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Static regimes

Are neglected all time

Electro-Static

1 V.D= dependent effects, movement . (ES) —tinds
' - and current (losses) = electric field
2.V-B=0
ot )
P
4.VxH Z//—I—% i
- 5D=¢E+P/(E)
6.B=u (H+M (H)) -
7,4 o(E+E(E)) M,
8.p :;J/
5 Magneto- Static (MS)
9.%=% — finds magnetic field
t distribution
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Magneto-Static regime

* Hypothesis: fq)z :O<:>§BdA:O
z

— NOo movement

— no time variation i
— no losses (current) < divB=0=B=curlA

— no electric field of interest n,-(B,—B,)=0<div,.B=0
S

-

« Fundamental ~ B B
Equations: U.r —0<:>§Hdr_0

 Gauss’ theorem r

« Theorem of MS circulation — — < curlH=0=H =—gradV

. II‘\g?gt?()ertllc constitutive _ n,x(H,-H,;)=0,<H,=H,
- Field sources:\> B:f(H):>BZﬂo(H+M):>B:ﬁH+ﬂoMp

— Permanent magnetization

. MS field is similar to ES field |E=- |E [D [P e |V |y
In uncharged domains: MS: |H B HOM u Um D

EM Field Theory — 9. Magnetostatic fields © LMN 2007




laboratorul de

&Y I Second order equation for the
g scalar potential

30— G, 1,)=0_

5 curlH=0=H=—gradV_ P =—diVl | =—,divM |
B=1uH+I o = B :_Iﬁgradvm + | . |p = et ,UoMp Magnetization charge
pa ™~

-

Magnetic polarization “Magnetization

Particular cases:

* Linear homogeneousizotropic media (Poisson equation):
- —div(gradV,, )=p, [ u= |AV =—vp,,| V=4 1

* No internal ES field sources (Laplace equation):

div(igradV_)=0=div(gradV_)=0<|AV_ =0

Boundary conditions are necessary for a unique solution. They can be:

*Dirichlet b.c. or Neumann b,c. (no both in same P)

V.(P)=f,(P)] onS,#0 aé;;m:fN(P) onS, =X-S,

EM Field Theory — 9. Magnetostatic fields © LMN 2007




modelare

9 Been Second order equation for the
vector potential

LIViN

"divB=0= B=curlA

Particular cases:

< curIH:O:>curI[17(curIA—Ip)]=O
_B=pgH+1,=>H=v(B-1,)

o [corleural-3, _

—curl(vl )

Magnetization

current density

* Linear homogeneous isotropic media (Poisson vector equation):

curlfcurl Al= 1 = grad(divA)—AA = 1 =AA =—14

m

- * No internal ES field sources (Laplace vector equation):

curlcurlA]=0=(AA =0

A still has an arbitrary component A,

They may be: Dirichlet b.c. for A
A, (P)=f (P)lonS, #0

with Coulomb gauge condition:

Is added to

divA=0

= grade, with ¢ harmonic (A¢=01inD)

sothatB =curl A= curl(A+A,) anddiv A=div(A+A,)=0.

Vector boundary conditions are necessary for a unique solution (at least for B).
or Neumann b,c. for A (no both in same P)

nx(curlAxn)=f (P)jonS, =X-S,

EM Field Theory — 9. Magnetostatic fields
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& Ty The fundamental MS problem
rnand In terms of fields

Input (known) data: .
— Computational domain D bounded by
— (CM) Material characteristics u(r)>0 in D
— (CD) Internal field sources Mp(r) inD
— (C%") Boundary conditions (external

sources), the invariant field components:
| Ht(r) on SH connected and Bn(r) on SB=3-SH | divB =0

Output data (solution): H(r), B(r) in D Equations: < curlH=0

For non-connected Dirichlet surfaces S, =UE:18HK,SHk ﬂSHJ. =0 B=uH+I,
according to ES-MS similitude in addition to (CX’) solution uniqueness requires :

(CZ”) ‘Uk = Hdror @, = L B, dS ‘ fork=12,..,n-1,andU_ =0.

PkP,

Examples: dipolar elements of magnetic circuit, excited in “voltage” and in flux

EM Field Theory — 9. Magnetostatic fields © LMN 2007




MS boundary conditions
In terms of potentials

« (CX) for scalar potential :
U V() =DV(r) on SDV and dVm/dn=fNV(r) on SNV=3- SDV
« (CX*)+ (CZ”) for field components (SH=SDV=SNA, SB=SNV=SDA):
Ht(r) on SH and Bn(r) on SB=2-SH
U, = j H.dror @, = B.dS, fork=12,.,n-1,andU_=0.

PkPR, Sex
« (CX”’) for vector potential:
~ At(r) =fDA(r) on SDA and nx(curlAxn)=fNA(r) on SNA=X-SDA

B, =n-curlA=curlA, =curl(f,,), H,=nxv(B-1_ )xn=H =vf,
O, = [ B,dS=| (curlA)ndS={Adr={ fgdr

Sk Sk

Uniqueness of A for a given B: if SNA is simply connected, then the Neumann
b.c. may be substituted by An, because following system has only one solution:

curlA=B| divA =0; nxA=0o0nS;] | n-A=0 on S,

Definition of A| | Coulomb gauge cond) | “Dirichlet” b.c. | [‘Neumann b.c.”
Acc. to fundamental MG problem

EM Field Theory — 9. Magnetostatic fields © LMN 2007




MS fields superposition.
Integral MS solutions in R3

» z

+
In linear media, between field sources 3 N
C =[CD, CS] and solutions F =[B, H] it S(;/lka) _;ﬂks(ck)
- is alinear relationship: S:C2> F B i
Coulomb integrals: solutions in vacuum extended in R3: AV =—p_ / Uy =
divM _dv RdivM _dv
V= [ Aol)V L ¢ ST H(r) = —gradv, = [ T
Arps, *R R A R R 4 °R R
Biot-Savart-Laplace integrals AA=—u,J =—u.curlM, =
J_(r,)dv curlMdv curlM x Radv
A(r):ﬂojs m(O) :ﬂojg ’ B(r)ZCUFIA:ﬂO‘[s - ,
A7t R R A7t R R z >R R
Actually jt is an integral equatipn in H:  B=&(H+M], = A+ M =
472((;(m +1)H+|v|j— . (f):url(;(mH+Mp )xR/ R3)dv:O
EM Field Theory — 9. Magnetostatic fields © LMN 2007
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rnanN Depolarization factor

In a perm. polarized body, depolarization factor D is defined by: | — Hin
—def
D=1/3 for a sphere, but In general it is a shape dependent tensor M

« An ellipsoid body has an uniform internal field, = D=ct (it is solely acc.
http://media.wiley.com/product data/excerpt/9X/07803602/078036029X.pdf )

a=length, b= diqmeter, . s>1 pro '
s=a/b shape anisotropy factor

spheroi
C A Dshonine

) sHefoid s=1sphere

D, = 1—152 {1—l\/1i7 cos ™ s} D, =D, =1_2Dy D, = 521_1{\/% In(s+\/57—1)—1}
In a linear polarized body, M=B/ y4,—H=y_H Internal field:

H=H,+H,=H,-DM=H,=H+Dy_H=(1+Dy,)H=H_ =(1+Dy, ) "H,

B = tH s M=y, Hi = 7,(1+ Dy, ) "Hy=>m=MV =Vy, (1+ Dy, ) "Hy =

H_ . =H,-DM{>D=(H,—H. )/ M Ext.field: H,, =H, + 1 [3m-R)R_m

dr| RS R®
EM Field Theory — 9. Magnetostatic fields © LMN 2007
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— Degenerate cases
Lrvind J

Sphere (s=1) Prolate spheroid

T

Thin disk when's > 0 fiEeeEs e H
-D, =1,D,=D, =0 sEieisaEei ICEEERRRRaeinaen i
=D,=D,=1/3
' ’ Z , ;E‘iﬁo

HMy =—-M ,H|\/|x =0 . M3 . I;e;:”_ Dr_‘{“/

H. =H, /u,H =H, >
Y Y Hp=Ho (14 2, 13)

= toHoy =R, < Boy = By Hy, =0,Hy, =M /2
Similar relations in the case of ellipsoidal cavities. = H =H < H.  =H
®=[B-ndS = [ B,-ndS, U, =[H-dr=[ H,-dr oo it

tex

Hy :2Hﬂy /(1+/’lr)

EM Field Theory — 9. Magnetostatic fields © LMN 2007




InaN MS field of a set of small particles

A permanent and uniform magnetized sphere M=Mp, m=MV_ES->MS;
M ~1[3m-R)R m}

E—->H, ¢ -y, P>uyM = H_ =—§,Hext—47z RS R

A temporal magnetized spherein unlform field HO. ES>MS:

Hio=Ho l(1+ 2, /3) m=VM=4m=aH, . I( 7., +3)
H —H. 3(m-R)R m
B lLlHlnt’M ZmH | 472_ Rs _ Rs
A set of n small particles (compared to distances between them, having
several shapes, and being permanent and/or temporal magnetized.

m, V(M +M,; ) V(M +ij(1+D,Zm,) H. )
o . 1 [3Mm RLR, _m,
Y = RS R’
#)
The solution is obtained by solving the system with 3n linear equations,
projection on x, y, z of:

Vjij(l+ Djij )_1 Zn: 3(mk 'Rk)Rk mk J _ n
A =) Rks Rks IOJ’ "

k#j
EM Field Theory — 9. Magnetostatic fields © LMN 2007




Green function of a non-
homogeneous domain

Green function in R3 is the field of a punctual unitary magnetic moment:
dH(r" )=é( ror )dm(r )’E — gradG It is_ a tenspr, bgcause m may hav.e .an
arbitrary direction m=5(r’=r’)u, u=i, j, k
By superposition is obtained the magnetic field for an arbitrary distribution of

i permanent magnetization Mp H(r" )_IR3G(r r )I\/Ip(l’ )dv

The Green function G of a bounded domain is the field of a punctual unitary
momentum in a domain with zero b.c.: Bn=0 on SN, Ht=0 on SH and ®k=0 or Uk=0
By superposition is obtained the magnetic field for an arbitrary distribution of

permanent magnetization M with same zero boundary conditions. Then, have
to be superposed the contribution of non-zero b.c. (ES-MS):

V(r)==[ = o, (r)dS'=[ G(r P )ufy (1 )dS

H(r")=—gradv(r')= j grad —— dc . o, (1 )dS! +j gradG(r" ,r' )uf,, (r' )ds'

EM Field Theory — 9. Magnetostatic fields © LMN 2007




& T Perfect ferromagnetic bodies.
[ IviN Magnetic reluctances/permeances

* IF p => infinity, then H>0 and the body is similar to a conductor in ES.

« Vm =ct, Ht:O, on the boundary, hence ext. field lines are perpendicular on it
« By ES-> MS similitude the Maxwell relations for capacitances are transformed in
the linear relations for n perfect ferromagnetic bodies :

_¢1_ I Pi P2 - Pi |__V1_
‘ p=P v | @, _ Por Py v Pon || V2
_(Dn | pnl pn2 pnn__Vn_

=V, =R, p< F_Qm =P,

‘Fluxes: ¢=[d1,92,...,6n]
Magnetic voltages: vm=[v1,v2,...,vn]T
Matrix of nodal magnetic permeances Pm

Matrix of nodal magnetic reluctances Rm
EM Field Theory — 9. Magnetostatic fields © LMN 2007




9 Been Partial and equivalent

[MR] reluctances

 Flux tube: area of space between two perfect ferromagnetic bodies,

bounded by a field surface ¢=¢l=- @2, u = v1-v2,
V1 R12
VK
é%
Equivalent (branch) permeances/reluctances:

C
00 =1y
R g
Or =P Vi+ P Vot Py -V, = |:)10'V1+|312'(V1_V2)+---+Pln '(Vl_Vn)

By ES -2 MS similitude:
U=Rg,
- R [1/H] reluctance

[ =
Coido

R =—p >0, Po=Put Pzt -t Peu>0

The permeance values P may be obtained from
Rkj =1/ ij ’ Rko — 1/Pko C, by ES-> MS similitude by substituting e pn
All ES theorems and methods are still valid.

EM Field Theory — 9. Magnetostatic fields © LMN 2007




Magnetic circuits

__________________

* Flux law = KFEL: Zi L I EDC1 |
sz -ndS=0= Zg&k =0 @ —@p,+¢, =0 r—
ke(n) end||| | Epcz

* Voltage theorem = KVL.:

j‘err=O:guk =0 U +U, +U, +...=
kell]

* Constitutive relations: B> 4
— ETC — tripolar element >
— EDC1 - dipolar element
— ENC — nonlinear element
(permanent magnet)
— EDC2 - airgap

B =uH={u =R ¢} whereu, ZLHdMDk = SB-ndS
B=uH~+1,=u, =R, ¢ +6] whete g, ismm.f.

H-=>u

Load line

EM Field Theory — 9. Magnetostatic fields © LMN 2007




Energy of MS field,
[ m Tellegen’s and reciprocity theorems

1
— — 2 T — — ° — — .
W_ _ijmdv_ZijH dv = 5 DIIO Hdv 2§2VB ndS >0

In domains bounded by perfect ferromagnetic §VB-ndS =—Vv'.p
bodies or with zero boundary conditions: z

Tellegen’s theorem: regardless material relations, the total
pseudo-energy Is zero in zero boundary conditions.

If divB'=0, curlH'=0=|<B' ,H'>—¢"vV'=0=B _LH
- Reciprocity theorem: in linear reciprocal materials (u= ') the

relation between sources and responses is symmetric. Consequently, the
Green function is symmetric:

<My, H,>=<M,H>=[ [ (M]-GM,-M," -GM,)dv dv'=0
If M, =16(r—r )M, =jo(r-r )=G,(r,r)=G,(r,r")
If M, =is(r=r), M, =is(r—r')=G_(r,r)=G,(rr)

= ‘E(r',r')zé(r',r'):GT(r',r')

EM Field Theory — 9. Magnetostatic fields © LMN 2007




Variational MS formulations
LIVIN

* The MS “energy” functional in terms of scalar potential is similar to the ES one

F(V. )= %jD | gradv,, )? +div(1, )vm]dv+jSNvands <F(V, +6V)

Neumann are natural boundary conditions while Dirichlet are essential boundary
conditions. Weak (integral-differential) formulations:

j (u gradVv, -gradoV +ovdivi )dv+_[S . oVD,dS =O,{fN =D, =—dV_/dn

 The MS weak formulation in terms of vector potential:

curl[FeurlAl=3,,,3,, =curl(¥1, ):>ID5A-[curI veurlA)-J_ Jdv=0

VA (OAAXWXA)=v VXA -VxA-A-Vx(vVXxA), nxéA=0onS,, =
mﬁcurlaA-curlA—5A-Jm vt dA-(nxvourlA)ds =0] f,, =nxH

Neumann are again natural b. c. and Dirichlet are essential b. c. also for A.
Acc. Preis91-MAG-5 A is unique if to the Galerkin variation formulation are added

j[vcurléA curlA—sA-J_ dv+j SA-(nxveurl A)dS +

_ j udivoAdivAdy — 5A VﬂdIVAdS 0 ‘curl[vc

EM Field Theory — 9. Magnetostatlc fields © LMN 2007




MS applications

Based on the force of
the magnets

*Magnetic separators, magnetic
holding devices, such as magnetic
latches.

*Magnetic torque drives

*Magnetic bearing devices

_Conversion of mechanical to
electrical energy

Magnetos

*Generators and alternators
*Eddy current brakes (used
widely for watt-hour meter
damping).

Conversion of electrical

to mechanical energy
Motors

Meters

Loudspeakers

‘Relays

*Actuators, linear, and rotational

Direct, shape and control

electron or ion beams
*Magnetic focused cathode-ray tubes
*Traveling Wave Tubes

‘Magnetrons, BWO'’s, Klystrons

*lon Pumps

*Cyclotrons

Others

EM Field Theory — 9. Magnetostatic fields
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Generators and motors with p.m.

Rotor Windings

Permanent Stator
Magnets
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Permanent magnets

flHe]

[KG] [mT]

14

l/

/

Vi

L

yd

a1 1 i a8

14000

Haimag

—11 4

a4

] .Id .
I Al
12 =

o5

= bOO

4 -
Eﬁarrmm

Isa Ferrite

1

o

i
RiLEE

< 104

Type Material | Br Hc | Wmx
ImT] | [KA | [KI/
/m] m3]
Rare NdFeB 1240|923 | 294
earths
SmCo 1050 | 636 | 191
Ferrite Ba- 220 | 151 |8
ceramic Ferrite
isotropic
Sr-Ferrite | 360 | 238 | 24
Dry
SrO- 400 |262 |30
6(Fe203)
Metalic | Alnico-5 |1.27 |51 |42
Alnico-8 | 880 |117 |41
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7 IS Magnetic CAD: CST-Magnetostatic
[ IviN simulation of an injection valve

Chromium Nickel

Iron Cobalt magnetic return path z :
alignment ring

N\

Valve body

TR

Stationary armature Moving armature
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Magnetic recording - HDD

write head

read head :

GMR head

high Bs soft magnet

T T |

.|'l.l'._.'|;:|l,;I nean Lig
Re soft
Rl ok

Airite head

rEﬂi:lr[lir"||;;1 media: — nl I} - — .
high K, nanoparticles ."_.TI” i * h W J:
v il *M*Ttrh
e S ||rIL"|I':-_'_;I|':II|I|-j'_jI ‘

small motors -

| - high (BH)__. magnets
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W S MS summary. Equations, interface

LIViN and boundary conditions
{ div|||3—|:(()) —div( ﬂgé?\?IV) o curl [7cu:r(lé] =)Jm
curim = ﬁ{ Pm > J., =curl(vl

B=uH+(1,) H_—gradV B =curlA, divA =0
Bn1: n2 ( %_ @V A :A
{ oy = Men T
H,=H, v, —v, &) [vinxcurlA xn=v,nxcurlA,xn
" H,=f,(P) on S, V=1 (P)
1 5 av
y 5 =Te(P) on 5, an - W) A S (P) ons,,
e, dr=U,or | B,dS=® T nxcurla=f,(P) ons,,
_foreach §,,,k=12,.,nlandU, =0

p=Pv, v=Rgp, R=P™
R=R'>0, P=P' >0

EM Field Theory — 9. Magnetostatic fields © LMN 2007
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W S MS summary. Equations, interface

LIViN and boundary conditions
{ div|||3—|:(()) —div( ﬂgé?\?IV) o curl [7cu:r(lé] =)Jm
curim = ﬁ{ Pm > J., =curl(vl

B=uH+(1,) H_—gradV B =curlA, divA =0
Bn1: n2 ( %_ @V A :A
{ oy = Men T
H,=H, v, —v, &) [vinxcurlA xn=v,nxcurlA,xn
" H,=f,(P) on S, V=1 (P)
1 5 av
y 5 =Te(P) on 5, an - W) A S (P) ons,,
e, dr=U,or | B,dS=® T nxcurla=f,(P) ons,,
_foreach §,,,k=12,.,nlandU, =0

p=Pv, v=Rgp, R=P™
R=R'>0, P=P' >0

EM Field Theory — 9. Magnetostatic fields © LMN 2007
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MS forces

- Magnetized particle F, =grad(m-B,) T, =rxkF,+mxB,
0

. Linear magnetic particle M=Vy. (1+Dy, )" H,
« Perfect ferromagnetic bodies:

F §W ndS, T :§w (rxn)dS

_ X :_EgoTa_Rw, szévTa_PV
2" ox, 2 ox, .
* In general oW aWm
Kimg =~ Kimg == OX
aXk @=const. K v=const.

 Maxwell’s tensor B
2 2 — 2
f:—H?(gradu)nLgrad(H ri’uj:div H"BT+I(H2 raﬂ—w ]

EM Field Theory — 9. Magnetostatic fields © LMN 2007
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Not so easy questions for

LIVIN curious people

© © N O O & W DN PE

e =
N O

Are valid MS equations/methods for slow time variable fields ?

Are valid MS equations/methods for slow moving bodies ?

Are valid MS equations/methods in the presence of magnets ?

Are valid MS equations/methods for electric field outside d.c. currents ?

What about Robin boundary condition (a V+b dV/dn). Correctness and meaning ?
What are MS boundary conditions in semi-bounded domains ?

Give example of wrong MS problems. What are Hadamard well-posed problems?
What about nonlinear magnetic materials? Uniqueness, energy, forces.

What are the differences between Tellegen and reciprocity theorems ?

How is defined Green function with Neumann b.c.?

What space may be used for trial and test functions in weak MS formulation ?
What is the best method for MS field computation ?

EM Field Theory — 9. Magnetostatic fields © LMN 2007




