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Steady state regimes

Electro-
Conductive (EC)
— finds current
distribution

All time dependent effects

1. V.-D=p Induction, Displacement
current and charge

2.V-B=0 relaxation are neglected =

m

P NO causal cycles
3. VxE=—- 4 r 4

P
4.V><H:J+%t2, P

- 5.D=sE+P,(E)

6.B=x (H+M (H)) -
7.J=0(E+E,(E)) M,
8.p=EJ
P Magneto- Steady
9. VvV.J =% state (MG) — finds
L magnetic field
distribution
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MG — Steady magnetic regime

 Hypothesis:
— Nno movement
— no time variation
— known current distribution

e Fundamental
Equations:
« Gauss’ theorem

« Ampere’s theorem —
_+ Magnetic constitutive

(®, =0« {BJA=0
< divB=0=B=curlA
_ n,(B,-B,)=0<div.B=0

U =15, < §Hdr = J-nds

r
— < curlH =@: H=T-gradV,

L Npx(H,-H;)=0,&H,=H,

relation — B=f(H)=B=s(H+M)=B=/H+ 1M,

« Field sources: .

— Conduction current MG: |H |B IIO K Vm D

— Permanent magnetization MS: 1H IB IIO U Vm ()
- MG field is similar to MS field [EC: |E |J |E; |o |V I
Excepting J ! _

ES: |[E |D [P, |e |V |¥
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Second order equation for the
scalar potential
C divB=0= div|z(T-gradV,)+1,]|=0
scurlH=3J, J=curlT = H=T-—-gradV_, o ——div(uT +1.)
p— p— m p
B=uH+1, =B=x(T-gradV, )+1, I Vm=reduced potential

« A current distribution J may be substituted by an equivalent Ip=uT, with same Vm

T is a particular magnetic field of current density J
(regardless boundary conditions). It is called “source field”. 1 ¢ JxRdv
For instance it may be a Biot-Savart-Laplace integral: T=H.(r)= 4 jRg RS

T

« J=0 = T=0 only in simply connected domains.
~ Otherwise the Ampere’s theorem is ot satisfied, because \ifr Hdr = _§r gradV, dr = —frdV =0

* The multiple connected domains which surround currents should non-zero T, or they
have to be transformed in simple connected domains by cuts. Ampere’s theorem
iImposes on each cut ajump of Vm equal to current I. o

« Each coil may be substituted by an equivalent magnetic C12 vi /<:\ Cut SI'
shell having the shape of the cut and a superficial
magnetization Ms=I normally oriented (potential double layer)

I drxR I RndS 1Q : _
- 4 g e !sr R :K;E o V2 Ii V1-v2=i |
Vo =—g |, (/R )cosaads = [do=— - = _ Hdr = —fcm gradV_dr =V, -V, = E(QZ —Q, ) =i
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MG formulation with two scalar

« The scalar potential V is defined on on = T N
sub-domains: - 50
VJ = MG scalar potential on currents N
domain DJ P dVO/dn—OI, o o

VO = MS scalar potential in air D-DJ-Dm-Sc

Vm = MS scalar potential in magnetic
domain Dm

e Tis defined on DJ
* |Interface conditions:

H,=H,=>T -tdV, /dt =
OnZX,;:
B,=B,=>T,-dV,/dn=-dV,/dn
H,=H, =V, =V,

OnZX :
{Bm::BM::;%dvo/dnz;%dvm/dn

NPeS : HtlethVZ(P):Vl(P)—i_I
1B, =B, = dV,/dn=dV, / dn

* Advantage: avoid difference error in
Dm where Hm ~ 0 /

* Approximations:

—tdV, / dt

<

~~~~~~

T=JR/2=IR/(2m%),

InDJ ,
=IxR/(27ma"), H=T—-gradV,,V, =0
H,=H,=>T=-tdV,/dt=
OnZ;: :—jo T(a)dt=-10/(2x)
B,=B,=dV,/dn=0
Htl_H2:>V =V_=ct
OnZX

B =B, =dV,/dn=0

InPES . Htl:HtZZOjvl(P):O’ VZ(P):I
© B,=B,=dV,/dn=dV,/dn

EM Field Theory — 9. Magnetostatic fields
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b LT Second order equation for the

[MN vector potential

dvB-0— B-curlA =) furforAs, ]

< curlH= JZ)CUF'[V(CUF|A—| )] J J,=J+J_,J —CUF|(V|
B = ,uH—|—| —>H-= V(B—l ) Total currentdenS|ty—conductlon+magnet|zat|on

-~
Particular cases:

* Linear homogeneous isotropic media (Poisson vector equation):

curlfcurl Al = 1J, = grad(divA)—AA = 1J, = NA = -4,

- «No internal ES field sources (Laplace vector equation): Is added to

curl [curIA]: 0=IAA =0 with Coulomb gauge condition:| divA =0

Vector boundary conditions are necessary for a unique field solution
Dirichlet b.c. Neumann b,c.

= DA nS #@ nX(CUI’len):fNA(P)’ On SH :Z_SB

V (P)— fDV(P c‘m‘S‘“ﬂf” “[Tav_7dn=f,,(P), |onS,=%-S,
and | AV,,(P)=1I,fon S, ,
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AV formulation with two

LIViN potentlal
« The scalar potential V is defined On = LT
on sub-domains D-DJ-Sc: IV0/dn=0 DO
« Ais defined on DJ vordn Dm M
* Interface conditions:
" Sc
ons H,=H,=>nxyvecurlAxn=-tdV,/dt % !
n . ‘\ II'
: B,=B,=n-curlA=—dV /dn
OnX { Hy=H,=V,=V, o \
m'\Ip _. Db —— .. - N/ /T AA~A_ .. N/ I A~ . Tm====mT
B B, =B, = #,dV, /dn= g, dV, /dn —JR/2 IR /(27a?),
H =H.=V.(P)=V.(P)+| ( "D:1AR)= ,uo “H(r)dr =u,JR? / 4
InPeSC:{ 0= Hp = Vo(P)=V(P) A= IR? 14, B=curlA
B,.=B,=dV,/dn=dV,/dn M, = 1 (2m) = —dV, ] dt
OnZ,: =—j Hdt=—16/(27)

* Advantage: avoid difference error in
Dm where Hm ~ 0 and it is not
necessary to be computed T

j J(r, )dv

Ho
A(r
(= A7

« Approximations:

f

<

=B, =dV,/dn=0

ons. Htl—Ht2:>V ~V, =ct
B,=B,=dV,/dn=0

npes, M H,=0=V,(P)=0, V,(P)=1

=B,,=dV,/dn=dV,/dn

R
EM Field Theory — 9. Magnetostatic fields
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Wy SRR The fundamental MG problem

[MN In terms of fields

Input (known) data: 5
— Computational domain D bounded by
— (CM) Material characteristics u(r)>0 in D
— (CD) Internal field sources J(r), Mp(r) in D
— (C%") Boundary conditions (external

sources), the invariant field components:
| Ht(r) on SH connected and Bn(r) on SB=3-SH | divB =0

Output data (solution): H(r), B(r) in D Equations: < curlH=J

For non-connected Dirichlet surfaces S, =UE:18Hk,SHk ﬂSHJ. =0 B=uH+I,
according to MS-MG similitude in addition to (CX’) solution uniqueness requires :

(CZ”) ‘Uk = Hdror @, = L B, dS ‘ fork=12,..,n-1,andU_ =0.

PkP,

Examples: perfect ferromagnetic bodies (with Ht=0), excited in “magnetic
voltage” or in flux
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MG boundary conditions
In terms of potentials

 (CX) for scalar potential:
Vm(r) = fDV(r) on SH and dvm/dn=fNV/(r) on SB=%- SH
V”(r) = V’(r)+lk and dV”’/dn=dV’/dn on Sck

« (CX”) for vector potential:
At(r) = fDA(r) on SB and nx(curlAxn)=fNA(r) on SH=X-SB
B, =n-curlA=curlA, =curl(f,,), H,=nxv(B-1_)xn=H, =vf,

D, = LHandS: jSHk(curlA)ndsz Adr={ f_.dr

OS OS

In these conditions B, H are unique but A it is not. For uniqueness of A, additional
boundary conditions are necessary and gauge conditions have to be added.

CdivA =0=>curl(vcurl A) += J,

NX(Axn) = fy,(r) on Sg=S, and

nx(curlAxn) = fya(r),(MA=Don S, ==-S=Sy,

EM Field Theory — 9. Magnetostatic fields © LMN 2007




Lvind MG
* In most _— S,
practical cases: S,
divB=0
1 A0 MG:{rotH =J
boundary conditions B = soH
S,: H, =nx(Hxn)=-J, =h(r) B
=>nxH=0, ifh=0 Flerm  rgivB=0 |s
Se: B, =n-B=-b(r)=>n-B=0 MS:{““H:O
B=f(H)

Interface conditions
S V.xH=n,x(H,-H;)=0=n,xH,=n,xH = H,,=H,,
Vs'B:an'(BZ_Bl):c):>nm0°BO:an°Bm :>BnO: Bn

m

EM Field Theory — 9. Magnetostatic fields © LMN 2007




The fundamental MG problem

in 2D

« Jand A are along Oz, B,H in plane xOy:
J =kJ(x,y),A=KkA(XY),B(x,y)=1B, + ]B,,H =1iH, + |H,

S R TR
VxH=J=kJ(x,y)=VxH=0/ox J/oy O:k[ 8xy_ Ay
H, H, 0
i ik
B=VxA=iB, + B, =|0/ox 0ldy Ozigy—A—j% =
0 0 A Z
5 Ag _ A /
oy ox
B:yHQH:VB,:HX:v%;Hy:—V%: A\
oy OX §

(

(8Hy aij [a( 6Aj a( 8AD
— =Js 1% + 1% =J
ox oy ox\ oy ) oyl ox

: Il Core Flux
—{ V(WA)=J < divygradA)=J | Poisson scalar eq.

Bl Leakage Flux

EM Field Theory — 9. Magnetostatic fields
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Superposition.
Integral MG solutions in R3

In linear media, between field sources C = [CD, CS] and S(Zﬂkck) = Z@S(Ck) ‘
K =1

solutions F =[B, H] is alinear relationship: S: C> F
_ Coulomb integrals: solutions in vacuum extended to R3: AV -0 / Uy =
1 pm(r )dv ~ 1j dlv(er+M )dv

R3

Vm(r) T
Ampe, *R R 4

= :
Rdiv( g, T+M  )dv
H(r) = —gradV. :_41 [ (ﬂrR3 )
Biot-Savart-Laplace integrals AA=—u,J = i
Uy ¢ J(r,)dv Uy, ¢ JIxRdv
A(r) = , B(r)=curlA=-2
O (r) i e
When B=xg(H+M), it is actually an integral equation in H:

M= zH M, (g, +DH+M, )= [ Q+eurl(z,H+M, xR/ R%dv=0
i © LMN 2007
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laboratorul de

2 MG field of a set of small

colls

Any small coil in vacuum is equivalent from both pov field and mechanical
interactions (forces and torques) with a small magnetized particle m=iA

The moment of the magnetic shellism=MA=nMA=MA={m=I1A BY
: . 1 M-R)R m
According to MS-MGsimilitude : H_, = 3( - ) —— &=
4r R R A
A large coil is equivalent to a set of small coils. Permanent and
temporal magnets produce a similar fields as coils. LI
. . . LI
A set of n small particles having several shapes, magnetized
- orcarrying currents produce the field: 1 & 3(mk 'R)k R, m,
H =— _

k#
According to MS-MG similitude, their moments are ot)tained by solving :

-1 n

m . _VJ'ZmJ(l_l_ Djij) Z 3(mk'Rk)Rk _m,
‘ 4rr - R’ R’

K# g

J:mpj,jzl,...,n

L .
Wherempj=4—ﬂv‘D_ iD_ o3 dv+iDjMpdv;|jAj+ijVj

J J

Bv

J

EM Field Theory — 9. Magnetostatic fields
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"' Green function of a non-
homogeneous domain

Green function is defined as in MS as the field of a punctual unitary
magnetic moment of a small coil or magnetized particle m(r)=56(r-r’)u:

H(r ) =G (r*,r )m(r ) =| divlugradG (v ,r Ju)=—div(5(r—r u)

The components of G are obtained by successively orienting of u=i,j,k
- By superposition is obtained the magnetic field for an arbitrary distribution

of currents J=curlT: —
H(r" ):jDG(r' ) (FOT(r dv

The Green function G of a bounded domain is the field of a punctual unitary
momentum in a domain with zero b.c.: Bn=0 on SB, Ht=0 on SH and Uk=0

By superposition is obtained the magnetic field of an arbitrary current
distribution and permanent magnetization in the same zero boundary
conditions. Then may be superposed the contribution of non-zero b.c.

EM Field Theory — 9. Magnetostatic fields © LMN 2007




Maxwell equations for inductances

* IF p => infinity, then H>0 and the body is similar to a conductor in ES.

« Vm =ct, HtZO, on the boundary, hence ext. field lines are perpendicular on it
« By ES-> MS similitude the Maxwell relations for capacitances are transformed in

the linear relations for n perfect ferromagnetic bodies :
0] L Ly - L[k dﬁi

bk |- Ly Ly o Ly i,

* Colil fluxes: @=[¢; ©,;...; ¢, ]
« Currents: 1=[l;ly;...;1,]
 Matrix of coil inductances L

« Matrix of reverse inductances I"
EM Field Theory — 9. Magnetostatic fields © LMN 2007




Laplace formula for mutula

Inductances
Ho ¢ J(R)AV — ply ¢ dr Holy dr'dr”
A(r) = A JDl R  4r ifrl R = Pa1= §r2 §F1 =
U dr'dr” |
Ly =L,="> §r2 §F1 el p21

R
* For self inductance (j=k), conductor

-thickness should be considered:

dv'dv”
L =L j jDk A\'/A"V

dv’=dr’dA’

Flux and current are averaged in
conductors cross-section

EM Field Theory — 9. Magnetostatic fields © LMN 2007




¥ ] Maanetic circuits
LIViIN -

__________________

* Flux law = KFEL: Zi Sic T o
sz.ndszo:, S o =00 -0, +0,=0 | [t
e . EDCZ

* Voltage theorem = KVL.:

ferr=O:g;]uk=O:>u1+u2+u3+...:0 1

* Constitutive relations (MS problem):

— ETC —tripolar element (linear or not!)
— EDC1 - dipolar element (linear or not!)
— ENC —coil: field source

— EDC2 - airgap (linear)

B = pH :>|uk = RkaDk" Uy = Ic|k‘|dr,§0k = ISFdS
§F Hdr = LJdA Rk @k + Uy = 6 ‘vvhere g, =nl, ism.m.f.

EM Field Theory — 9. Magnetostatic fields © LMN 2007




Energy of MS field,
[ N Tellegen’s and reciprocity theorems

1
— — 2 T — — ° — — .
W_ _ijmdv_ZijH dv = 5 DIIO Hdv 2§2VB ndS >0

In domains bounded by perfect ferromagnetic §VB-ndS =—Vv'.p
bodies or with zero boundary conditions: z

Tellegen’s theorem: regardless material relations, the total
pseudo-energy Is zero in zero boundary conditions.

If divB'=0, curlH'=0=|<B' ,H'>—¢"vV'=0=B _LH
- Reciprocity theorem: in linear reciprocal materials (u= ') the

relation between sources and responses is symmetric. Consequently, the
Green function is symmetric:

<My, H,>=<M,H>=[ [ (M]-GM,-M," -GM,)dv dv'=0
If M, =16(r—r )M, =jo(r-r )=G,(r,r)=G,(r,r")
If M, =is(r=r), M, =is(r—r')=G_(r,r)=G,(rr)

= ‘E(r',r')zé(r',r'):GT(r',r')

EM Field Theory — 9. Magnetostatic fields © LMN 2007




— Variational MG formulations

* The MS “energy” functional in terms of scalar potential is similar to the ES one

F(V. )= %jD | gradv,, )? +div(1, )vm]dv+jSNvands <F(V, +6V)

Neumann are natural boundary conditions while Dirichlet are essential boundary
conditions. Weak (integral-differential) formulations:

j (u gradVv, -gradoV +ovdivi )dv+_[S . oVD,dS =O,{fN =D, =—dV_/dn

 The MS weak formulation in terms of vector potential:

curl[FeurlAl=3,,,3,, =curl(¥1, ):>ID5A-[curI veurlA)-J_ Jdv=0

VA (OAAXWXA)=v VXA -VxA-A-Vx(vVXxA), nxéA=0onS,, =
mﬁcurlaA-curlA—5A-Jm vt dA-(nxvourlA)ds =0] f,, =nxH

Neumann are again natural b. c. and Dirichlet are essential b. c. also for A.
Acc. Preis91-MAG-5 A is unique if to the Galerkin variation formulation are added

j[vcurléA curlA—sA-J_ dv+j SA-(nxveurl A)dS +

_ j udivoAdivAdy — 5A VﬂdIVAdS 0 ‘curl[vc

EM Field Theory — 9. Magnetostatlc fields © LMN 2007




Weak form of MG field
eguations

« Strong (differential form):

VX[WXA]th

(divB=0=B=VxA
QVxH=J=Vx[F(VxA-1,)]=J — Jy=3+3,,3,=Vx(Vl,)
B=aH+1,>H=v(B-1,)

 Boundary conditions:
Sy : =Nx(Hxn)==J,=h(r)=>nxH=0=>nx(VxA)=0
Sg: B,=n-B=-b(r)=>=n-B=0=nxA=0
~+ Weak gauged form and energy functional:
IQV((VX}-/V)(VX A)+ (VW VAV = [W - Jdv— | VW . |pdv+jSHW .J dA
F(A) ZEJQV([VXA]Z +[VA]2)1v—jQA-Jdv+jQV><A- |pdv—jSH A-J.dA

 Weak un-gauged form and energy functional:

|, VWA < Afiv= [ VxW -Tdv—| VxW-I,dv; J=VxT,J =0
F(A) =%jg(v[w§jz SV A1 -T) v

EM Field Theory —3. Magnetostatic fields © LMN 2007




Nonlinear magnetic media:

LIViN iIsotropic/anisotropic

« Variable permeability
(divB=0=B=VxA
< VxH=J=Vx[y(VxA)]=J
(B=u(H)H=H=v(B)B=1(B)B/B T

Variable magnetization

[ divB=0=B=VxA
VxH=J = Vx|[y(VxA-1(B))]=J
B=f(H)=uH+1(H)=

e Weak form:

JW-Jdv+ [ W-JdA
Jo S,

| H=g(B)=v(B-1(B))=1B-M(B)

(v x ANV %W YV < A)+ (YW J(VA )l =
' B=f(H)=zH +1(H)=
H =g(B)=v(B-1(B))=v8- M(B)

« Energy functional: 1(B)=F.(B)= f(H)= yH =

[VxA| N s
F(A)—IQ[ jf(b)dedv— y VX[V(VXA—FB(VXA))]:J

0

[ A-Jdv—[ A-3.dA

EM Field Theory — 9. Magnetostatic fields
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MG applications

Based on the force of
the electromagnets

 Electromagnets

* Relays

e Sensors
 Electromagnetic latches

_Conversion of mechanical to
electrical energy

* D.C. Generators
* A.C. generators

Conversion of electrical
to mechanical energy

* Motors
* Meters
e Actuators, linear, and rotational

Direct, shape and control
electron or ion beams

* CRT - cathode-ray tubes
 Electromagnets for
particle accelerators

« Computer tomograph coils

Others

EM Field Theory — 9. Magnetostatic fields
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Correct mathematical formulation of

LIVIN VG (curl-curl) fundamental problems
 Known data:

- Computational domain: Q - Lipchitz type
- Material characteristics (B= u H), u=1/v=f(r): Q— IR, u >0
- Internal sources of field (current density): J=g(r): Q— IR3,
- Boundary cond. (ext. sources): n-B(P)=0,PeS; cdQ
{an =J,(P),PeS, =0Q-S;
< Solution (vector potential): A: Q— IR3 with B = curlA
- Equation (weak formulation): Find Ae Hy(curl,Q),s.t.

[, ((Vx A)-(VxW) +V(VA)- (VW) -W - I )dv— [ W -J.dS=0,

YW e H(curl,Q),with HB(curI,Q):{AeLZ(Q) VxAel*(Q), A =o}

« Existence, unigueness and stability of solutions granted by
the Lax-Milgram theorem
EM Field Theory — 9. Magnetostatic fields
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|laboratorul de
modelare
numerica

Motors and generators:
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MG Applications:

e ‘.,'.v " Y l."l f" 77 « ,1. _4.»_,:_’. g
W= = s R
- B .‘\,&"’p&' 3 SNV R

St

\ \
A

Radio

Frequenc .
goll Y _‘

Gradient
Coils

Magnet
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Magnetic CAD:
Lrvind 7

Py Tt pboclie Tdpe: 1 Shweriin: Magoaiic soteelie

O
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RN MG benchmarks

International Compumag Society

You are here:
Search Home » TEAM

Testing Electromagnetic Analysis Methods (T.E.A.M.)

Main Menu
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MG summary. Equations, interface
and boundary conditions

—div( zgradV )= p_ curl [7cu rIA] =J_
ﬁ{ P =—divl @)~ Ir =curl(vl1 )
0 H= —gradV B =curlA, div,z\ =0

{B =B,, PR A =A,

H, =H, and a\n/ v, anﬁ{vlnxcurlA xnN=v,nxcurlA, xn
" H,=f,(P) on S, V=1,(P)

p B =Te(P) on S, an - WP A=f(P) ons,,
e, dr=U,or | B,dS=® T nxcurla=f,(P) ons,,
_foreach §,,,k=12,.,nlandU, =0

p=Pv, v=Rgp, R=P™
R=R'>0, P=P' >0

« Circuit parameters:

EM Field Theory — 9. Magnetostatic fields © LMN 2007




WM MG forces

- Magnetized particle F, =grad(m-B,) T, =rxkF,+mxB,
0

. Linear magnetic particle M=Vy. (1+Dy, )" H,
« Perfect ferromagnetic bodies:

F §W ndS, T :§w (rxn)dS

_ X :_EgoTa_Rw, szévTa_PV
2" ox, 2 ox, .
* In general oW aWm
Kimg =~ Kimg == OX
aXk @=const. K v=const.

 Maxwell’s tensor B
2 2 — 2
f:—H?(gradu)nLgrad(H ri’uj:div H"BT+I(H2 raﬂ—w ]

EM Field Theory — 9. Magnetostatic fields © LMN 2007




Not so easy questions for

[N curious people

© © N O O & W DN PE

e o =
A w0 DD PO

How are first order MG equations?

What type of potentials may be defined in MG regime?

How are the second order equations for these potentials?

How are the boundary conditions for each potential to be unique?

What are MG boundary conditions in semi-bounded domains ?

Are Biot-Savart-Laplace integrals convergent ?

How are the equations of MG-2D field?

How is defined Green function for MG field?

How may be computed inductances, using magnetic circuits?

How may be used similitude with ES field to compute inductances?
What space may be used for trial and test functions in weak MG formulation?
How are the integral equations of MG field?

What about nonlinear magnetic materials ? Uniqueness, energy, forces.

What are the main novelties and difficulties of MG regime, compared with other
static and steady state regimes?
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