

Contents

- 1. Hypothesis, First order equations
- 2. Second order equation: scalar and vector potentials
- 3. Fundamental problem, boundary conditions, MG+ MS
- 4. 2D magnetic field
- 5. 3D magnetic field, Biot-Savart-Laplace
- 6. Green functions, integral equations
- 7. Inductances, Magnetic circuits
- 8. Energy, Tellegen, Reciprocity in MG
- 9. Variational formulation: minimization and weak formulation
- 10. Applications
- 11. Summary
- 12. Questions

Steady state regimes

 $\mathbf{E_i}$

1.
$$\nabla \cdot \mathbf{D} = \rho$$

$$2 \cdot \nabla \cdot \mathbf{B} = 0$$

3.
$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$

$$4. \nabla \times \mathbf{H} = \mathbf{J} + \frac{\partial \mathbf{D}}{\partial t}$$

$$5. \mathbf{D} = \varepsilon \mathbf{E} + \mathbf{P}_p(\mathbf{E})$$

$$6.\mathbf{B} = \mu (\mathbf{H} + \mathbf{M}_{p}(\mathbf{H}))$$

$$7. \mathbf{J} = \sigma(\mathbf{E} + \mathbf{E}_i(\mathbf{E}))$$

8.
$$p = EJ$$

9.
$$\nabla \cdot \mathbf{J} = -\frac{\partial \rho}{\partial t}$$

All time dependent effects **Induction, Displacement** current and charge relaxation are neglected -> **NO** causal cycles

Electro-Conductive (EC)

- finds current distribution

ρ

 $M_{\rm p}$

MG – Steady magnetic regime

Hypothesis:

- no movement
- no time variation
- known current distribution

- Gauss' theorem
- Ampere's theorem
- Magnetic constitutive relation

$$\begin{cases}
\Phi_{\Sigma} = 0 \Leftrightarrow \int \mathbf{B} d\mathbf{A} = 0 \\
div \mathbf{B} = 0 \Rightarrow^{\Sigma} \mathbf{B} = curl \mathbf{A} \\
\mathbf{n}_{12} \cdot (\mathbf{B}_{2} - \mathbf{B}_{1}) = 0 \Leftrightarrow div_{s} \mathbf{B} = 0
\end{cases}$$

$$u_{m\Gamma} = i_{S_{\Gamma}} \Leftrightarrow \oint \mathbf{H} d\mathbf{r} = \int_{S_{\Gamma}} \mathbf{J} \cdot \mathbf{n} dS$$

$$\mathbf{curl} \mathbf{H} = \mathbf{J} \Rightarrow \mathbf{H} = \mathbf{T} - \mathbf{grad} V_{m}$$

$$\mathbf{n} \times (\mathbf{H} - \mathbf{H}) = 0 \Leftrightarrow \mathbf{H} - \mathbf{H}$$

$$\mathbf{B} = \mathbf{f}(\mathbf{H}) \Rightarrow \mathbf{B} = \mu_0 (\mathbf{H} + \mathbf{M}) \Rightarrow \mathbf{B} = \overline{\mu} \mathbf{H} + \mu_0 \mathbf{M}_p$$

Field sources:

- Conduction current
- Permanent magnetization
- MG field is similar to MS field Excepting J !!!!!

MG:	H	B	I_{p}	μ	V_m	Ф
MS:	H	B	\mathbf{I}_{p}	μ	V_m	Ф
EC:	\mathbf{E}	\mathbf{J}	\mathbf{E}_{i}	σ	V	I
ES:	E	D	\mathbf{P}_{p}	3	V	Ψ

Second order equation for the scalar potential

$$\begin{cases} div\mathbf{B} = 0 \Rightarrow div\left[\overline{\mu}(\mathbf{T} - \mathbf{grad}V_m) + \mathbf{I}_p\right] = 0 \\ \mathbf{curl}\mathbf{H} = \mathbf{J}, \ \mathbf{J} = \mathbf{curl}\mathbf{T} \Rightarrow \mathbf{H} = \mathbf{T} - \mathbf{grad}V_m \\ \mathbf{B} = \overline{\mu}\mathbf{H} + \mathbf{I}_p \Rightarrow \mathbf{B} = \overline{\mu}(\mathbf{T} - \mathbf{grad}V_m) + \mathbf{I}_p \end{cases}$$

$$-div(\overline{\mu}\mathbf{grad}V_m) = \rho_m$$

$$\rho_m = -div(\overline{\mu}\mathbf{T} + \mathbf{I}_p)$$

Vm=reduced potential

- A current distribution J may be substituted by an equivalent Ip=μT, with same Vm
- •T is a particular magnetic field of current density J (regardless boundary conditions). It is called "source field". For instance it may be a Biot-Savart-Laplace integral:

$$\mathbf{T} = \mathbf{H}_{s}(\mathbf{r}) = \frac{1}{4\pi} \int_{R^{3}} \frac{\mathbf{J} \times \mathbf{R} dv}{R^{3}}$$

- J=0 → T=0 only in simply connected domains.
 Otherwise the Ampere's theorem is ot satisfied, because ∫ Hdr = -∫ gradVmdr = -∫ dV = 0
 The multiple connected domains which surround currents should non-zero T, or they
 - have to be transformed in simple connected domains by cuts. Ampere's theorem imposes on each cut a jump of Vm equal to current I.
- Each coil may be substituted by an equivalent magnetic shell having the shape of the cut and a superficial magnetization Ms=I normally oriented (potential double layer)

magnetization Ms=I normally oriented (potential double layer)
$$\mathbf{H} = \frac{i}{4\pi} \oint_{\Gamma} \frac{d\mathbf{r} \times \mathbf{R}}{R^2} \Rightarrow V_m = -\frac{i}{4\pi} \int_{S_{\Gamma}} \frac{\mathbf{R} \mathbf{n} dS}{R^3} = -\frac{i\Omega}{4\pi}, \text{ or } V1-V2=i$$

$$V_m = -\frac{M}{4\pi} \int_{S_{\Gamma}} (1/R^2) \cos \alpha dS = -\frac{i}{4\pi} \int_{S_{\Gamma}} d\Omega = -\frac{i\Omega}{4\pi}, \Rightarrow \oint_{C_{12}} \mathbf{H} d\mathbf{r} = -\oint_{C_{12}} \operatorname{grad} V_m d\mathbf{r} = V_1 - V_2 = \frac{i}{4\pi} (\Omega_2 - \Omega_1) = i$$

EM Field Theory – 9. Magnetostatic fields

© LMN 2007

Cut SΓ

MG formulation with two scalar potentials

 The scalar potential V is defined on sub-domains:

VJ = MG scalar potential on currents domain DJ

V0 = MS scalar potential in air D-DJ-Dm-Sc

Vm = MS scalar potential in magnetic domain Dm

- T is defined on DJ
- Interface conditions:

On
$$\Sigma_{J}$$
:
$$\begin{cases} \mathbf{H}_{t1} = \mathbf{H}_{t2} \Rightarrow \mathbf{T}_{t} - \mathbf{t}dV_{J} / dt = -\mathbf{t}dV_{0} / dt \\ B_{n1} = B_{n2} \Rightarrow T_{n} - dV_{J} / dn = -dV_{0} / dn \end{cases}$$

On
$$\Sigma_{\mathrm{m}}$$
:
$$\begin{cases} \mathbf{H}_{t1} = \mathbf{H}_{t2} \Rightarrow V_{0} = V_{m} \\ B_{n1} = B_{n2} \Rightarrow \mu_{0} dV_{0} / dn = \mu_{m} dV_{m} / dn \end{cases}$$

In
$$P \in S_c$$
:
$$\begin{cases} \mathbf{H}_{t1} = \mathbf{H}_{t2} \Rightarrow V_2(P) = V_1(P) + I \\ B_{n1} = B_{n2} \Rightarrow dV_1 / dn = dV_2 / dn \end{cases}$$

 Advantage: avoid difference error in Dm where Hm ~ 0

Approximations:

Second order equation for the vector potential

$$\begin{cases} div\mathbf{B} = 0 \Rightarrow \mathbf{B} = \mathbf{curlA} \\ \mathbf{curlH} = \mathbf{J} \Rightarrow \mathbf{curl} \left[\overline{\overline{v}} (\mathbf{curlA} - \mathbf{I}_p) \right] = \mathbf{J} \\ \mathbf{B} = \overline{\overline{\mu}} \mathbf{H} + \mathbf{I}_p \Rightarrow \mathbf{H} = \overline{\overline{v}} (\mathbf{B} - \mathbf{I}_p) \text{ Total current density = conduction + magnetization} \end{cases}$$

Particular cases:

- Linear homogeneous isotropic media (Poisson vector equation): $\operatorname{curl}[\operatorname{curl} \mathbf{A}] = \mu \mathbf{J}_{t} \Rightarrow \operatorname{grad}(\operatorname{div} \mathbf{A}) - \Delta \mathbf{A} = \mu \mathbf{J}_{t} \Rightarrow \Delta \mathbf{A} = -\mu \mathbf{J}_{t}$
- No internal ES field sources (Laplace vector equation):

$$\operatorname{curl}[\operatorname{curl} \mathbf{A}] = 0 \Longrightarrow \Delta \mathbf{A} = 0$$

with Coulomb gauge condition:

Is added to

 $div \mathbf{A} = 0$

Vector boundary conditions are necessary for a unique field solution Dirichlet b.c. Neumann b,c.

$$\mathbf{A}_{t}(P) = \mathbf{f}_{DA}(P), \text{ on } S_{B} \neq \emptyset$$

$$V_{m}(P) = f_{DV}(P), \text{ on } S_{H} \neq \emptyset$$

$$\mathbf{n} \times (\text{curl} \mathbf{A} \times \mathbf{n}) = \mathbf{f}_{NA}(P), \text{ on } S_{H} = \Sigma - S_{B}$$

$$dV_{m} \wedge dn = f_{NV}(P), \text{ on } S_{B} = \Sigma - S_{H}$$

and $\Delta V_m(P) = I_k$ on S_{cut-k}

AV formulation with two potentials

- The scalar potential V is defined on sub-domains D-DJ-Sc:
- A is defined on DJ
- Interface conditions:

On
$$\Sigma_{J}$$
:
$$\begin{cases} \mathbf{H}_{t1} = \mathbf{H}_{t2} \Rightarrow \mathbf{n} \times \nu_{0} \mathbf{curl} \mathbf{A} \times \mathbf{n} = -\mathbf{t} dV_{0} / dt \\ B_{n1} = B_{n2} \Rightarrow \mathbf{n} \cdot \mathbf{curl} \mathbf{A} = -\mu dV / dn \end{cases}$$

On
$$\Sigma_{\rm m}$$
:
$$\begin{cases} \mathbf{H}_{t1} = \mathbf{H}_{t2} \Rightarrow V_0 = V_m \\ B_{n1} = B_{n2} \Rightarrow \mu_0 dV_0 / dn = \mu_m dV_m / dn \end{cases}$$

$$\operatorname{In} P \in S_{c} : \begin{cases} \mathbf{H}_{t1} = \mathbf{H}_{t2} \Rightarrow V_{2}(P) = V_{1}(P) + I \\ B_{n1} = B_{n2} \Rightarrow dV_{1} / dn = dV_{2} / dn \end{cases} \qquad \begin{cases} \operatorname{In} D_{J} : \begin{cases} A(R) = \mu_{0} \int_{0}^{R} H(r) dr = \mu_{0} J R^{2} / dr \\ \mathbf{A} = \mu_{0} J R^{2} / 4, \quad \mathbf{B} = \mathbf{curl} \mathbf{A} \end{cases}$$

 Advantage: avoid difference error in Dm where Hm ~ 0 and it is not necessary to be computed T

$$\mathbf{A}(\mathbf{r}) = \frac{\mu_0}{4\pi} \int_{D_J} \frac{\mathbf{J}(\mathbf{r}_0) dv}{R}$$
 • Approximations:

The fundamental MG problem in terms of fields

Input (known) data:

- Computational domain D bounded by Σ
- (CM) Material characteristics $\mu(\mathbf{r})>0$ in D
- (CD) Internal field sources J(r), Mp(r) in D^{l}
- (C Σ ') Boundary conditions (external sources), the invariant field components:

$$\mathbf{Ht}(\mathbf{r})$$
 on SH connected and $\mathbf{Bn}(\mathbf{r})$ on $SB = \Sigma - SH$

SH SHn

SH1

Ht(r) on
$$SH$$
 connected and $\mathbf{Bn(r)}$ on $SB = \Sigma - SH$

Output data (solution): $\mathbf{H(r)}$, $\mathbf{B(r)}$ in \mathbf{D}

For non-connected Dirichlet surfaces $S_H = \bigcup_{k=1}^n S_{Hk}$, $S_{Hk} \cap S_{Hj} = \emptyset$
 $\mathbf{B} = \overline{\mu} \mathbf{H} + \mathbf{I}_p$

according to MS-MG similitude in addition to ($\mathbf{C}\Sigma$ ') solution uniqueness requires: ($\mathbf{C}\Sigma$ ")

 $U_k = \int_{PkP_0} \mathbf{H}_t d\mathbf{r}$ or $\Phi_k = \int_{S_{TR}} \mathbf{B}_n dS$, for $k = 1, 2, ..., n-1$, and $U_n = 0$.

$$U_k = \int_{PkP_0} \mathbf{H}_t d\mathbf{r} \text{ or } \Phi_k = \int_{S_{RI}} \mathbf{B}_n dS, \text{ for } k = 1,2,..., n-1, \text{ and } U_n = 0.$$

Examples: perfect ferromagnetic bodies (with Ht=0), excited in "magnetic voltage" or in flux

MG boundary conditions in terms of potentials

• $(C\Sigma)$ for scalar potential:

$$Vm(r) = fDV(r)$$
 on SH and $dVm/dn=fNV(r)$ on SB= Σ - SH $V''(r) = V'(r)+Ik$ and $dV''/dn=dV'/dn$ on Sck

(CΣ") for vector potential:

At(r) = fDA(r) on SB and nx(curlAxn)=fNA(r) on SH=
$$\Sigma$$
-SB
 $\mathbf{B}_n = \mathbf{n} \cdot \mathbf{curlA} = \mathbf{curl}(\mathbf{f}_{DA}), \quad \mathbf{H}_t = \mathbf{n} \times \overline{\overline{\nu}}(\mathbf{B} - \mathbf{I}_p) \times \mathbf{n} \Rightarrow \mathbf{H}_t = \nu \mathbf{f}_{NA}$

$$\Phi_k = \int_{S_{Hk}} \mathbf{B}_n dS = \int_{S_{Hk}} (curlA) \mathbf{n} dS = \oint_{\partial S_{Hk}} \mathbf{f}_{DA} d\mathbf{r}$$

In these conditions B, H are unique but A it is not. For uniqueness of A, additional boundary conditions are necessary and gauge conditions have to be added.

$$div\mathbf{A} = 0 \Rightarrow \mathbf{curl}(v\mathbf{curl}\mathbf{A}) + \mathbf{grad}(vdiv\mathbf{A}) = \mathbf{J},$$

 $\mathbf{nx}(\mathbf{Axn}) = \mathbf{f}_{\mathrm{DA}}(\mathbf{r}) \text{ on } \mathbf{S}_{\mathrm{B}} = \mathbf{S}_{\mathrm{DA}} \text{ and}$
 $\mathbf{nx}(\mathbf{curl}\mathbf{Axn}) = \mathbf{f}_{\mathrm{NA}}(\mathbf{r}), \mathbf{nA} = \mathbf{0} \text{ on } \mathbf{S}_{\mathrm{H}} = \Sigma - \mathbf{S}_{\mathrm{B}} = \mathbf{S}_{\mathrm{NA}}$

MG+MS

In most practical cases:

boundary conditions

$$S_H: \boldsymbol{H}_t = \boldsymbol{n} \times (\boldsymbol{H} \times \boldsymbol{n}) = -\boldsymbol{J}_s = \boldsymbol{h}(\boldsymbol{r})$$

$$\Rightarrow n \times H = 0$$
, if $h = 0$

$$S_{R}: B_{n} = \boldsymbol{n} \cdot \boldsymbol{B} = -b(\boldsymbol{r}) \Rightarrow \boldsymbol{n} \cdot \boldsymbol{B} = 0$$

interface conditions

$$S_m: \nabla_s \times \boldsymbol{H} = \boldsymbol{n}_{12} \times (\boldsymbol{H}_2 - \boldsymbol{H}_1) = \boldsymbol{0} \Rightarrow \boldsymbol{n}_{m0} \times \boldsymbol{H}_0 = \boldsymbol{n}_{m0} \times \boldsymbol{H}_m \Rightarrow \boldsymbol{H}_{t0} = \boldsymbol{H}_{tm}$$

 $\nabla_s \cdot \boldsymbol{B} = \boldsymbol{n}_{12} \cdot (\boldsymbol{B}_2 - \boldsymbol{B}_1) = 0 \Rightarrow \boldsymbol{n}_{m0} \cdot \boldsymbol{B}_0 = \boldsymbol{n}_{m0} \cdot \boldsymbol{B}_m \Rightarrow B_{n0} = B_{nm}$

The fundamental MG problem in 2D

J and A are along Oz, B,H in plane xOy:

$$\boldsymbol{J} = \boldsymbol{k}J(x, y), \boldsymbol{A} = \boldsymbol{k}A(x, y), \boldsymbol{B}(x, y) = \boldsymbol{i}B_x + \boldsymbol{j}B_y, \boldsymbol{H} = \boldsymbol{i}H_x + \boldsymbol{j}H_y$$

$$\nabla \times \boldsymbol{H} = \boldsymbol{J} \Rightarrow \boldsymbol{k} \boldsymbol{J}(x, y) = \nabla \times \boldsymbol{H} = \begin{vmatrix} \boldsymbol{i} & \boldsymbol{j} & \boldsymbol{k} \\ \partial / \partial x & \partial / \partial y & 0 \\ H_x & H_y & 0 \end{vmatrix} = \boldsymbol{k} \left(\frac{\partial H_y}{\partial x} - \frac{\partial H_x}{\partial y} \right)$$

$$\mathbf{B} = \nabla \times \mathbf{A} \Rightarrow \mathbf{i}\mathbf{B}_{x} + \mathbf{j}\mathbf{B}_{y} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \partial / \partial x & \partial / \partial y & 0 \\ 0 & 0 & A \end{vmatrix} = \mathbf{i}\frac{\partial A}{\partial y} - \mathbf{j}\frac{\partial A}{\partial x} \Rightarrow$$

$$B_x = \frac{\partial A}{\partial y}; B_y = -\frac{\partial A}{\partial x};$$

$$\mathbf{B} = \mu \mathbf{H} \Leftrightarrow \mathbf{H} = \nu \mathbf{B}, \Rightarrow \mathbf{H}_{x} = \nu \frac{\partial A}{\partial y}; \mathbf{H}_{y} = -\nu \frac{\partial A}{\partial x} \Rightarrow$$

$$\left(\frac{\partial H_{y}}{\partial x} - \frac{\partial H_{x}}{\partial y}\right) = J \iff \left(\frac{\partial}{\partial x} \left(v \frac{\partial A}{\partial y}\right) + \frac{\partial}{\partial y} \left(v \frac{\partial A}{\partial x}\right)\right) = J$$

$$\Rightarrow \nabla(v\nabla A) = J \Leftrightarrow div(vgradA) = J$$
 Poisson scalar eq.

Superposition. **Integral MG solutions in R3**

In linear media, between field sources C = [CD, CS] and solutions F = [B, H] is a linear relationship: $S: C \rightarrow F$

$$S(\sum_{k=1}^{\infty} \lambda_k \mathbf{C}_k) = \sum_{k=1}^{\infty} \lambda_k S(\mathbf{C}_k)$$
to R3: $\Delta V = -\alpha / \mu \rightarrow$

$$V_{m}(\mathbf{r}) = \frac{1}{4\pi\mu_{0}} \int_{R^{3}} \frac{\rho_{m}(\mathbf{r}_{0})av}{R} = -\frac{1}{4\pi} \int_{R^{3}} \frac{av(\mu_{r}\mathbf{1} + \mathbf{N}\mathbf{1}_{p})av}{R}, \Longrightarrow$$

$$\mathbf{H}(\mathbf{r}) = -gradV_m = -\frac{1}{4\pi} \int_{R^3} \frac{\mathbf{R}div(\mu_r \mathbf{T} + \mathbf{M}_p)dv}{R^3}$$

$$\mathbf{A}(\mathbf{r}) = \frac{\mu_0}{4\pi} \int_{R^3} \frac{\mathbf{J}(\mathbf{r}_0) dv}{R}, \quad \mathbf{B}(\mathbf{r}) = curl\mathbf{A} = \frac{\mu_0}{4\pi} \int_{R^3} \frac{\mathbf{J} \times \mathbf{R} dv}{R^3},$$

When

$$\mathbf{B} = \mu_0 (\mathbf{H} + \mathbf{M})$$
, it is actually an integral equation in H:

$$\mathbf{M} = \chi_{\mathrm{m}} \mathbf{H} + \mathbf{M}_{p} \qquad 4\pi \left(\left(\chi_{\mathrm{m}} + 1 \right) \mathbf{H} + \mathbf{M}_{p} \right) - \int_{\mathbb{R}^{3}} \left(\mathbf{J} + curl\left(\chi_{\mathrm{m}} \mathbf{H} + \mathbf{M}_{p} \right) \right) \times \mathbf{R} / R^{3} dv = 0$$

MG field of a set of small coils

Any small coil in vacuum is equivalent from both pov field and mechanical

interactions (forces and torques) with a small magnetized particle
$$\mathbf{m} = i\mathbf{A}$$

The moment of the magnetic shell is $\mathbf{m} = \mathbf{M}_s A = \mathbf{n} M_s A = M_s \mathbf{A} \Rightarrow \mathbf{m} = i\mathbf{A}$

According to MS-MG similation :
$$\mathbf{H}_{ext} = \frac{1}{4\pi} \left[\frac{3(\mathbf{m} \cdot \mathbf{R})\mathbf{R}}{R^5} - \frac{\mathbf{m}}{R^3} \right]$$

A large coil is equivalent to a set of small coils. Permanent and temporal magnets produce a similar fields as coils.

$$\mathbf{H}_{j} = \frac{1}{4\pi} \sum_{\substack{k=1\\k \neq j}}^{n} \left[\frac{3(\mathbf{m}_{k} \cdot \mathbf{R})_{k} \mathbf{R}_{k}}{R_{k}^{5}} - \frac{\mathbf{m}_{k}}{R_{k}^{3}} \right]$$

According to MS-MG similitude, their moments are obtained by solving:

$$\mathbf{m}_{j} - \frac{V_{j} \chi_{mj} (1 + D_{j} \chi_{mj})^{-1}}{4\pi} \sum_{k=1}^{n} \left(\frac{3(\mathbf{m}_{k} \cdot \mathbf{R}_{k}) \mathbf{R}_{k}}{R_{k}^{5}} - \frac{\mathbf{m}_{k}}{R_{k}^{3}} \right) = \mathbf{m}_{pj}, j = 1, ..., n$$
where
$$\mathbf{m}_{pj} = \frac{1}{4\pi V} \int_{D_{j}} \int_{D_{j}} \frac{\mathbf{J} \times \mathbf{R}}{R^{3}} dv + \int_{D_{j}} \mathbf{M}_{p} dv \cong i_{j} \mathbf{A}_{j} + \mathbf{M}_{pj} V_{j}$$

Green function of a nonhomogeneous domain

Green function is defined as in MS as the field of a punctual unitary magnetic moment of a small coil or magnetized particle $m(r)=\delta(r-r')u$:

$$\mathbf{H}(r'') = \overline{\overline{G}}(r'', r') \mathbf{m}(r') \Longrightarrow -div \left(\mu g r a d \overline{\overline{G}}(r'', r') \mathbf{u} \right) = -div \left(\delta(r - r') \mathbf{u} \right)$$

The components of G are obtained by successively orienting of u=i,j,k

By superposition is obtained the magnetic field for an arbitrary distribution of currents J=curlT:

$$\mathbf{H}(\mathbf{r}'') = \int_{D} \overline{\overline{G}}(\mathbf{r}'', \mathbf{r}') \mu_{r}(\mathbf{r}') \mathbf{T}(\mathbf{r}') dv$$

The Green function G of a bounded domain is the field of a punctual unitary momentum in a domain with zero b.c.: Bn=0 on SB, Ht=0 on SH and Uk=0

By superposition is obtained the magnetic field of an arbitrary current distribution and permanent magnetization in the same zero boundary conditions. Then may be superposed the contribution of non-zero b.c.

Maxwell equations for inductances

- IF $\mu \rightarrow$ infinity, then H \rightarrow 0 and the body is similar to a conductor in ES.
- Vm = Ct, $H_t=0$, on the boundary, hence ext. field lines are perpendicular on it
- By ES→ MS similitude the Maxwell relations for capacitances are transformed in the linear relations for n perfect ferromagnetic bodies :

$$\varphi = \mathbf{Li} \Leftrightarrow \begin{bmatrix} \varphi_1 \\ \varphi_2 \\ \varphi_n \end{bmatrix} = \begin{bmatrix} L_{11} & L_{12} & \dots & L_{1n} \\ L_{21} & L_{22} & \dots & L_{2n} \\ \dots & & & \\ L_{n1} & L_{n2} & \dots & L_{nn} \end{bmatrix} \begin{bmatrix} i_1 \\ i_2 \\ \vdots \\ i_n \end{bmatrix}$$

$$\Rightarrow$$
 i = $\Gamma \varphi \Leftrightarrow \Gamma = \mathbf{L}^{-1}$

- Coil fluxes: $\varphi = [\varphi_1; \varphi_2; ...; \varphi_v]$
- Currents: $i=[i_1;i_2;...;i_n]$
- Matrix of coil inductances L
- Matrix of reverse inductances Γ

Laplace formula for mutula inductances

$$A(r) = \frac{\mu_0}{4\pi} \int_{D_1} \frac{J(r_0)dv}{R} = \frac{\mu_0 i_1}{4\pi} \oint_{\Gamma_1} \frac{dr}{R} \Rightarrow \varphi_{21} = \frac{\mu_0 i_1}{4\pi} \oint_{\Gamma_2} \oint_{\Gamma_1} \frac{dr'dr''}{R} \Rightarrow$$

$$L_{21} = L_{12} = \frac{\mu_0}{4\pi} \oint_{\Gamma_2} \oint_{\Gamma_1} \frac{dr'dr''}{R}$$

For self inductance (j=k), conductor
 thickness should be considered:

$$L_{jk} = L_{jk} = \frac{\mu_0}{4\pi} \int_{D_j} \int_{D_k} \frac{dv'dv''}{A'A''R}$$

Flux and current are averaged in conductors cross-section

dv''=dr''dA

Magnetic circuits

Flux law > KFL:

$$\oint_{\Sigma} \mathbf{B} \cdot \mathbf{n} dS = 0 \Longrightarrow \sum_{k \in (n)} \varphi_k = 0 \Longrightarrow \varphi_1 - \varphi_2 + \varphi_3 = 0$$

Voltage theorem → KVL:

$$\oint_{\Gamma} \mathbf{H} d\mathbf{r} = 0 \Longrightarrow \sum_{k \in [l]} u_k = 0 \Longrightarrow u_1 + u_2 + u_3 + \dots = 0$$

- ETC tripolar element (linear or not!)
- EDC1 dipolar element (linear or not!)
- ENC coil: field source
- EDC2 airgap (linear)

$$B = \mu H \Rightarrow u_k = R_{mk} \varphi_k, \quad u_k = \int_{C_k} H d\mathbf{r}, \varphi_k = \int_{S_k} B dS$$

$$\oint_{\Gamma} \mathbf{H} d\mathbf{r} = \int_{S} \mathbf{J} d\mathbf{A} \Longrightarrow R_{mk} \varphi_{k} + u_{k} = \theta_{k} \quad \text{where } \theta_{k} = n_{k} i_{k} \text{ is m.m.f.}$$

[l]

Energy of MS field, Tellegen's and reciprocity theorems

$$W_m = \int_D w_m dv = \frac{1}{2} \int_D \mu \mathbf{H}^2 dv = -\frac{1}{2} \int_D \mathbf{I}_p \cdot \mathbf{H} dv - \frac{1}{2} \oint_{\Sigma} V \mathbf{B} \cdot \mathbf{n} dS > 0$$

In domains bounded by perfect ferromagnetic $\int_{\Sigma} V \mathbf{B} \cdot \mathbf{n} dS = -\mathbf{v}^{\mathrm{T}} \cdot \varphi$ bodies or with zero boundary conditions:

Tellegen's theorem: regardless material relations, the total pseudo-energy is zero in zero boundary conditions.

If
$$div\mathbf{B}'=0$$
, $curl\mathbf{H}''=0 \Rightarrow \langle \mathbf{B}', \mathbf{H}'' \rangle - \varphi'^T \cdot \mathbf{v}''=0 \Rightarrow \mathbf{B} \perp \mathbf{H}$

Reciprocity theorem: in linear reciprocal materials ($\mu=\mu^T$) the relation between sources and responses is symmetric. Consequently, the Green function is symmetric:

$$<\mathbf{M}_{1},\mathbf{H}_{2}>-<\mathbf{M}_{2},\mathbf{H}_{1}>=\int_{D}\int_{D}(\mathbf{M}_{1}^{T}\cdot\overline{\overline{G}}\mathbf{M}_{2}-\mathbf{M}_{2}^{T}\cdot\overline{\overline{G}}\mathbf{M}_{1})dv'dv''=0$$

If
$$\mathbf{M}_1 = \mathbf{i}\delta(\mathbf{r} - \mathbf{r}')$$
, $\mathbf{M}_2 = \mathbf{j}\delta(\mathbf{r} - \mathbf{r}') \Rightarrow G_{xy}(\mathbf{r}', \mathbf{r}'') = G_{yx}(\mathbf{r}', \mathbf{r}'')$

If
$$\mathbf{M}_1 = \mathbf{i}\delta(\mathbf{r} - \mathbf{r}')$$
, $\mathbf{M}_2 = \mathbf{j}\delta(\mathbf{r} - \mathbf{r}'') \Rightarrow G_{yy}(\mathbf{r}', \mathbf{r}'') = G_{yx}(\mathbf{r}'', \mathbf{r}'')$

$$\Rightarrow |\overline{\overline{G}}(\mathbf{r}',\mathbf{r}'') = \overline{\overline{G}}(\mathbf{r}'',\mathbf{r}') = \overline{\overline{G}}^{T}(\mathbf{r}',\mathbf{r}'')$$

Variational MG formulations

• The MS "energy" functional in terms of scalar potential is similar to the ES one

$$F(V_m) = \frac{1}{2} \int_D \left[\mu (gradV_m)^2 + div(\mathbf{I}_p) V_m \right] dv + \int_{S_N} V_m B_n dS < F(V_m + \delta V)$$

Neumann are natural boundary conditions while Dirichlet are essential boundary conditions. Weak (integral-differential) formulations:

$$\int_{D} (\mu \operatorname{grad} V_{m} \cdot \operatorname{grad} \delta V + \delta V \operatorname{div} \mathbf{I}_{p}) dv + \int_{S_{NV} = S_{B}} \delta V D_{n} dS = 0, \quad \mathbf{f}_{N} = D_{n} = -\mu dV_{m} / dn$$

• The MS weak formulation in terms of vector potential:

$$\mathbf{curl}\left[\overline{v}\mathbf{curl}\mathbf{A}\right] = \mathbf{J}_{m}, \mathbf{J}_{m} = \mathbf{curl}(\overline{v}\mathbf{I}_{p}) \Rightarrow \int_{D} \delta\mathbf{A} \cdot \left[\mathbf{curl}(\overline{v}\mathbf{curl}\mathbf{A}) - \mathbf{J}_{m}\right] dv = 0$$

$$\nabla \cdot (\delta\mathbf{A} \times v\nabla \times \mathbf{A}) = v \nabla \times \mathbf{A} \cdot \nabla \times \delta\mathbf{A} - \delta\mathbf{A} \cdot \nabla \times (v \nabla \times \mathbf{A}), \quad \mathbf{n} \times \delta\mathbf{A} = 0 \text{ on } S_{DA} \Rightarrow$$

$$\int_{D} \left[\overline{v}\mathbf{curl}\delta\mathbf{A} \cdot \mathbf{curl}\mathbf{A} - \delta\mathbf{A} \cdot \mathbf{J}_{m}\right] dv + \int_{S_{NA} = S_{H}} \delta\mathbf{A} \cdot (\mathbf{n} \times \overline{v}\mathbf{curl}\mathbf{A}) dS = 0, \quad \mathbf{f}_{NA} = \mathbf{n} \times \mathbf{H}$$

Neumann are again natural b. c. and Dirichlet are essential b. c. also for A.

Acc. Preis91-MAG-5 $\,\mathbf{A}$ is unique if to the Galerkin variation formulation are added

$$\int_{D} \left[v \mathbf{curl} \, \delta \mathbf{A} \cdot \mathbf{curl} \mathbf{A} - \delta \mathbf{A} \cdot \mathbf{J}_{m} \right] dv + \int_{S_{NA}} \delta \mathbf{A} \cdot (\mathbf{n} \times v \mathbf{curl} \mathbf{A}) dS + \\ - \int_{D} v div \, \delta \mathbf{A} div \mathbf{A} dv - \int_{S_{DA}} \delta \mathbf{A} \cdot v \mathbf{n} div \mathbf{A} dS = 0 \Leftrightarrow \mathbf{curl} \left[v \mathbf{curl} \mathbf{A} \right] + \mathbf{grad} \left[v div \mathbf{A} \right] = \mathbf{J}_{m}$$

EM Field Theory – 9. Magnetostatic fields

© LMN 2007

Weak form of MG field equations

Strong (differential form):

$$\begin{cases} div \mathbf{B} = 0 \Rightarrow \mathbf{B} = \nabla \times \mathbf{A} \\ \nabla \times \mathbf{H} = \mathbf{J} \Rightarrow \nabla \times \left[\overline{\overline{v}} (\nabla \times \mathbf{A} - \mathbf{I}_{p}) \right] = \mathbf{J} \\ \mathbf{B} = \overline{\overline{\mu}} \mathbf{H} + \mathbf{I}_{p} \Rightarrow \mathbf{H} = \overline{\overline{v}} (\mathbf{B} - \mathbf{I}_{p}) \end{cases}$$

$$\nabla \times \left[\overline{\overline{\nu}} \nabla \times \boldsymbol{A} \right] = \boldsymbol{J}_{t}$$

$$\boldsymbol{J}_{t} = \boldsymbol{J} + \boldsymbol{J}_{m}, \boldsymbol{J}_{m} = \nabla \times \left(\overline{\overline{\nu}} \boldsymbol{I}_{p} \right)$$

Boundary conditions:

$$S_H: H_t = n \times (H \times n) = -J_s = h(r) \Rightarrow n \times H = 0 \Rightarrow n \times (\nabla \times A) = 0$$

$$S_R: B_n = \mathbf{n} \cdot \mathbf{B} = -b(\mathbf{r}) \Rightarrow \mathbf{n} \cdot \mathbf{B} = 0 \Rightarrow \mathbf{n} \times \mathbf{A} = 0$$

Weak gauged form and energy functional:

$$\int_{\Omega} \nu ((\nabla \times \boldsymbol{W})(\nabla \times \boldsymbol{A}) + (\nabla \boldsymbol{W})(\nabla \boldsymbol{A})) dv = \int_{\Omega} \boldsymbol{W} \cdot \boldsymbol{J} dv - \int_{\Omega} \nabla \times \boldsymbol{W} \cdot \boldsymbol{I}_{p} dv + \int_{S_{H}} \boldsymbol{W} \cdot \boldsymbol{J}_{s} dA$$

$$F(\boldsymbol{A}) = \frac{1}{2} \int_{\Omega} \nu ([\nabla \times \boldsymbol{A}]^{2} + [\nabla \boldsymbol{A}]^{2}) dv - \int_{\Omega} \boldsymbol{A} \cdot \boldsymbol{J} dv + \int_{\Omega} \nabla \times \boldsymbol{A} \cdot \boldsymbol{I}_{p} dv - \int_{S_{H}} \boldsymbol{A} \cdot \boldsymbol{J}_{s} dA$$

Weak un-gauged form and energy functional:

$$\int_{\Omega} \nabla \times \boldsymbol{W} \left[v \nabla \times \boldsymbol{A} \right] dv = \int_{\Omega} \nabla \times \boldsymbol{W} \cdot \boldsymbol{T} dv - \int_{\Omega} \nabla \times \boldsymbol{W} \cdot \boldsymbol{I}_{p} dv; \quad \boldsymbol{J} = \nabla \times \boldsymbol{T}, \boldsymbol{J}_{s} = 0$$

$$F(\boldsymbol{A}) = \frac{1}{2} \int_{\Omega} \left(v \left[\nabla \times \boldsymbol{A} \right]^{2} + \nabla \times \boldsymbol{A} \cdot (\boldsymbol{I}_{p} - \boldsymbol{T}) \right) dv$$

Nonlinear magnetic media: isotropic/anisotropic

Variable permeability

$$\begin{cases} div\mathbf{B} = 0 \Rightarrow \mathbf{B} = \nabla \times \mathbf{A} \\ \nabla \times \mathbf{H} = \mathbf{J} \Rightarrow \nabla \times [\nu(\nabla \times \mathbf{A})] = \mathbf{J} \\ \mathbf{B} = \mu(|\mathbf{H}|)\mathbf{H} \Rightarrow \mathbf{H} = \nu(|\mathbf{B}|)\mathbf{B} = f(B)\mathbf{B}/B \end{cases}$$

Weak form:

$$\int_{\Omega} \nu (|\nabla \times A|) ((\nabla \times W)(\nabla \times A) + (\nabla W)(\nabla A)) d\nu = \int_{\Omega} W \cdot J d\nu + \int_{S_{H}} W \cdot J_{s} dA$$

$$B = f(I)$$

$$H = \mathbf{G}(I)$$

Energy functional:

$$F(\mathbf{A}) = \int_{\Omega} \left(\int_{0}^{|\nabla \times \mathbf{A}|} f(b) db \right) dv - \int_{\Omega} \mathbf{A} \cdot \mathbf{J} dv - \int_{S_H} \mathbf{A} \cdot \mathbf{J}_s dA$$

Variable magnetization

$$div\mathbf{B} = 0 \Rightarrow \mathbf{B} = \nabla \times \mathbf{A}$$

$$\nabla \times \mathbf{H} = \mathbf{J} \Rightarrow \nabla \times [\nu(\nabla \times \mathbf{A} - \mathbf{I}(\mathbf{B}))] = \mathbf{J}$$

$$\mathbf{B} = f(\mathbf{H}) = \mu \mathbf{H} + \mathbf{I}(\mathbf{H}) \Rightarrow$$

$$\mathbf{H} = g(\mathbf{B}) = \nu(\mathbf{B} - \mathbf{I}(\mathbf{B})) = \nu \mathbf{B} - \mathbf{M}(\mathbf{B})$$

$$B = f(H) = \mu H + I(H) \Rightarrow$$

$$H = g(B) = \nu(B - I(B)) = \nu B - M(B)$$

$$I(B) = F_{R}(B) = f(H) - \mu H \Rightarrow$$

$$\nabla \times \left[\nu (\nabla \times A - F_B(\nabla \times A)) \right] = J$$

$$w_m$$

$$B$$

MG applications

Based on the force of the electromagnets

- Electromagnets
- Relays
- Sensors
- Electromagnetic latches

Conversion of mechanical to electrical energy

- D.C. Generators
- A.C. generators

Conversion of electrical to mechanical energy

- Motors
- Meters
- Actuators, linear, and rotational

Direct, shape and control electron or ion beams

- CRT cathode-ray tubes
- Electromagnets for particle accelerators
- Computer tomograph coils

Others

Correct mathematical formulation of MG (curl-curl) fundamental problems

Known data:

- Computational domain: Ω Lipchitz type
- Material characteristics ($\mathbf{B} = \mu \mathbf{H}$), $\mu = 1/\nu = f(\mathbf{r})$: $\Omega \rightarrow IR$, $\mu > 0$
- Internal sources of field (current density): $J=g(r): \Omega \rightarrow IR^3$,
- Boundary cond. (ext. sources): $\begin{cases} n \cdot B(P) = 0, P \in S_B \subset \partial \Omega \\ n \times H = J_s(P), P \in S_H = \partial \Omega S_B \end{cases}$
- Solution (vector potential): $A: \Omega \rightarrow IR^3$, with B = curl A
- Equation (weak formulation): Find $A \in H_B(curl, \Omega)$, s.t.

$$\int_{\Omega} (\nu(\nabla \times \boldsymbol{A}) \cdot (\nabla \times \boldsymbol{W}) + \nu(\nabla \boldsymbol{A}) \cdot (\nabla \boldsymbol{W}) - \boldsymbol{W} \cdot \boldsymbol{J}) d\nu - \int_{S_H} \boldsymbol{W} \cdot \boldsymbol{J}_s dS = 0,$$

$$\forall W \in H_B(curl, \Omega), \text{ with } H_B(curl, \Omega) = \left\{ A \in L^2(\Omega) \mid \nabla \times A \in L^2(\Omega), A \mid_{S_B} = 0 \right\}$$

 Existence, uniqueness and stability of solutions granted by the Lax-Milgram theorem

Accelerators electromagnets

Motors and generators:

EM Field Theory – 9. Magnetostatic fields

Scanner

MG Applications:

© LMN 2007

Magnetic CAD:

EM Field Theory – 9. Magnetostatic fields

MG benchmarks

http://www.compumag.org/jsite/team.html

Nonlinear 3D - MG TEAM problems

• Problem 13

(a) front view

Problem 20

MG summary. Equations, interface and boundary conditions

$$\begin{cases}
div \mathbf{B} = 0 \\
curl \mathbf{H} = \mathbf{J}
\end{cases}$$

$$\mathbf{B} = \overline{\mu} \mathbf{H} + (\mathbf{I}_{p})$$

$$\begin{cases}
-div(\overline{\mu} \mathbf{grad} V) = \rho_{m} \\
\rho_{m} = -div \mathbf{I}_{p}
\end{cases}$$

$$\mathbf{H} = -\mathbf{grad} V$$

$$\mathbf{B} = curl (\overline{\nu} \mathbf{I}_{p})$$

$$\mathbf{B} = curl \mathbf{A}, \ div \mathbf{A} = 0$$

$$\begin{cases}
B_{n1} = B_{n2} \\
\mathbf{H}_{t1} = \mathbf{H}_{t2}
\end{cases}$$

$$\begin{cases}
\mu_{1} \frac{\partial V_{1}}{\partial n} = \mu_{2} \frac{\partial V_{2}}{\partial n} \\
V_{1} = V_{2}
\end{cases}$$

$$\begin{cases}
V = f_{2}(P)$$

$$\mathbf{H}_{t} = \mathbf{f}_{H}(P) \text{ on } S_{H}$$

$$B_{n} = f_{B}(P) \text{ on } S_{B}$$

$$\int_{PkP_{0}} \mathbf{H}_{t} d\mathbf{r} = U_{k} \text{ or } \int_{S_{Ek}} B_{n} dS = \Phi_{k}, \qquad \mathbf{n} \times \mathbf{A} = \mathbf{f}_{D}(P) \text{ on } S_{DA}$$

$$\mathbf{for each } S_{Hk}, k = 1, 2, ..., n-1, \text{ and } U_{n} = 0$$

 $oldsymbol{\hat{\cdot}}$ Circuit parameters: $oldsymbol{arphi} = \mathbf{P}\mathbf{v}, \ \mathbf{v} = \mathbf{R}oldsymbol{arphi}, \ \mathbf{R} = \mathbf{P}^{-1}$

 ${\bf R} = {\bf R}^T > 0, \ {\bf P} = {\bf P}^T > 0$

MG forces

- Magnetized particle $\mathbf{F}_{m} = \mathbf{grad}(\mathbf{m} \cdot \mathbf{B}_{\mathbf{v}})$ $\mathbf{T}_{m} = \mathbf{r} \times \mathbf{F}_{m} + \mathbf{m} \times \mathbf{B}_{v}$
- Linear magnetic particle $\mathbf{m} = V \chi_m (1 + \overline{\overline{D}} \chi_m)^{-1} \mathbf{H}_m$
- Perfect ferromagnetic bodies:

$$\mathbf{F} = \oint_{\Sigma} w_m \mathbf{n} dS, \qquad \mathbf{T} = \oint_{\Sigma} w_m (\mathbf{r} \times \mathbf{n}) dS$$

$$\mathbf{v} = \begin{pmatrix} 1 & \partial \mathbf{R} & \partial \mathbf{r} & \nabla \mathbf{r} & \partial \mathbf{R} \\ \mathbf{v} & \partial \mathbf{r} & \partial \mathbf{R} & \nabla \mathbf{r} & \partial \mathbf{R} \end{pmatrix}$$

In general

$$X_{k} = -\frac{1}{2} \varphi^{\mathsf{T}} \frac{\partial \mathbf{R}}{\partial x_{k}} \varphi; \quad X_{k} = \frac{1}{2} \mathbf{v}^{\mathsf{T}} \frac{\partial \mathbf{P}}{\partial x_{k}} \mathbf{v}$$
In general
$$X_{k mg} = -\frac{\partial W_{m}}{\partial x_{k}} \bigg|_{\varphi = const.} X_{k mg} = -\frac{\partial W_{m}^{*}}{\partial x_{k}} \bigg|_{v = const.}$$

Maxwell's tensor

$$\mathbf{f} = -\frac{H^{2}}{2} (\mathbf{grad} \,\mu) + \mathbf{grad} \left(\frac{H^{2}}{2} \tau \frac{\partial \mu}{\partial \tau} \right) = div \left[\mathbf{H}^{\wedge} \mathbf{B}^{T} + \overline{\overline{\mathbf{I}}} \left(\frac{H^{2}}{2} \tau \frac{\partial \mu}{\partial \tau} - w_{m} \right) \right]$$

Not so easy questions for curious people

- 1. How are first order MG equations?
- 2. What type of potentials may be defined in MG regime?
- 3. How are the second order equations for these potentials?
- 4. How are the boundary conditions for each potential to be unique?
- 5. What are MG boundary conditions in semi-bounded domains?
- 6. Are Biot-Savart-Laplace integrals convergent?
- 7. How are the equations of MG-2D field?
- 8. How is defined Green function for MG field?
- 9. How may be computed inductances, using magnetic circuits?
- 10. How may be used similitude with ES field to compute inductances?
- 11. What space may be used for trial and test functions in weak MG formulation?
- 12. How are the integral equations of MG field?
- 13. What about nonlinear magnetic materials? Uniqueness, energy, forces.
- 14. What are the main novelties and difficulties of MG regime, compared with other static and steady state regimes?