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Abstract—Electrical circuits belong to the important

class of passive (positive real) systems. In a physical

sense, positive realness means that the energy produced

by the system can never exceed the energy received by it.

For linear passive system several model reduction meth-

ods that preserve this essential property have been devel-

oped. Among these, positive real balanced truncation is an

important one. We extend this method to the nonlinear

case.
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I. Introduction

The nonlinear systems we treat are given in the state
space representation as:

x = f(x) + g(x)u, y = h(x) + d(x)u, (1)

where x ∈ Rn, u ∈ Rm, y ∈ Rp, with m = p. x is called
the state vector, u is the input and y is the output of the
system. f , g, h are smooth nonlinear vectorfields depend-
ing on the state vector x. n is called the dimension of
system (1).

Often n is large and it is difficult to deal with it from
both analysis and control design point of view. That is
why a model order reduction problem can be formulated
as follows: Given a system (1) find another system

˙̂x = f̂(x̂) + ĝ(x̂)u, ŷ = ĥ(x̂) + d̂(x̂)u

such that: dim x̂ < n, the response characteristics are sim-
ilar to those of the original system and certain properties
(e.g. passivity) are preserved. The reduced order system
might be used to replace the original one for analysis or
design.

We work the assumption that the system is reachable
and zero-state observable.

II. Passive Systems and Energy Functions

Definition 1. ([11], [7]) A system (1) is called passive
(positive real), if there exists a storage function S : Rn →

R, with the following properties:

1. S ≥ 0;

2. S(x0) +
∫ t1

t0
uT y ≥ S(x1), x0 = x(t0), x1 = x(t1).

Property 2 can also be written in a differential form as:

∂S(x)

∂x
(f(x) + g(x)u) ≤ uT h(x) + uT d(x)u (2)

For our purpose two particular types of storage func-
tions are of interest: the available storage function and
the required supply function. They represent the pair of
energy functions which are going to be balanced, giving
us information with respect to the importance of a state
component of system (1). Based on this information we
truncate the system by removing the states that have a
less energetic meaning. The reduced system obtained in
this way will be also passive, thus the property being pre-
served.

Definition 2. ([11]) The available storage function of a
system (1) is the energy function:

Sa(x0) = −min
u

∫

∞

0

uT y dt, x(0) = x0, x(∞) = 0 (3)

It represents the maximal amount of energy that can be
extracted from the terminals of the system when starting
at the initial state x0.

Definition 3. ([11]) The required supply function of sys-
tem (1) is the energy function:

Sr(x0) = min
u

∫ 0

−∞

uT y dt, x(0) = x0, x(−∞) = 0 (4)

It represents the minimal amount of energy required to
be supplied to the system in order to reach x0 from the
equilibrium. The reachability from x0 is a condition for
the nonnegativity of the energy functions defined above.

Lemma 4. [10] Let system (1) be passive as in Defini-
tion 1 and reachable from the state x0. Then, the energy
functions Sa and Sr as in Definition 2, 3 exist and are
nonnegative. Moreover, Sa ≤ Sr.

These two energy functions will be brought into a form
such that the information given represents a measure of
importance of each state component. First we will briefly
show the procedure for linear systems and then try to
extend this in the case of nonlinear systems.

III. Linear Systems Case

A linear system is given as: ẋ = Ax+Bu, y = Cx+Du,
where A, B, C, D are constant matrices of appropriate
dimensions. The system is assumed to be reachable and
observable (minimal) and R = D + DT > 0. The energy
functions are quadratic.
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Theorem 5. [11] Assume that the linear system is pas-
sive. Then Sa(x) = 1

2
xT Kminx and Sr(x) = 1

2
xT Kmaxx,

where Kmin and Kmax are the minimal, respectively max-
imal solution of the Riccati equation:

KA + AT K + (KB − CT )R−1(BT K − C) = 0 (5)

Definition 6. [1],[2] A passive linear system is called
positive real balanced if Kmin = (Kmax)−1 =
diag(π1Is1, π2Is2

, ..., πqIsq
), where 1 ≥ π1 > π2 > ... >

πq > 0, s1 + s2 + ...sq = n. A system satisfying this con-
dition is called positive real balanced.
If there exists k such that πk is much larger than πk+1,
then the state vector can be truncated from k + 1 to n,
i.e. xl = 0, l = k + 1...n. The main result is as follows:

Theorem 7. Let the passive linear system be brought into
the positive real balanced form (Ab, Bb, Cb, Db). The re-
duced system obtained after truncation with dimension k,
i.e. dim x̂ = k, is minimal and passive. This can be
extended to the nonlinear case.

IV. Nonlinear Systems Case

We consider (1) to be passive, reachable, zero state-
observable and satisfying d(x) + dT (x) = r(x) > 0. Then
we can state the following: the energy functions defined
as in (3) and (4) are the minimal respectively maximal
solutions of the following Hamilton-Jacobi equation:

∂S

∂x
f +

1

2

(

∂S

∂x
g − hT

)

r−1

(

gT ∂ST

∂x
− h

)

= 0 (6)

where, f, g, h, r depend on the state vector x.
Consider (1) is in a coordinate chart s.t. Sa = 1

2
xT x and

Sr = 1

2
xT diag(v1(x), ..., vn(x))x (there is always a coor-

dinate transformation to bring the system into a form
satisfying this condition) ([6]).
We say that the nonlinear system (1) is brought in positive
real balanced form if there exists a coordinate transforma-
tion z = χ(x), such that:

Sa =
1

2
zT diag(π1(z1)

−1, ..., πn(zn)−1)z (7)

Sr =
1

2
zT diag(π1(z1)

−1v1(x), ..., πn(zn)−1vn(x))z (8)

where x = χ−1(z). vk(x) can be called the positive real
singular value functions of (1). Applying this coordinate
transformation to (1), it becomes: ż = f(z) + g(z)u, y =

h(z) + d(z), being in positive real balanced form.
The energetical properties of a state component can
be measured. The available energy extracted at com-
ponent zk is given by Sa(0, ..., zk, ...0) = 1

2
z2

kπ−1

k
(zk)

and the energy supply required to reach component zi

is measured as Sr(0, ..., zk, ..., 0) = 1

2
z2

kπk(zk). So, if

vk(χ−1(z)) > vk+1(χ
−1(z)), then π−1

k (z)vk(χ−1(z)) >

π−1

k+1
(z)vk+1(χ

−1(z)). This means that to reach state
component zk less supply of energy is required that for

the component zk+1 and at state component zk is stored
more energy available than at state component zk+1. This
makes components z1, ..., zk more important from ener-
getic point of view than state components zk+1, ..., zn. It
means that we can reduce the system to dimension k.
Thus, partitioning the state vector z into [z1 z2]

T , for re-
duction set z2 = 0 (truncation). Then the reduced order
system is given as:

ż1 = f1(z1) + g1(z1)u, y1 = h1(z1) + d1(z1)u,

where f1(z1) = f(z1, 0), g1(z1) = g(z1, 0), h1(z1) =
h(z1, 0), d1(z1) = d(z1, 0).
The reduced system obtained in this way, satisfies the fol-
lowing properties:

• it is in positive real balanced form with the positive
real singular values v1, ..., vk;

• it is passive as in property 2.

V. Future Work

The decomposition used in Section IV is not unique.
For future, uniqueness as in [3], is to be taken into ac-
count.
An important problem to be checked is how to treat the
case when r(x) is singular or 0. This arises, for example,
in the field of port-Hamiltonian systems (see [7]).
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