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I.W Gauss law for electric fields

law:

1. Global (integral) form of the Wy =q, < &DdA — dev
)

2. Physical meaning: =

. Every charged body produce
an electric field dy =DdA

3. Electric field lines:

. Open curves

dq =pdv

. Every charged body produce
an electric field

. Starts on positive charges

. Ends on negative charges

. Continuous in neutral
domains
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Local forms of Gauss law for

[Mm electric fields

1. Local (differential) form of the . .
law: divD = P

2. Prove (based on Gauss /) {JDdA jdszdv _ J‘,OdV:> divD = p

Ostrogradski theorem):

>=aDy
3. What is divergence?
divD = [jm $DdA /Y,
Vp—0 ap
oD,
divD =VD = (1£+]i+k —)(iD, + D, +kD)—aD + +aDZ
~ oy Oz ox oy Oz
SBDdA deA+deA n,-(D,-D,) A=
4, Local form on the
h d f
eharged surfaces Ipdv p.Ah+ pA=fn, (D, =D, )=p,
h—(
5.  Conservation of the normal o, £ 5 S2

component of flux density ps 712 | h@\
n
If there are no singular surfaces, p,=0 and =
n-(D,-D,)=0<|D,=D, /
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Gauss law for magnetic fields
LviN J

1. Global (integral) form
of the law:

2. Physical meaning:

¢, =0<> $BdA =0
2

- There are no W
“magnetic charges”
- 3. Magnetic field lines: dq =pdv
« Continuous curves
without boundary (no
start, no end point), wico_ L0 g
e.g. closed curves. : ‘,.
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SmEric Local forms of Gauss law for

maghnetic fields

1. Local (differential) form of the law:

2. Prove (based on Gauss

Ostrogradski theorem): VD, : i&BdA — J‘didev —0=divB=0

divB =0

>=0Ds Dy
1. PDE form in Cartesian coordinates:
divB=VB = (i g +] g +k a)(iB +jB +kB ):83x+8By+aBZ ~0
- ox "oy oz 77 o lox 9y Oz
4. Conservation of the normal
component of the flux density
$BJA = [BdA + [BdA=n,,-(B,~B, ), 4=0
X 52 s1 S2
o4 ¢ |

—n;,(B,-B,)=0
n-(B,-B,)=0=18,=8,

S

l2 | ht:'k

.

S1
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' Integral consequences
LIViN J i

1. Magnetic flux conservation

Q= §BdA deA+deA_

$=51US2 G 0l

|BdA, - [BdA, =p, -9, =0l = ¢,

2. Invariance of the magnetic flux w.r.t.
surface shape (for a fixed border)

D =@, =@,...

2. Kirchhoff flux law for magnetic circuits
02
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Maanetic vector potential
lmﬁ’ g P

divB =0={B = curlA
divB = divcurlA =V -(VxA)=0

1. Definition of the magnetic vector

potential A:

(pszdSzjcurlAdSz jAdr:\, Q= IAdr

2. Curl definition: C””IA:nlim {>Adr/AS

A,—0 oS
3. PDEformin Cartesian coordinates: , . g g '5
- curlA=VxA=(i—+j—+k—)x(i4, +j4 +Kk4. )=

ox "0y Oz g ox Oy Oz
A, A A

4. Gauge condition: B =curlA =curl(A+A, )= curlA, =0= A, = gradi

divA =?,divA = f(=0).= divA, = divgradi = AA =0

5. Continuity of the (tangential ‘4, Al
component of the) vector potential 5 e——1

p=B,lh=[Adr=(4,—4,)] >0=>(4,-4,)=0,In;= A, = A,

oS
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Several forms of the Gauss law for
electric and magnetic fields

Field: Electric Magnetic
Global Ws =dp, @, =0
ntegral | fpdA-[ptv | {BdA =0
2 Dy s

Local : divB =0

I . divD = v
differential P
On n, (D,-D, )= p, n(B,-B,)=0
surfaces
ConserV Dnl:DnZ Bn]_:an
Field lines Open, from positive to Continuous, closed in most

negative charges cases
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laboratorul de

§¢ s Not so easy questions for

LIViN curious people

1. Provethe gauss and Stokes theorems
2. Find a magnetic field having no closed curves as field lines

3. Fid the conditions to define a unigue magnetic vector potential
of a known magnetic field.

4. If you know two components of the field density (e.g. Bx and
By) could you find the third one using Gauss law?

- 5. How the distribution theory (e.g. Dirac generalized function)
may be used to write the Gauss laws.

6. Is still valid the B normal component conservation in the case
of a sheet carrying magnetic flux ?

7. What form has the Gauss law in the case of a charged wire?
What happens in the case of the punctual body?
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