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Abstract—An analog MOS circuit performing the max-

imum element selection (WTA) is considered. The depen-

dence of its behavior on the input list density is rigourously

studied.
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I. Introduction

The circuit under study was presented by Lazzaro in
1989 in his thesis, [1],[2]. Many improvements and appli-
cations of it have been issued since then, [3],[4]. However
there hasn’t been any thorough theoretical study of the
circuit so far.
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Fig. 1. Lazzaro WTA Circuit.

Our (W)inner-(T)ake-(A)ll network (see figure 1)
consists of MOS transistors operating in subthreshold
region. Due to its performances (low complexity, low
power consumption, high speed) the circuit has been
extensively used in many applications.

The circuit consists of N interacting cells. Each
cell contains two nMOS transistors, Mk and M ′

k. It
receives a unidirectional input current Ik and produces
an output voltage Vk. The circuit operates by choosing
the maximum input current Im and broadcasting its
value as a voltage onto the global line Vc. Because all
M transistors share the same gate to source voltage Vc,
they should also sink the same current Im. However, all
Ij (j 6= m) are smaller than Im, as a result, the drain
voltages Vj of all Mj decrease because of the Early effect.
The decrease of Vj reduces the gate to source voltages of

all M ′
j transistors, hence decreasing the current through

every M ′
j transistor. As the summation of currents

through all M ′ transistors is constant, equal to Ic, the
current through M ′

m increases. To accommodate this
increment, the gate to source voltage of M ′

m is forced to
increase. As a result of the competition, the cell which
receives the largest input current Im has the highest
output voltage Vm.

II. Preliminaries

Being fed with a list I1 > I2 > · · · > IN , the
circuit might show a similarly ordered output list
V1 > V2 > · · · > VN . Moreover, V1 and V2 should be split
by known thresholds.

We show how to compute these thresholds and study
their dependence on list density.

If we denote the gate by G, the source by S, the drain
by D, and the bulk by B, we obtain the following static
model for the transistor ([5]):

{
IG = 0

IDS = W
L ID0e

VBS(1−p)
Vt

(
1− e

−VDS
Vt

)
ep

VGS−VT
Vt

(1)

Here ID0 = K′2(pVt)
2

e2 .
The conditions for subthreshold operation are:





VGS < VT = VT0 + γ
(√

φ− VBS −
√

φ
)

0 < VDS

VB < VS

(2)

We denote I0 = W
L ID0e

VB(1−p)/Vt and we suppose I0 is
the same for all the transistors. Following, we write the
currents for the k cell.
For the Mk transistor we have VS = 0 , VG = Vc , VD = Vk

and we obtain the equation:

IDSk = I0e
(pVc−VT1)/Vt

(
1− e−Vk/Vt

)
(3)

with the conditions:

{
VDS = Vk > 0
VGS = Vc < VT1 = VT0 + γ

(√
φ− VB −

√
φ
) (4)

For the M ′
k transistor we have V ′

S = Vc , V ′
G =

Vk , V ′
D = VDD and we obtain the equation:
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I ′DSk = I0e
(pVk−VT2)/Vt

(
e−Vc/Vt − e−VDD/Vt

)
(5)

with the conditions:

{
VD′S′ = VDD − Vc > 0
VG′S′ = Vk − Vc < VT2 = VT0 + γ

(√
φ− VB + Vc −

√
φ
)

(6)
The stationary solution satisfies:

{
Ij = IDSj∑

I ′DSj = Ic
(7)

These lead to the stationary circuit equations:




exj =
1

1− ijA(y)
, j ∈ 1, N

ic
g(y)

=
∑ 1

(1− ijA(y))p

(8)

within the domain given by:




y < yM

0 < xj < f(y) = y + s(y)
y0 < y < d

(9)

Here we have denoted: xj = Vj/Vt, y = Vc/Vt,
ij = Ij/I0, ic = Ic/I0, a = VT1/Vt = VT (VS = 0)/Vt,
d = VDD/Vt, s(y) = VT2/Vt = VT (VS = Vc)/Vt,
g(y) = e−ps(y)(e−y − e−d), A(y) = e−py+ap,
yM = min(a, d), y0 = f−1(0).

III. Results

If y0 < ym < yM , the next conditions guarantee that
(y, x1, · · · , xN ) belong to the domain in 9.





IM < [1− e−f(ym)]epym−pa

N
g(yM )

1− IMA(yM )
< ic < Ng(ym)

(10)

Let us scale the currents to [0, IM ]. If the order of the
currents is

0 ≤ iN < iN−1 < ... < i2 < i1 ≤ IM

we should have

0 ≤ xN < xN−1 < · · · ≤ Qa ≤ Qb ≤ x1

Here Qa and Qb are two thresholds which necessarily
should be list independent. To be more precise, let ∆ be
the smallest distance between currents, ij−ij+1 ≥ ∆. We
define z = ∆(N−1)/IM a number between 0 and 1 called
the ”dispersion” of the list which shows how crowded the
elements i1, · · · , iN are. A large z means a more dispersed
list. Together with N (the number of list elements), z is an
intrinsic parameter of data, i.e. its value does not depend
on the confining interval [0, IM ]. We define:

Qa = min {x1| (i1, · · · , iN ) ∈ Lz0}
Qb = max {x2| (i1, · · · , iN ) ∈ Lz0}

Lz0 is the set of all accepted lists with z ≥ z0, i.e. z0 is
the minimum dispersion accepted by our WTA network.
Our paper computes Qa and Qb and tries to show the
conditions under which Qa ≤ Qb, i.e. tries to find z0.

Theorem 1 If φ > Vt/4 , y > VB/Vt and A(ym)IM ≤ 1
then the WTA selection works for z > z0 where z0 is the
solution of:

ze(1−z)ρ − 1 +
z

N − 1
= 0

ρ =
2

G′

p2
· 1
A(yM )IM

+
∑

k 6=2

N−k
N−1(

1−A(yM )IM
N−k
N−1

)p+1

G′ = −g′(yM )
g(yM )

· N

[1−A(y1)IM ]p

where y1 = yM or yM , the largest value of y.

We also have a result showing the values of list disper-
sion rendering the circuit unoperational:

Theorem 2 If, φ > Vt/4 , z < z00, where z00 =
1

er + 1
N−1

and r =
2p2A(ym)IM

N [1−A(ym)IM ]p+1
then the WTA

property fails.

IV. Conclusion

Conditions allowing the WTA operation are shown.
They are explicitly expressed as a function of circuit and
list parameters. An upper bound for the densities render-
ing the circuit non-operational is given as well.
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