
CS 1

Efficient Initialization of Artificial Neural Network
Weights for Electrical Component Models

Tuomo Kujanpää and Janne Roos
Helsinki University of Technology, Department of Electrical and Communications Engineering, Circuit Theory Laboratory

P.O.Box 3000, FI-02015 TKK, Finland

tuomo.kujanpaa@tkk.fi, janne@ct.tkk.fi

Abstract—Two methods for an initialization of Artifi-
cial Neural Network (ANN) weights are experimentally
evaluated for electrical component modeling applications.
Modification of the second method, based on special tar-
get training data scaling, is also presented. The methods
are evaluated with respect to average ANN training error,
ANN test error, and ANN training CPU time.

Keywords—artificial neural networks, multilayer

perceptron, weight initialization, conjugate-gradient,

circuit simulation, optimization, component model-

ing.

I. Motivation

The modeling of RF/microwave components for
Computer-Aided Design is facing new challenges because
of increasing operation frequencies, circuit complexity, in-
tegration density, and decreasing time to market. Re-
cently, it has been shown that Artificial Neural Networks
(ANNs) offer solutions to urgent modeling problems en-
countered with conventional numerical methods (e.g., 3-D
EM simulation) and empirical models. Fast and accurate
models based on ANNs have been created for a wide range
of components [1].
The crucial part in ANN-based modeling is ANN train-

ing, that is, optimization of ANN weights with given mea-
surements or, say, 3-D EM simulation data. In [2] sev-
eral ANN weight-initialization methods were compared
mainly by means of classification problems. It was shown
that the choice of an initialization method influences the
convergence of the optimization and the optimal initial
weights are, by some means, determined by the measure-
ment/simulation data set. However, weight-initialization
methods have not previously been systematically eval-
uated for electrical component modeling problems and
the nature of the problems — the functions to be ap-
proximated — differs significantly from, e.g., classification
problems with Boolean/discrete target/input values.

II. Artificial neural networks and weight
initialization

The most widely used ANN in the field of
RF/microwave component modeling is the Multi-Layer
Perceptron (MLP) [1]. The three-layer MLP used in this
work realizes the nonlinear mapping

ỹl(x,w) = w3
l0 +

Nh
∑

j=1

w3
lj tanh

(

w2
j0 +

Ni
∑

i=1

w2
jixi

)

, (1)

l = 1, 2, . . . , No,

where Ni, Nh, and No represent the number of inputs,
hidden-layer neurons, and outputs, respectively; x =
(x1, x2, . . . , xNi

), ỹ = (ỹ1, ỹ2, . . . , ỹNo), and w represents
ANN inputs, outputs, and weights, respectively. The
function tanh() is called an Activation Function (AF).
Let y = y(x) be an unknown, nonlinear, multidimen-

sional function to be approximated by the MLP mapping
(1): ỹ = ỹ(x,w). Let {(xk,yk), k = 1, 2, . . . , Ntr} be an
appropriate training set, Ntr being the number of sam-
ples, and the training-set inputs and outputs being scaled
linearly in the range [−1, 1]. Furthermore, let us define
the normalized training error as

Etr(w) =

√

√

√

√

1

NtrNo

Ntr
∑

k=1

No
∑

l=1

(

ỹl(xk ,w)− yk
l

2

)2

. (2)

The training of the ANN means minimizing Etr(w) with
respect to the weights, w, using a suitable optimiza-
tion method — in this work, Hestenes–Stiefel conjugate-
gradient with Error Back Propagation (EBP) [3]. The
generalization capability of the trained ANN is evalu-
ated by applying Eq. (2) to an independent test set,
{(xk,yk), k = 1, 2, . . . , Nte} to obtain Ete(w).
The weight initialization tries to provide initial weight

values close to the global minimum of Etr(w). There are
several strategies for initializing the MLP weights, the
most developed of which can also be regarded as train-
ing methods [4]. However, the most widely utilized strat-
egy for ANN-based RF/microwave component modeling
is, still, initializing the weights as random real numbers
from a Uniform Distribution (UD) with fixed range. The
weight-initialization methods evaluated in this work in-
clude: 1. random initialization from UD with fixed range
[1], and 2. random initialization from UD with variable
range and special input data scaling [5].
Utilizing the first method, one sets wji, wlj ∈ [−a, a],

where, e.g., a = 0.5. This heuristic initialization tries to
ensure the inner sum (vj) of the AFs (tanh(vj) in (1))
to be such that it forces the AFs to operate in an ap-
proximately linear transition region determined by maxi-
mum curvature points max(∂2 tanh(vj)/∂v

2
j ). This would

be desirable for the convergence of optimization because,
when using EBP, ∂E2

tr/∂w ∼ ∂ tanh(vj)/∂vj and the lat-
ter has its maximum value in the transition region. How-
ever, the heuristic weight initialization does not take into
account the standard deviation σxi

and therefore AFs may
operate in saturation regions slowing down the optimiza-
tion [5].



CS 2

The second method forces the AFs, defined as tanh()
in [5], too, to operate in the transition region. This is due
to a special input data scaling, with x̄i = 0 and σxi

= 1.
The AFs are forced to operate in the transition region,
with wij ∈ [−a, a], where a =

√

3/Ni [5]. The weights of
the output layer neurons are initialized such that wlj ∈

[−
√

3/Nh,
√

3/Nh].
When one utilizes method 2 and approximates the tran-

sition regions of AFs as straight lines going through the
origin with slope 1, the maximum curvature points are
(–1,–1) and (1,1) for the AFs defined in [5]. The distribu-
tion parameters of the MLP outputs (ỹl) are then ¯̃yl = 0
and σỹl

= 1 as for MLP inputs xi. A hypothesis to be
tested is presented: if one scales the target training data,
yl, such as ȳl = 0 and σyl

= 1, the convergence of opti-
mization will be improved. The hypothesis will be tested
in the near future evaluation of the methods.

III. Experimental setup

In the evaluation, we had seven modeling problems: 1.
approximation of a modulated sinusoidal function, 2. the
same problem with additive normal-distributed noise, 3.
MEMS gas-damper behavior, 4. rounded-stripline-bend
parallel capacitance and series inductance vs. device ge-
ometries, 5. JFET DC characteristics, 6. spiral-inductor
S-parameters vs. geometries, and 7. gate and drain cur-
rents of MESFET vs. bias current and temperature. The
corresponding seven appropriately sized MLPs (Ni, Nh,
No), the resulting number of ANN weights, i.e., optimiza-
tion variables (Nw), the number of training-set samples
(Ntr), and the resulting number of optimization goals
(Ng = NtrNo) are shown in Table I.

TABLE I

MODELING-PROBLEM CHARACTERIZATION

problem Ni Nh No Ntr Nw Ng

1 1 5 1 20 16 20

2 1 5 1 20 16 20

3 3 10 1 40 51 40

4 3 10 2 50 62 100

5 2 10 3 306 63 918

6 5 15 5 486 170 2430

7 3 15 2 37597 92 75194

For each problem and weight initialization method —
method 1 with a = 0.1, 0.5, 1.0 and method 2 — the num-
ber of optimization cycles was set at four different values
depending on the problem. Then MLP was trained 30
times, and Etr, Ete, and CPU time noted. The results
obtained were averaged over all runs at each value of the
optimization cycles. A total number of 3360 runs were
carried out by semi-automatic scripts using APLAC 8.1
ANNModelGenerator [6] on an Ia64 HP Server rx5670 with
a 1.3 GHz processor and 4 Gbyte memory.

IV. Analysis of results and conclusions

A set of representative results is shown in Figs. 1 and
2. According to the evaluation, there is no significant

training error performance difference between the meth-
ods (Fig. 1). Also, the CPU time performance of the
methods was similar and almost linear as a function of
optimization cycles. Instead, the test-error performance
of method 2 is much better on the average than the one of
method 1 with different a values (Fig. 2). The evaluation
executed provides motivation for a further research of the
methods and a deeper analysis of the results.
In the near future, we will test the hypothesis presented

for the modification of the method 2. Also, the train-
ing/optimization will be done in hundred-step increments,
MLPs for different modeling problems will be trained more
than 30 times, and, for the deeper analysis, the standard
deviations of Etr, Ete and CPU time will be calculated
and plotted.

1k 1.3k 1.6k 1.9k 2.2k
0.5

1

1.5

2

2.5

Average Etr as a function of average optimization cycles
APLAC 8.10 User: HUT Circuit Theory Lab. Mon Mar 20 2006

T
ra

in
in

g
 e

rr
o
r 

(%
)

Optimization cycles

a = 0.1 a = 0.5

a = 1.0 Method 2.

Fig. 1. Average training error vs. average optimization cycles.

1k 1.3k 1.6k 1.9k 2.2k
0.5

1

1.5

2

2.5

Average Ete as a function of average optimization cycles
APLAC 8.10 User: HUT Circuit Theory Lab. Mon Mar 20 2006

T
es

t-
er

ro
r 

(%
)

Optimization cycles

a = 0.1 a = 0.5

a = 1.0 Method 2.

Fig. 2. Average test error vs. average optimization cycles.

Acknowledgment

This work was funded by Nokia Corpora-
tion and AWR-APLAC Corporation through
TEKES/ELMO/MOSAICS project (grants 2078/31/03
and 2440/31/03).

References

[1] Q. J. Zhang and K. C. Gupta, Neural Networks for RF and
Microwave Design, Artech House Inc., 2000.

[2] G. Thimm and E. Fiesler, “High-order and multilayer percep-
tron initialization,” IEEE Trans. on Neural Networks, vol. 8,
no. 2, pp. 349–359, 1997.

[3] T. Kujanpää, J. Roos, and M. Honkala, “Experimental com-
parison of optimization methods in ANN training,” Proceedings
of PRIME 2005, vol. 2, pp. 430–433, 2005.

[4] D. Erdogmus, O. Fontenla-Romero, J. C. Principe, and
A. Alonso-Betanzos, “Linear-least-squares initialization of mul-
tilayer perceptrons through backpropagation of the desired re-
sponse,” IEEE Trans. on Neural Networks, vol. 16, no. 2, pp.
325–337, 2005.

[5] S. Haykin, Neural Networks: A Comprehensive Foundation,
Prentice Hall, 1999.

[6] APLAC 8.1 Manuals, AWR-APLAC Corporation, 2005.


