s e

f p r i n t f ( ' \nMatrix %s i s NOT unitary \n ' , s t r )
end

end

func t i on [A, svdm ] = preproce sa r e ( f i l ename , dim)
% get time−domain response matrix
A = readSamplesMatrix ( f i l ename , dim) ;
f p r i n t f ( ' S i z e o f matrix A i s : %ix%i \n ' , s i z e (A, 1 ) , s i z e (A, 2 ) ) ;

% use svd to f i nd s i n gu l a r va lues ( sigma ) and vec to r s o f A
[U, S ,V]= svd (A) ;

r = rank (S) ;
f p r i n t f ( ' I n i t i a l rank o f matrix A i s : %i \n ' , r ) ;

%% veri f icat ions
Asvd = ze ro s ( s i z e (A) ) ;
% rebu i l d A into Asvd − f o r v e r i f i c a t i o n purposes
f o r i = 1 : r

Asvd = Asvd + S( i , i ) ∗kron (U( : , i ) ,V( : , i ) ' ) ;
end

norm_diff = norm(A−Asvd) ;
f p r i n t f ( ' V e r i f i c a t i o n : norm(A−Asvd) r ebu i l d %2.3e \n ' , norm_diff ) ;
i sMatr ixUnitary (U, 'U ' ) ;
i sMatr ixUnitary (V, 'V ' ) ;

svdm .U = U;
svdm . S = S ;
svdm .V = V;

end

func t i on A = readSamplesMatrix ( f i l ename , dim)
An = dlmread ( f i l ename .V, ' ' ) ;

% modify here corresponding to the number o f segments
% A = zero s (dim . dim2 , dim . dim1 ) ;
% id c s = 4 : 4 : 4 0 0 ; i d c s ( end+1) = 404 ;

i d c s = 4 : 4 : 2 0 0 0 ; i d c s ( end+1) = 2002;
% id c s = 4 : 4 : 9 4 8 ;

A = An( 1 : dim . dim1 , i d c s ) ' ;

% A = reshape (An( : , 1 ) , [ dim . dim1 , dim . dim1 ] ) ' ;
end

func t i on [ err_abs , e r r_re l ]= getErro r s ( v1 , v2 )
% GETERRORS Absolute and r e l a t i v e e r r o r between two vec to r s
% Compute the e r r o r based on Eucl idean norm
l=length ( v1 ) ;

% get index o f max
[maxim , indexmax ] = max( v1 ) ;

err_abs=sq r t (sum( abs ( v1−v2 ) .^ 2) / l ) ;
e r r_re l=abs ( err_abs/v1 ( indexmax ) ) ;

end

Generated circuit for Spice – N=13 sections

(INTERNODE circuit is previously extracted from VF)

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗ SPICE c i r c u i t o f 13∗(NonLIN−LIN)−NonLIN_OPEN
∗ Number o f segments NonLIN−LIN = 13
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

. tran 0 .03 30
I1 0 2 PULSE(0 2e−2 10 1e−9 1e−9 5 30 0)
. inc subcktNODE_Comsol . c i r
. inc internode_VF_L1_scaled . c i r

∗node1
xsub1 0 2 4out NODE
Vaux11 4out 4 in −80
xsub2 4 in 6out 0 INTERNODE_VF_L1_scaled
Vaux12 6out 6 80

∗node2
xsub3 0 6 8out NODE
Vaux31 8out 8 in −80
xsub4 8 in 10 out 0 INTERNODE_VF_L1_scaled
Vaux32 10 out 10 80

∗node3
xsub5 0 10 12 out NODE
Vaux51 12 out 12 in −80
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xsub6 12 in 14 out 0 INTERNODE_VF_L1_scaled
Vaux52 14 out 14 80

∗node4
xsub7 0 14 16 out NODE
Vaux71 16 out 16 in −80
xsub8 16 in 18 out 0 INTERNODE_VF_L1_scaled
Vaux72 18 out 18 80

∗node5
xsub9 0 18 20 out NODE
Vaux91 20 out 20 in −80
xsub10 20 in 22 out 0 INTERNODE_VF_L1_scaled
Vaux92 22 out 22 80

∗node6
xsub11 0 22 24 out NODE
Vaux111 24 out 24 in −80
xsub12 24 in 26 out 0 INTERNODE_VF_L1_scaled
Vaux112 26 out 26 80

∗node7
xsub13 0 26 28 out NODE
Vaux131 28 out 28 in −80
xsub14 28 in 30 out 0 INTERNODE_VF_L1_scaled
Vaux132 30 out 30 80

∗node8
xsub15 0 30 32 out NODE
Vaux151 32 out 32 in −80
xsub16 32 in 34 out 0 INTERNODE_VF_L1_scaled
Vaux152 34 out 34 80

∗node9
xsub17 0 34 36 out NODE
Vaux171 36 out 36 in −80
xsub18 36 in 38 out 0 INTERNODE_VF_L1_scaled
Vaux172 38 out 38 80

∗node10
xsub19 0 38 40 out NODE
Vaux191 40 out 40 in −80
xsub20 40 in 42 out 0 INTERNODE_VF_L1_scaled
Vaux192 42 out 42 80

∗node11
xsub21 0 42 44 out NODE
Vaux211 44 out 44 in −80
xsub22 44 in 46 out 0 INTERNODE_VF_L1_scaled
Vaux212 46 out 46 80

∗node12
xsub23 0 46 48 out NODE
Vaux231 48 out 48 in −80
xsub24 48 in 50 out 0 INTERNODE_VF_L1_scaled
Vaux232 50 out 50 80

∗node13
xsub25 0 50 52 out NODE
Vaux251 52 out 52 in −80
xsub26 52 in 54 out 0 INTERNODE_VF_L1_scaled
Vaux252 54 out 54 80

∗node14
xsub27 0 54 56 NODE
.END

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗ SPICE c i r c u i t o f NODE
∗ HH model with parameters from Comsol model
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗ time i s in [ms ]
∗ equat ions are s ca l ed and g l oba l
∗ cu r r en t s are in [uA]
∗ p o t e n t i a l s are in [mV]

.SUBCKT NODE 100 99 102
CE 99 100 2.00000 e−04 IC=−80
CN n 0 1 IC=0.317
B1_GAN 0 n I =0.01∗((V(99)−V(100) )+55)/(1−exp (−((V(99)−V(100) )+55) /10) ) ∗(1−V(n) )
B2_GBN 0 n I=−0.125∗exp (−((V(99)−V(100) )+65) /80) ∗V(n)
CM m 0 1 IC=0.052
B2_GAM 0 m I =0.1 ∗( (V(99)−V(100) )+40)/(1−exp (−((V(99)−V(100) )+40) /10) ) ∗(1−V(m) )
B1_GBM 0 m I=−4∗exp (−0.0556∗((V(99)−V(100) )+65) ) ∗V(m)
CH h 0 1 IC=0.596
B1_GBH 0 h I =0.07∗ exp (−0.05∗((V(99)−V(100) )+65) ) ∗(1−V(h) )
B2_GAH 0 h I=−1/(1+exp(−((V(99)−V(100) )+35) /10) ) ∗V(h)
Rleak 99 Naux 1.66667 e+04
Vleak Naux 100 −54.4
B1_GK 99 100 I =7.20000e−03∗((V(99)−V(100) )−(−77) ) ∗V(n) ∗V(n) ∗V(n) ∗V(n)
B2_GNa 99 100 I =2.40000e−02∗((V(99)−V(100) )−50)∗V(m)∗V(m)∗V(m)∗V(h)
Vaux1 99 102 0
.ENDS
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∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗ SPICE equ iva l en t c i r c u i t generated by Codestar snp2c i r developed in UPB/LMN
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗ D i f f e r e n t i a l−equat ion macromodel

.SUBCKT INTERNODE_VF_L1_scaled Term1 Term2 OUT

Ginf1_1 Term1 OUT Term1 OUT 1.793323 e−02
Greal1_1_1 Term1 OUT nod1_1 0 −4.916820 e+03
Greal1_1_2 Term1 OUT nod1_2 0 −7.790886 e+01
Greal1_1_3 Term1 OUT nod1_3 0 −2.189824 e+01
Ginf1_2 Term1 OUT Term2 OUT 3.374289 e−04
Greal1_2_1 Term1 OUT nod2_1 0 −2.137527 e+02
Greal1_2_2 Term1 OUT nod2_2 0 5.359397 e+01
Greal1_2_3 Term1 OUT nod2_3 0 −2.244383 e+01
Ginf2_1 Term2 OUT Term1 OUT 3.374289 e−04
Greal2_1_1 Term2 OUT nod1_1 0 −2.137527 e+02
Greal2_1_2 Term2 OUT nod1_2 0 5.359397 e+01
Greal2_1_3 Term2 OUT nod1_3 0 −2.244383 e+01
Ginf2_2 Term2 OUT Term2 OUT 1.793323 e−02
Greal2_2_1 Term2 OUT nod2_1 0 −4.916820 e+03
Greal2_2_2 Term2 OUT nod2_2 0 −7.790886 e+01
Greal2_2_3 Term2 OUT nod2_3 0 −2.189824 e+01

∗ elements corresponding to the r e a l po l e s :
∗========================================:

∗Real po le c i r c u i t 1 1
Ga1_1 0 nod1_1 Term1 OUT 1
Ca1_1 nod1_1 0 1
Ra1_1 nod1_1 0 2.865263 e−06

∗Real po le c i r c u i t 1 2
Ga1_2 0 nod1_2 Term1 OUT 1
Ca1_2 nod1_2 0 1
Ra1_2 nod1_2 0 1.885642 e−05

∗Real po le c i r c u i t 1 3
Ga1_3 0 nod1_3 Term1 OUT 1
Ca1_3 nod1_3 0 1
Ra1_3 nod1_3 0 6.211166 e−05

∗Real po le c i r c u i t 2 1
Ga2_1 0 nod2_1 Term2 OUT 1
Ca2_1 nod2_1 0 1
Ra2_1 nod2_1 0 2.865263 e−06

∗Real po le c i r c u i t 2 2
Ga2_2 0 nod2_2 Term2 OUT 1
Ca2_2 nod2_2 0 1
Ra2_2 nod2_2 0 1.885642 e−05

∗Real po le c i r c u i t 2 3
Ga2_3 0 nod2_3 Term2 OUT 1
Ca2_3 nod2_3 0 1
Ra2_3 nod2_3 0 6.211166 e−05

∗ elements corresponding to the complex po l e s :
∗========================================:

.ENDS INTERNODE_VF_L1_scaled

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗Example o f Main c i r c u i t :
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗V1 Term1 0 AC 1
∗V2 Term2 0 AC 0

∗X1 Term1 Term2 0 SYNT

∗ .PROBE
∗ .AC LIN 100 6.283185 e+00 6.283185 e+04
∗ .END
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