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Maxwell’s equations

1. They are the differential form of
the EM field laws in non-moving
media:

2. In addition, to obtain a complete
system of equations, the
constitutive relations should be

V:-D=p
V-B=0

V><E:—§§

ot

VXH=J+@
ot

D =¢,E+P(E)=¢E in linear dielectrics
B=xu,(H+M(H))=4H in linear media
J=0(E+E,(E)) =0cE in linear conductors

added
V-D=0 They are compatible with
: : _ the Einstein’s theory of
V-H=0
3. In vacuum, the EM field is H relativity, being invariant
described only by E and H: VxE=—u O ininertial moving
ot reference systems
ok (invariant to the Lorentz
VxH ~ oo transform)
EM Field Theory — 1. EM Quantities © LMN 2007
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Maxwell-Hertz equations
LvinN i

V-D=
1. They are the differential form of the EM field V.B _'g
laws in moving media (in the moving _d B
f
“ether” hypothesis): | VxE=- "
3. Expresgmg t.h(.e'flux derivatives according to VxHz=J4 1
their definition: \ dt
4. They are the best approximation of ( V-D=p
Einstein’s theory of relativity — electro- V-B=0
dynamics for low speeds v <<c ] VxE:—a—B—Vx(va)
(invariant to the Galilean transform) L
H=J D D
5. Constitutive relations links field quantities VxH = +E+pv+V><( xV)

"

defined in the local coordinate system:

6. In the 1880s Hertz obtained the experimental D=¢,E+P(E)=eE in linear dielectrics
evidence of electromagnetic waves. B = i (H+M(H))= zH in linear media

Their existence had been predicted in i d
1873 by James Clerk Maxwell, on J =o(E+E;(E)) =0k in linear conductors

mathematical way
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laboratorul de
model -

Diagram of fundamental EM

LIVIN phenomena (causal relations)

F 3
1. V-D=p E
2.V-B=0
B.Vsz—a—B -

ot -
Y
4.VxH=J +@

_ ot
5.D=¢ E+P,(E) _
6.B=u (H+M,(H)) y
7.3 =o(E + E,(E)) i
8.p=J-E
9.0 =kJ
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EM field regimes

1. Static - ST

« ES - Electro-Static

e MS - Magneto-Static
2. Steady state - SS

« EC - Electro-Conductive
« MG — Magneto- Steady-State

3. Quasi-static - QS
. EQS - Electro-Quasi-Static
«  MQS - Magneto-Quasi-Static

. EMQS - Electro-Magneto-
Quasi-Static

4. Electro-dynamic - ED

. FW — Full-wave, Non-
moving

. LL — Full wave loss-less
5. QS,ED in Frequency domain
. Harmonic time variation
. Fourier/Laplace transform
6. General

. Moving bodies with known
speed

. Coupled Mechanic-EM
field

EM Field Theory — 1. EM Quantities
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b Diagram of fundamental steady

[MN state EM fields

1.V-D=p o
EC - Electro- E.
2.V-B=0 Conductive- Steady- |

Sstate
3. VXE:—g
ot
4.V xH =J+\%
ot

5.D=s E+P,(E)
6.B=p (H+M (H))
7.J =o(E+E.(E))

MG - Magneto-
Steady- state

EM Field Theory — 1. EM Quantities © LMN 2007




b Diagram of fundamental static

LIvViN EM fields

1. V.-D=p
2.V-B=0

3. Vsz—\B&
ot

D
4.V><H:\+ p
5.D=¢ E+P (E)
6.B=u(H+M (H))
+p=FEJ—

ES — Electro-Static

MS — Magneto- Static

EM Field Theory — 1. EM Quantities © LMN 2007




Electro-Static field

ES hypothesis:

ES — Electro-Static

1. No movement
2. No time variation
3. No energy transfer
4. No interest for magneticMjeld
ES fundamental equations: Sources: p, Py, E
Fields: D, (curl-free) E
- Gauss theorem: V-D=p Potential: V
«  Potential theorem: VxE=0 Material constants - only
«  Polarization theorem: D=¢E+ Pp( E) gg% ;f elliptic type for
Ceewosaiccaiun o(ELEE)=0 PO SR

condition in conductors;

In space

EM Field Theory — 1. EM Quantities © LMN 2007




Magneto-Static field

MS hypothesis:

1. No movement -

No time variation Mp

2
3. No energy transfer
4

No interest for electric field, only for

magnetic field produced by permanent sSources: MIO
magnets Fields: (curl-free) H,
(div-free) B
_ Potential: V

MS fundamental equations: Material constants - only
. : n_ one: M

Gauss theorem: v-B=0 PDE of elliptic type for
«  Potential theorem: VxH=0 potential.

*  Magnetization theorem: B =y (H+M (H)) E:S[?. éiigztﬁ]n;%r;eczus

EM Field Theory — 1. EM Quantities © LMN 2007




EC hypothesis:
1. No movement
2. No time variation

3. No interest for magnetic field,
only for d.c. current P,
distribution in massive
conductors

EC fundamental equations:

*  Theorem of the current ;. £ _
conservation:

VxH=J=V-J=0

. Potential theorem:

J=0(E+E, (E))

« Ohm’s law:
Sources: E;
Fields: (curl-free) E, (div-free) J
Potential: V

Material constants - only one: o
PDE of elliptic type for potential.
Field is instantaneous
distributed in space

EM Field Theory — 1. EM Quantities
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-Steady-State regime

Magneto
MG hypothesis: F
1. No movement M

2. No time variation

3. Current distribution is known
from a previous EC analysis

MG fundamental equations:

*  Gauss theorem: V-B=0
Ampere theorem: VxH=J]
 Magnetization theorem B = u (H+

Sources: J
Fields: H, (div-free) B
Potential: A

M, (H))

Material constants - only one: p
PDE of elliptic type for potential.
Field is instantaneous
distributed in space

EM Field Theory — 1. EM Quantities
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laboratorul de

— Electro Quasi-Static regime

iy

EQS hypothesis:
1. No movement

2. Slow time variation so that
Electromagnetic induction may be 7
neglected

3. No interest in Magnetic field, only
in charge relaxation due to the
parasitic conduction

-EQS fundamental equations: V.-D=p

«  Gauss theorem: VxE=0
. Potential theorem: 0
| divd = -
. Current-charge conservation ot Sources: E.
- |
«  Polarization and conduction D=¢E+P (E) Fields:p,J,D,(curl-free)E
constitutive relations P Potential: V

PDE of parabolic type for potential. J=0(E+E,(E)) Material constants: ¢, o
Field diffuses in space

EM Field Theory — 1. EM Quantities © LMN 2007




MQS hypothesis: E

1. No movement

2. Slow time variation so that F
Displacement current may be F
neglected P p
3. No interest in charge distribution P
(it is supposed relaxed), but in eddy
currents, skin effects, etc
-~ MQS fundamental equations:V-B=0 7
° * 88
Gauss theorem: VxE=_% 3
Potential theorem: ot
_ VxH=J] Sources: E;
. Current-charge conservation B _ (H M (H )) Fields: E, H, (div-free) J, B
«  Polarization and conduction B P Potentials: A, V
constitutive relations J=0c(E+E;(E)) Material constants: y, o
PDE of parabolic type
p=E-J Field diffuses in space

EM Field Theory — 1. EM Quantities © LMN 2007




Electro-Magneto-Quasi-Static

EMQS hypothesis:

1.

Computational domain is
decomposed in conductive and

dielectric parts. Time variation is
slow, so that in conductors may

be neglected displacement
currents and in dielectrics may
be neglected EM induction

Charge distribution in
conductors are relaxed, no
interest for magnetic field in
dielectrics, no semiconductors
in the computational domain

Are considered: eddy currents
and skin effects in conductors,
charge relaxation in lossy
dielectrics and propagation
along the interface

regime
Propagation directiorj
MQS >
EQS

EMQS fundamental equations:
*EQS equations in dielectrics
*MQS equations in conductors

Fields in dielectrics: (curl-free) E, D, J, p
Fields in conductors: E, H, (div-free) J, B
Potentials: A, V

Material constants: o, in conductors M, in
dielectrics €

PDE of parabolic(3D)/hyperbolic(2D) type
Field diffuses in space and it is propagating
along the conductor boundary surface

EM Field Theory — 1. EM Quantities
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—y Full Wave Loss-Less regime
LIViN d

v.D r g
= p Ei
V-B=0
oB
VxE=—— T
ot r 4
p
VxH = b Po :
ot n -
3 : :4”
D=¢ E+Pp(E) :
B =4 (H+M(H)) - :
Sources: E;, My, P, s
Fields: E, D, H, (div-free) B o
Potentials: A, V LL hypothesis:
Material constants: g, 1. No movement
PDE of hyperbolic type 2. No conductive losses (0=0, J=0)

Field is propagating in space
propag J P 3. No hysteretic losses of dielectric or

magnetic nature

EM Field Theory — 1. EM Quantities © LMN 2007




»; Harmonic variation in time
[MN Maxwell’ equations in freq. domain

Complex representation of harmonic functions:
y(t) = YV2sin(wr+4) Y =Yl =
Y'(t)=Yﬁwcos(wt+¢)<_>f: joY =Yel#/2)
y(t)=Y Ay ()Y =D 4Y,

k=1,n k=1,n
Complex form of the Maxwell’s equations:

~V:-D=p II‘ V(¢ E)=p
“V-B=0_ _ To apply the complex transform,
— _ m VxE=—Jou H media should have linear
VxE=-]oB = _ constitutive relations
VxH=J+ jowD VxH=(o+ Jwe )E| sources: boundary conditions
- = — l Fields: E, H
D=¢E Potentials: A, V
B-, H VxE=-su H Material constants: g, 4, ©
2=H PDE of complex elliptic type.
J=0cE VxH=(o+s¢ )E &=After Laplace transform

EM Field Theory — 1. EM Quantities © LMN 2007




Summary of the EM field regimes

Regime Eq. type Fields Material Phenomenon
const.

ES Elliptic D, curl-free E € Distribution

MS Elliptic Curl-free H, u Distribution
div-free B

EC Elliptic Curl-free E, o) Distribution
div-free J

MG Elliptic H, div-free B M Distribution

~ | EQS Parabolic D, J, curl-free E | €, 0O Diffusion

MQS Parabolic E, H, div-free M, O Diffusion
B, div-free J

LL Hyperbolic E, H, div-free €, M Propagation
D, div-free B,

FW Hyperbolic E,D, H, &M O Propagation
div-free B

Freq. Elliptic E, H &M, O Distribution

EM Field Theory — 1. EM Quantities © LMN 2007




Summary of the EM field laws

Global/ Integral Local On sufaces Field lines
Electric flux s =0p, & divD = p < div,D = p, = D - open from +
to -
§D-dA=[ pdv V-D=p Dy1 = Dy
Magnetic flux gz =0 dvB=0< div,B=0= B — closed
§B-dA=0 V-B=0 B, = B,
EM induction dos. dB E — closed
Up === == O =——r= rot,E =0= arround B
{E dr:—ideA vxE=-28 E,=Ep
dt’sr ot
Magnetic dyg d;D 3 H — closed
circ?ulation Upr =g, + o = rotH =J + i = rotH=J, = arround J+Jd
H,=H
{H-dr:deA+ideA VxH=3+2 e
r Sr dt “sr ot
E-D Y5 =1(Uc) = D=f(E)=¢ E+P, 9o /19a, =& /&, | Eopen,D closed
B-H g = (U, o)< B:f(H):,TtH+ﬂ0|\/|p tgey Itgar, = 14/ 11, | HoOpeN,J closed
Conduction ls = (Uc) = J=f(E)=oE+J;, | Waull9ax,=01/0;, | Eopen,Jclosed
Energy transfer P = Ui p=J-E - Energy: sgn(p)
Mass transfer m = kit o =kJ - Mass - 6
EM Field Theory — 1. EM Quantities © LMN 2007




Spatial differential operators
LIViN - :

1. Divergence, from vector field to scalar field: dive=V-o
2. Curl (rotor), from vector field to vector field;: rote=curlo=V xo
3. Gradient, from scalar field to vector field: grade=Vo

Nabla (del) operator [1/m] = vector + derivative: Vo= i@ + ] oc + Kk oc
X

Meaning: div = field productivity, curl = rotational tendency, grad = maxim variation

(value, direction) i j K
oD
V-D:i@+j@+k8D:an+ y+aDZ; VxE:6 0 a:iﬁEZ— .....
OX oy oz  OX oy 0z ox oy oz oy
.oV .oV oV E., E, E
VW=1—+]—+k— y
OX oy oz

Differential identities:

V- (VxG)=0«< div(rote )=0;V-(VV)=div(gradV)=AV = az\g + 62\2 + az\g ;
ox® oy® oz

VxVV =0< rot(grade )=0; grad(divG)=V(V-G)+AG =V x(VxG) =rotrotG + AG

EM Field Theory — 1. EM Quantities © LMN 2007




v AR B De Rahm sequence

1. Divergence: div:H(div;Q) — L*(Q)
2. Curl: curl - H(curl; ) — [ (@) f
3. Gradient: grad: H'(Q) —» [LZ(Q)]B

Sobolev spaces of functions with differentials in L2 (it is a Hibert space)

1d V VX V- 0]
IR—>HYQ)—H(curl; Q) > H(div;Q) > L*(Q) >0
- That means (kernel of each operator is exactly the range of previous one):
ker(grad) = IR = grad(ct) = 0; zerogradient = constantscalar field

If Q is simply connected, the sequence (de Rham) is an exact one:

ker(curl) = VH'(Q) = curl(gradV) = 0; &anycurl -freefield hasa scalar potential

ker(div) =V x H (curl; Q) = div(curlG) = 0; &anydiv - freefield hasa vectorpotential
elmholtz decomposition: o aad ot div
|

VG e L*(Q)° =3V e HY(Q), Ae H(curl;Q),stt. 0
|G =gradV +curlAjgradV L curlA () mo

Any vector field has two sources: div and curl 1 S
H H(curl) H(div) L°(Q)

EM Field Theory — 1. EM Quantities © LMN 2007




General chain spaces for d=3

If Q is not contractible:
The scalar potential is not

space of O-chains C(K,€) uniquely defined
space of O-cocycles Z(K ¥E)
\ 7 ker(grad) c IR

L 7

C8r? SPaces (rr=3)

\ \ * '/ /
D tor \ }‘__ /
codboundary operato ‘\ Y $ /, ’I’ kel‘(CU rl) — VH 1(Q)
r 7-chains CK.€) - .
Stk 7 eaclas. ) ker(div) c V x H (curl; Q)
space of bouvrding 7-cocycles B(K,€) - fi
\ \ ) / 1’ /
coboundar: rator \ WA X // / .
boundiary operat N7/ The Rham sequence is
\ \ / . .
space of 2-chains CUK.€) also exact for fields with
space of 2-cocycles Z(K ) @ .
space of bourding 2-cocycles Bk, €) : = essential zero boundary
A \ - )
e —— | _\\ \ \ } /’," d conditions (potentials are
v \\Y well defined).

space of 3-ctrairrs CUKE)

In the case of hybrid
boundary conditions, the
seguence is not exact.

space of Dbowrroirrg 3 -cocycles B'(K,¥)

Fig.3.2.9
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Integral-differential consequences

mM In Sobolev spaces

Lipschitz-domain: Q and 9Q are piecewise defined by Lipschitz functions
w.r.t. local coordinates, s.t. Q lies locally on one side of 9Q). It enables the
definition of an outer unit vector n almost everywhere on 9Q and

C*(Q)isdense in H*(©),C”(Q)° in H(curl, ), H (div, Q) = tr,,, (u) = | extendedin H

Here, general Stokes theorem: for any differential form w is valid: dea) = agz) =

Gauss-Ostrogradski theorem: J-QdinX =[v. ndx:v e VHTdIV,

G.reen identities:
 gradu-vdx = —jQudiwdx+j tr., (U)v - ndx; Vu e HY(Q) v e H(div, Q)

°curlu-vdx :ju-curlvdx _[ tr (u)-vdx;vu e H(curl,Q); vVeH HQ)°
dqu VIV +VxA)=f = AV = f =V (X) = jG(x y)f(y)dx+j (n y)V( y)dS,

curlG=Vx(VW +VxA)=g=>AA=g= A(X) = _[G(x y)g(y)dx+_[ P )A( y)dS

AG =5(x-y) >V () =[ GO (X  AG) = [ G(x Na(d  G(x,y)= 47[”;1_ vl

EM Field Theory — 1. EM Quantities © LMN 2007




W Tonti’s diagram (Maxwell house)

In several regimes, it is

0
reduced: div
ES: front wall (V,E,D,p) D
MS: back wall (Vm,H,B,0) -V M A/ 'ﬁ J+0,D
EC: V,E,J,0 grad /U/ rot
MG: back wall E Y £ > 5
Y 2
-MQS: E,J, H, B (no D) B < ) H
: grad
EQS: E,J,D (noB) rot / /
T
-0,B \ 4 ) iy
/ 0 ] "m0
“0 iy /
0O v
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Pop art (find mitakes, pls.!)
'/’
And fHlaxtwell said,

VxE =-joB V:D=p

! VxH=J+oD V-B=0 S

EM Field Theory — 1. EM Quantities © LMN 2007
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Not so easy questions for
curious people

1. Areall four Maxwell equations independent?

2.  What is Lorentz Ether Theory? Is it the ether immovable or not ?

3. How the EM quantities are transformed when the reference
system is changed with a moving one?

4. How looks like the Maxwell-Hertz equations in global form ? Are
the surfaces S in these equations dragged by matter ?

-~ 5. How Maxwell discovered the displacement current ?

6. May be explained Hertz’s experiment using solely the EM
iInduction ?

7. What speed is the maxim speed of the EM waves ?

8. Why the EC steady state current can not have permanent
polarization as a source?
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