

Polarization law

Local form of the law:

$\mathbf{D} = \mathbf{f}(\mathbf{E})$

Particular forms:

- in vacuum:
- in linear isotropic dielectrics:
- in non-isotropic dielectrics:
- in permanent polarized bodies:
- in general:
- In linear dielectrics:

3. Physical meanings:

- Each substance has its own dielectric behavior
- Permanent polarization is a source of the electric field
- Due to their polarization, dielectrics perturbs the electric field

$\mathbf{D} = \varepsilon_0 \mathbf{E}, \quad \varepsilon_0 = \frac{1}{4\pi 9.10^9} F / m$

$$\mathbf{D} = \varepsilon \mathbf{E}, \quad \varepsilon_{\mathrm{r}} = \varepsilon / \varepsilon_{0} \Rightarrow \varepsilon = \varepsilon_{\mathrm{r}} \varepsilon_{0}$$

$$\mathbf{D} = \overline{\overline{\varepsilon}}\mathbf{E}, \quad \overline{\overline{\varepsilon}} = \begin{bmatrix} \varepsilon_{11} & \varepsilon_{12} & \varepsilon_{13} \\ \varepsilon_{21} & \varepsilon_{22} & \varepsilon_{23} \\ \varepsilon_{31} & \varepsilon_{32} & \varepsilon_{33} \end{bmatrix}, \varepsilon_{ij} = \varepsilon_{ji}, \mathbf{ED} = \mathbf{E}\overline{\overline{\varepsilon}}\mathbf{E} > 0$$

$$\mathbf{D} = \overline{\overline{\varepsilon}}\mathbf{E} + \mathbf{P}_p$$

$$\mathbf{D} = \varepsilon_0 \mathbf{E} + \mathbf{P} \Rightarrow \mathbf{P} = \mathbf{D} - \varepsilon_0 \mathbf{E} = \mathbf{f}(\mathbf{E}) - \varepsilon_0 \mathbf{E} = \mathbf{P}_t(\mathbf{E}) + \mathbf{P}_p$$

$$\mathbf{P}_p = 0, \mathbf{P} = \mathbf{P}_t(\mathbf{E}) = \varepsilon_0 \chi \mathbf{E}, \mathbf{D} = \varepsilon_0 (1 + \chi) \mathbf{E} \Rightarrow \varepsilon_r = 1 + \chi$$

$$\mathbf{P}_p = 0, \mathbf{P} = \mathbf{P}_t(\mathbf{E}) = \varepsilon_0 \chi \mathbf{E}, \mathbf{D} = \varepsilon_0 (1 + \chi) \mathbf{E} \Longrightarrow \varepsilon_r = 1 + \varepsilon_0 \chi \mathbf{E}$$

Electric field lines in substance

- 1. In vacuum D and E have common lines (there are not necessary two vector field)
- 2. Permeable dielectrics concentrate and orientate the field lines
- 3. In an-isotropic dielectrics D and E have lines with different directions
- 4. In permanent polarized bodies:

3. In an-isotropic dielectrics

- D lines are continuous and closed having direction of P
- E lines are open with direction of D outside body and opposite to D and P inside body

4. Permanent polarized body

"Refraction" of the electric field lines

1. On a non-charged interface:

$$D_{n1} = D_{n2} \Longrightarrow \varepsilon_1 E_{n1} = \varepsilon_2 E_{n2}$$

$$E_{t1} = E_{t2} \Longrightarrow \varepsilon_1 E_{n1} / E_{t1} = \varepsilon_2 E_{n2} / E_{t2} \Longrightarrow$$

$$\varepsilon_1 / tg \alpha_1 = \varepsilon_2 / tg \alpha_2 \Rightarrow$$

- 2. When $\varepsilon 1 = \varepsilon 1$ the field is not perturbed (lines are not broken)
- 3. When $\epsilon 1 \rightarrow 0$ ($\epsilon 1 << \epsilon 2$) $\alpha 1 \rightarrow 0$ or $\alpha 2 \rightarrow \pi/2$
- 4. When $\epsilon 1 \rightarrow$ infinity ($\epsilon 1 >> \epsilon 2$) $\alpha 2 \rightarrow 0$ or $\alpha 1 \rightarrow \pi/2$

- Field avoids low permittivity bodies
- It s attracted by permeable bodies

Applications of polarization law

1. Electric potential V and E,D fields of a dielectric sphere, uniformly charged placed in vacuum. Try a generalization.

2. Electric potential V and E,D fields of a dielectric cylinder, uniformly charged placed in vacuum. Try a generalization.

3. Electric potential V and E,D fields of a dielectric plate, uniformly charged placed in vacuum. Try a generalization.

4. Electric potential V and E,D fields of a dielectric plate, uniformly and permanently polarized, placed in vacuum. Try a generalization.

5. Perturbation of uniform electric field due to an uncharged dielectric sphere. Try a generalization.

6. Electric potential V and E,D fields of a dielectric cylinder, uniformly and permanently polarized, placed in vacuum. Try a generalization.

Magnetization law

Local form of the law:

2. Particular forms:

- in vacuum (non-magnetic):
 - in linear isotropic media:
 - in non-isotropic media:
- in permanent mag. bodies:
- in general:
- In linear dielectrics:

$\mathbf{B} = \mathbf{f}(\mathbf{H})$

$$\mathbf{B} = \mu_0 \mathbf{H}$$
, $\mu_0 = 4\pi \cdot 10^{-7} H / m$ – vacuum - permeabilitty

$$\mathbf{B} = \mu \mathbf{H}$$
, $\mu_{\rm r} = \mu / \mu_0 \Rightarrow \mu = \mu_{\rm r} \mu_0$

$$\mathbf{B} = \overline{\overline{\mu}}\mathbf{H}, \quad \overline{\overline{\mu}} = \begin{bmatrix} \mu_{11} & \mu_{12} & \mu_{13} \\ \mu_{21} & \mu_{22} & \mu_{23} \\ \mu_{31} & \mu_{32} & \mu_{33} \end{bmatrix}, \mu_{ij} = \mu_{ji}, \mathbf{H}\mathbf{B} = \mathbf{H}\overline{\overline{\mu}}\mathbf{H} > 0$$

$$\mathbf{B} = \overline{\overline{\mu}}\mathbf{H} + \mathbf{I}_{p}, \mathbf{I}_{p} = \mu_{0}\mathbf{M}_{p} \Rightarrow \mathbf{B} = \overline{\overline{\mu}}\mathbf{H} + \mu_{0}\mathbf{M}_{p} = \mu_{0}(\overline{\mu}_{r}\mathbf{H} + \mathbf{M}_{p})$$

$$\mathbf{B} = \mu_0(\mathbf{H} + \mathbf{M}) \Rightarrow \mathbf{M} = \mathbf{B} / \mu_0 - \mathbf{H} = \mathbf{M}_t(\mathbf{H}) + \mathbf{M}_p$$

$$\mathbf{M}_{p} = 0, \mathbf{M} = \mathbf{M}_{t}(\mathbf{H}) = \chi \mathbf{H}, \mathbf{B} = \mu_{0}(1 + \chi)\mathbf{H} \Rightarrow \mu_{r} = 1 + \chi$$

3. Physical meanings:

- Each substance has its own magnetic behavior
- Permanent magnetization is a source of magnetic field
- Due to magnetization, the magnetic field is perturbed

Ferromagnetic materials

1. Soft magnetic materials:

B || H, B = f(H) f:R₊→ R magnetization characteristic

$$B = f(H) = \begin{cases} \mu_{r} \mu_{0} H, \text{ for } H \leq H_{s} \\ \mu_{0} (H + (\mu_{r} - 1) H_{s}), \text{ for } H > H_{s} \end{cases}$$

$$-M = f(H)/\mu_0 - H = \begin{cases} \chi H = (\mu_r - 1)H, \text{ for } H \le H_s \\ H_s = (\mu_r - 1)H_s, \text{ for } H > H_s \end{cases}$$

$$\mu_{\rm r} = 100 - 100000, B_{\rm s} = \mu_{\rm r} \mu_0 H_{\rm s} = 0.5...2T$$

2. Hard magnetic materials.

Magnetic hysterezis.

In permanent magnets: B = μ H+ μ_0 M_p

Magnetic field lines in substance

- 1. In vacuum B and H have common lines (there are not necessary two vector field)
- 2. Ferromagnetic bodies concentrate and orientate the magnetic field lines
- 3. B and H may have lines with different directions, orientations or densities
- 4. In permanent magnets:
- B lines are continuous and closed having direction of M_p
- H lines are open with direction of B outside body and opposite to B and M_p inside body (demagnetized field)

Field of a permanent magnet

"Refraction" of the magnetic field lines

1. On a interface between two media:

$$B_{n1} = B_{n2} \Rightarrow \mu_1 H_{n1} = \mu_2 H_{n2}$$

$$H_{t1} = H_{t2} \Rightarrow \mu_1 H_{n1} / H_{t1} = \mu_2 H_{n2} / H_{t2} \Rightarrow$$

$$\mu_1 / tg \alpha_1 = \mu_2 / tg \alpha_2 \Rightarrow$$

 $\frac{tg\,\alpha_1}{tg\,\alpha_2} = \frac{\mu_1}{\mu_2}$

 μ_{1}

- 2. When $\mu 1 = \mu 1$ the field is not perturbed (lines are not broken)
- 3. When $\mu \rightarrow 0$ ($\mu \rightarrow 1 << \mu 2$) $\alpha \rightarrow 1 \rightarrow 0$ or $\alpha \rightarrow 1 \rightarrow 1$
- 4. When μ 1 \rightarrow infinity (μ 1 >> μ 2) α 2 \rightarrow 0 or α 1 \rightarrow π /2

 Field avoids low permeable bodies

 α_1

 It s attracted by permeable bodies

Conduction. Ohm's law

1. Local form of the law:

$$J = f(E)$$

2. Particular forms:

- in vacuum
- in linear isotropic conductors
- in non-isotropic conductors
- in bodies with intrinsic field

$$\mathbf{J} = 0$$

$$\mathbf{J} = \sigma \mathbf{E} \Leftrightarrow \mathbf{E} = \rho \mathbf{J}$$
, with $\rho = 1/\sigma$

$$J = \overline{\overline{\sigma}}E$$

$$\mathbf{J} = \overline{\overline{\sigma}} (\mathbf{E} + \mathbf{E}_i)$$

3. Physical meanings:

- The current is generated by the electric field
- Each substance has its own behavior from conduction point of view
- Electric field may have sources of non-EM nature

4. The lines of the generated electric field

- May be open
- They have the tendency to be opposite to the intrinsic field Ei

Several forms of material (constitutive) laws

Field:	Polarization	Magnetization	Conduction
General	$\mathbf{D} = \mathbf{f}(\mathbf{E})$	$\mathbf{B} = \mathbf{f}(\mathbf{H})$	J = f(E)
Vacuum	$\mathbf{D} = \boldsymbol{\varepsilon}_0 \mathbf{E},$	$\mathbf{B} = \mu_0 \mathbf{H}$	$\mathbf{J} = 0$
Linear izotropic	$\mathbf{D} = \varepsilon \mathbf{E},$	$\mathbf{B}=\mu\mathbf{H},$	$J = \sigma E$
Linear anizotropic	$\mathbf{D} = \overline{\overline{\varepsilon}} \mathbf{E},$	$\mathbf{B} = \overline{\overline{\mu}}\mathbf{H},$	$\mathbf{J} = \overline{\overline{\sigma}}\mathbf{E}$
Affine	$\mathbf{D} = \overline{\overline{\varepsilon}} \mathbf{E} + \mathbf{P}_p$	$\mathbf{B} = \overline{\overline{\mu}}\mathbf{H} + \mu_0 \mathbf{M}_p$	$\mathbf{J} = \overline{\overline{\sigma}}(\mathbf{E} + \mathbf{E}_i)$
Nonlinear	$\mathbf{D} = \boldsymbol{\varepsilon}_0 \mathbf{E} + \mathbf{P} =$	$\mathbf{B} = \mu_0 (\mathbf{H} + \mathbf{M}) =$	$\mathbf{J} = \overline{\overline{\sigma}}(\mathbf{E} + \mathbf{E}_i(\mathbf{E}))$
	$\varepsilon_0 \mathbf{E} + \mathbf{P}_t(\mathbf{E}) + \mathbf{P}_p$	$\mu_0(\mathbf{H} + \mathbf{M}_t(\mathbf{H}) + \mathbf{M}_p)$	
Field line refraction	$\frac{tg\alpha_1}{tg\alpha_2} = \frac{\varepsilon_1}{\varepsilon_2}$	$\frac{tg\alpha_1}{tg\alpha_2} = \frac{\mu_1}{\mu_2}$	$\frac{tg\alpha_1}{tg\alpha_2} = \frac{\sigma_1}{\sigma_2}$

Joule's law of power

law:

- in linear conductors: $p = \mathbf{E} \cdot \mathbf{J} = \sigma E^2 = \rho J^2 \ge 0$
- in nonlinear conductors:

$$p = \mathbf{E} \cdot \mathbf{J} = \sigma(\mathbf{E} + \mathbf{E}_i)\mathbf{E} = \sigma\mathbf{E}^2 + \sigma\mathbf{E}\mathbf{E}_i =$$
$$(\rho \mathbf{J} - \mathbf{E}_i)\mathbf{J} = \rho\mathbf{J}^2 - \mathbf{E}_i\mathbf{J}$$

- 3. Physical meanings:
 - The conduction implies a power transfer between field and substance
 - The electric current generates heat
 - Transfer of power from field to substance in linear conductors is a nonreversible process
- 4. Definition of the volumetric power density:

$$p = \lim_{\Delta V \to 0} \frac{\Delta P}{\Delta V} cu \, \Delta P = \lim_{\Delta t \to 0} \frac{\Delta W}{\Delta t},$$

Faraday's law of mass transfer

Local form of the law:

$$\delta = k\mathbf{J}$$
 [kg/m²s], $k = \begin{cases} 0, \text{ in metals} \\ A/F_0z \text{ in electrolyts} \end{cases}$

$$Q_m = \int_{S} \delta dA = \int_{S} k \mathbf{J} \ dA$$

$$Q_{m} = \int_{s} \delta dA = \int_{s} k \mathbf{J} dA$$

$$m = \int_{t_{1}}^{t_{2}} Q_{m} dt = \int_{t_{1}}^{t_{2}} \int_{s} k \mathbf{J} dA dt =$$

$$k \int_{t_{1}}^{t_{2}} \int_{s} \mathbf{J} dA dt = k \int_{t_{1}}^{t_{2}} i dt = k It$$

$$F_0 = 96490C - Faraday's constant$$

3. Physical meanings:

- The conduction implies a mass transfer along the electric current
- The flux density of the mass transfer is proportional to J
- The proportionality coefficient is a material constant

4. Definition of the mass transfer flux density:

$$\delta = \mathbf{n} \cdot \lim_{\Delta \mathbf{A} \to \mathbf{0}, \Delta \mathbf{t} = \mathbf{0}} \frac{\Delta \mathbf{m}}{\Delta \mathbf{A} \cdot \Delta \mathbf{t}}$$

Not so easy questions for curious people

- 1. When $\psi = C$ u (the global form of the polarization law) is valid?
- 2. When $\varphi = \Lambda U_m$ (the global form of the magnetization law) is valid?
- 3. When i = G u (the global form of the Ohm's law) is valid?
- 4. When p = ui (the global form of the Joule's law) is valid?
- 5. How looks like the expressions of material laws in the case of linear/nonlinear, isotropic/anisotropic, homogeneous/non-homogeneous media? (try all combinations)
- 6. How can be obtained the best affine approximation of the nonlinear constitutive relations?
- 7. How can be expressed the B-H relation in the case of nonlinear, anisotropic soft ferromagnetic materials?
- 8. How can be expressed in mathematical terms the B-H relation in the case of hysteretic ferromagnetic materials?
- 9. May depend the current density w.r.t. magnetic field J(E, B)?
- 10. Find the constitutive relations for all materials in the room you are now.