

Electromagnetic Modeling 9. Magnetostaic Field Daniel Ioan niversitatea Politehnica

Contents

- 1. Hypothesis
- 2. First order equations
- 3. Second order equation for scalar/vector potential
- 4. Fundamental problem, solution uniqueness, boundary conditions
- 5. Small magnetized bodies
- 6. Green functions, integral equations of MS field
- 7. Partial/equivalent magnetic permeances/reluctances
- 8. Magnetic circuits with Permanent Magnets
- 9. Energy, Tellegen, Reciprocity in MS
- 10. Variational formulation: minimization and weak formulation
- 11. Applications
- 12. Summary
- 13. Questions

Static regimes

1.
$$\nabla \cdot \mathbf{D} = \rho$$

$$2 \cdot \nabla \cdot \mathbf{B} = 0$$

3.
$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$

$$4. \nabla \times \mathbf{H} = \mathbf{J} + \frac{\partial \mathbf{D}}{\partial t}$$

$$5. \mathbf{D} = \varepsilon \mathbf{E} + \mathbf{P}_{p}(\mathbf{E})$$

$$6.\mathbf{B} = \mu (\mathbf{H} + \mathbf{M}_{p}(\mathbf{H}))$$

$$7.\mathbf{J} = \sigma(\mathbf{E} + \mathbf{E}_i(\mathbf{E}))$$

$$8. p = \mathbf{E}\mathbf{J}$$

8.
$$p = E_{1}$$

9.
$$\nabla \mathbf{J} = -\frac{\partial \rho}{\partial t}$$

Are neglected all time dependent effects, movement and current (losses)

ρ

E, D

Magneto- Static (MS)

 P_p

- finds magnetic field distribution

Magneto-Static regime

Hypothesis:

- no movement
- no time variation
- no losses (current)
- no electric field of interest
- Fundamental Equations:
- Gauss' theorem
- Theorem of MS circulation
- Magnetic constitutive relation

$$\Phi_{\Sigma} = 0 \Leftrightarrow \oint_{\Sigma} \mathbf{B} d\mathbf{A} = 0$$

$$div\mathbf{B} = 0 \Rightarrow \mathbf{B} = curl\mathbf{A}$$

$$\mathbf{n}_{12} \cdot (\mathbf{B}_2 - \mathbf{B}_1) = 0 \Leftrightarrow div_s \mathbf{B} = 0$$

$$u_{m\Gamma} = 0 \Leftrightarrow \oint_{\Gamma} \mathbf{H} d\mathbf{r} = 0$$

$$\mathbf{curl} \mathbf{H} = 0 \Rightarrow \mathbf{H} = -\mathbf{grad} V$$

$$\mathbf{n}_{12} \times (\mathbf{H}_2 - \mathbf{H}_1) = 0, \Leftrightarrow \mathbf{H}_{t2} = \mathbf{H}_{t1}$$

- Field sources:
 - Permanent magnetization
- MS field is similar to ES field in uncharged domains:

$\mathbf{B} = \mathbf{f}(\mathbf{H}) \Longrightarrow \mathbf{B} = \mu_0(\mathbf{H} + \mathbf{M}) \Longrightarrow \mathbf{B} = \overline{\mu}\mathbf{H} + \mu_0\mathbf{M}_{\mu}$									
				D		T 7			

ES:				ω	•	Ψ
MS:	H	В	$\mu_0 \mathbf{M}$	μ	U_m	Ф

Second order equation for the scalar potential

$$div \mathbf{B} = 0 \Longrightarrow -div(\operatorname{\mathbf{grad}} V_m - \mathbf{I}_p) = 0$$

$$\operatorname{\mathbf{curl}} \mathbf{H} = 0 \Longrightarrow \mathbf{H} = -\operatorname{\mathbf{grad}} V_m$$

$$-div(\overline{\mu}\mathbf{grad}V_m) = \rho_m$$

$$\rho_m = -div\mathbf{I}_p = -\mu_0 div\mathbf{M}_p$$

$$\mathbf{B} = \overline{\overline{\mu}}\mathbf{H} + \mathbf{I}_p \Rightarrow \mathbf{B} = -\overline{\overline{\mu}}\mathbf{grad}V_m + \mathbf{I}_p + \mathbf{I}_p =_{def} \mu_0 \mathbf{M}_p \quad \mathbf{Magnetization \ charge}$$

Magnetization **Magnetic polarization**

Particular cases:

Linear homogeneousizotropic media (Poisson equation):

$$-div(\operatorname{\mathbf{grad}}V_m) = \rho_m / \mu \Rightarrow \Delta V = -\nu \rho_m, \quad \nu =_{def} \mu^{-1}$$

No internal ES field sources (Laplace equation):

$$div(\mu \mathbf{grad} V_m) = 0 \Rightarrow div(\mathbf{grad} V_m) = 0 \Leftrightarrow \Delta V_m = 0$$

Boundary conditions are necessary for a unique solution. They can be:

Dirichlet b.c.

or Neumann b,c. (no both in same P)

$$V_m(P) = f_D(P), \quad \text{on } S_D \neq \emptyset$$

$$\frac{\partial V_m}{\partial n} = f_N(P) \quad \text{on } S_N = \Sigma - S_D$$

on
$$S_N = \Sigma - S_D$$

Second order equation for the vector potential

$$\begin{cases} div \mathbf{B} = 0 \Rightarrow \mathbf{B} = \mathbf{curl A} \\ \mathbf{curl H} = 0 \Rightarrow \mathbf{curl} \left[\overline{v} (\mathbf{curl A} - \mathbf{I}_p) \right] = 0 \\ \mathbf{B} = \overline{\mu} \mathbf{H} + \mathbf{I}_p \Rightarrow \mathbf{H} = \overline{v} (\mathbf{B} - \mathbf{I}_p) \end{cases}$$

 $\mathbf{curl} \left[\overline{\overline{\nu}} \mathbf{curl} \mathbf{A} \right] = \mathbf{J}_{m}$ $\mathbf{J}_{m} = \mathbf{curl} \left(\overline{\overline{\nu}} \mathbf{I}_{n} \right)$

Magnetization current density

Particular cases:

- Linear homogeneous isotropic media (Poisson vector equation): $\operatorname{curl}[\operatorname{curl} \mathbf{A}] = \mu \mathbf{J}_m \Rightarrow \operatorname{grad}(\operatorname{div} \mathbf{A}) \Delta \mathbf{A} = \mu \mathbf{J}_m \Rightarrow \Delta \mathbf{A} = -\mu \mathbf{J}_m$
- • No internal ES field sources (Laplace vector equation):
- • No internal ES field sources (Laplace vector equation): Is added to $\operatorname{curl}[\operatorname{curl} \mathbf{A}] = 0 \Rightarrow \Delta \mathbf{A} = 0$ with Coulomb gauge condition: $\operatorname{div} \mathbf{A} = 0$

A still has an arbitrary component $\mathbf{A}_0 = grad\varphi$, with φ harmonic $(\Delta \varphi = 0 \text{ in D})$ so that $\mathbf{B} = curl \mathbf{A} = curl (\mathbf{A} + \mathbf{A}_0)$ and $div \mathbf{A} = div (\mathbf{A} + \mathbf{A}_0) = 0$.

Vector boundary conditions are necessary for a unique solution (at least for B). They may be: Dirichlet b.c. for A or Neumann b,c. for A (no both in same P)

$$\mathbf{A}_{t}(P) = \mathbf{f}_{D}(P)$$
 on $S_{D} \neq \emptyset$ $\mathbf{n} \times (\text{curl}\mathbf{A} \times \mathbf{n}) = \mathbf{f}_{N}(P)$, on $S_{N} = \Sigma - S_{D}$

EM Field Theory – 9. Magnetostatic fields

© LMN 2007

The fundamental MS problem in terms of fields

Input (known) data:

- Computational domain D bounded by Σ
- (CM) Material characteristics $\mu(\mathbf{r})>0$ in D
- (CD) Internal field sources Mp(r) in D
- (C Σ ') Boundary conditions (external sources), the invariant field components:

SH1 SH SHn

Ht(\mathbf{r}) on SH connected and $\mathbf{Bn}(\mathbf{r})$ on $SB = \Sigma - SH$

Output data (solution): $\mathbf{H}(\mathbf{r})$, $\mathbf{B}(\mathbf{r})$ in \mathbf{D} For non-connected Dirichlet surfaces $S_H = \bigcup_{k=1}^n S_{Hk}$, $S_{Hk} \cap S_{Hj} = \emptyset$ $\mathbf{B} = \overline{\mu} \mathbf{H} + \mathbf{I}_p$ according to $\mathbf{E}\mathbf{S}$. MS circles to $\mathbf{E}\mathbf{S}$. The simple state $\mathbf{E}\mathbf{S}$ is the surface $\mathbf{S}_H = \mathbf{U}$. according to ES-MS similitude in addition to (C Σ ') solution uniqueness requires :

$$U_k = \int_{PkP_0} \mathbf{H}_t d\mathbf{r} \text{ or } \Phi_k = \int_{S_{nl}} \mathbf{B}_n dS, \text{ for } k = 1,2,..., n-1, \text{ and } U_n = 0.$$

Examples: dipolar elements of magnetic circuit, excited in "voltage" and in flux

MS boundary conditions in terms of potentials

\star (C Σ) for scalar potential :

V(r) = fDV(r) on SDV and dVm/dn = fNV(r) on SNV= Σ - SDV

• (C Σ ')+ (C Σ ") for field components (SH=SDV=SNA, SB=SNV=SDA):

Ht(r) on SH and **Bn(r)** on SB= Σ -SH

$$U_k = \int_{PkP_0} \mathbf{H}_t d\mathbf{r} \text{ or } \Phi_k = \int_{S_{rr}} \mathbf{B}_n dS, \text{ for } k = 1, 2, ..., n-1, \text{ and } U_n = 0.$$

• ($C\Sigma$ ") for vector potential:

At(r) = fDA(r) on SDA and nx(curlAxn) = fNA(r) on SNA= Σ -SDA

$$\mathbf{B}_{n} = \mathbf{n} \cdot \mathbf{curl} \mathbf{A} = \mathbf{curl} (\mathbf{f}_{DA}), \quad \mathbf{H}_{t} = \mathbf{n} \times \overline{\overline{\nu}} (\mathbf{B} - \mathbf{I}_{p}) \times \mathbf{n} \Rightarrow \mathbf{H}_{t} = \nu \mathbf{f}_{NA}$$

$$\Phi_{k} = \int_{S_{M}} \mathbf{B}_{n} dS = \int_{S_{M}} (curl \mathbf{A}) \mathbf{n} dS = \oint_{\partial S_{M}} \mathbf{f}_{DA} d\mathbf{r}$$

Uniqueness of A for a given B: if SNA is simply connected, then the Neumann b.c. may be substituted by An, because following system has only one solution:

$$\mathbf{curl}\mathbf{A} = \mathbf{B}; \qquad div\mathbf{A} = 0;$$

Coulomb gauge cond. | "Dirichlet" b.c.

 $\mathbf{n} \times \mathbf{A} = 0 \ on S_{R};$

 $\mathbf{n} \cdot \mathbf{A} = 0$ on S_{H}

Acc. to fundamental MG problem

EM Field Theory – 9. Magnetostatic fields

© LMN 2007

MS fields superposition. Integral MS solutions in R3

In linear media, between field sources C = [CD, CS] and solutions F = [B, H] it

$$S(\sum_{k=1}^{n} \lambda_k \mathbf{C}_k) = \sum_{k=1}^{n} \lambda_k S(\mathbf{C}_k)$$

is a linear relationship: S: C→ F

Coulomb integrals: solutions in vacuum extended in R3: $\Delta V = -\rho_m / \mu_0 \Rightarrow$

$$V(\mathbf{r}) = \frac{1}{4\pi\mu_0} \int_{R^3} \frac{\rho_m(\mathbf{r}_0) dv}{R} = -\frac{1}{4\pi} \int_{R^3} \frac{div \mathbf{M}_p dv}{R}, \quad \mathbf{H}(\mathbf{r}) = -grad V_m = -\frac{1}{4\pi} \int_{R^3} \frac{\mathbf{R} div \mathbf{M}_p dv}{R^3},$$

Biot-Savart-Laplace integrals $\Delta \mathbf{A} = -\mu_0 \mathbf{J}_m = -\mu_0 curl \mathbf{M}$, \Rightarrow

$$\mathbf{A}(\mathbf{r}) = \frac{\mu_0}{4\pi} \int_{R^3} \mathbf{J}_{\mathbf{m}}(\mathbf{r}_0) dv = \frac{\mu_0}{4\pi} \int_{R^3} \frac{curl\mathbf{M}dv}{R}, \quad \mathbf{B}(\mathbf{r}) = curl\mathbf{A} = \frac{\mu_0}{4\pi} \int_{R^3} \frac{curl\mathbf{M} \times \mathbf{R}dv}{R^3}, \quad \mathbf{Actually it is an integral equation in H:} \quad \mathbf{B} = \frac{\mu_0(\mathbf{H} + \mathbf{M}), \quad \mathbf{M} = \chi_{\mathbf{m}} \mathbf{H} + \mathbf{M}_p \Rightarrow 4\pi ((\chi_{\mathbf{m}} + 1)\mathbf{H} + \mathbf{M}_p) - \int_{R^3} (curl(\chi_{\mathbf{m}} \mathbf{H} + \mathbf{M}_p) \times \mathbf{R}/R^3) dv = 0$$

Actually it is an integral equation in H:
$$\mathbf{H} = \mu_0 (\mathbf{H} + \mathbf{M}), \quad \mathbf{M} = \chi_m \mathbf{H} + 1$$

 $4\pi ((\chi_m + 1)\mathbf{H} + \mathbf{M}_n) - \int_{-3}^{3} (curl(\chi_m \mathbf{H} + \mathbf{M}_n) \times \mathbf{R}/R^3) dv = 0$

Depolarization factor

In a perm. polarized body, depolarization factor D is defined by:

D=1/3 for a sphere, but In general it is a shape dependent tensor

An ellipsoid body has an uniform internal field, → D=ct (it is solely acc.

a=length, b= diameter, s= a/b shape anisotropy factor

$$D_{y} = \frac{1}{1 - s^{2}} \left[1 - \frac{s}{\sqrt{1 - s^{2}}} \cos^{-1} s \right], \quad D_{x} = D_{z} = \frac{1 - D_{y}}{2}, \quad D_{y} = \frac{1}{s^{2} - 1} \left[\frac{s}{\sqrt{s^{2} - 1}} \ln \left(s + \sqrt{s^{2} - 1} \right) - 1 \right]$$

In a linear polarized body,
$$\mathbf{M} = \mathbf{B} / \mu_0 - \mathbf{H} = \chi_m \mathbf{H}$$
 Internal field:

$$\mathbf{H} = \mathbf{H}_0 + \mathbf{H}_M = \mathbf{H}_0 - \mathbf{D}\mathbf{M} \Longrightarrow H_0 = H + D\chi_m H = (1 + D\chi_m)H \Longrightarrow H_{int} = (1 + D\chi_m)^{-1}H_0$$

$$B_{int} = \mu H_{int}, \ M = \chi_m H_{int} = \chi_m (1 + D\chi_m)^{-1} H_0 \Rightarrow m = MV = V\chi_m (1 + D\chi_m)^{-1} H_0 \Rightarrow M = MV = V\chi_m (1 + D\chi_m)^{-1} H_0$$

$$\mathbf{H}_{int} = \mathbf{H}_0 - \overline{\overline{D}}\mathbf{M} \Rightarrow D = (H_0 - H_{int}) / M \text{ Ext. field: } \mathbf{H}_{ext} = \mathbf{H}_0 + \frac{1}{4\pi} \left[\frac{3(\mathbf{m} \cdot \mathbf{R})\mathbf{R}}{R^5} - \frac{\mathbf{m}}{R^3} \right]$$

Degenerate cases

Oblate spheroid

Thin disk when $s \rightarrow 0$

$$-D_{v} = 1, D_{x} = D_{z} = 0$$

$$H_{My} = -M$$
, $H_{Mx} = 0$

$$H_{v} = H_{0v} / \mu_{r}, H_{x} = H_{0x}$$

$$\Rightarrow \mu_0 H_{0y} = \mu H_y \Leftrightarrow B_{next} = B_{nint}$$

$$\Phi = \int_{S} \mathbf{B} \cdot \mathbf{n} dS = \int_{S} \mathbf{B}_{v} \cdot \mathbf{n} dS, \quad U_{m} = \int_{C} \mathbf{H} \cdot d\mathbf{r} = \int_{C} \mathbf{H}_{v} \cdot d\mathbf{r}$$

Sphere (s=1)

$$D_x = D_y = D_z = 1/3$$

$$H_M = -M/3$$

$$H_{int} = H_0 / (1 + \chi_m / 3)$$

Prolate spheroid

$H_{int} = H_0 / (1 + \chi_m / 3)^{D_y} = 0, D_x = D_z = 1/2$

$$H_{My} = 0, H_{Mx} = M / 2$$

$$H_y = H_{0y} \iff H_{tint} = H_{tex}$$

$$H_x = 2H_{0x} / (1 + \mu_r)$$

MS field of a set of small particles

A permanent and uniform magnetized sphere M=Mp, m=MV_−EŞ→MS;

$$\mathbf{E} \to \mathbf{H}, \ \varepsilon_0 \to \mu_0, \ \mathbf{P} \to \mu_0 \mathbf{M} \implies \mathbf{H}_{int} = -\frac{\mathbf{M}}{3}, \ \mathbf{H}_{ext} = \frac{1}{4\pi} \left[\frac{3(\mathbf{m} \cdot \mathbf{R})\mathbf{R}}{R^5} - \frac{\mathbf{m}}{R^3} \right]$$

A temporal magnetized sphere in uniform field H0. ES

MS:

A temporal magnetized sphere in uniform field H0. ES
$$\rightarrow$$
 MS:

$$\mathbf{H}_{int} = \mathbf{H}_0 / (1 + \chi_m / 3) \quad \mathbf{m} = V \mathbf{M} = 4\pi a^3 \mathbf{H}_0 \chi_m / (\chi_m + 3)$$

$$\mathbf{B}_{int} = \mu \mathbf{H}_{int}, \mathbf{M} = \chi_m \mathbf{H}$$

$$\mathbf{H}_{ext} = \mathbf{H}_0 + \frac{1}{4\pi} \left[\frac{3(\mathbf{m} \cdot \mathbf{R})\mathbf{R}}{R^5} - \frac{\mathbf{m}}{R^3} \right]$$

A set of n small particles (compared to distances between them, having several shapes, and being permanent and/or temporal magnetized.

$$\mathbf{m}_{j} = V_{j}(\mathbf{M}_{j} + \mathbf{M}_{pj}) = V_{j}(\mathbf{M}_{pj} + \chi_{mj}(1 + D_{j}\chi_{mj})^{-1}\mathbf{H}_{j})$$

$$\mathbf{H}_{j} = \frac{1}{4\pi} \sum_{k=1}^{n} \left[\frac{3(\mathbf{m}_{k} \cdot \mathbf{R})_{k} \mathbf{R}_{k}}{R_{k}^{5}} - \frac{\mathbf{m}_{k}}{R_{k}^{3}} \right]$$

The solution is obtained by solving the system with 3n linear equations, projection on x, y, z of:

$$\mathbf{m}_{j} - \frac{V_{j} \chi_{mj} (1 + D_{j} \chi_{mj})^{-1}}{4\pi} \sum_{\substack{k=1 \ k \neq j}}^{n} \left(\frac{3 (\mathbf{m}_{k} \cdot \mathbf{R}_{k}) \mathbf{R}_{k}}{R_{k}^{5}} - \frac{\mathbf{m}_{k}}{R_{k}^{3}} \right) = \mathbf{m}_{pj}, j = 1, ..., n$$

Green function of a nonhomogeneous domain

Green function in R3 is the field of a punctual unitary magnetic moment:

$$d\mathbf{H}(\mathbf{r}'') = \overline{\overline{G}}(\mathbf{r}'',\mathbf{r}')d\mathbf{m}(\mathbf{r}'), \overline{\overline{G}} = gradG$$
 It is a tensor, because m may have an

arbitrary direction $m=\delta(r'=r')u$, u=i, j, k

By superposition is obtained the magnetic field for an arbitrary distribution of permanent magnetization Mp

$$\mathbf{H}(\mathbf{r}'') = \int_{R^3} \overline{\overline{G}}(\mathbf{r}'', \mathbf{r}') \mathbf{M}_p(\mathbf{r}') dv$$

The Green function G of a bounded domain is the field of a punctual unitary momentum in a domain with zero b.c.: Bn=0 on SN, Ht=0 on SH and Φ k=0 or Uk=0

By superposition is obtained the magnetic field for an arbitrary distribution of permanent magnetization M with same zero boundary conditions. Then, have to be superposed the contribution of non-zero b.c. (ÉS-MS):

$$V(\mathbf{r}'') = -\int_{S_H} \frac{dG}{dn'} \cdot \mu f_{DV}(\mathbf{r}') dS' - \int_{S_R} G(\mathbf{r}'', \mathbf{r}') \mu f_{NV}(\mathbf{r}') dS'$$

$$\mathbf{H}(\mathbf{r}'') = -gradV(\mathbf{r}'') = \int_{S_H} grad\frac{dG}{dn'} \cdot \mu f_{DV}(\mathbf{r}') dS' + \int_{S_R} gradG(\mathbf{r}'', \mathbf{r}') \mu f_{NV}(\mathbf{r}') dS'$$

Perfect ferromagnetic bodies. Magnetic reluctances/permeances

- IF $\mu \rightarrow$ infinity, then H \rightarrow 0 and the body is similar to a conductor in ES.
- Vm = Ct, $H_t=0$, on the boundary, hence ext. field lines are perpendicular on it
- By ES→ MS similitude the Maxwell relations for capacitances are transformed in the linear relations for n perfect ferromagnetic bodies:

Partial and equivalent reluctances

• Flux tube: area of space between two perfect ferromagnetic bodies, bounded by a field surface $\phi = \phi I = -\phi 2$, u = vI - v2,

By ES → MS similitude:

$$u=R\phi$$
,

- R [1/H] reluctance

Equivalent (branch) permeances/reluctances:

$$\varphi_1 = p_{11} \cdot v_1 + p_{12} \cdot v_2 + \dots + p_{1n} \cdot v_n = P_{10} \cdot v_1 + P_{12} \cdot (v_1 - v_2) + \dots + P_{1n} \cdot (v_1 - v_n)$$

• • • •

$$P_{kj} = -p_{kj} > 0,$$
 $P_{k0} = p_{k1} + p_{k2} + ... + p_{kn} > 0$

$$R_{kj} = 1/P_{kj}, R_{k0} = 1/P_{k0}$$

The permeance values P may be obtained from C, by ES \rightarrow MS similitude by substituting $\epsilon \rightarrow \mu$ All ES theorems and methods are still valid.

Magnetic circuits

ETC

EDC1

Rm

Flux law -> KFL:

$$\oint_{\Sigma} \mathbf{B} \cdot \mathbf{n} dS = 0 \Longrightarrow \sum_{k \in (n)} \varphi_k = 0 \Longrightarrow \varphi_1 - \varphi_2 + \varphi_3 = 0$$

Voltage theorem → KVL:

$$\oint_{\Gamma} \mathbf{H} d\mathbf{r} = 0 \Longrightarrow \sum_{k \in III} u_k = 0 \Longrightarrow u_1 + u_2 + u_3 + \dots = 0$$

- ETC tripolar element
- EDC1 dipolar element
- ENC nonlinear element (permanent magnet)
- EDC2 airgap

$$\mathbf{B} = \mu \mathbf{H} \Longrightarrow u_k = R_{mk} \varphi_k$$

$$\mathbf{B} = \mu \mathbf{H} + \mathbf{I}_p \Longrightarrow u_k = R_{mk} \varphi_k + \theta_k$$

 $H \rightarrow u$ Load line

where θ_k is m.m.f.

[l]

Energy of MS field, Tellegen's and reciprocity theorems

$$W_m = \int_D w_m dv = \frac{1}{2} \int_D \mu \mathbf{H}^2 dv = -\frac{1}{2} \int_D \mathbf{I}_p \cdot \mathbf{H} dv - \frac{1}{2} \oint_{\Sigma} V \mathbf{B} \cdot \mathbf{n} dS > 0$$

In domains bounded by perfect ferromagnetic $\int_{\Sigma} V \mathbf{B} \cdot \mathbf{n} dS = -\mathbf{v}^{\mathrm{T}} \cdot \varphi$ bodies or with zero boundary conditions:

Tellegen's theorem: regardless material relations, the total pseudo-energy is zero in zero boundary conditions.

If
$$div\mathbf{B}'=0$$
, $curl\mathbf{H}''=0 \Rightarrow \langle \mathbf{B}', \mathbf{H}'' \rangle - \varphi'^T \cdot \mathbf{v}''=0 \Rightarrow \mathbf{B} \perp \mathbf{H}$

Reciprocity theorem: in linear reciprocal materials ($\mu = \mu^T$) the relation between sources and responses is symmetric. Consequently, the Green function is symmetric:

$$<\mathbf{M}_{1},\mathbf{H}_{2}>-<\mathbf{M}_{2},\mathbf{H}_{1}>=\int_{D}\int_{D}(\mathbf{M}_{1}^{T}\cdot\overline{\overline{G}}\mathbf{M}_{2}-\mathbf{M}_{2}^{T}\cdot\overline{\overline{G}}\mathbf{M}_{1})dv'dv''=0$$

If
$$\mathbf{M}_1 = \mathbf{i}\delta(\mathbf{r} - \mathbf{r}')$$
, $\mathbf{M}_2 = \mathbf{j}\delta(\mathbf{r} - \mathbf{r}') \Rightarrow G_{xy}(\mathbf{r}', \mathbf{r}'') = G_{yx}(\mathbf{r}', \mathbf{r}'')$

If
$$\mathbf{M}_1 = \mathbf{i}\delta(\mathbf{r} - \mathbf{r}')$$
, $\mathbf{M}_2 = \mathbf{j}\delta(\mathbf{r} - \mathbf{r}'') \Rightarrow G_{yy}(\mathbf{r}', \mathbf{r}'') = G_{yx}(\mathbf{r}'', \mathbf{r}'')$

$$\Rightarrow |\overline{\overline{G}}(\mathbf{r}',\mathbf{r}'') = \overline{\overline{G}}(\mathbf{r}'',\mathbf{r}') = \overline{\overline{G}}^{T}(\mathbf{r}',\mathbf{r}'')$$

Variational MS formulations

• The MS "energy" functional in terms of scalar potential is similar to the ES one

$$F(V_m) = \frac{1}{2} \int_D \left[\mu (gradV_m)^2 + div(\mathbf{I}_p) V_m \right] dv + \int_{S_N} V_m B_n dS < F(V_m + \delta V)$$

Neumann are natural boundary conditions while Dirichlet are essential boundary conditions. Weak (integral-differential) formulations:

$$\int_{D} (\mu \operatorname{grad}V_{m} \cdot \operatorname{grad}\delta V + \delta V \operatorname{div}\mathbf{I}_{p}) dv + \int_{S_{NV} = S_{B}} \delta V D_{n} dS = 0, \ \mathbf{f}_{N} = D_{n} = -\mu dV_{m} / dn$$

• The MS weak formulation in terms of vector potential:

$$\mathbf{curl}\left[\overline{v}\mathbf{curl}\mathbf{A}\right] = \mathbf{J}_{m}, \mathbf{J}_{m} = \mathbf{curl}(\overline{v}\mathbf{I}_{p}) \Rightarrow \int_{D} \delta\mathbf{A} \cdot \left[\mathbf{curl}(\overline{v}\mathbf{curl}\mathbf{A}) - \mathbf{J}_{m}\right] dv = 0$$

$$\nabla \cdot (\delta\mathbf{A} \times v\nabla \times \mathbf{A}) = v \nabla \times \mathbf{A} \cdot \nabla \times \delta\mathbf{A} - \delta\mathbf{A} \cdot \nabla \times (v \nabla \times \mathbf{A}), \quad \mathbf{n} \times \delta\mathbf{A} = 0 \text{ on } S_{DA} \Rightarrow$$

$$\int_{D} \left[\overline{v}\mathbf{curl}\delta\mathbf{A} \cdot \mathbf{curl}\mathbf{A} - \delta\mathbf{A} \cdot \mathbf{J}_{m}\right] dv + \int_{S_{NA} = S_{H}} \delta\mathbf{A} \cdot (\mathbf{n} \times \overline{v}\mathbf{curl}\mathbf{A}) dS = 0, \quad \mathbf{f}_{NA} = \mathbf{n} \times \mathbf{H}$$

Neumann are again natural b. c. and Dirichlet are essential b. c. also for A.

Acc. Preis91-MAG-5 A is unique if to the Galerkin variation formulation are added

$$\int_{D} \left[v \operatorname{curl} \delta \mathbf{A} \cdot \operatorname{curl} \mathbf{A} - \delta \mathbf{A} \cdot \mathbf{J}_{m} \right] dv + \int_{S_{NA}} \delta \mathbf{A} \cdot (\mathbf{n} \times v \operatorname{curl} \mathbf{A}) dS + \\ - \int_{D} v \operatorname{div} \delta \mathbf{A} \operatorname{div} \mathbf{A} dv - \int_{S_{DA}} \delta \mathbf{A} \cdot v \operatorname{n} \operatorname{div} \mathbf{A} dS = 0 \Leftrightarrow \mathbf{curl} \left[v \operatorname{curl} \mathbf{A} \right] + \mathbf{grad} \left[v \operatorname{div} \mathbf{A} \right] = \mathbf{J}_{m}$$

MS applications

Based on the force of the magnets

- •Magnetic separators, magnetic holding devices, such as magnetic latches.
- Magnetic torque drives
- Magnetic bearing devices

Conversion of mechanical to electrical energy

- Magnetos
- Generators and alternators
- •Eddy current brakes (used widely for watt-hour meter damping).

Conversion of electrical to mechanical energy

- Motors
- Meters
- Loudspeakers
- Relays
- Actuators, linear, and rotational

Direct, shape and control electron or ion beams

- Magnetic focused cathode-ray tubes
- Traveling Wave Tubes
- Magnetrons, BWO's, Klystrons
- Ion Pumps
- Cyclotrons

Others

Separators. Laudspeakers

Generators and motors with p.m.

Rotor

Permanent Magnets

Windings

Stator

Permanent magnets

Material	Br [mT]	Hc [kA /m]	Wmx [kJ/ m3]				
NdFeB	1240	923	294				
SmCo	1050	636	191				
Ba- Ferrite isotropic	220	151	8				
Sr-Ferrite Dry	360	238	24				
SrO- 6(Fe2O3)	400	262	30				
Alnico-5	1.27	51	42				
Alnico-8	880	117	41				
	NdFeB SmCo Ba-Ferrite isotropic Sr-Ferrite Dry SrO-6(Fe2O3) Alnico-5	NdFeB 1240 SmCo 1050 Ba-Ferrite isotropic 360 Sr-Ferrite Dry 400 6(Fe2O3) 1.27	ImT [kA/m] NdFeB 1240 923 SmCo 1050 636 Ba-Ferrite isotropic 220 151 Sr-Ferrite Dry 360 238 SrO-6(Fe2O3) 400 262 Alnico-5 1.27 51				

© LMN 2007

Magnetic CAD: CST-Magnetostatic simulation of an injection valve

Magnetic recording - HDD

The Sun-Earth Connection Solar wind - Earth magnetic field

MS summary. Equations, interface and boundary conditions

and boundary conditions
$$\begin{cases}
div \mathbf{B} = 0 \\
\mathbf{curl} \mathbf{H} = 0
\end{cases}
\qquad
\begin{cases}
-div(\overline{\mu}\mathbf{grad}V) = \rho_m \\
\rho_m = -div \mathbf{I}_p
\end{cases}
\qquad
\begin{cases}
\mathbf{J}_m = \mathbf{curl}(\overline{\nu}\mathbf{I}_p) \\
\mathbf{B} = \overline{\mu}\mathbf{H} + (\mathbf{I}_p)
\end{cases}$$

$$\begin{cases}
\mathbf{B}_{n1} = \mathbf{B}_{n2} \\
\mathbf{H}_{t1} = \mathbf{H}_{t2}
\end{cases}
\qquad
\begin{cases}
\mu_1 \frac{\partial V_1}{\partial n} = \mu_2 \frac{\partial V_2}{\partial n} \\
V_1 = V_2
\end{cases}
\qquad
\begin{cases}
\mathbf{A}_1 = \mathbf{A}_2 \\
v_1 \mathbf{n} \times curl \mathbf{A}_1 \times \mathbf{n} = v_2 \mathbf{n} \times curl \mathbf{A}_2 \times \mathbf{n}
\end{cases}$$

$$\begin{cases}
\mathbf{U} = \mathbf{f}_{t}(P) \\
\mathbf{U} = \mathbf{f}_{t}(P)
\end{cases}$$

$$\mathbf{H}_{t} = \mathbf{f}_{H}(P) \text{ on } S_{H}$$

$$B_{n} = f_{B}(P) \text{ on } S_{B}$$

$$\int_{PkP_{0}} \mathbf{H}_{t} d\mathbf{r} = U_{k} \text{ or } \int_{S_{Ek}} B_{n} dS = \Phi_{k}, \qquad \mathbf{n} \times \mathbf{A} = \mathbf{f}_{D}(P) \text{ on } S_{DA}$$

$$\mathbf{for each } S_{Hk}, k = 1, 2, ..., n-1, \text{ and } U_{n} = 0$$

• Circuit parameters:

$$\varphi = \mathbf{P}\mathbf{v}, \quad \mathbf{v} = \mathbf{R}\varphi, \quad \mathbf{R} = \mathbf{P}^{-1}$$

 $\mathbf{R} = \mathbf{R}^T > 0, \ \mathbf{P} = \mathbf{P}^T > 0$

MS summary. Equations, interface and boundary conditions

and boundary conditions
$$\begin{cases}
div \mathbf{B} = 0 \\
\mathbf{curl} \mathbf{H} = 0
\end{cases}
\qquad
\begin{cases}
-div(\overline{\mu}\mathbf{grad}V) = \rho_m \\
\rho_m = -div \mathbf{I}_p
\end{cases}
\qquad
\begin{cases}
\mathbf{J}_m = \mathbf{curl}(\overline{\nu}\mathbf{I}_p) \\
\mathbf{B} = curl \mathbf{A}, \ div \mathbf{A} = 0
\end{cases}$$

$$\begin{cases}
B_{n1} = B_{n2} \\
\mathbf{H}_{t1} = \mathbf{H}_{t2}
\end{cases}
\qquad
\begin{cases}
\mu_1 \frac{\partial V_1}{\partial n} = \mu_2 \frac{\partial V_2}{\partial n} \\
V_1 = V_2
\end{cases}
\qquad
\begin{cases}
\mathbf{A}_1 = \mathbf{A}_2 \\
v_1 \mathbf{n} \times curl \mathbf{A}_1 \times \mathbf{n} = v_2 \mathbf{n} \times curl \mathbf{A}_2 \times \mathbf{n}
\end{cases}$$

$$\begin{aligned} & \mathbf{H}_{t1} = \mathbf{H}_{t2} \end{aligned} \qquad \begin{aligned} & \mathbf{V}_{t} = \mathbf{V}_{2} \end{aligned} \qquad \begin{aligned} & \mathbf{V}_{t} \mathbf{n} \times curl \mathbf{A}_{1} \times \mathbf{n} = \mathbf{v}_{2} \mathbf{n} \times curl \mathbf{A}_{2} \times \mathbf{n} \end{aligned}$$

$$& \mathbf{H}_{t} = \mathbf{f}_{H}(P) \text{ on } S_{H} \end{aligned} \qquad \begin{aligned} & \mathbf{V} = f_{D}(P) \end{aligned}$$

$$& \mathbf{B}_{n} = f_{B}(P) \text{ on } S_{B} \end{aligned} \qquad \begin{aligned} & \mathbf{V} = f_{D}(P) \end{aligned}$$

$$& \mathbf{M}_{t} = \mathbf{f}_{t} = \mathbf{M}_{t} \end{aligned} \qquad \begin{aligned} & \mathbf{N} \times \mathbf{A} = \mathbf{f}_{t} = \mathbf{M}_{t} \end{aligned} \qquad \begin{aligned} & \mathbf{N} \times \mathbf{A} = \mathbf{f}_{t} = \mathbf{M}_{t} \end{aligned}$$

$$& \mathbf{N} \times \mathbf{A} = \mathbf{M}_{t} = \mathbf{M}_{t} \end{aligned} \qquad \mathbf{N} \times \mathbf{A} = \mathbf{M}_{t} = \mathbf{M}_{t} \end{aligned} \qquad \mathbf{N} \times \mathbf{A} = \mathbf{M}_{t} = \mathbf{M}_{t} \end{aligned} \qquad \mathbf{N} \times \mathbf{M} = \mathbf{M}_{t} = \mathbf{M}_{t} = \mathbf{M}_{t} \end{aligned} \qquad \mathbf{N} \times \mathbf{M} = \mathbf{M}_{t} = \mathbf{M}_{t} = \mathbf{M}_{t} = \mathbf{M}_{t} = \mathbf{M}_{t} \end{aligned} \qquad \mathbf{M} \times \mathbf{M} = \mathbf{M}_{t} =$$

for each
$$S_{Hk}$$
, $k = 1,2,..., n-1$, and $U_n = 0$

 $\varphi = \mathbf{P}\mathbf{v}, \quad \mathbf{v} = \mathbf{R}\varphi, \quad \mathbf{R} = \mathbf{P}^{-1}$ **Circuit parameters:**

$$\mathbf{R} = \mathbf{R}^T > 0, \ \mathbf{P} = \mathbf{P}^T > 0$$

MS forces

- Magnetized particle $\mathbf{F}_{m} = \mathbf{grad}(\mathbf{m} \cdot \mathbf{B}_{\mathbf{v}})$ $\mathbf{T}_{m} = \mathbf{r} \times \mathbf{F}_{m} + \mathbf{m} \times \mathbf{B}_{v}$
- Linear magnetic particle $\mathbf{m} = V \chi_m (1 + \overline{\overline{D}} \chi_m)^{-1} \mathbf{H}_{...}$
- Perfect ferromagnetic bodies:

$$\mathbf{F} = \oint_{\Sigma} w_m \mathbf{n} dS, \qquad \mathbf{T} = \oint_{\Sigma} w_m (\mathbf{r} \times \mathbf{n}) dS$$

$$X_k = -\frac{1}{2} \varphi^{\mathbf{T}} \frac{\partial \mathbf{R}}{\partial \mathbf{r}} \varphi; \quad X_k = \frac{1}{2} \mathbf{v}^{\mathbf{T}} \frac{\partial \mathbf{P}}{\partial \mathbf{r}} \mathbf{v}$$

In general

$$X_{k} = -\frac{1}{2} \boldsymbol{\varphi}^{T} \frac{\partial \mathbf{R}}{\partial x_{k}} \boldsymbol{\varphi}; \quad X_{k} = \frac{1}{2} \mathbf{v}^{T} \frac{\partial \mathbf{P}}{\partial x_{k}} \mathbf{v}$$
In general
$$X_{k mg} = -\frac{\partial W_{m}}{\partial x_{k}} \bigg|_{\boldsymbol{\varphi} = const.} X_{k mg} = -\frac{\partial W_{m}^{*}}{\partial x_{k}} \bigg|_{\boldsymbol{\varphi} = const.}$$

Maxwell's tensor

$$\mathbf{f} = -\frac{H^2}{2} (\mathbf{grad} \,\mu) + \mathbf{grad} \left(\frac{H^2}{2} \tau \frac{\partial \mu}{\partial \tau} \right) = div \left| \mathbf{H}^{\wedge} \mathbf{B}^T + \overline{\overline{\mathbf{I}}} \left(\frac{H^2}{2} \tau \frac{\partial \mu}{\partial \tau} - w_m \right) \right|$$

Not so easy questions for curious people

- 1. Are valid MS equations/methods for slow time variable fields?
- 2. Are valid MS equations/methods for slow moving bodies?
- 3. Are valid MS equations/methods in the presence of magnets?
- 4. Are valid MS equations/methods for electric field outside d.c. currents?
- 5. What about Robin boundary condition (a V+b dV/dn). Correctness and meaning?
- 6. What are MS boundary conditions in semi-bounded domains?
- 7. Give example of wrong MS problems. What are Hadamard well-posed problems?
- 8. What about nonlinear magnetic materials? Uniqueness, energy, forces.
- 9. What are the differences between Tellegen and reciprocity theorems?
- 10. How is defined Green function with Neumann b.c.?
- 11. What space may be used for trial and test functions in weak MS formulation?
- 12. What is the best method for MS field computation?