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A Direct Discrete Formulation of Field Laws: The Cell Method

Enzo TONTI 1

ABSTRACT. We present a new numerical method
for the solution of field equations. The essence of
the method is to directly provide a discrete formu-
lation of field laws, without using and requiring a
differential formulation. It is proved that, for linear
interpolation, the stiffness matrix so obtained coin-
cides with the one of the Finite Element Method. For
quadratic interpolation, however, the present stiff-
ness matrix differs from that of FEM; moreover it is
unsymmetric. It is shown that by using a parabolic
interpolation, a convergence of the fourth order is
obtained. This is greater than the one obtained with
FEM, using the same interpolation.

1 Introduction

All existing numerical methods for the solution of field equa-
tions have, in one way or another, a differential formulation as
their starting point. A discrete formulation is then obtained
by means of one of the many discretization methods, such
as Finite Difference Method (FDM), Finite Element Method
(FEM), or, in general, a weighted residual or weak solution
method. Even the Boundary Element Method (BEM) and the
Finite Volume Method (FVM), which use an integral formu-
lation, have a differential formulation as their starting point.
A differential formulation is easily obtained by considering a
finite spatial region, say a control volume or a control surface,
and by performing the limit process in order to arrive at densi-
ties that are point functions. In this way one obtains thediver-
gences, thecurls and thegradientsthat are typical ingredients
of differential formulation. Then one eliminates the geometri-
cal content of physical laws, say balance laws, circuital laws
to arrive at pointwise functions. To find a numerical solution,
a discrete formulation is required; and then the geometrical
content must be, in one way or another, reconstructed: this
requires adiscretizationof the differential equations. Many
discretization methods have beeen devised, and each of them
leads to different sets of algebraic equations for the same mesh
(some are symmetric system of equations; while others are
not). Faced with this two-way process, a question arises:Is it
really necessary to go from algebraic to differential formula-
tion in order to go back to some other form of finite modelling?
The purpose of this paper is to show that adirect discrete for-
mulation of field laws is possible, i.e. it is possible to avoid in-
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troducing a differential formulation. Moreover, we shall show
that such a discrete formulation is very simple, that it is strictly
related to experimental facts, and can be directly used for the
numerical solution of field problems.

2 Physical quantities and equations

The mathematical formulation of physical laws springs from
the very existence of physical quantities. Then, if we search
for adirectfinite formulation of physical laws, we must review
physical quantities. Three classifications are of use.

Constants and variables. The first classification of physical
quantities is intophysical constantsand physical variables.
Physical constantsare all quantities that describe the nature
of a system or of a material: these are the ones tabulated in
books and manuals. They include universal constants, material
constants, system parameters, coupling constants, etc.Physi-
cal variablesspecify a particular state of a system, the actual
configuration of a system, the forces acting on a system, the
sources of a field, the many kinds of energy of a system, say
its internal energy, its potential or kinetic energy, its enthalpy,
etc.

Global and local variables. A second classification of phys-
ical variables distinguishes between global and local variables.
By global variables we mean those that are commonly called
integral variables such as mass, momentum, energy current,
magnetic flux, voltage impulse, etc. On the other handlo-
cal variables are functions of spatial coordinates and time usu-
ally involved in the differential formulations. Among the lo-
cal variables are: the velocity, stress, temperature, heat cur-
rent density, electric current density, magnetic induction vec-
tor, etc. The above described global variables are naturally
associated with spatial and temporal elements such as points
(P), lines (L ), surfaces (S), volumes (V), time instants (I ) and
time intervals (T). So a flux is associated with a surface; a volt-
age with a line; a content, say mass content, with a volume; an
impulse with a time interval. This is the same reason why
we deals with line, surface, volume densities and rates. Thus
global variables are referred not only to points, such as field
functions, but often also to lines, surfaces and volumes, i.e.
they aredomainfunctions instead of point functions. Some
variables are associated with points in space and time: they
are different from other point functions, because they are not
densities or rates. Such variables are displacements in solid
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mechanics, kinetic potential in flow mechanics,gaugefunc-
tion of electromagnetism, iconal function in optics, ecc. It is
worth noting that when carrying out experiments we measure
mainly global variables.

Configuration and source variables. A third classification
is based on the role of physical variables. Every physical field
has itssources: they may be electric charges for electrostat-
ics; electric currents for magnetostatics; heat sources for ther-
mal conduction; forces for the solid mechanics and for flu-
idynamics; masses for the gravitational field (geodesy); etc.
On the other hand any physical field has a state variable: so
displacementdescribes the geometrical configuration of a de-
formable solid; the spatialvelocityfield describes the flow of a
fluid; electric potentialdescribes the configuration of an elec-
tric field; temperaturedescribes the thermal configuration of a
body; etc. Physical variables can be divided in three classes:
configuration variables, source variables, energy variables.
This classification is based on the role that a physical variable
plays in a theory (34) [p.155]; (18) [p.1]; [(39)]; [(40)].
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We have

• Configuration variables: variables that give the config-
uration of a physical system, and all variables linked to
them, by the operations such as sum, integration, differ-
ence, division by a length, an area, a volume, an inter-
val, by a limiting process, and then by time and space
derivatives. These relations must not contain physical
constants. To this class belong the geometrical and kine-
matical variables of continuous mechanics, generalized
coordinates, field potentials, affinities, etc.

• Source variables:variables that describe the sources of a
field, such as masses, charges and currents; the forces act-
ing on a system, etc, and all variables linked to them, by
the operations such as sum, integration, difference, prod-
uct and division by a length, an area, a volume, an inter-
val, by time and space derivatives. These relations must
not contain physical constants. To this class belong the
kinetic variable, such as forces, moment of force, mo-
mentum, angular momentum, etc, of continuum mechan-
ics.

• Energy variables: variables obtained by the product of a
configuration variable by a source variable. To this class

belong the various forms of energy: kinetic, potential, in-
ternal free energy, hentalpy; field energy, work, power,
lagrangian, hamiltonian, action, etc.

These criteria give afunctional classificationof physical vari-
ables. This is somewhat similar to the classification we make
when we divide people in functional classes: workers, office-
workers, managers, etc. We list here the main variables of each
of the three classes used in physics.

• Configuration: displacement, displacement gradient,
position vector, relative displacement, strain, strain rate,
temperature, temperature gradient, velocity, velocity cir-
culation, velocity potential, vortex strength, vorticity vec-
tor, electric field, electric potential, electric tension, elec-
tric tension impulse, magnetic flux, magnetic flux den-
sity,etc.

• Source: force, impulse, mass content, density, mass cur-
rent, mass current density, mass flow, momentum con-
tent, momentum current, stress tensor, pressure, surface
force, electric charge content, electric charge flow, elec-
tric current, electric flux, heat flux, heat source, mag-
netic tension, magnetic scalar potential, magnetic field
strength, etc.

• Energy: work, power, energy, energy current density,
energy density, Gibbs free energy, hamiltonian, heat,
Hemholtz free energy, enthalpy, kinetic energy, internal
energy, lagrangian, magnetic energy, potential energy,
etc.

2.1 The two kinds of orientation

Spatial and temporal elements can be endowed with orienta-
tion. When we say that a flux is referred to a surface, we are
obliged to specify the orientation of the surface, because, the
sign of the global variable reverses when the orientation is re-
versed. There are two kinds of orientations: inner and outer.

• Inner orientation: whenever the orientation of a space
element lies on the element itself, one says that an inner
orientation is established, as shown in Fig. (1a). Note
that an inner orientation of a point means that the point is
conceived as a source or as a sink.

• Outer orientation: whenever the orientation of a space
element depends on the space in which the element is
embedded, an outer orientation is defined, as shown in
Fig. (1b). Contrary to inner orientation, which is intrinsic,
outer orientation depends on the dimension of the space
in which the element is embedded. Thus the outer orien-
tation of a line segment embedded in a three-dimensional
space is a sense of rotationaround the segment; in a
two-dimensional space it is an arrow thatcrossesthe line
and when the segment is embedded in a one-dimensional
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space, it is represented by two arrows as if the segment
were compressed or extended. This is the typical orien-
tation used in solid mechanics to denote compression or
traction of a bar, as in Fig.(2)

   

Inner orientation of a line: it
is the basic notion used to give a 
meaning to the orientations of 
all other geometrical elements.

Inner orientation of a surface: it
is a compatible orientation of its 
edges, i.e. a direction to go 
along its boundary.
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Figure 1 : The two notions of inner and outer orientations in
the three-dimensional space. 
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Figure 2 : The outer orientation of a line depends on the di-
mensions of the embedding space.

2.2 Cell complexes

On dealing with differential formulations, it is quite natural
to use coordinate systems. On the contrary, a direct discrete
formulation deals with global variables, that are naturally as-
sociated with finite sizes of spaces, and finite intervals of time,
i.e. volumes, surfaces, lines, time intervals as well as points
and instants. We shall denote them as spatial and temporalel-
ements. Following the practice of algebraic topology, a branch
of topology that uses cell complexes, the vertices, edges, faces
and cells are considered as “cells” of dimension zero, one,
two and three respectively. In short they are denoted as 0-
cells, 1-cells, 2-cells and 3-cells. Accordingly a cell complex
is not conceived as a set of small volumes but as a collection of
cells of various dimensions. Given a cell complex, which we
shall callprimal, by considering a point inside each 3-cell, say
its barycenter, one can construct another cell complex, called
dual, by taking these points as vertices of dual complex. If the
primal complex is formed of squares (in 2D), or of cubes (in
3D), the dual complex is also formed of squares or cubes. The

dual complex is simplystaggeredwith respect to the primal
one, as shown in Fig.(3a). In a two dimensional space, the pri-
mal complex can be made of triangles. In this case, by consid-
ering the circumcenters of the triangles as vertices of the dual
complex, and by connecting the circumcenters of two adjacent
triangles, one obtains a dual complex. To every 1-cell of the
primal complex, there corresponds a 1-cell of the dual; and the
two are orthogonal. The same is true of a three-dimensional
complex made of tetrahedra as shown in Fig.(3b). In this case
one can consider the spherocenters: connecting the spherocen-
ters of two adjacent tetrahedra one obtains a dual complex. In
this case to every 1-cell of the primal there corresponds a 2-
cell of the dual; to every 2-cell of the primal there corresponds
a 1-cell of the dual. Moreover to every 0-cell of the primal
there corresponds a 3-cell of the dual. In short: ifn denotes
the dimension of the space,(n = 1,2,3), with eachp-cell of
the primal there corresponds an(n− p)-cell of the dual, and
viceversa. The choice of a point inside eachn-cell, to be con-
sidered as 0-cell of the dual, is arbitrary and can be dictated by
computational convenience. How to connect the centers of two
adjacent cells is also arbitrary. Thus when one considers the
barycenters of then-cells, one can connect the adjacent ones
by a straight line, or via the barycenter of the face, as shown
in Fig.(3c). The latter choice is the one considered in alge-
braic topology, and is called thebarycentric subdivision.It
has some computational advantages. Doing so, the dual of the
1-cell (hi) is the broken line shown as heavy line in Fig.(3c).
With reference to Fig.(4), one can see that to every 0-cell of
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Figure 3 : Primal and dual cell complexes.

the primal complex there corresponds a 3-cell of the dual one.
This duality is shown in Fig.(1) in which the elements of the
right column are in reverse order to those of the left column.
All these considerations do not depend on the shape and the di-
mensions of the cells of the complex. For numerical analysis,
however, triangular cells in two dimensional spaces and tetra-
hedral cells in three dimensions are convenient. These simpli-
cial complexes permit a better matching with curved bound-
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aries, can be refined in the regions of strong variation of gra-
dients and fit well with linear interpolation. Furthermore, they
are now considered the “de-facto” standard in numerical anal-
ysis and optimization of complex engineering problems. We
prefer to use the term “cell-complex” rather than “mesh” be-
cause, as we shall show, all space elements forming them are
involved in the description. Given a cell complex, we can as-
sign to all its elements aninner orientation. This complex will
be designed asprimal. If we now consider a dual complex, say
considering the barycenters of the cells as vertices of the dual,
automatically all elements of the dual are endowed withouter
orientation. This is a remarkable geometrical property discov-
ered by Veblen and Whitehead (47) [p.55] and introduced in
physics by Schouten (36) and Van Dantzig (46).

2.3 Global variables and cell complexes

Let us examine the link between global variables and space
elements of a cell complex.
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Figure 4 : Physical variables and cell complexes

Thermal field. We shall refer to Fig.(4). Internal energy and
heat source are global variables which are associated with the
3-cells of the dual complex; heat fluxes are associated with the

2-cells of the same complex. The temperature of each 3-cell
is the one measured in some “central” point of the cell, say its
barycenter, i.e. a 0-cell of the primal complex. The temper-
ature difference refers to the line connecting two barycenters,
i.e. to a 1-cell of primal complex. Doing so, we see that the
configuration variables, i.e. temperature and temperature dif-
ference, refer to the elements of the primal complex, while the
source variables, i.e. internal energy, heat generation and heat
flux, refer to the elements of the dual complex.

Elastic field. A similar analysis can be made for elasticity.
Let us consider a cell complex: with each 3-cell there is as-
sociated a volume force, and with any face (2-cell) there is
associated a surface traction. We can consider the barycen-
ter (0-cell) of any 3-cell: the displacements naturally refer to
such 0-cells. The relative displacement is a global variable re-
ferred to the line (1-cell) connecting two adjacent barycenters.
We see that the source variables refer to the element of a cell
complex endowed with an outer orientation (we shall call it
dual), while the configuration variables refer to the elements
endowed with an inner orientation (we shall call itprimal).

Electric field. Let us consider a cell complex: with every 3-
cell there is associated a charge content, while every 2-cell is
associated with the electric flux. The electric potential refers to
the barycenter (0-cell) of every 3-cell. The voltage refers to the
1-cell connecting the barycenters. Then source variables, i.e.
charge content and electric flux, refer to the elements of a cell
complex endowed with an outer orientation (thedual), while
configuration variables, i.e. electric potential and voltage, refer
to the elements endowed with an inner orientation (theprimal).

Magnetic field. If one considers a cell complex in a spatial
region, where a magnetic field is defined, it is easily seen that
the magnetic fluxΦ is associated with the 2-cells. In order
to give a sign to the magnetic flux we need an inner orienta-
tion to the 2-cell, i.e. the direction of the current induced in a
coil located on the boundary of the 2-cell when the magnetic
field is switched off. This shows that the magnetic flux, which
is a configuration variable, refers to the 2-cells of the primal
complex. The magnetic potentialVm is associated with a cen-
tral point (0-cell) of the 3-cell and then the magnetic tension
Um is associated with the 1-cell connecting the centres of two
adjacent 3-cells. These four examples show the following im-
portant property

REMARK . In field theories, the configuration vari-
ables are associated with cells endowed with an in-
ner orientation, while the source variables are asso-
ciated with cells endowed with an outer orientation.

Even if the reason for this systematic association is not clear,
it is remarkable that aphysicalclassification of physical vari-
ables matches with ageometricalclassification, based on the
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association with oriented space elements. This strong coupling
between physical variables and oriented space elements is the
key to give a direct discrete formulation to physical laws of
fields. The association of physical variables to the elements of
a cell complex and its dual has been introduced by Okada (31)
and Branin (2).

2.4 The fundamental problem of a physical field

The fundamental problemof a physical field can be stated as
follows:

• given the shape and the dimensions of the field domain;

• given the spatial and temporal distributions of the field
sources;

• given the nature of the materials that fill the field domain;

• given the boundary conditions that summarize the action
of the external sources on the field domain;

to find the spatial and temporal configuration of the field.The
fundamental problem is expressed by thefundamental equa-
tion i.e. a relation between the source and the potential of the
field. Thus the equations of Poisson, Fourier, Navier, Navier-
Stokes, are examples of fundamental equations. In any physi-
cal field the fundamental equation is the result of the composi-
tion of two kinds of “basic” equations:field equationsandcon-
stitutive equations. Field equationsrelate configuration vari-
ables to each other, and source variables to each other. In dif-
ferential formulation these equations are described by the op-
eratorsgrad, curl anddiv. Constitutive equations, also called
material equations, are those that link source variables with
configuration variables.

3 A direct discrete formulation

The previous considerations lead us to present adirect dis-
crete formulation of field equations. This formulation is based
on the use ofglobal variablesand of a pair ofcell com-
plexes, a primal and a dual one: it will be called theCell
Method. We shall present the method, by considering a static
two-dimensional scalar field, such as electrostatics, magneto-
statics or a steady two-dimensional scalar field, such as ther-
mal conduction, electrical conduction, irrotational fluid flow,
diffusion, percolation, etc. In a differential formulation, all
these fields are governed by the Poisson equation. In all these
fields, there is a main configuration variable, which is thepo-
tential of the field; and a main source variable, which is the
sourceof the field. To solve the fundamental equation of the
field, means finding the potential function once the sources
are assigned. While a differential formulation “promises” the
knowledge of the potential atany point of the domain, a dis-
crete formulation gives the potentialsonly at the 0-cells of a
cell complex. The values of the potentials inside any 3-cell
can be interpolated using a function, in particular a polyno-
mial. The Poisson equation requires that the domain contains

an homogeneous and isotropic material and requires that the
potential admits second order partial derivatives. Alternatively
if the domain is composed of different materials, it must be
subdivided into subdomains, each one containing a homoge-
neous and isotropic material: the Poisson equation must then
be applied to every subdomain and on the separation surfaces
jump conditionsmust be satisfied.

All these restrictions are in striking contrast with modern de-
vices formed by different materials; where anisotropy is fre-
quently encountered as in laminated and fiber materials; where
concentrated sources, such as laser spots, are present; where
physics assures only that the potential is continuous not dou-
ble differentiable.

The discrete formulation that we shall present, can be applied
to fields containing different materials while avoiding jump
conditions. The potential is assumed to be continuous and
need not be differentiable. The material can be isotropic or
anisotropic, homogeneous or non-homogeneous. Each cell
can have different constitutive properties: this permits to deals
with composite and fiber materials, porous media, damaged
materials, inclusions and defects. The sources can be discon-
tinuous and also may be concentrated. The expression “con-
centrated source” can be understood in two ways: as a source
acting on a region that is small but with finite size or as a point-
wise source. Since no physical source is really pointwise (laser
spots, “pointwise” electric charges and “concentrated” loads
are really distribute on small regions), a truly discrete formu-
lation of physical fields must consider only sources distribute
on large or small regionsbut always of finite size.The point-
wise source is an abstraction that is consequence of the limit-
ing process and, as such, belongs to differential formulations.
It follows that in a truly discrete formulation,infinities do not
appearand then a discrete treatment avoids singularities, in
accordance with physics to which infinities are extraneous.

We shall make reference to the field of steady thermal conduc-
tion in two dimensions because it can be easily grasped. The
discrete formulation requires an interpolation function among
the nodal values of the temperature. We shall consider a linear
and a quadratic interpolation respectively.2

4 Linear interpolation

When we deal with a two-dimensional region, we must not
forget that we have to do with a layer of uniform thickness,
which we shall denote ast, as shown in Fig. (5d). In this
way, any triangle will be considered as the base of a triangu-
lar prism whose lateral faces are projected in the sides of the
triangle. Our purpose is to write down the fundamental equa-
tion for a two dimensional scalar fields. Our goal is to find

2 We remark that a discrete formulation implies spatial elements of finite
size, i.e. avoids the passage to infinitesimal regions. This does not exclude
the use of derivatives to perform mathematical operations. It is not our
intention to reject the use of infinitesimal calculus in physics (!) but only to
avoid that the limit process is applied to volume elements.



16 Manuscript for CMES CMES, vol.1, no.1, pp.11-??, 2001

 

temperature assigned

temperature assigned

heat

ingoing

heat

ingoing

heat 

production

a) b)

c) d)

Figure 5 : A primal and dual cell complex for a plane field.

the temperature of all 0-cells, briefly callednodes, of the pri-
mal complex. As always the boundary conditions are of two
kinds: on some parts of the boundary, the temperature can be
assigned; while on the remaining parts, the heat flux can be as-
signed. Our goal then reduces itself to finding the temperature
at all the nodes at which it is not assigned: these can be inter-
nal as well as boundary nodes. In Fig.(5) the boundary nodes
with assigned temperature are noted with filled circles. Since
we consider a steady conduction, there is no heat stored inside
any 3-cell; and hence the heat produced in any region is equal
to the heat outgoing from its boundary. If we impose the heat
balance on any dual 3-cell, the tributary region of every node,
we obtain as many equations as are the unknown temperatures,
see Fig.(5c). Let us denote bySh the heat source rate inside the
dual 3-cellh, and byQh the rate of heat outgoing from the cell
boundary. For boundary nodes, the ones that lie on the part of
the boundary in which the incoming heat flux is given, we can
add to the heat source rate the heat fluxΦh entering the dual
3-cell. The energy balance becomes

∑
c∈J (h)

Qc
h = Sh +Φh (2)

whereJ (h) is the set of primal 3-cells having the nodeh in
common. Equation (2) is valid both for interior and boundary
dual 3-cells: in this fashion, one avoids the unnatural separa-
tion of differential equations and boundary conditions, which
is typical of a differential formulation. The termSh includes
possibly concentrated sources.

4.1 Gradient

In order to evaluate the gradient, we perform a linear interpola-
tion of temperature inside the triangles and express it in terms
of the nodal values. We shall describe later the quadratic in-
terpolation in order to obtain approximations of higher order.

With reference to Fig.(6) the linear behaviour of temperature
inside the cellc is given by the function

T(x,y) = a+gx x+gyy. (3)

The additive constanta implies thatT(x,y) is anaffine func-
tion, not a ”linear” one. One can say that an affine function has
a linearbehaviour. The three constantsa,gx,gy can be ob-
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Figure 6 : a) The elements of triangle.b) The dual polygon
conceived as a prism.c) the heat flux relative to the nodeh
andd) its equivalent;e) the three heat fluxes associated with
the three vertices.

tained by imposing that the functionT(x,y) assumes the three
valuesTh,Ti ,Tj in the three nodesh, i, j of the cellc. Then







a+gxxh +gyyh = Th

a+gxxi +gyyi = Ti

a+gxx j +gyy j = Tj .
(4)

Subtracting the second equation from the third one, the first
from the second one and stating

Lhx = x j −xi Lhy = y j −yi etc. (5)

we obtain
[

L jx L jy

Lhx Lhy

]

c

{

gx

gy

}

c
=

{

Ti −Th

Tj −Ti

}

c
. (6)

Using Cramer’s rule, observing that the determinant of the
system is the double of the areaAc of the triangle and since
Lh +L i +L j = 0, as shown in Fig(6a), we obtain

{

gx

gy

}

c
=

1
2Ac

[

−Lhy −Liy −L jy

+Lhx +Lix +L jx

]

c







Th

Ti

Tj







c

. (7)

This relation coincides with that of the Finite Element Method,
for a linear interpolation over a triangle.
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Area. It is convenient to introduce the area-vectors
Ah,A i ,A j of the faces instead of the edge-vectorsLh,L i ,L j .
Denoting byt the thickness of the layer, and byk the unit
vector normal to the plane that contains the cell complex, we
have:

Ah = tLh×k from which (8)

Ahx = t Lhy Ahy =−t Lhx. (9)

The same relationship can be obtained for facesi, j. Inserting
the last equations in (7) we obtain

{

gx

gy

}

c
=− 1

2tAc

[

Ahx Aix A jx

Ahy Aiy A jy

]

c







Th

Ti

Tj







c

(10)

whereAh,A i ,A j are the three area-vectors of the prism faces
oriented outwards, as shown Fig.(6c). We remark that on the
denominator we have the volume of the triangular prism as
shown Fig(6c). Equation (10) can be summarized in a compact
notation

gc = BcTc (11)

whereBc is a2×3 matrix. Since we have used a linear approx-
imation, the gradient is uniform inside the triangle.

Heat flux. With reference to Fig.(6c), let us evaluate the heat
flux that crosses the shaded faces of the dual 3-cell contained
in the trianglec, assuming as positive the outward direction
from the nodeh, as shown in Fig.(6d). Since the temperature
gradient is uniform, and the material is homogeneous inside
any cell, the thermal power across the two faces in Fig.(6c) is
equal to the one crossing the face connecting the barycenters
of two edges as in Fig.(6d). Since the last face is parallel to
faceh and has an area which is one half ofAh, the heat flux
going through the face is

Qc
h =

1
2
(Ahxqx +Ahyqy)c =

1
2
(Ahx Ahy)c

{

qx

qy

}

c
. (12)

We remark that the face connecting the barycenters of the
edges is the same, if we use the barycentric or the Voronoi
subdivision. The three heat fluxesQc

h,Q
c
i ,Q

c
j shown in Fig.(6e)

can be gathered in the relation






Qh

Qi

Q j







c

=
1
2





Ahx Ahy

Aix Aiy

A jx A jy





c

{

qx

qy

}

c
. (13)

4.2 Constitutive equation

For an anisotropic material, the heat flux density vectorqc is
linked to the gradientgc by the constitutive equation

{

qx

qy

}

c
=−

[

kxx kxy

kyx kyy

]

c

{

gx

gy

}

c
(14)

whereK c is the2×2 matrix of thermal conductivity of cellc.
We can write the constitutive equation in the form

qc =−K cgc. (15)

For the common case of isotropic materials, equation (14) be-
comes the well known Fourier law:

qx =−kgx qy =−kgy. (16)

or, in vector form
q =−kg. (17)

4.3 Fundamental equation

We can now evaluate the heat flux outgoing from every face of
the dual polygon and then write the balance on any dual 3-cell.
There are two ways to do so:a) considering one node at time;
b) considering one cell at time.

One node at time. Inserting Eq.(10) and (14) into Eq.(12)
and introducing the1×3 vector

( fhh fhi fh j)c
def= −1

2
(Ahx Ahy)cK cBc (18)

we can write

Qc
h = ( fhh fhi fh j)c







Th

Ti

Tj







c

. (19)

It follows that the heat outgoing from the dual 3-cellh can be
expressed as a scalar product of two vectors: the row vector
(f)c of 1×3 type that depends on the cell geometry and on the
material contained, and on the column vectorTc of the 3×1
type of nodal temperatures of cellc. Considering one node at
time, we can write the thermal balance relation by summing
all the thermal powers outgoing from the dual 3-cell, as shown
in Fig.(6b). Considering the dual 3-cellh the heat balance (2)
becomes

∑
c∈J (h)

( fhh fhi fh j)c







Th

Ti

Tj







c

= Sh +Φh. (20)

For a numerical treatement, it is convenient to add the bound-
ary inflow Φh to the sourceSh from the beginning putting

Sh
def= Sh +Φh as equivalent source. Denoting asN the number

of nodes, which coincides with the number of dual 3-cells, and
introducing the global vectors

T = (T1...TN)T S= (S1...SN)T (21)

we come to a system of the kind

FT = S (22)

whereF is theglobal fundamental matrix. The system so ob-
tained is the discrete equivalent of Poisson differential equa-
tions.
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One cell at time. For computational purposes it is conve-
nient to proceed with one cell at time, because, in the previ-
ous way the calculations on every cell must be repeated three
times. Using the notation:

Qc
def=







Qh

Qi

Q j







c

Tc
def=







Th

Ti

Tj







c

(23)

and composing Eq. (10) with Eqs.(13) and (14) we obtain

Qc =
1

4tAc





Ahx Ahy

Aix Aiy

A jx A jy





c

K c

[

Ahx Aix A jx

Ahy Aiy A jy

]

c
Tc. (24)

We remark that the “-” sign that preceeds the matrixKc com-
bines with the analogous sign contained inBc giving a “+”
sign. From this formula, we see that each of the three heat
fluxes depends on the nodal temperatures so that we can write







Qh

Qi

Q j







c

=





fhh fhi fh j

fih fii fi j
f jh f ji f j j





c







Th

Ti

Tj







c

. (25)

we can write relation (25) as

Qc = fcTc. (26)

The matrixfc will be called thelocal fundamental matrix. We
shall show later that it coincides with the local stiffness ma-
trix of the Finite Element Method. For isotropic materials, the
relation (24) becomes







Qh

Qi

Q j







c

=
kc

4tAc





Ah ·Ah Ah ·A i Ah ·A j

A i ·Ah A i ·A i A i ·A j

A j ·Ah A j ·A i A j ·A j





c







Th

Ti

Tj







c

.

(27)
We then see that the components of the local fundamental ma-
trix have the form

f c
pq =

kc

4tAc
Ap ·Aq. (28)

Let us remark that in Eq.(24), the first matrix is the transposi-
tion of Bc, apart from the factor−2tAc. Consequently

Qc = tAcBT
c K cBcTc (29)

and then the local fundamental matrix is symmetric and given
by

fc = tAcBT
c K cBc. (30)

To obtain the global fundamental matrixF we must assemble
all the local fundamental matrices. The process is summarized

in the following pseudocode:

Let Nc be the number of cells
putFpq = 0 for all p,q = 1,2, ...Nc

for c from 1 to Nc

let h, i, j be the vertices of the trianglec
using Eq. (24) evaluate the nine coefficients
f1,1 f1,2 ... f3,3
then the fundamental matrix is
Fhh = Fhh+ f1,1
Fih = Fih + f2,1
... = ...
Fj j = Fj j + f3,3

end for

(31)

It is easily seen that also the global fundamental matrix is sym-
metric.

Heat source. The heat source is usually distribuited in a sub-
region of the domain. To evaluateSh it is convenient to use a
mesh as the one shown in Fig.(7). For the barycentric subdi-
vision, the areas of each quadrilateral in which the triangle is
subdivided are1/3 of the area of the triangle. If we suppose
that the heat source inside every element is uniform, we can
write

Sh =
1
3 ∑

c∈J (h)
σc Ac (32)

whereσc is the heat source density.

Figure 7 : Thermal generation uniformly distributed in a sub-
region.

If there are point wise concentrated sources, such as laser’s
beams, the corresponding amount of source must be added to
the dual polygon to which the source belongs.

Heat flux at the boundary. With reference to Fig.(8) let us
consider the boundary of the region andg,h, i the adjacent
boundary nodes. Leth be the central node andL′ andL′′ the
lengths of the edges preceeding and followingh respectively.
Let us denote ass the line arc of the boundary with origin in
h. Let the heat flux for unit length be a function of the kind
q(s) = a+(b−a)s/L. Denoting asqg,qh,qi the three values
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Φ

Figure 8 : The boundary nodes in the part of the boundary in
which the heat flux is assigned.

of the heat flux density evaluated in the three nodesg,h, i re-
spectively, we can write

q′(s) = qh−
qg−qh

L′
s q′′(s) = qh +

qi −qh

L′′
s. (33)

The heat flux entering across the boundary side of the dual
polygon will be



















Φh =
Z 0

−L′/2
q′(s) ds+

Z L′′/2

0
q′′(s) ds

=
1
8

L′qg +
3
8
(L′+L′′)qh +

1
8

L′′qi .

(34)

This relation will be useful later for comparison with the anal-
ogous relation used in FEM. The procedure described up to
now has been applied to fracture in (12), (13), (14), (27), (28),
(29), (30); to acoustics (43) and electromagnetism (45), (22).

5 Quadratic interpolation

Up to now we have carried out a linear interpolation inside
every primal cell (triangle). Now we show that it is possible to
use a quadratic interpolation. To this end we add three nodes
p,q, r at the midpoints of the sides, as shown in Fig.(9).

5.1 Local affine coordinates

Let us denote ash, i, j, the three vertices of the trianglec (c
stands forcell); and let us consider the vertexh as the origin
of an affine coordinate system3, whose axesξ andη are set
along the sideshi andh j respectively. The lengths of the seg-
mentshi andh j are assumed as units of measurement along
the corresponding axes. As shown in Fig.(9) the relation be-
tween local affine coordinates, and the global cartesian ones,
is a linear one, given by:

3 We remember that affine coordinates (35) [p.49], (8) [p.202] are rectilinear
coordinates with oblique axes (3) [p.107], strictly related to thebarycentric
(8) [p.216] coordinates, withareal (8) [p.218] ortriangular or normalco-
ordinates. They differ from cartesian coordinates because the units on the
two axes are fixed indipendently one from the other and then the notion of
distance between two points is not defined. This implies the non-metrical
nature of affine coordinates. They are the most used coordinates in physics
because arise whenever two physical variables of different physical dimen-
sions are represented on rectangular axes, say in the(p,V) diagrams of
thermodynamics and in(ε,σ) diagrams of solid mechanics (4) [p.17].
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Figure 9 : Relation between the global cartesian coordinates
and local affine coordinates.

{

x
y

}

=
{

xh

yh

}

+
[

a b
c d

]{

ξ
η

}

. (35)

The inverse relation is
{

ξ
η

}

=
{

p
q

}

+
[

α β
γ δ

]{

x
y

}

. (36)

We propose to interpolate the temperature inside the triangle
c in terms of the six nodal temperatures. Since the relation
between the global cartesian coordinates and the affine coor-
dinates is linear, it is immaterial which coordinate system is
used to express the quadratic behaviour. It is convenient to use
the affine coordinates. We can write

Tc(ξ,η) =
(

1 ξ η ξ2 ξη η2
)







































ah

ai

a j

ap

aq

ar







































c

. (37)

The six coefficientsak must be determined in terms of the six
nodal values of the temperature. One obtains







































ah

ai

a j

ap

aq

ar







































c

=

















1 0 0 0 0 0
−3 −1 0 4 0 0
−3 0 −1 0 0 4

2 2 0 −4 0 0
4 0 0 −4 4 −4
2 0 2 0 0 −4























































Th

Ti

Tj

Tp

Tq

Tr







































c
(38)

so that
ac = CTc. (39)
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Let us remark that, using affine local coordinates, the matrix
coefficientsare the samefor all cells: this fact justifies the
use of local affine coordinates. The function (37) can then be
written as

Tc(ξ,η) =
(

1 ξ η ξ2 ξη η2
)

CTc. (40)

This formula permits to evaluate the functionT at every point
inside the triangle in terms of its nodal values.

5.2 Gradient

From the relation (40), we obtain
{

∂ξT
∂ηT

}

=
[

0 1 0 2ξ η 0
0 0 1 0 ξ 2η

]

CTc. (41)

The cartesian components of the gradient are
{

gx

gy

}

=
{

∂xT
∂yT

}

=
[

∂xξ ∂xη
∂yξ ∂yη

]{

∂ξT
∂ηT

}

=

[

α γ
β δ

]

c

[

0 1 0 2ξ η 0
0 0 1 0 ξ 2η

]

CTc

.

(42)
We remark that in a quadratic interpolation the gradient is an
affine function.
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Figure 10 : a) The area-vector corresponding to the line seg-
ment P′P” ; b) An affine gradient;c) The component of the
gradient normal to the segment is also an affine function.

Area. We now need a formula to evaluate the area corre-
sponding to a line segment connecting two arbitrary points
P′(ξ′,η′) andP′′(ξ′′,η′′) contained in the trianglec. With ref-
erence to Fig.(10a), and using equation (35) we obtain

{

x′′−x′

y′′−y′

}

=
[

a b
c d

]

c

{

ξ′′−ξ′
η′′−η′

}

c
. (43)

We remark that the area-vector of the face of the triangular
prism is obtained by performing a rotation in an anticlock-
wise direction of90 degrees and performing the product for
the thicknesst.

{

Ax

Ay

}

= t

[

0 −1
1 0

][

a b
c d

]

c

{

ξ′′−ξ′
η′′−η′

}

. (44)

It is useful to transpose last relation:

(

Ax Ay
)

= t
(

ξ′′−ξ′ η′′−η′
)

[

−c a
−d b

]

c
. (45)

5.3 Constitutive equation

The heat flux vectorq in an anisotropic medium is linked to the
temperature gradient by the relation (14), that we now write

{

qx(ξ,η)
qy(ξ,η)

}

c
=−

[

kxx kxy

kyx kyy

]

c

{

gx(ξ,η)
gy(ξ,η)

}

c
. (46)

that is
qc =−K cgc . (47)

Heat flux. Denoted asM the midpoint of the segmentP′P′′

we have

ξM =
ξ′+ξ′′

2
ηM =

η′+η′′

2
. (48)

Since the heat fluxq, as the gradientg, is an affine function of
the affine coordinates, as shown in Fig.(10b, c), it follows that,
in order to evaluate the flux across the corresponding face, it is
not necessary to perform an integration: it is enough to multi-
ply the vectorq, evaluated in the midpointM of the segment,
for the area-vectorA

Q(P′,P′′) =
(

Ax Ay
)

{

qx(M)
qy(M)

}

. (49)

This formula replaces Eq.(12) which is valid for linear inter-
polation. We remark that in Eq.(12)Ahx,Ahy are the compo-
nents of the area-vector of theh-face of the triangular prism
and this explains the factor1/2. Combining equation (49)
with the equations (45), (46) and (42), we obtain the flux in
the form

Q(P′,P′′) =−t
(

ξ′′−ξ′ η′′−η′
)

[

kxx kxy

kyx kyy

]

c
[

0 1 0 2ξM ηM 0
0 0 1 0 ξM 2ηM

]

CTc

(50)

where

K c =
[

kxx kxy

kyx kyy

]

c

=
[

−c a
−d b

]

c

[

kxx kxy

kyx kyy

]

c

[

α γ
β δ

]

c
(51)

which is a non-symmetric matrix in spite of the symmetry of
the matrixK c. The equation (49) can be written as product of
a row vectorRc times a column vectorTc i.e.

Q(P′,P”) = Rc(P′,P”)Tc. (52)

Putting

Z =
[

0 1 0 2ξM ηM 0
0 0 1 0 ξM 2ηM

]

c
(53)

we can write

Rc(P′,P”) =−t
(

ξ′′−ξ′ η′′−η′
)

KcZ(P′,P”)C. (54)
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5.4 Fundamental equation

In parabolic interpolation, we have six nodes for each trian-
gle, and we must select a dual complex. This means that we
must choose a polygon around each node to be considered as
a “tributary region” of the node. A key point is that this dual
polygon can be chosen at will. This will permit us to select the
polygons that give the maximum order of convergence. Since
the three additional nodesp,q, r permit us to divide the tri-
angleh, i, j into four triangles, a first idea is to consider as
dual polygons the barycentric ones, as shown in Fig.(13a). We
shall show that in this way a small increase in the order of
convergence, from 2 to 2.3 is obtainable. A much more conve-
nient choice (17) is the one based on Gauss points, as shown
in Fig.(11). Let us remember that Gauss’ points are symmet-
rically placed with respect the midpoint of the segment. For
two Gauss’ points of a segment, of unit length, they have the
distance

d =
1

2
√

3
(55)

from the midpoint. With reference to Fig.(11b) we consider
the heat flux leaving the face9−10contained in cellc and we
shall call itQc

h = Rc
hTc. Similarly the heat flux outgoing from

the boundary of the dual polygon of nodeq contained in cell
c will be denoted byQc

q = Rc
qTc. To each node there corre-

sponds heat flux. Using Eq.(50) to evaluate the heat fluxes we
obtain















































Rc
h = +R(9,8)+R(8,10)

Rc
i = +R(14,16)+R(16,15)

Rc
j = +R(13,11)+R(11,12)

Rc
p =−R(8,10)+R(8,7)−R(16,7)−R(14,16)

Rc
q =−R(16,15)+R(16,7)−R(11,7)−R(13,11)

Rc
r =−R(11,12)+R(11,7)−R(8,7)−R(9,8).

(56)
EveryRc

k is a six components row-vector that we can write in
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Figure 11 : a) The subdivision of the triangle into dual poly-
gons using two Gauss points on each edge;b) the part of the
dual polygons of nodesh andq contained in trianglec.

the form

Rc
h = ( fhh fhi fh j fhp fhq fhr)c (57)

The fundamental equation (2) becomes

∑
c∈J (h)

Rc
hTc = Sh (58)

which is analogous to Eq.(20). In the quadratic interpolation,
and with isotropic materials we do not have an explicit for-
mula such as (28), to evaluate the coefficientsfpq. Moreover,
contrary to what happens in FEM, the matrix thus obtained is
not symmetric. This lack of symmetry of the stiffness matrix
seems to contrast with the symmetry of the differential opera-
tor. We remember that in Finite Element Method one usually
chose as weight functions (or test or trial functions) the same
shape functions with the purpose ofmaintainingthe symmetry
(38) [p.430]. The same is done in spectral methods.

If one choose weight functions different form shape functions
the symmetry is destroyed.

From a computational point of view the advantage of symmet-
ric algebraic system is sensible when direct methods of solu-
tion are used; but it is immaterial when using iterative meth-
ods.

Figure 12 : The dual complex (heavy lines) using two Gauss
points for each edge.

5.5 Example

The cell method is similar to thedirect or physicalapproach
used at the early stages of FEM (19) [p.22]; (21) [p.35]; (11).
This method has not been developed to obtain a convergence
order greater than the second one. Accordingly Fenner wrote:
“ the direct equilibium formulations described before are not
applicable to variable strain elements” (11) [p.153]. It is
highly likely that this fact has caused the demise of the phys-
ical approach. On the other hand, the cell method starts from
a different philosophy, which allows the use of interpolation
functions that are the great advantage of the Finite Element
Method over that of the Finite Volume Method. This allows
the physical approach to be revived.
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We quote here an example. Consider a two dimensional
scalar field described by a potentialu without distributed
sources whose solution is the harmonic functionu(x,y) =
exp(x)cos(y).4. In the square0 ≤ x ≤ 1,0 ≤ y ≤ 1, given
the Dirichlet boundary conditions, we construct the system
of algebraic equations by means of the cell method using a
quadratic interpolation function in each triangle. The square
domain is divided into squares; each square is subdivided in
two triangles using one diagonal. For each triangle the nodes
are its three vertices and the three midpoints. We interpolate
the potentialu(x,y) with a quadratic function. A first

 

a) b)

Figure 13 : a) The barycentric subdivision;b) the subdivision
using two Gauss points for each edge.
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Figure 14 : The order of convergence of the two subdivisions.

choice is the barycentric subdivision: in this case, the dual
polygon of each node is the one bounded by the lines con-
necting the barycenters, as shown in Fig.(13a). To compare
the approximate values with the exact ones we evaluate the

4 In the differential formulation such a field is described by the Laplace
equation∆u(x,y) = 0

root-means-square value of the errors at nodes. This error de-
creases with the length of the side of the triangles according to
the power 2.3, as shown in Fig. (14). As a second choice we
consider the subdivision made using two Gauss points for each
edge, as shown in Fig.(13b): in this case the order of conver-
gence is 4.0. The result has beeb compared with Abaqus using
quadratic interpolation and superconvergence points (library
DC2D6): the errors agree up to the fourteen digit.

6 Comparison with finite element method

Let us show that the fundamental matrix obtained through the
cell method, in the case of alinear interpolation, is the same as
FEM. We shall limit our comparison to the Poisson equation.
The latter can be written in weak form, using a test function
ψ:Z

Ω
ψ [−k∇ ·∇T(x)−σ(x)] dΩ = 0 for everyψ (59)

We want to introduce integration by parts, and useψ here, to
lower the order of derivatives on T. Doing so, we come near
to the physical fact: in fact the differentiability conditions im-
posed by differential formulation are greater than those im-
posed by the physical phenomenon. After division of the do-
main Ω in triangular finite elements, in every elementc we
interpolate the temperatureT(x) with a functionTc(x) which
is a linear combination of its nodal values. The coefficients of
this linear combination are the element shape functionsNc

k(x)
:

Tc(x) = ∑
h∈N (c)

ThNc
h(x) (60)

whereN (c) is the set of nodes of the elementc. After this,
we express the functionT(x) in all the domain as a sum of the
functionsTc(x)

T(x) =
m

∑
e=1

Tc(x) =
m

∑
c=1

∑
h∈N (c)

ThNc
h(x) =

N

∑
h=1

ThNh(x) (61)

where we have introduced thenodal shape functionsNh(x),
shown in Fig.(15a). FEM chooses shape functions as test
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Figure 15 : The nodal shape functions:a) for an internal node;
b) for a boundary node.

functions:ψh(x) = Nh(x). In this way the following system of
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equations is obtainedZ
Ω

Nh(x)

[

−k∇ ·∇

{

N

∑
k=1

TkNk(x)

}

−σ(x)

]

dΩ = 0. (62)

Performing an integration by parts we obtain

N

∑
k=1

[
Z

Ω
k∇Nh(x) ·∇Nk(x) dΩ

]

Tk =
Z

Ω
Nh(x)σ(x) dΩ

+k
Z

∂Ω
Nh(x)

∂T(x)
∂n

dS.

(63)
Since the shape functions have a linear behaviour their gra-
dients are uniform and can be moved out of the integration
symbol. In such a way we obtain the fundamental matrix of
FEM

{

in 2D: fpq = kt Ac ∇Np(x) ·∇Nq(x)

in 3D: fpq = kVc ∇Np(x) ·∇Nq(x).
(64)

We shall now show that, by using simplicial complexes the
system is the same as the one obtained with the cell method.
To show this we shall refer to Fig.(16).
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Figure 16 : Since the shape function is equal to one in one ver-
tex and zero in the other vertices, the modulus of its gradient
is the inverse of the distance between the corresponding vertex
and it opposite side (or its opposite face in 3D).

In two dimensions. Let us observe that the shape functions
Nc

h(x,y) can be obtained easily considering that the remaining
verticesi, j belong to an equipotential straight line correspond-
ing to the value zero of a function i.e.f (x,y) = 0, and that
nodeh belongs to the straight line parallel to the preceeding
and corresponds to the value one:f (x,y) = 1. The gradient
vector will be orthogonal to the two parallel straight lines and
will have as modulus the ratio1/dc

h wheredc
h is the distance of

the vertexh from sideLh. Hence we have

∇Nc
h(x,y) =−

nc
h

dc
h

=−
Lh t nc

h

Lh t dc
h

=−
A c

h

2t Ac
. (65)

Let us remark that the “minus” sign is a consequence of the
fact that we have chosen the outgoing normal: in fact the gradi-
ent has the direction of increasing values off (x,y) and hence it
goes in the opposite direction. In FEM it is common to choose
the inward normal to avoid this minus sign.

In three dimensions. As is shown in Fig.(16b) one consid-
ers the three verticesi, j,k in which the shape function van-
ishes as belonging to a plane equipotential surface. On this
plane the function will be zero and on the parallel plane pass-
ing from vertexh will be equal to 1. We shall obtain (21)
[p.50]

∇Nc
h(x,y,z) =−

nc
h

dc
h

=−
Ahnc

h

Ahdc
h

=− 1
3Vc

A c
h. (66)

It follows that the elements of the local fundamental matrix
are

f c
pq = ktAc ∇Nc

p ·∇Nc
q =

k
4tAc

Ac
p ·Ac

q

f c
pq = kVc ∇Nc

p ·∇Nc
q =

k
9Vc

Ac
p ·Ac

q

(67)

that coincides with that of cell method (28) (48) [p.56], (21)
[p.43, 50]. Hence we can say thatthe cell method, for linear
shape functions on simplicial complex, gives a simple way to
obtain the same stiffness matrix as the FEM.

Source term Sh. In FEM with a source which isuniformly
distribuited over the whole domain, the source term is given
by

Sh = ∑
c∈J (h)

Z
Ac

σNc
h(x,y) dA = σ ∑

c∈J (h)

Ac
h

3
= σAh

Sh = ∑
c∈J (h)

Z
Vc

σNc
h(x,y,z) dV = σ ∑

c∈J (h)

Vc
h

4
= σVh

(68)

and in the cell method we have

in 2D Sh = σAh in 3D Sh = σVh. (69)

Then:for a source which is uniformly distribuited on the whole
domain the source terms of FEM coincide with those of the cell
method.Matters are different when sources are not uniformly
distributed and hence formass matrixin dynamical problems.
In FEM a concentrated source is distributed to the vertices ac-
cording to the “lever rule”: this follows from the fact that the
right side of the balance equation (63) contains the form func-
tionsNh(x). On the contrary in the cell method a concentrated
source is entirely charged to the dual polygon in which it is
located, as in FVM. This implies a difference in the second
members of the fundamental equations of CM when compared
with FEM (21) [p.45].
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Boundary flux Φh. With reference to Fig.(15b) let us con-
sider three adjacent boundary nodesg,h, i. Let L′ andL′′ be
the lengths of the edges preceeding and following the central
nodeh. Proceeding as in Fig.(17b) the shape functions will be

N′(s) = 1+
s
L′

N′′(s) = 1− s
L′′

. (70)

The quantitiesΦh of FEM will be given by














Φh =
Z 0

−L′
N′(s)q′(s) ds+

Z L′′

0
N′′(s)q′′(s) ds

=
1
6

L′qg +
1
3
(L′+L′′)qh +

1
6

L′′qi .

(71)

This result is slightly different from the one of cells given by
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Figure 17 : The boundary heat fluxes evaluated:a) by cell
method;b) by FEM.

Eq. (34). The difference between the twoQh vanishes for a
uniform boundary distribution, i.e. whenqg = qh = qi .

7 Comparison with finite volume method

The Cell Method (CM ) is very similar to the Finite Volume
Method (FVM )(15)(33). The main differences are listed be-
low.

• FVM uses the integral forms of the conservation equa-
tions as the starting point (15) [p.67]. Though in prin-
ciple it does not require the availability of the differ-
ential formulation, in practice one usesfield variables,
which are the natural ingredients of differential formula-
tion, and evaluates global variables by integration. “To
obtain the algebraic equation for each control volume,
the surface and volume integrals need to be approximated
using quadrature formulae.” (15) [p.68]. CM , on the con-
trary, uses directlyglobal variablesand takes experimen-
tal laws (balance laws, circuital laws, constitutive laws,
etc) in their discrete form.

• in FVM the control volumes are chosen according to
three schemes: thenode centered, thecell centeredand
thecell vertexschemes. “For cell-centered schemes, the
control volumes are taken as the triangles themselves,

whereas for a vertex-based scheme the control volumes
are taken as the cells defined by the dual mesh.” (25)
[p.22]. CM starts with apair of dual complexes. Phys-
ical variables have a well defined reference to the spatial
elements of a cell complex and its dual. The conservation
law is enforced on the dual polygon of any primal vertex:
in this respect (and only in this respect) it corresponds to
the vertex=based (or node-centered) scheme of FVM.

• FVM does not use interpolating functions inside any pri-
mal cell, there is no particular reason that would limit this
approach, at least theoretically.CM , on the contrary, as
FEM, usesinterpolating functionson the primal cells.

• in FVM and in the vertex-based scheme, the control vol-
ume is formed by the polygons of the baricentric subdivi-
sion or by Voronoi polygons. InCM the control volume
is free and can be chosen at will, in particular it can be
chosen to give the maximum order of convergence.

• FVM , which evolved from Finite Difference Method in
the early seventies (32) [p.93], starts considering rectan-
gular (or cubical) grids: unstructured grids, in particular
simplicial grids, are an exception (15) [p.233], (9). How-
ever, in recent years, FVM has re-gained popularity also
for complex geometries (where once FEM had no com-
petitors).CM on the contrary, starts directly with simpli-
cial complexes i.e.unstructuredgrids.

• FVM . Convergence up to fourth order is obtained by in-
terpolating the field potential usingcartesiangrids only,
as in FDM (20). On unstructured meshes, in particular
on non-orthogonal meshes, “the interpolation is usually
performed treating linear lines piecewise as if they where
straight; if the lines changes direction at the cell face an
additional error is introduced.” (15) [p.221] “Any higher
order FVM schemes requires interpolation of higher or-
der at more than one cell face locations. This is man-
ageable on structured grids, but rather difficult on un-
structured grids.” (15) [p.229] FVM “compared with al-
ternative methods has a limited order of accuracy, usually
no more than second order ...” (26) [p.19]. It is without
doubt, however, that high order FVM has not received
particular attention. This is due, essentially, to the fact
that one of the first application of FVM has been in CFD
(Computational Fluid Dynamics), where the field func-
tion is, generally, “not smooth” and therefore higher or-
der methods do not provide an increase in accuracy which
counter-balances the augmented computational cost.CM
the use of interpolating functions in any primal cell per-
mits us to obtain a higher order of convergence, as in
FEM. Thus a fourth order convergence is obtained con-
sidering the field functions quadratic inside the simplex,
i.e. the heat fluxaffine inside any simplex. In this case
the heat flux is evaluated exactly by the midpoint rule.
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