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The paper shows how to transform a given problem, linear or nonlinear, into another that has
the same solution and that admits a variational formulation with a (true) minimum. For a given
problem there exists an infinity of equivalent problems, each with minimality property. The method
uses integral transforms whose kernels must satisfy appropriate conditions. A general procedure is
described that permits to generate kernels for initial or boundary value problems with arbitrary
domains. The use of degenerate kernels permits us to obtain a numerical solution for problems
defined on complicated domains.

1. Notation

The term equation refers to differential, integral, integro-differential, algebraic or ope-
rator equation of whatever kind; it may be a single equation or a system of equations.
The functions appearing in an equation may depend on one or more variables. These
functions may be scalar, vector, tensor, matrix-valued, functions, etc. The term ad-
ditional conditions refers to 1n1t1a1 boundary, asymptotm perlod1c conditions, etc.
and the functional class, say C (.Q) L?(2), etc. -

The term problem means the set formed by an equation and additional condltlons
A problem will be denoted as

s N(u) = f (equation)

N(u) = f equivalent to {addxtlona.l conditions on u. (L)
We call N the operator of the problem and NV the formal operator [12].

We use the symbol NV to denote a nonlinear operator and v = N(u) to denote the
. correspondence between two variables, putting the argument u in round brackets like
in a function y = f(z) while a linear operator will be denoted Lu without brackets
like in the linear function y = fz. An operator depending on two arguments will be
denoted w = P(u,v) just like a function of two variables is denoted z = f (z,y). If it
is linear on v, we shall write w = P(u)v or also w = P,v. The domain of the operator
is understood to be the set of functions that satisfy the given additional conditions.
N denotes the formal operator.

We shall say that two problems, or two equations, are equivalent when they have
the same solution set.
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2. The meanings of the variational formulation

The term inverse problem of the calculus of variations stands for the search of a

variational formulation for a given problem. It has four different interpretation as
describes in the sequel.

2.1. The formal variational formulation
The classical variational formulation can be stated as follows: 2.

Given an equation N(u) = f, find a functional Flu] = [, F(u)df, if it
exists, whose Euler-Lagrange equation coincides with the given equation.

The attention is normally focused on the equation while the additional conditions are
neglected. Since only the formal operator A is involved, we shall call this a formal
variational formulation.3

This is the usual meaning given to the expression "inverse problem” in theoretical
physics. The functional that gives the field equations is called the action of the field.
The assertion that the action is stationary with respect to the solution is known as
the principle of stationary action. It must be remarked that even if it is often called
the principle of minimal action the action is only stationary [7, p.66].

In the above context the main interest is to characterize the structure of the
field equation, and not to look for the solutions by using the direct method as for
example, the Ritz method. The spirit is well described by the famous statement by
Sir Arthur Eddington: "From its first introduction, action has always been looked
upon as something whose sole raison d’étre is to be varied — and, moreover, varied
in such a way as to defy the laws of nature!” [10, p.137].

This means that the variational formulation, understood in this sense, does not
goes beyond the derivation of the Euler-Lagrange equations, i.e., field equations or
equations of motion. The solution of the equation is performed by the traditional in-
tegration methods for ordinary or partial differential equations in which the existence
of the functional play no role.

This formulation become more attractive after the discovery by Noether that
there is a link between invariance and conservation laws that may easily be inferred
from the invariance of the functional.

The prototype of this variational formulation is the Hamilton principle for evo-
lution equations. The various field actions used in field theories are generalizations
of the same principle. The Hamilton principle and its generalization cannot be used
to find the solution of problem of Eq.(1) in the case of time dependent fields. The
reason is that in order to find the stationary value of the functional, it is necessary
to consider functions that vanish at initial and final instants of a given time inter-
val. Since in a time dependent field, the field at the final instant is not known, it is
impossible to utilize the direct methods of the calculus of variations. This because
the base functions used in such a method should satisfy a final condition that is not
known a priori (with the obvious exception of periodic boundary conditions in time).

2 (8, p.778], [9, p.63], (18, p.10], [6, p.159], (17, p.75], [5, p.781].
3 Dedecker [9, 1950, p.63] use the adjective formal See also [22] for a short history of the inverse
problem.
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2.2. The operatorial variational formulation

A completely different situation arises in time independent problems such as those
of electrostatics, magnetostatics, elastostatics, stationary heat conduction, etc. In
these cases we have only boundary conditions and the stationarity is searched among
the functions satisfying the boundary condition. Here direct methods can be utilized
and are commonly used: among them the Ritz method which is used today mainly
in the connection with the finite elements method. In these problems we often have
a minimum of the functional, contrary to the variational formulation for time depen-
dent fields where the functional is only stationary and does not have a maximum or
minimum. Typical is the case of the deformed configuration of a deformable body
under the action of conservative forces that attain the minimum of the total potential
energy.

The peculiar difference between time-variable fields and statical (or stationary)
fields is that in time variable fields the functions used to detect the stationary value
of the functional do not satisfy the given initial conditions. In statical (or stationary)
fields the functions used in the functional are exactly those that satisfy the given
boundary conditions. In the first case, the domain of the functional is different from
that of the operator while in the second case the two domains coincide.

This leads to another meaning of the inverse problem:

Given a problem N(u) = f, we ask if there exists a functional F' whose
Euler-Lagrange equation coincides with the equation of the problem and
whose domain coincides with the one of the problem.

This means that the stationary value must be searched among the functions that
satisfy the additional conditions of the problem. We shall call this the operatorial
variational formulation. The difference between the formal and the operatorial for-
mulations is illustrated in Fig. (1).

functional functional

direct
methods

equation equation

problem ... —> solution problem . ——> solution
addnpnal additional
conditions conditions
Fig. 1.

The difference between the formal variational formulation
(left) and the operatorial variational formulation (right).

2.3. The extended variational formulation

What is to be done when a variational formulation either in the formal or the
operatorial sense does not exist? One may try to transform the equation or the whole
problem in another equation or problem that is equivalent and admits a variational
formulation.
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There are many ways to obtain an equivalent equation. The simplest way is to
multiply the equation by a non-vanishing function p(z) called the integrating factor

uN(u) ~ f] = 0. (2)

One may generalize the integrating factor to a function containing u and its
derivatives, say p(z;u(z),u'(z)), with the obvious requirement that no new solutions
be introduced. In the case of a system of equations one may apply a matrix or simply
rearrange the equations. Sometime the equivalence may be obtained by a change of
the function u = f(¢).

To obtain an equivalent problem one may apply an operator P on the left with
the condition that the operator be invertible. The problem

P[N(u)-f]=0 3

has the same set of solutions as those of Eq.(1). In particular the operator may be
linear and may depend on u:

LIN(u)= f]=0 or L,[Nu)-f]=0 4)

and the problems Lv = 0 and L,v = 0 must have only the null solution, v = 0 for
every u. :
Another possibility is to perform an operatorial transform

N(Q(¢)) - f=0 with u=0Q(¢). (5)

We shall call procedures in Eq.(3) and Eq.(5) left- and right-multiplications,
respectively. The prototype of the left—-multiplication is used to transform the Cauchy
problem into an equivalent integral problemn. The prototype of a right-multiplication
is the one used in the transformation of the problem Lu — f = 0, that has no
variational formulation, in the problem LL*¢ — f = 0 which admits a variational
formulation.

If, for a given problem, there are other problems equivalent to it, then one of
these may admit a variational formulation in the formal or operatorial sense. In this
case we shall say that the original problem admits a variational formulation in the
eztended sense. Extended, because, even if the domain of the functional coincides
with the domain of the given problem, its Euler-Lagrange equation is not the given
equation but that of an equivalent problem.

Then we are lead to a third and fourth interpretations of the inverse problem in
the formal and operatorial sense*

Given an equation N(u) = f, is there an equivalent equation that admits
a variational formulation in the formal sense? '

Given a problem N(u) = f, is there an equivalent problem that admits
a variational formulation in the operatorial sense?

* Filippov used the term quasiclassical formulation {11, p.5)
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3. Conservative operators

The conditions to be satisfied by an operator in order to be the gradient of a functional
can be found starting from the observation that a mapping v = N(u) with u € U
and v € V may be viewed as a vector field on the space U [20].

This is a beautiful and astonishing interpretation! It simplifies the search for
criteria for the operatorial variational formulation. It permits us to extend the notion
of circulation of a vector field along a line once the notion of a line and a scalar product
are introduced. Let us suppose that on the two real normed spaces U and V is defined
a real nondegenerate bilinear form and that their topologies make the bilinear form
continuous: such topologies are called duality compatible [19]. Such a bilinear form
will be called a scalar product.

Let us introduce the notion of line in U as a continuous mapping 7 : (0,1} — U.’
In particular, a straight line from ug to u is defined by n(A) = uo + A(u — uo).

Let us assume that the domain D(N) is convex, that the map A — (N(u+ Ad), ¢)
is continuous. One may define the circulation of the vector N(u) along the line n(})
from the point uo = 1(0) to the point u = n(1).

A=1 A=1
o [ oo = [ o), o ©

A=0 A=0

If this circulation does not depend on the line connecting the two points up and u,
one may call the vector field, i.e. the operator N, conservative.’> When this happens,
one may assign a potential to every point of the domain D(N) given by

A=1

Fluo] + / (M), 6n(N)- ()

A=0

Flu] &

This potential is the functional we are searching for. In fact it can be shown that
6F[u] = (N(u), 6u) (®)

and then, if the §u form a dense subset of U, the critical points of the functional, i.e.
those points for which §F[u] = 0, are the solutions of the problem N(u) = 0. The
operator N is called the gradient of F. What is the condition of independence of the
circulation from the line?

The method used in ordinary vector fields consists of choosing any closed line and
verifying that the circulation along this line vanishes. Taking two vectors, i.e. two
functions ¢ and 1, one may write '

(N(u), Ad) + (N(u + A@), utp) = (N(u), pp) + (N(u + p9), Ad) + (X, ). (9)

Given some weak continuity assumptions on the derivative N} [23, p.56], the path

independence requires that lim -‘(i‘—”"‘) =0 for A\ —» 0 and g — 0. By dividing both

sides for Ay and taking the limit one obtains

$ Usually one say ”potential” operator in the sense that the operator admits a potential. We think
that the name ”conservative”, reminiscent of the vector fields in IR™, is perfectly legitimate, as

are the names "monotone”, ”symmetric”, " continuous”, etc.
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—— D(N)

convex set

necessary... ...sufficient

Fig. 2.
The necessary and sufficient conditions for the existence of the potential of an operator.

lim [<N(U+A¢)—N(u)’¢> _ <N(U+mz)—N(U)’¢>] —o. (10)

A,u—0 A

If we denote by N the Gateaux derivative, which is a linear operator, this condition
becomes

(Nug,¥) = (N3, ¢) for every ¢,9 € D(N,), ue€ D(N). (11)

This means that the derivative of the operator must be symmetric. When the do-
main is convex, this condition becomes sufficient. Since linear operators have a linear
domain and many nonlinear ones have a convex domain (non-homogeneous linear
boundary or initial conditions form such a domain) then this condition is sufficient
for these operators.

We remember that for a given a linear operator P : D(P) C U — V, all operators
Q :D(Q) CU — V satisfying '

(P,¢,%) = (Qv,4) for every ¢ € D(P) and ¢ € D(Q) (12)

are said to be adjoint to P [13, p.167). The operator Q with the largest domain is
called the adjoint of P and is denoted by P*. Its domain is the set of all elements ¢
for which the relation Eq. (12) holds for every ¢ € D(P). This shows that there are
in general many operators that are adjoint to a given one: all of them are restrictions
of the adjoint P*,i.e. @ C P. These may be obtained from P* adding supplementary
boundary conditions or, that is more common, restricting the functional class.

When the operator @ = P in Eq.(12), then P is said symmetric while when
P* = P, the operator P is said self-adjoint.

Summarizing one may say that the necessary condition for the existence of a
variational formulation is the symmetry of the derivative of the operator. Since this

condition was discovered by Volterra,® we shall call this the Volterra symmetry con-
dition.

§ See Volterra [25, p.104), [26, p-47), [27]. Kerner quoted Volterra [14, p.572] and Vainberg quoted
Kerner [23, p.313]. See also [21] for a detailed exposition of this point.
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4. Extended variational formulation

Given a problem tha: does not satisfy the criteria for the existence of a variational
formulation, we shall explore the possibility of finding a general procedure to obtain
an equivalent problem using the left-multiplication by an operator. We shall show
that, under weak conditions on the operator N, it is possible to generate an infinity
of equivalent problems all of which admit a variational formulation.” We remark that,
in the context of the formal variation formulation, there is not a general procedure
to obtain explicitly an integrating factor for an arbitrarily given equation. Much of
the early history of the inverse problem of the Calculus of Variations was devoted to
the search for integrating factors of special classes of equations [22].

On the contrary, a constructive procedure to find explicitly integrating operators
in the operatorial formulation has been found [21]. To explain the method used,
we shall start with simple considerations on algebraic systems of equations. Let us
consider three systems of algebraic equations

{+x—3y=—2_ {+4z+y=+5. {+4x+y=+5 (13)
tdz+y=+5" | -z+3y=+42" |+z-3y=-2.
One immediately realizes that they have the same solution z = y=1

Since the first two matrices are not symmetric, the corresponding systems do
not have a variational formulation. To make the matrices symmetric it is enough
to change the order of the equations in the first case and to change the sign of the
second one. The change of the order of the equation or of the sign of an equation is
equivalent to a left-multiplication of the third system by the matrices

0 1 10 |
=[P 1] asi o] »
These matrices are invertible. Performing the product in both cases one obtains a
symmetric matrix that gives rise to a system equivalent to the systems Eq. (13). The
search of symmetrizing matrices, as we have done now, is based on trial and error
method.

This raises the following question: Given a nonsymmetric matrix, does a, system-
atic way to generate symmetrizing matrices exist? The answer is afirmative.

Theorem 1. Given an invertible matrix L (then L* is also invertible), for every
symmetrical and invertible matrix K, the matrix A = L*K is a symmetrizing matrix.

Inversely, for every symmetrizing matrix A there exists an invertible and symmetric
matrix K such that A = [*K.

Proof. If K is a symmetric and invertible matrix, putting A = L*K, we see that
AL = L*KL = (L*KL)* = (AL)*, then A is a symmetrizing matrix. Inversely, if
A is a symmetrizing matrix, then matrix K = (L*)~'A is also symmetric. In fact,
L*KL = AL = (AL)* = (L*KL)* = L*K*L and therefore K* = K. (qed) O

This simple result is significant because, not only it permits to generate in a
systematic way all symmetrizing matrices, but it way also be extended to other linear
operators, such as differential, integral or integro-differential operators. Furthermore,
and this is surprising, it can be extended to nonlinear operators. It then gives us the

7 An analogous result for the right-multiplication in terms of operators seems to be an open problem.
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possibility to pass from a search of the integrating factor to the ezplicit generation
of an infinity of integrating operators.

We shall show that it is possible to transform a problem, generally nonlinear,
into an equivalent one that satisfies the following three requirements: (11, p.2] (A)
the order of the derivatives in the functional must be lower than the one in the
equation; (B) the functional is bounded from below; (C) the set of critical points of
the functional, i.e. the set of elements u € U for which §Fu] = 0 coincides with the
set of solutions of the problem. :

We shall see in a moment that these requirements can be’easily satisfied. The
problem of giving an extended variational formulation is solved by the following [21]

Theorem 2. Let U and V, be two real normed vector spaces and let (v,u) be a scalar
product that put the two spaces in duality. Given a problem

N(w)=f (15)

with N : D(N) CU — R(N) C V, let us assume that N satisfies the four conditions
N1) has a convex domain;
N2) admits a (linear) Géteaux derivative for all u € D(N);
N3) the domain of N, is dense in U;
N4) for every u € D(IV) there exists an invertible adjoint of the derivative N,
which we shall denote by N.*;

Let K : V — U be a linear and continuous operator that satisfies the four condi-
tions

K1) Symmetry, i.e. K C K*;

K2) Positive definitess, i.e. (v, Kv) > 0 for v # 0% on D(K);

K3) D(K) 2 R(N) i.e., its domain contains the range of N; and f € D(K);

K4) D(N!*) 2 R(K) i.e. the range is contained in the domain of N for every
u € D(N), i.e.

Under these hypotheses the problem
Ny K[N(u) - f]=0 (16)

has the following properties
A1) D(N*KN) =D(N);
A2) is equivalent to Eq. (15);
A3) N'*KN is conservative and the potential is given by

Flu] = L(N(u) - f, KIN() - f) a7)

with D(F) = D(N). Moreover the critical points of F coincide with the solutions of
problem Eq.(15); '

A4) if ug is a solution of problem Eq.(15) then F[u] > F[uo] and if the solution
is unique it is Fu] > Fluo).

Proof. For property (K3) the operator KN has the same domain of N. For property
(N2) the Gateaux derivative N, exists and it is linear; for (K4) the operator N,*KN
has the same domain of KN and therefore of N. Then property (Al) is proved.

8 We follow the notation of Mikhlin [16, p.31].
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Every solution of problem Eq. (15) is also a solution of problem Eq. (16). Vice
versa, since for (K2) the operator K is invertible and for (N4) N!* is also invertible,
then it follows that N 'K is invertible. Then the solutions of the problem Eq.(16)
are also solutions of problem Eq.(15) and property (A2) is proved.

Property D(F') = D(N) follows from a direct inspection of Eq.(17). Since

6F[u] = (§N(u), K[N(u) — f]) = (N, 6u,K[N(u) ~ f]) =

18
— (NIKN(u) - fl, u), (18)
where we used the symmetry of K given in (K1), the continuity of K and the conti-
nuity of the scalar product. From (N3) the condition §F[u] = 0 implies by Eq.(18)
that N* K{N(u)— f] = 0. The property (A3) is proved

From (K2) it follows that F'fu] is positive. If ug is a solution of problem Eq.(15)
then Fluo] = 0 and for property (K2) is Fu] > FJ[uo). If the solution is unique it is
F[u] > Fluo] and then property (A4) is proved. (qed) o

It is remarkable that the solution of whatever problem, linear or nonlinear, with
differential or integral equations, with boundary or initial conditions both homoge-
neous and nonhomogeneous, may be considered as giving the minimum of a functional
and, moreover to an infinity of functionals. The extended variational formulation may
be utilized also for initial value problems, something that was not possible in the clas-
sical calculus of variations because operators connected with initial conditions cannot
satisfy the symmetry requirement. From a numerical point of view this theorem per-
mits to use finite elements also in a time domain instead of using finite differences in
a time domain and finite elements in a space domain.

5. How to find the operator K

When N is a differential operator the operator K may be of integral kind, e.g.

v(s) = /k(s,m)u(m)d(l : | (19)

2,

with k(s,z) = k(z,s). Generally speaking conditions (Kl) and (K3) of Th.(2) are
easily satisfied. The fact that K is an integral operator implies the possibility of
lowering the order of the derivatives in the functional, as in the case of classical
variational formulation. It follows that the requirements (A),(B),(C) stated earlier
are satisfied.

It seems difficult to satisfy the conditions (K2) and (K4). In principle every Green
function of a symmetric operator with domain {2 that satisfies the same boundary
conditions of the given operator may be a useful kernel. But for domains §2 of ar-
bitrary shape this is impracticable because we do not have an explicit form of the
Green function. This difficulty has been stressed by Filippov [11, p.6; p.157].

We now present a method to overcome this difficulty. It consists in the use of
kernels of the kind

k(sam) = ﬂ(z)ﬁ(s)h(s’x)a (20)

where h(s,z) is a function symmetric in its arguments s,z such that the corre-
sponding integral operator H be positive definite and the function #(z) satisfies the
homogeneous boundary conditions of N.*. Let £2 C IR be a bounded domain and let
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U=LP(R)and V= L1(0) with p,¢ > 1 and %-{— % =1 and (v,u) = [v(z)u(z)df2.
' n
Suppose that g € L°(2) and h € L>=(£2 x £2)

Theorem 3. If the kernel A(s,z) is symmetric and gives rise to a positive definite
operator H : U — V; if the function B(x) vanishes at most on a set of null measure,
then the kernel k(s, z) in Eq.(20) gives rise to a positive definite operator K : V — U.

Proof. Note that

(0,160 = [ [ bou) Bl BGeIv(o)] dods =
o (21)
= / / h(s,z)5(s)0(z)dzds = (v, Hv),
2, 2
where we set 9(z) = v(z)B(z). Since we have requested that the function f(z) may

vanish at most on a set of null measure, the condition v(z) = 0 implies that o(z) # 0.
Since (&, Hv) > 0, it follows that (v, Kv) > 0. (qed) a

Fig. 3.
An example of complex domain.

In particular in the one dimensional problem the function B(x) may vanish at
most in a discrete number of points and in the two—dimensional case it must vanish
on a finite number of lines.

This kernel decomposition allows us to distribute the two factors with separate
functions. Since h(s, z) is positive definite, the operator K is also positive definite and
therefore invertible as required by (K2). The boundary conditions (K4) are satisfied
by the function S(z) and then by the kernel k(s, ). This decomposition leads to a

remarkable simplification in the generation of operators K for domains §2 of arbitrary
shape.

5.1. How to find a kernel h(s, )

We shall show how to find a kernel (s, z) which gives rise to a symmetric, positive
definite operator H
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One way is to use an analytic function whose Taylor series has positive coeflicients

and is uniformly convergent. A simple example is that of the function exp(sz). In
fact if v € L?[0, 1]

11

(v, Hv) = / / exp(sz)v(s) v(z)dsdz = /1 /1 Z(S:!)kv(s)v(:c)dsdx =

o0
0 0 k=0

1 (22

1
= Z o /skv(s)ds‘/xkv(‘x)df = Z H(Pk)z > 0.
k=0 5 0 k=0

Let us observe that the only function v € L?[0, 1] with all px equal to zero is the zero
function.
To give a variational formulation with (true) minimum of the initial value problem

—u'(z) = f(z), w(0)=p, v(0)=g, u€C’0,]] (23)
we observe that |

‘N= {-—Dz, u(0)=p, v'(0)=g, u € C*0,1]},

N ={-D% $(0)=0, $(0)=0, $€C0,1]}, e

Ny ={-D* 9(1)=0, $'(1)=0, veC?0,1]},

where we have taken one of the possible adjoints. A possible kernel is
k(s,z) = exp(sz)(1'— s)2(1 —2)?, (25)

because it satisfies the boundary conditions of Ni* i.e. k(s,1) = 0 and 3, K (s, :c)l =
0. We remark that initial value problems had always been lacking a variational for-
mulation with a true minimum.

A second way to find an integral operator H that is symmetric and positive
definite is the following. Let us consider a region {2 of IR? with an irregular shape
as in Fig.(3a). Let us insert the region {2 in a rectangle R, e.g., the one shown
in Fig.(3b). The Green function of any symmetric linear differential operator on R
gives rise to a symmetric and positive definite operator H on L*(R) and defines H
as the restriction of H to L2(§2). Green functions of some differential operators for a
rectangle are known in closed form.

5.2. How to find a function 3(x)

Let us consider, as an example, the time dependent problem of the Fourier equa-
tion considered in the region £2 C R? of Fig.(3) with mixed boundary conditions on
82 = L U L, and in the time interval [0, T] (see [15])°

—Au(z,y,t) + Owu(z,y,t) = f(z, y,t)2 1 (26)
U|L1 =D g_:ll,, = q’u|t=0 =7ru€ W2, (‘Q X [O’T])

with p, ¢ and r assigned functions. Since the operator is nonlinear (inhomogeneous
boundary conditions do not constitute a linear domain) we must perform the deriva-
tive. We obtain |

Sue W:’l (£2 x [0,T]) means that u,us, vy, bz, sy, Uyy, ¥t € L2(2 x [0, T)).
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g
02 =0 lima =0,

we W22 x {o,:r])}. |

N:; = {"A+6l’¢|bl = 01
(27)

Fig. 4.
An example of function B(z) that satisfies the boundary conditions of Fig. 3a.

To obtain an adjoint we must consider the relation

T .
0/ ! V(- A + Bedld2dt =

= ]T / $[— Ay + Beplddt + /T f [zbg%— g—ﬂ dSdt + / [¥glo d2.
0o n an P

0 '

(28)

A possible adjoint is

0
N:’: = {—_A ~ 0, ¥lL, =0, _a—i_le =0,$le=r =0,

(29)
b e W2 x 0,T)}.

The boundary conditions that the kernel k(s,z) must satisfy are those of the domain
of the operator N'*. These are homogeneous boundary conditions. To simplify the
form of the functional we may impose supplementary conditions on 3 not required by
Th.(2), in order to guarantee that all boundary terms, arising from the integration by
parts, vanish. This leads us to require that the function B(s,z), as well as its normal
derivative, vanishes on the whole boundary.

Since the kernel k must satisfy the homogeneous boundary conditions of ¥, these
conditions will be imposed on the function . Then
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0
ﬂ(ma ¥, 1)L, =0, 5"‘ﬁ($, y7t) =0, Bz, y,t)|t=T = 0. (30)
n L,
With reference to Fig.(3) the equations that define the boundary are

side AB a(z,y) def y =0,

side BC  b(z,y)E2z—-7=0,
side CD o(z,y) ef y—2=0,
side DE d(z,y) 8= 0,
side EF  e(z, y)d‘-e——f y—5=0,

side FG  f(z,y) = 4+ -;— —y =0,

(31)

side GA g(:z:,y)déf z=0,
circumference h(z,y) = (z —4)% + (y — 2.5)* - (1.5)%.

To obtain the function § we perform the product of the functions giving the sides of
the region raising every equation to the square )

B(z,y,t) = a2 d e fR g hA(T - t). (32)

One may easily see that this function and its normal derivative vanish at the boundary
of the spatial domain while the function vanishes at the final instant.
Let us consider, for example, the function 8(z,y,t) = a?¢*(T —t). Since

Vg = (209*Va + 2ga®*Vg)(T — t), (33)
we obtain

% _ — (20522% 4 200229\ (T - |

5 =0 Vg = (2ag F™ + 2ga Ew (T —1t). (34)

It vanishes on the whole boundary.

If the domain is not convex this function vanishes also along lines passing in the
region {2 as shown in Fig.(4). This is of no consequence because the measure of the
set is null. The kernel may be

6. The choice of degenerate kernels

The numerical solution of a problem using the extended variational formulation is
complicated by the presence of the integral transform that doubles the number of
' integrations. A problem in a three dimensional domain leads to six integrations! For
one dimensional problems the doubling may be acceptable [24].
This obstacle can be bypassed if one chooses degenerate kernels because in this
case the number of integrations remains equal to the dimensionality of the domain.
A degenerate kernel, also called separable kernel, is one of the form
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k(s ) = B(z)B(s) Y hijai(s)a;(@), (36)

,j=1

where the functions a;(z) may be selected according to some appropriate criteria.
The coefficients h;; may be assigned directly taking them as elements of a symmetric,
positive definite matrix H.

The functional given in Eq.(17) may be approximated as follows: introducing the
m quantities

N [a@p@N )i, £ [ ai@pes @ 37)
N

n

the functional Fu] is approximated by

Fyroslu] = 5 [ I¥(u(s)) — £(5)) x

n

X

{Z hijai(S)aj(z)ﬂ(S)ﬁ(x)} [N(u(z)) — f(2)ldsdz = (38)

i,j=1

S b NfulNolul = 3 b Nl fi 4+ 3 Bishid
t,7=1

i,5=1 1,5=1

This quadratic expression is useful for numerical calculations.

The use of degenerate kernels, and then of non-invertible operators, is admissible
in an appoximate method of solution. This requires that the functions a j(z) be mem-
ber of a complete set of functions. The degenerate kernels in the extended variational
formulation, without the introduction of the function B(z), has been used to find
the equilibrium configuration of large deformations of an elastic beam subjected to
a follower force by finite element methods: see [1] [2] [3] [4].

The use of the function 8 and of degenerate kernels to solve problems with arbi-
trary domains may open a new way in numerical problem solving, taking into account
that this is made possible also for time-dependent problems. Finite elements, or, in
general Ritz method, may now be utilized in time domain.
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