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A Direct Discrete Formulation of Field Laws: The Cell Method

Enzo TONTI 1

ABSTRACT. We present a new numerical method troducing a differential formulation. Moreover, we shall show
for the solution of field equations. The essence of that such a discrete formulation is very simple, that it is strictly
the method is to directly provide a discrete formu-  related to experimental facts, and can be directly used for the
lation of field laws, without using and requiring a numerical solution of field problems.

differential formulation. It is proved that, for linear

interpolation, the stiffness matrix so obtained coin- 2 Physical quantities and equations

cides with the one of the Finite Element Method. For

quadratic interpolation, however, the present stiff- The mathematical formulation of physical laws springs from
ness matrix differs from that of FEM: moreover itis  the very existence of physical quantities. Then, if we search
unsymmetric. It is shown that by using a parabolic ~ for adirectfinite formulation of physical laws, we must review
interpolation, a convergence of the fourth order is physical quantities. Three classifications are of use.
obtained. This is greater than the one obtained with

FEM, using the same interpolation. Constants and variables. The first classification of physical
guantities is intophysical constantand physical variables
1 Introduction Physical constantare all quantities that describe the nature

of a system or of a material: these are the ones tabulated in
All existing numerical methods for the solution of field equasooks and manuals. They include universal constants, material
tions have, in one way or another, a differential formulation agnstants, system parameters, coupling constantsPéaigsi-
their starting point. A discrete formulation is then obtaineghl variablesspecify a particular state of a system, the actual
by means of one of the many discretization methods, sughfiguration of a system, the forces acting on a system, the
as Finite Difference Method (FDM), Finite Element Methodources of a field, the many kinds of energy of a system, say
(FEM), or, in general, a weighted residual or weak solutie internal energy, its potential or kinetic energy, its enthalpy,
method. Even the Boundary Element Method (BEM) and thaec.
Finite Volume Method (FVM), which use an integral formu-
lation, have a differential formulation as their starting point,

A differential formulation is easily obtained by considering : lobal _and Ioca}l Yarlaples. A second classification ofphys-
finite spatial region, say a control volume or a control surfadg?l variables distinguishes between global and local variables.

and by performing the limit process in order to arrive at denay global varlables we mean those that are commonly called
ties that are point functions. In this way one obtainsdiver- Integral variables such as mass, momentum, energy current,

gencesthecurls and thegradientsthat are typical ingredientsmagnetIC flux, voltage impulse, etc. On the other himd

of differential formulation. Then one eliminates the geometﬁgl variables are functions of spatial coordinates and time usu-

cal content of physical laws, say balance laws, circuital Ia\ﬁg?’ 'nV_OI\é?d n th_e ﬁlfferelntlgl formulations. Among trI?e lo-
to arrive at pointwise functions. To find a numerical solutioff® variables are: the velocity, stress, temperature, heat cur-

a discrete formulation is required; and then the geometriéﬁpt density, electric current density, magnetic induction vec-
content must be, in one way or another, reconstructed: t L etc. The above described global variables are naturally

requires adiscretizationof the differential equations. Ivlanyassomated with spatial and temporal elements such as points

discretization methods have beeen devised, and each of tl@}n“,nes (L)f surfgcesf?), \{olumes ,V)’ ctjlmgr:nstan;s 10 f"md |
leads to different sets of algebraic equations for the same miZ§ 'r?tﬁr"?_ SD' o afluxis associated with a s_,uhr ace,l a vo.t-
(some are symmetric system of equations: while others 8f¢ WIth @ line; a content, say mass content, with a volume; an
not). Faced with this two-way process, a question ariei: impulse W|t_h a time interval. This is the_ same reason why
really necessary to go from algebraic to differential formulde deals with line, surface, volume densities and rates. Thus
tion in order to go back to some other form of finite modellingf.JObaI variables are referred not only to points, such as field

The purpose of this paper is to show thatigect discrete for- Enctlonsd, but'o:ten also to Ilnez, sfurfapes; and volumses, I.€.
mulation of field laws is possible, i.e. itis possible to avoid irfr ey aredomain unc_t|ons m_stea 0 p_omt unctlons._ ome
variables are associated with points in space and time: they

1 Author's address: Department of Civil Engineering, University of Triest&/€ d.ifjferent from other point_functions, b_ecause they are no_t
Piazzale Europa 1, 34127 Trieste, ltalia. e-mail: tonti@univ.trieste.it ~ densities or rates. Such variables are displacements in solid
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mechanics, kinetic potential in flow mechanigaugefunc- belong the various forms of energy: kinetic, potential, in-
tion of electromagnetism, iconal function in optics, ecc. Itis ternal free energy, hentalpy; field energy, work, power,
worth noting that when carrying out experiments we measure lagrangian, hamiltonian, action, etc.
mainly global variables.

These criteria give &unctional classificatiorof physical vari-

ables. This is somewhat similar to the classification we make
Configuration and source variables. A third classification when we divide people in functional classes: workers, office-
is based on the role of physical variables. Every physical figlérkers, managers, etc. We list here the main variables of each
has itssources they may be electric charges for electrostagf the three classes used in physics.
ics; electric currents for magnetostatics; heat sources for ther-
mal conduction; forces for the solid mechanics and for flu-e Configuration: displacement, displacement gradient,
idynamics; masses for the gravitational field (geodesy); etc. position vector, relative displacement, strain, strain rate,
On the other hand any physical field has a state variable: so temperature, temperature gradient, velocity, velocity cir-
displacementiescribes the geometrical configuration of a de- culation, velocity potential, vortex strength, vorticity vec-
formable solid; the spatialelocityfield describes the flow of a tor, electric field, electric potential, electric tension, elec-
fluid; electric potentialdescribes the configuration of an elec-  tric tension impulse, magnetic flux, magnetic flux den-
tric field; temperaturedescribes the thermal configuration of a  sity,etc.
body; etc. Physical variables can be divided in three classes:
configuration variables, source variables, energy variables ® Source: force, impulse, mass content, density, mass cur-
This classification is based on the role that a physical variable e€nt, mass current density, mass flow, momentum con-

plays in a theory (34) [p.155]; (18) [p.1]; [(39)]; [(40)]. tent, momentum current, stress tensor, pressure, surface
force, electric charge content, electric charge flow, elec-
physical tric current, electric flux, heat flux, heat source, mag-
constants netic tension, magnetic scalar potential, magnetic field
. strength, etc.
physical con figuration 1)
quantities physical variables e Energy: work, power, energy, energy current density,
variables ) source variables energy density, Gibbs free energy, hamiltonian, heat,
energy variables Hemholtz free energy, enthalpy, kinetic energy, internal
energy, lagrangian, magnetic energy, potential energy,
We have etc.

e Configuration variables: variables that give the config-2-1 The two kinds of orientation

uration of a physical system, and all variables linked &atia) and temporal elements can be endowed with orienta-
them, by the operations such as sum, integration, diffg5n \Wwhen we say that a flux is referred to a surface, we are
ence, division by a length, an area, a volume, an intgfsjiged to specify the orientation of the surface, because, the
val, by a limiting process, and then by time and Sp?‘%n of the global variable reverses when the orientation is re-
derivatives. These relations must not contain physicalrsed. There are two kinds of orientations: inner and outer.
constants. To this class belong the geometrical and kine-

matical variables of continuous mechanics, generalized, |nner orientation: whenever the orientation of a space
coordinates, field potentials, affinities, etc. element lies on the element itself, one says that an inner

) ) . orientation is established, as shown in Figa)(1 Note
e Source variables:variables that describe the sources of a i3t an inner orientation of a point means that the point is

field, such as masses, charges and currents; the forces act-gnceived as a source or as a sink.
ing on a system, etc, and all variables linked to them, by
the operations such as sum, integration, difference, prode Outer orientation: whenever the orientation of a space
uct and division by a length, an area, a volume, an inter- element depends on the space in which the element is
val, by time and space derivatives. These relations must embedded, an outer orientation is defined, as shown in
not contain physical constants. To this class belong the Fig. (1b). Contrary to inner orientation, which is intrinsic,
kinetic variable, such as forces, moment of force, mo- outer orientation depends on the dimension of the space
mentum, angular momentum, etc, of continuum mechan- in which the element is embedded. Thus the outer orien-
ics. tation of a line segment embedded in a three-dimensional
space is a sense of rotati@mound the segment; in a

e Energy variables: variables obtained by the productofa  two-dimensional space it is an arrow tltabsseshe line

configuration variable by a source variable. To this class and when the segment is embedded in a one-dimensional
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space, it is represented by two arrows as if the segmdotl complex is simplystaggeredwith respect to the primal
were compressed or extended. This is the typical orieame, as shown in Fig.€3. In a two dimensional space, the pri-
tation used in solid mechanics to denote compressionnoal complex can be made of triangles. In this case, by consid-

traction of a bar, as in Fig.(2) ering the circumcenters of the triangles as vertices of the dual
inner orientation outer orientation complex, and by connecting the circumcenters of two adjacent
* o _ v triangles, one obtains a dual complex. To every 1-cell of the
Inner orientation of a point: Outer orientation of avolume: .
P apstvepointisorientedas  thechoiceof outward or inward primal complex, there corresponds a 1-cell of the dual; and the
/ asink. normals. A positive orientation . . .
has outwards normals. two are orthogonal. The same is true of a three-dimensional

isthebasic notion usedtogivea  itistheinner orientation A A

esning to the oriertaionsof  of theline crossing the surfece. one can consider the spherocenters: connecting the spherocen-

all other geometrical elements. ) .

ner orfentation of asurface: it Outer orientation of aline ters of two adjacent tetrahedra one obtains a dual complex. In

! aion of asurface: It Outerorfentaion of . :

o S e e ttonine. T (x) this case to every 1-cell of the primal there corresponds a 2-
cell of the dual; to every 2-cell of the primal there corresponds

aong its boundary.

Inner orientation of avolume:  Outer orientation of a point: F’% a 1-cell of the dual. Moreover to every 0-cell of the primal

Inner orientation of aline: it Outer orientation of a surface: Comp]ex made of tetrahedra as shown in F|m($n this case
S E

@ X

ot s aivaon tothe  of mevaame " there corresponds a 3-cell of the dual. In shortn denotes
screw rule. containing the point.

the dimension of the spacé = 1,2,3), with eachp-cell of

the primal there corresponds am— p)-cell of the dual, and
viceversa. The choice of a point inside eaebell, to be con-
Figure 1 : The two notions of inner and outer orientations iidered as O-cell of the dual, is arbitrary and can be dictated by
the three-dimensional space. computational convenience. How to connect the centers of two
adjacent cells is also arbitrary. Thus when one considers the
barycenters of the-cells, one can connect the adjacent ones
by a straight line, or via the barycenter of the face, as shown

g in Fig.(Xx). The latter choice is the one considered in alge-
L = braic topology, and is called thearycentric subdivision.It
I K m— X has some computational advantages. Doing so, the dual of the
1-cell (hi) is the broken line shown as heavy line in Fig)3
X Y With reference to Fig.(4), one can see that to every 0-cell of
i dual of hi j duaof hi i dual of hi
v
Figure 2 : The outer orientation of a line depends on the di- h

mensions of the embedding space.

a) cartesian dual b) Voronoi dual

2.2 Cell complexes

On dealing with differential formulations, it is quite natural
to use coordinate systems. On the contrary, a direct discrete
formulation deals with global variables, that are naturally as-
sociated with finite sizes of spaces, and finite intervals of time,
i.e. volumes, surfaces, lines, time intervals as well as points
and instants. We shall denote them as spatial and temgleral
ementsFollowing the practice of algebraic topology, a branch
of topology that uses cell complexes, the vertices, edges, faces Figure 3 : Primal and dual cell complexes.

and cells are considered as “cells” of dimension zero, one,

two and three respectively. In short they are denoted as 0-

cells, 1-cells, 2-cells and 3-cells. Accordingly a cell compldke primal complex there corresponds a 3-cell of the dual one.
is not conceived as a set of small volumes but as a collectioTbis duality is shown in Fig.(1) in which the elements of the
cells of various dimensions. Given a cell complex, which wight column are in reverse order to those of the left column.
shall callprimal, by considering a point inside each 3-cell, sa4ll these considerations do not depend on the shape and the di-
its barycenter, one can construct another cell complex, calfednsions of the cells of the complex. For numerical analysis,
dual, by taking these points as vertices of dual complex. If th@wever, triangular cells in two dimensional spaces and tetra-
primal complex is formed of squares (in 2D), or of cubes (lmedral cells in three dimensions are convenient. These simpli-
3D), the dual complex is also formed of squares or cubes. Tdi@ complexes permit a better matching with curved bound-
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aries, can be refined in the regions of strong variation of géxeells of the same complex. The temperature of each 3-cell
dients and fit well with linear interpolation. Furthermore, thag the one measured in some “central” point of the cell, say its
are now considered the “de-facto” standard in numerical anad&rycenter, i.e. a 0-cell of the primal complex. The temper-
ysis and optimization of complex engineering problems. Vegure difference refers to the line connecting two barycenters,
prefer to use the term “cell-complex” rather than “mesh” bée. to a 1-cell of primal complex. Doing so, we see that the
cause, as we shall show, all space elements forming themamefiguration variables, i.e. temperature and temperature dif-
involved in the description. Given a cell complex, we can aference, refer to the elements of the primal complex, while the
sign to all its elements anner orientation. This complex will source variables, i.e. internal energy, heat generation and heat
be designed gsrimal. If we now consider a dual complex, saylux, refer to the elements of the dual complex.

considering the barycenters of the cells as vertices of the dual,

au.tomaftlcally "’?" glements of the dual are 'endowed Wlltl?l’ Elastic field. A similar analysis can be made for elasticity.
orientation. This is a remarkable geometrical pro_perty d'SCqYét us consider a cell complex: with each 3-cell there is as-
ered_by Veblen and Whitehead (47) [p.5_5] and 'mmducedéﬂciated a volume force, and with any face (2-cell) there is
physics by Schouten (36) and Van Dantzig (46). associated a surface traction. We can consider the barycen-
ter (O-cell) of any 3-cell: the displacements naturally refer to
such 0-cells. The relative displacement is a global variable re-
Let us examine the link between global variables and spdeged to the line (1-cell) connecting two adjacent barycenters.
elements of a cell complex. We see that the source variables refer to the element of a cell
complex endowed with an outer orientation (we shall call it
dual), while the configuration variables refer to the elements
endowed with an inner orientation (we shall cafpitmal).

2.3 Global variables and cell complexes

temperature thermal field heat source

refersto points .S refersto volumes
of the primal cell-complex ’ of the dual complex

tempeerature difference
refersto lines
of the primal complex

heat flux
refersto surfaces
of the dual complex

displacement
refersto points
of the primal complex

relative displacement
refersto lines
of the primal complex

volume force
refers to volumes
of the dual complex

surfece traction
refersto surfaces
of the dual complex

electric potential
refers to the points
of the primal complex

emf.
refersto the lines
of the primal complex

electric charge content
refersto the volumes
of the dual complex

.., ©ectricflux

refersto the surfaces
of the dual complex

magnetic flux

refers to the surfaces
of the primal complex

magnetic charge content

refersto the volumes G¢----

of the primal complex

magnetic potential
refersto the points
of the dual complex

m.m.f.
refersto the lines
of the dual complex

Figure 4 : Physical variables and cell complexes

Electric field. Let us consider a cell complex: with every 3-
cell there is associated a charge content, while every 2-cell is
associated with the electric flux. The electric potential refers to
the barycenter (0-cell) of every 3-cell. The voltage refers to the
1-cell connecting the barycenters. Then source variables, i.e.
charge content and electric flux, refer to the elements of a cell
complex endowed with an outer orientation (theal), while
configuration variables, i.e. electric potential and voltage, refer
to the elements endowed with an inner orientation gtt@al).

Magnetic field. If one considers a cell complex in a spatial
region, where a magnetic field is defined, it is easily seen that
the magnetic fluxp is associated with the 2-cells. In order
to give a sign to the magnetic flux we need an inner orienta-
tion to the 2-cell, i.e. the direction of the current induced in a
coil located on the boundary of the 2-cell when the magnetic
field is switched off. This shows that the magnetic flux, which
is a configuration variable, refers to the 2-cells of the primal
complex. The magnetic potentidl, is associated with a cen-
tral point (O-cell) of the 3-cell and then the magnetic tension
Unm is associated with the 1-cell connecting the centres of two
adjacent 3-cells. These four examples show the following im-
portant property

REMARK. In field theories, the configuration vari-

ables are associated with cells endowed with an in-
ner orientation, while the source variables are asso-
ciated with cells endowed with an outer orientation.

Thermal field. We shall refer to Fig.(4). Internal energy anéven if the reason for this systematic association is not clear,
heat source are global variables which are associated withithe remarkable that ahysicalclassification of physical vari-
3-cells of the dual complex; heat fluxes are associated with #ides matches with geometricalclassification, based on the
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association with oriented space elements. This strong couplimghomogeneous and isotropic material and requires that the
between physical variables and oriented space elements igibtential admits second order partial derivatives. Alternatively
key to give a direct discrete formulation to physical laws df the domain is composed of different materials, it must be
fields. The association of physical variables to the elementssabdivided into subdomains, each one containing a homoge-
a cell complex and its dual has been introduced by Okada (B&pus and isotropic material: the Poisson equation must then
and Branin (2). be applied to every subdomain and on the separation surfaces
jump conditiongnust be satisfied.

All these restrictions are in striking contrast with modern de-
The fundamental problemof a physical field can be stated a¥ices formed by different materials; where anisotropy is fre-
follows: guently encountered as in laminated and fiber materials; where

concentrated sources, such as laser spots, are present; where

e given the shape and the dimensions of the field domaihysics assures only that the potential is continuous not dou-
e given the spatial and temporal distributions of the fiellaIe differentiable.
sources; The discrete formulation that we shall present, can be applied

« given the nature of the materials that fill the field domaiff® fi€lds containing different materials while avoiding jump
conditions. The potential is assumed to be continuous and

* given the boundary conditions '_[hat summarize the actigRe not be differentiable. The material can be isotropic or
of the external sources on the field domain; anisotropic, homogeneous or non-homogeneous. Each cell
to find the spatial and temporal configuration of the fielthe can have different constitutive properties: this permits to deals
fundamental problem is expressed by fhadamental equa- with composite and fiber materials, porous media, damaged
tioni.e. a relation between the source and the potential of thaterials, inclusions and defects. The sources can be discon-
field. Thus the equations of Poisson, Fourier, Navier, Naviginuous and also may be concentrated. The expression “con-
Stokes, are examples of fundamental equations. In any phgsiatrated source” can be understood in two ways: as a source
cal field the fundamental equation is the result of the compoaéting on a region that is small but with finite size or as a point-
tion of two kinds of “basic” equationdield equationgindcon- wise source. Since no physical source is really pointwise (laser
stitutive equationsField equationgelate configuration vari- Spots, “pointwise” electric charges and “concentrated” loads
ables to each other, and source variables to each other. In&ié really distribute on small regions), a truly discrete formu-
ferential formulation these equations are described by the tgsion of physical fields must consider only sources distribute
eratorsgrad, curl anddiv. Constitutive equationsalso called on large or small regionisut always of finite sizeThe point-
material equationsare those that link source variables withise source is an abstraction that is consequence of the limit-

2.4 The fundamental problem of a physical field

configuration variables. ing process and, as such, belongs to differential formulations.
It follows that in a truly discrete formulatiompfinities do not
3 Adirect discrete formulation appearand then a discrete treatment avoids singularities, in

accordance with physics to which infinities are extraneous.

The previous _c0n3|d_erat|ons I_ead us FO presedtrect_ms- We shall make reference to the field of steady thermal conduc-
crete formulation of field equations. This formulation is basqgn in two dimensions because it can be easily grasped. The
on the use ofglobal variablesand of a pair ofcell Com-  yigerete formulation requires an interpolation function among

plexes a primal and a dual one: it will be ca.lled' tieeell the nodal values of the temperature. We shall consider a linear
Method We shall present the method, by considering a staficq 4 quadratic interpolation respectively

two-dimensional scalar field, such as electrostatics, magneto- '

statics or a steady two-dimensional scalar field, such as ther-

mal conduction, electrical conduction, irrotational fluid fIOV\fr Linear interpolation

diffusion, percolation, etc. In a differential formulation, aliyhen we deal with a two-dimensional region, we must not
these fields are governed by the Poisson equation. In all thggget that we have to do with a layer of uniform thickness,
fields, there is a main configuration variable, which isploe \yhich we shall denote as as shown in Fig. @&). In this
tential of the f_|eld; and a main source variable, Wh_|ch is thRay, any triangle will be considered as the base of a triangu-
sourceof the field. To solve the fundamental equation of thgr prism whose lateral faces are projected in the sides of the
field, means finding the potential function once the sourgggngle. Our purpose is to write down the fundamental equa-
are assigned. While a differential formulation “promises” thgyn for a two dimensional scalar fields. Our goal is to find
knowledge of the potential @ny point of the domain, a dis-
crete formulation gives the potentiadsly at the 0-cells of a 2 We remark that a discrete formulation implies spatial elements of finite

cell complex The values of the potentials inside any 3_Ce”size, i.e. avoids the passage to infinitesimal regions. This does not exclude
) the use of derivatives to perform mathematical operations. It is not our

can be interp_olated USinQ a funqtion, in particular a p0|yn(_)‘|ntention to reject the use of infinitesimal calculus in physics (!) but only to
mial. The Poisson equation requires that the domain containsoid that the limit process is applied to volume elements.
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With reference to Fig.(6) the linear behaviour of temperature
heat inside the celt is given by the function

heat ingoing
ingoing
heat
production

T(X,y) = a+gxX+gyy. 3)

b) The additive constara implies thatT (x,y) is anaffinefunc-
tion, not a "linear” one. One can say that an affine function has
a linearbehaviour The three constants gy, gy can be ob-

Figure 5: A primal and dual cell complex for a plane field.

the temperature of all 0-cells, briefly calleddes of the pri-
mal complex. As always the boundary conditions are of two
kinds: on some parts of the boundary, the temperature can be
assigned; while on the remaining parts, the heat flux can be as- 9
signed. Our goal then reduces itself to finding the temperature
at all the nodes at which it is not assigned: these can be inter-
nal as well as boundary nodes. In Fig.(5) the boundary nod@gure 6 : a) The elements of triangleb) The dual polygon
with assigned temperature are noted with filled circles. Sing@nceived as a prismc) the heat flux relative to the node
we consider a steady conduction, there is no heat stored ingifiéd) its equivalente) the three heat fluxes associated with
any 3-cell; and hence the heat produced in any region is edtigl three vertices.

to the heat outgoing from its boundary. If we impose the heat

balance on any dual 3-cell, the tributary region of every nodained by imposing that the functidi(x,y) assumes the three
we obtain as many equations as are the unknown temperatwgisiesTy, Ti, Tj in the three nodek, i, j of the cellc. Then

see Fig.(6). Let us denote b, the heat source rate inside the

dual 3-cellh, and byQ the rate of heat outgoing from the cell a+gXn+oyyh = Th
boundary. For boundary nodes, the ones that lie on the part of at+ogXi+oyi = T 4)
the boundary in which the incoming heat flux is given, we can at+oXj+oy = T

add to the heat source rate the heat fiyxentering the dual

ing th ion f he thi he fi
3-cell. The energy balance becomes Subtracting the second equation from the third one, the first

from the second one and stating

Z Qh =S+ P (2) Lix=Xj—X Luy=Yyj—yi etc. (5)
cej(h)
we obtain
where J(h) is the set of primal 3-cells having the nobtién
common. Equation (2) is valid both for interior and boundary [ Lix Ly } { 9x } :{ Ti=Th } . (6)
dual 3-cells: in this fashion, one avoids the unnatural separa- Lx Loy Jo U Oy Je T=T J

tion of differential equations and boundary conditions, whiglising Cramer’s rule, observing that the determinant of the
is typical of a differential formulation. The ter®, includes system is the double of the aréa of the triangle and since

possibly concentrated sources. Lh+Li+Lj =0, as shown in Fig(8), we obtain
4.1 Gradient Th

{ Ox } :i { —Lny —Ly —Ly ] T . @
In order to evaluate the gradient, we perform a linear interpola-| 9y J. 2Ac| +Lnx +Lix +Ljx |, T,

tion of temperature inside the triangles and express it in terms ¢
of the nodal values. We shall describe later the quadratic s relation coincides with that of the Finite Element Method,
terpolation in order to obtain approximations of higher orddar a linear interpolation over a triangle.
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Area. It is convenient to introduce the area-vectomshereK. isthe2x2 matrix of thermal conductivity of celt.
An,Aj,A;j of the faces instead of the edge-vectbfsLi,Lj. We can write the constitutive equation in the form
Denoting byt the thickness of the layer, and lkythe unit

vector normal to the plane that contains the cell complex, we Ge = —KecQe- (15)
have: For the common case of isotropic materials, equation (14) be-
Ap=tLnhxk from which (8) comes the well known Fourier law:
Anx=t I—hy Ahy = —tlpx (9) Ox = _kgx Qy = _kgy~ (16)
The same relationship can be obtained for facgsinserting or, in vector form
the last equations in (7) we obtain g = —kg. a7
Ty 4.3 Fundamental equation
Ox - _ 1 Ahx A ij T_h (10) q
2tA i - 'e can now evaluate the heat flux outgoing from every face o
9 J. Any Ay Ay |, TI W I he heat fl ing f f f
I'Je the dual polygon and then write the balance on any dual 3-cell.

l1:£1ere are two ways to do sa) considering one node at time;

whereAp, Aj,Aj are the three area-vectors of the prism fac e :
b) considering one cell at time.

oriented outwards, as shown Figc)6 We remark that on the
denominator we have the volume of the triangular prism as
shown Fig(@). Equation (10) can be summarized in a compaCie node at time. Inserting Eg.(10) and (14) into Eq.(12)

notation and introducing thé x 3 vector
Oc = BcTe (11) def 1

f fii  fhi)e= —= K:B 18
whereB¢ is a2x3 matrix. Since we have used a linear approx- (o T Tj)e Z(Ahx An)eKBe  (18)
imation, the gradient is uniform inside the triangle. we can write

Th

Heat flux. With reference to Fig.(@, let us evaluate the heat Qh=(fn fhi  fhj)eq T . (19)
flux that crosses the shaded faces of the dual 3-cell contained T

C
in the trianglec, assuming as positive the outward directio .
from the nodeh, as shown in Fig.(@&). Since the temperature|rE follows that the heat outgoing from the dual 3-deltan be

gradient is uniform, and the material is homogeneous ins'x?f%oressed as a scalar product of two vectors: the row vector
any cell, the thermal power across the two faces in Feyi6 * ¢ of 1x3 type that depends on the cell geometry and on the

equal to the one crossing the face connecting the barycen?é%e”al contained, and on the column vecTrof the 3x 1

of two edges as in Fig.@§. Since the last face is parallel tq/P® of nodal temperatures of cell Considering one node at

faceh and has an area which is one halfAy, the heat flux gﬂq;’evrﬁe(r;rinalw rcl)t/(\a/etrseot:teroniqnal fk; 2:,?]'1?:; (er:JI:ItI??—nc:I)I/ Z:?&'\?I?]
going through the face is P going '

in Fig.(6b). Considering the dual 3-cetithe heat balance (2)
becomes

1 1 ’
QﬁZE(Ahqu+AhyQy)c=§(Ahx Ahy)c{ q } - (12)

Qy Th

_ (fon  fhi  fhj)eq T =S+ Oh. (20)
We remark that the face connecting the barycenters of the <y T
edges is the same, if we use the barycentric or the Voronoi ) o ¢ )
subdivision. The three heat flux@§, QF, QS shown in Fig.(8) For a numerical treatement, it is convenient to add the bound-

can be gathered in the relation ary inflow @y, to the sourceS, from the beginning putting
S d:efSh + @y, as equivalent source. Denotingldshe number
Qnh 1 Anx  Any q of nodes, which coincides with the number of dual 3-cells, and
Qi =5 Ax Ay { 3 } (13) introducing the global vectors
Qj Ajx Ay ¢ E_(& T
c c T=(T..Tn)" S=(S...S5v)" (21)
4.2 Constitutive equation we come to a system of the kind
For an anisotropic material, the heat flux density veqtois FT=S (22)

linked to the gradieng. by the constitutive equation ) _
whereF is theglobal fundamental matrixThe system so ob-

{ Ox } _ [ ke Ky } { Ox } (14) tained is the discrete equivalent of Poisson differential equa-
(o4 (o4 C

Oy kyx Ky gy tions.
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One cell at time. For computational purposes it is convein the following pseudocode:
nient to proceed with one cell at time, because, in the previ-
ous way the calculations on every cell must be repeated thred-et Nc be the number of cells

times. Using the notation: putFyq=0forall p,g=1,2,..Nc
for cfrom 1to N
Oh Th let h,i, j be the vertices of the triangte
Q. E! T T (23) using Eq. (24) evaluate the nine coefficients
Qj T fir fiz .. fas
¢ ¢ then the fundamental matrix is (31)
and composing Eq. (10) with Egs.(13) and (14) we obtain Foh = Fantfia
Fh = Fn+f21
1 y Ah Aix A'x . — b f
Q=-— | Ax A K[ X X T (24) Fij = Fjj+fa3
©AA Aj))(( Aj}; LAy Ay Ay | ° end for

Itis easily seen that also the global fundamental matrix is sym-

We remark that the “-” sign that preceeds the mal¢ixcom- metric

bines with the analogous sign containedBg giving a “+”

sign. From this formula, we see that each of the three heat

fluxes depends on the nodal temperatures so that we can Weigt source.  The heat source is usually distribuited in a sub-
region of the domain. To evalua® it is convenient to use a

Ch fon  fhi Th mesh as the one shown in Fig.(7). For the barycentric subdi-
Q o =1 fin fi f T 0. (25) vision, the areas of each quadrilateral in which the triangle is
Qi ). fin B fi JoUT ). subdivided arel/3 of the area of the triangle. If we suppose
that the heat source inside every element is uniform, we can
we can write relation (25) as write
1
Qo =fcTe. (26) HT3 2 0h (32)

The matrixf. will be called thelocal fundamental matrixwe Whereog is the heat source density.
shall show later that it coincides with the local stiffness ma- q -

trix of the Finite Element Method. For isotropic materials, the
relation (24) becomes

Qn ke | An-An An-Ai Ap-A Th [ e
Qi :E Ai-An  Aj-A A|AJ Ti \\‘\- /
Qi Je Aj-An AjAL AAG Tj( ¢ Tk

We then see that the components of the local fundamental ma-

ix h he f . . . L .
trix have the form Figure 7 : Thermal generation uniformly distributed in a sub-

Ke region.
c _

& there are point wise concentrated sources, such as laser’s
beams, the corresponding amount of source must be added to
the dual polygon to which the source belongs.

Let us remark that in Eq.(24), the first matrix is the transpo
tion of B¢, apart from the factor-2tA.. Consequently

Qc = tAB{KcBcTe (29)

Heat flux at the boundary. With reference to Fig.(8) let us
and then the local fundamental matrix is symmetric and giveBnsider the boundary of the region agch,i the adjacent
by boundary nodes. Lédt be the central node arld andL” the

fo = tAcBIKBe. (30) lengths of the edges preceeding and followingespectively.

Let us denote asthe line arc of the boundary with origin in
To obtain the global fundamental matfixwe must assembleh. Let the heat flux for unit length be a function of the kind
all the local fundamental matrices. The process is summarizgs) = a+ (b—a)s/L. Denoting agyy,gh, ) the three values
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Figure 8 : The boundary nodes in the part of the boundary in
which the heat flux is assigned.

of the heat flux density evaluated in the three noglési re-
spectively, we can write

Og—Gh i — Oh ; . ; . .
q(s) =g — -9 g q'(s) = g + Gi ”q s (33 Figure 9: R_elatlon be_ztween the global cartesian coordinates
L L and local affine coordinates.

The heat flux entering across the boundary side of the dual
polygon will be

O L///2 _ _
o, = / ) q(s) ds+/ q’(s)ds { X }:{ Xh }+ i g { 3 } (35)
-L'/2 0 (34) y Yh L ] n
_ 1y Gg+ §(L’ L)t 1 o The inverse relation is
8 8 8 -
. o _ _ sl_Jpl [aB X (36)
This relation will be useful later for comparison with the anal- n{ 1 q y & y [

ogous relation used in FEM. The procedure described up to

now has been applied to fracture in (12), (13), (14), (27), (28Ye propose to interpolate the temperature inside the triangle

(29), (30); to acoustics (43) and electromagnetism (45), (22).in terms of the six nodal temperatures. Since the relation
between the global cartesian coordinates and the affine coor-

5 Quadratic interpolation dinates is linear, it is immaterial which coordinate system is

) ) ) ~used to express the quadratic behaviour. It is convenient to use
Up to now we have carried out a linear interpolation insidge affine coordinates. We can write

every primal cell (triangle). Now we show that it is possible to

use a quadratic interpolation. To this end we add three nodes ah

p,q,r at the midpoints of the sides, as shown in Fig.(9). aj

5.1 Local affine coordinates T.(&,n) = ( 1 & n & &n n? ) 4 (37)
a

Let us denote ak,i, j, the three vertices of the triangte(c P

stands forcell); and let us consider the vertéxas the origin %

of an affine coordinate systémwhose axe€ andn are set & ).

along the sidehi andhj respectively. The lengths of the seg- . - . . .
mentshi andhj are assumed as units of measurement aIS’)The six coefficientsy, must be determined in terms of the six

n .
the corresponding axes. As shown in Fig.(9) the relation bneg-dal values of the temperature. One obtains

tween local affine coordinates, and the global cartesian oneg, an T,
is a linear one, given by: 1 0 0 OO0 ©O T
. : : . a -3 -1 0 40 0 i
We remember that affine coordinates (35) [p.49], (8) [p.202] are rectilinea a 3 0 1 0 0 4 T
coordinates with oblique axes (3) [p.107], strictly related totthg/centric | — - - !
(8) [p.216] coordinates, witareal (8) [p.218] ortriangular or normal co- ap 2 2 0 -4 0 0 Tp
ordinates. They differ from cartesian coordinates because the units on the 4 0 0 -4 4 -4 T
two axes are fixed indipendently one from the other and then the notion o aq 2 0 2 0 0 -4 q
distance between two points is not defined. This implies the non-metrical g, Tr

nature of affine coordinates. They are the most used coordinates in physics
because arise whenever two physical variables of different physical dimen-
sions are represented on rectangular axes, say ififhé) diagrams of So that
thermodynamics and {g, o) diagrams of solid mechanics (4) [p.17]. a.=CTe.. (39)

(38)
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Let us remark that, using affine local coordinates, the mattixs useful to transpose last relation:

coefficientsare the samdor all cells: this fact justifies the ¢ a
use of local affine coordinates. The function (37) canthenbe( A, A, )=t ( & —& n”"—-n’) [ d b ] . (45)
written as c

TEN=(1 & n & & n?)CT.. (40) 5.3 Constitutive equation

The heat flux vectoq in an anisotropic medium is linked to the

This formula permits to evaluate the functidrat every point ) . :
P yp temperature gradient by the relation (14), that we now write

inside the triangle in terms of its nodal values.

) ax(&,n) |k kxy} { (&n) }
5.2 Gradient { ay(&.n) }C_ [ kn Ky |1 g&n) J, @
From the relation (40), we obtain that is
%T 1 _[0 10 Zn 0 Jc = —KcGe.- (47)
{anT}_[o 01 0 ¢ 2n]CT°' (1)

. "
The cartesian components of the gradient are Heat flux. Denoted asv the midpoint of the segme® P

we have L en B
o \_ [T\ _[0& on]f oT | _ = ;E v = 1 J;” . (48)
Oy oyT 0y&  0yn onT : o . .
. Since the heat flug, as the gradierd, is an affine function of
{ a vy ] 01 02Zn O } CT. the affine coordinates, as shown in Figl§16), it follows that,
B d].,0 01 0 & 2n in order to evaluate the flux across the corresponding face, it is

_ o ) _(42). not necessary to perform an integration: it is enough to multi-
We remark that in a quadratic interpolation the gradient is BlY the vectory, evaluated in the midpoir¥l of the segment,
affine function. for the area-vectof

y / DI _ qx(M)

Q(F',P") = ( A Ay){ ay(M) } (49)
This formula replaces Eq.(12) which is valid for linear inter-
polation. We remark that in Eq.(128y, Any are the compo-
nents of the area-vector of theface of the triangular prism
and this explains the factdr/2. Combining equation (49)
with the equations (45), (46) and (42), we obtain the flux in
the form

QPP =t (€= n'-n')|

Exx Exy

Figure 10: a) The area-vector corresponding to the line seg- kyx Ky L (50)
mentP'P"; b) An affine gradient,c) The component of the { 010 Zv nu 0O } CT.
gradient normal to the segment is also an affine function. 001 0 &u 2nm

where

e ol Sl olls
Area. We now need a formula to evaluate the area corre- Ky kyy c —-d b c kyx Ky c B ?513:

sponding to a line segment connecting two arbitrary points . | ) . i
P'(&/,n') andP”(£”,n") contained in the triangle. With ref- which is a non-symmetric matrix in spite of the symmetry of

erence to Fig.(18), and using equation (35) we obtain the matrixK¢. The equation (49) can be written as product of
a row vectorR. times a column vector. i.e.

{xx//t;; }[2 SH vy } (43) Q(P,P") =Re(P',P") Te. (52)

We remark that the area-vector of the face of the trian(‘:]u|:z:1trjttlng

prism is obtained by performing a rotation in an anticlock- 7 _ 0 1 0 Zvw nm 0 (53)
wise direction 0of90 degrees and performing the product for 1001 0 & 2m |,
the thickness. ;

we can write

Ay 0 -1 b g .
{ad=y Slle sl {i 5} @ rer-a(e vonkzEec 69
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5.4 Fundamental equation the form

In parabolic interpolation, we have six nodes for each trian- Ri=(fan T faj fap  fhg  frr)e  (57)
gle, and we must select a dual complex. This means that we

must choose a polygon around each node to be consideredihgfundamental equation (2) becomes

a “tributary region” of the node. A key point is that this dual RET. =, (58)
polygon can be chosen at will. This will permit us to select the Ce;m h'e

polygons that give the maximum order of convergence. Since
the three additional nodgs g,r permit us to divide the tri- which is analogous to Eq.(20). In the quadratic interpolation,
angleh,i, j into four triangles, a first idea is to consider aand with isotropic materials we do not have an explicit for-
dual polygons the barycentric ones, as shown in Fig)1\8/e mula such as (28), to evaluate the coefficiefy¢ Moreover,
shall show that in this way a small increase in the order ofntrary to what happens in FEM, the matrix thus obtained is
convergence, from 2 to 2.3 is obtainable. A much more convet symmetric. This lack of symmetry of the stiffness matrix
nient choice (17) is the one based on Gauss points, as sheaems to contrast with the symmetry of the differential opera-
in Fig.(11). Let us remember that Gauss’ points are symmtgtr. We remember that in Finite Element Method one usually
rically placed with respect the midpoint of the segment. Fohose as weight functions (or test or trial functions) the same
two Gauss’ points of a segment, of unit length, they have thleape functions with the purposerpaintainingthe symmetry

distance (38) [p.430]. The same is done in spectral methods.
_ 1 (55) If one choose weight functions different form shape functions
2V/3 the symmetry is destroyed.

from the midpoint. With reference to Fig.()lwe consider From acomputational point of view the advantage of symmet-
the heat flux leaving the fa@-— 10 contained in celt and we i€ algebraic system is sensible when direct methods of solu-
shall call itQ¢ = RET,.. Similarly the heat flux outgoing fromtion are used; but it is immaterial when using iterative meth-
the boundary of the dual polygon of nodecontained in cell ods.
¢ will be denoted bng = RgTC. To each node there corre-
sponds heat flux. Using Eq.(50) to evaluate the heat fluxes we
obtain

R® = +R(14,16) + R(16,15)

RS = +R(9,8) +R(8,10)
R(13,11)+R(11,12)
(

(
R(8,10)+ R(8,7) — R(16,7) — R(14,16)
R(16,15)+ R(16,7) — R(11,7) — R(1311)
R(11,12) + R(11,7) — R(8,7) — R(9,8).

R =+
c _

Rp=—
RE = —
RS =—

(56) Figure 12: The dual complex (heavy lines) using two Gauss
EveryR¢ is a six components row-vector that we can write ipoints for each edge.

5.5 Example

The cell method is similar to thdirect or physicalapproach
used at the early stages of FEM (19) [p.22]; (21) [p.35]; (11).
This method has not been developed to obtain a convergence
order greater than the second one. Accordingly Fenner wrote:
“the direct equilibium formulations described before are not
applicable to variable strain elemerit¢ll) [p.153]. It is
highly likely that this fact has caused the demise of the phys-
ical approach. On the other hand, the cell method starts from
a different philosophy, which allows the use of interpolation
Figure 11: a) The subdivision of the triangle into dual polyfunctions that are the great advantage of the Finite Element
gons using two Gauss points on each edpehe part of the Method over that of the Finite Volume Method. This allows
dual polygons of nodels andq contained in triangle. the physical approach to be revived.
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We quote here an example. Consider a two dimensionabt-means-square value of the errors at nodes. This error de-
scalar field described by a potential without distributed creases with the length of the side of the triangles according to
sources whose solution is the harmonic functigix,y) = the power 2.3, as shown in Fig. (14). As a second choice we
exp(x)cogy).%. In the squared < x < 1,0 <y < 1, given consider the subdivision made using two Gauss points for each
the Dirichlet boundary conditions, we construct the systesdge, as shown in Fig.(bB in this case the order of conver-

of algebraic equations by means of the cell method usinggence is 4.0. The result has beeb compared with Abaqus using
quadratic interpolation function in each triangle. The squagigadratic interpolation and superconvergence points (library
domain is divided into squares; each square is subdividedd@2D6): the errors agree up to the fourteen digit.

two triangles using one diagonal. For each triangle the nodes

are its three vertices and the three midpoints. We interpolgte Comparison with finite element method

the potentialu(x,y) with a quadratic function. A first
Let us show that the fundamental matrix obtained through the

cell method, in the case oflmear interpolation, is the same as
FEM. We shall limit our comparison to the Poisson equation.
The latter can be written in weak form, using a test function

y:

/Q W-KO-OT(x)—0(x)]dQ =0  foreveryy (59)

We want to introduce integration by parts, and yskere, to
a) b) lower the order of derivatives on T. Doing so, we come near

to the physical fact: in fact the differentiability conditions im-
posed by differential formulation are greater than those im-

Figure 13: a) The barycentric subdivisiotn) the subdivision Posed by the physical phenomenon. After division of the do-

using two Gauss points for each edge. main Q in triangular finite elements, in every elemantve

interpolate the temperatufigx) with a functionT ¢(x) which

is a linear combination of its nodal values. The coefficients of

this linear combination are the element shape functidfis)

T¢(x) = Z ThNE(X) (60)
hea((c)

8 Darycenters whereA((c) is the set of nodes of the element After this,
o we express the functiol(x) in all the domain as a sum of the
g functionsT¢(x)
g Gauss points
E ABAQUS DC2D6 m m N
g TO=YTM=3 3 TNSX) =3 TaNn(x) (61)
-18 e=1 c=1heA(c) h=1
0 where we have introduced thedal shape functiond\h(x),
2] - B o - - . - ; shown in Fig.(1%). FEM chooses shape functions as test
log(1 / subdivisions) T
Ny, (x;y)

3

choice is the barycentric subdivision: in this case, the dual
polygon of each node is the one bounded by the lines con- ) )
necting the barycenters, as shown in Figa)l3To compare Figure 15: The nodal shape functiona)for an internal node;

the approximate values with the exact ones we evaluate BA&r @ boundary node.

41n the differential formulation such a field is described by the Laplace ) ) )
equationAu(x,y) = 0 functions:Pr(x) = Np(x). In this way the following system of
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equations is obtained Let us remark that the “minus” sign is a consequence of the

N fact that we have chosen the outgoing normal: in fact the gradi-
/ Nn(X) [kD .0 { Z Tka(x)} —a(x) ent has the direction of increasing valued ¢f,y) and hence it
Q K=1
Performing an integration by parts we obtain

d@=0. (62) goes in the opposite direction. In FEM it is common to choose

the inward normal to avoid this minus sign.

N In three dimensions. As is shown in Fig.(1B) one consid-
> {/ KOINR (X) - ONk (X) dQ} Tk :/ Nh(x) a(x) dQ ers the three verticesj,k in which the shape function van-
k=170 3T (x) Q ishes as belonging to a plane equipotential surface. On this
+k/ Nh(X) ds plane the function will be zero and on the parallel plane pass-
0Q on (63) ing from vertexh will be equal to 1. We shall obtain (21)

Since the shape functions have a linear behaviour their 9[%501

dients are uniform and can be moved out of the integration nS AnNE 1
symbol. In such a way we obtain the fundamental matrix of ONE(X,y,2) = — 1t = — =1 = — AL, (66)
FEM dy Andh ¢
iN2D: oy = ktAONp(X)ONg(X) It follows that the elements of the local fundamental matrix
(64) are
fe _ KtAONS.ONE — X Ac.AC
We shall now show that, by using simplicial complexes the pa P 4tAc P 67)
system is the same as the one obtained with the cell method. c . c K ¢ rc
To show this we shall refer to Fig.(16). pg = KWONG-ONg = YA Ap-Aq

f=0

that coincides with that of cell method (28) (48) [p.56], (21)
[p.43, 50]. Hence we can say thée cell method, for linear
shape functions on simplicial complex, gives a simple way to

obtain the same stiffness matrix as the FEM
f=1

Source term §,. In FEM with a source which isiniformly
distribuited over the whole domain, the source term is given

by

a)

S = Z [ oNixy)dA=o T T —on,
ceg(h) Ac cei(h) 3

68
Figure 16: Since the shape fupction is equal to one.in onever- g _ / Ny, 2) OV = G Ve o (68)
tex and zero in the other vertices, the modulus of its gradient Tty Ve Tty 4
is the inverse of the distance between the corresponding vertex
and it opposite side (or its opposite face in 3D). and in the cell method we have
in2D S, = 0A, in3D §,=0W. (69)

In two dimensions. Let us observe that the shape function

Ehen:for a source which is uniformly distribuited on the whole
NS(x,y) can be obtained easily considering that the remainiggmam the source terms of FEM coincide with those of the cell

verticed, j belong to an equipotential straight line correspon _ethtc; d.lv(ljatte(;share dlf;ferent Wher! _so;lrces a_\relnot E?'formly
ing to the value zero of a function i.ef(x,y) = 0, and that Istributed and hence fenass matrixn dynamical problems.

nodeh belongs to the straight line parallel to the preceediﬁ FI.EM a conc?ntrated s?urc_e Is distributed to the vertices ac-
and corresponds to the value onf(x,y) = 1. The gradient cording to the “lever rule”: this follows from the fact that the

vector will be orthogonal to the two parallel straight lines ar{bght illde Oféhe Ealance eqqatlﬁn (61|3|) Conrt]algs the form func(:j-
will have as modulus the ratity dS whered is the distance of tionsNn(x). On the contrary in the cell method a concentrate

the vertexh from sideLy,. Hence we have source is entirely charged to the dual polygon in which it is
' located, as in FVM. This implies a difference in the second

members of the fundamental equations of CM when compared
with FEM (21) [p.45].

ng  Latn$ A
d¢  LptdS  2tA

ONR(xy) = (65)
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Boundary flux @,. With reference to Fig.(1% let us con-
sider three adjacent boundary nodgh,i. LetL’ andL” be

the lengths of the edges preceeding and following the central

nodeh. Proceeding as in Fig.(bythe shape functions will be

s s
N'(s) =1+ o N’(s)=1— 2 (70)
The quantitiesb,, of FEM will be given by
0 L//
on — N%@d@ms+/ N"(s)q(s) ds

1 1 1
BU%+§@HLH%+6Uq

This result is slightly different from the one of cells given by

ax) q(x)

t Nin(x)
| 1 : o
g L' h L i g L' h L" i X
a) cels b)finite elements

Figure 17 : The boundary heat fluxes evaluatea): by cell
method;b) by FEM.

Eq. (34). The difference between the t@p vanishes for a
uniform boundary distribution, i.e. whegy = gn = ;.

7 Comparison with finite volume method

The Cell Method CM) is very similar to the Finite Volume

Method FVM)(15)(33). The main differences are listed be-

low.

e FVM uses the integral forms of the conservation equa-
tions as the starting point (15) [p.67]. Though in prin-

ciple it does not require the availability of the differ-
ential formulation, in practice one usésld variables

which are the natural ingredients of differential formula-

tion, and evaluates global variables by integratiofo “

obtain the algebraic equation for each control volume,

the surface and volume integrals need to be approximated

using quadrature formula&(15) [p.68]. CM, on the con-
trary, uses directlglobal variablesand takes experimen-

tal laws (balance laws, circuital laws, constitutive laws,

etc) in their discrete form.

e in FVM the control volumes are chosen according to

three schemes: theode centeredthe cell centeredand

the cell vertexschemes. For cell-centered schemes, the

control volumes are taken as the triangles themselves,

CMES, vol.1, no.1, pp.22; 2001

whereas for a vertex-based scheme the control volumes
are taken as the cells defined by the dual nieéPb)
[p.22]. CM starts with gpair of dual complexes. Phys-
ical variables have a well defined reference to the spatial
elements of a cell complex and its dual. The conservation
law is enforced on the dual polygon of any primal vertex:
in this respect (and only in this respect) it corresponds to
the vertex=based (or node-centered) scheme of FVM.

FVM does not use interpolating functions inside any pri-
mal cell, there is no particular reason that would limit this
approach, at least theoreticallgM, on the contrary, as
FEM, usesnterpolating function®n the primal cells.

in FVM and in the vertex-based scheme, the control vol-
ume is formed by the polygons of the baricentric subdivi-
sion or by Voronoi polygons. €M the control volume

is free and can be chosen at will, in particular it can be
chosen to give the maximum order of convergence.

FVM, which evolved from Finite Difference Method in
the early seventies (32) [p.93], starts considering rectan-
gular (or cubical) grids: unstructured grids, in particular
simplicial grids, are an exception (15) [p.233], (9). How-
ever, in recent years, FVM has re-gained popularity also
for complex geometries (where once FEM had no com-
petitors).CM on the contrary, starts directly with simpli-
cial complexes i.eunstructuredgrids.

FVM . Convergence up to fourth order is obtained by in-
terpolating the field potential usinzartesiangrids only,

as in FDM (20). On unstructured meshes, in particular
on non-orthogonal mesheght interpolation is usually
performed treating linear lines piecewise as if they where
straight; if the lines changes direction at the cell face an
additional error is introduced.(15) [p.221] “Any higher
order FVM schemes requires interpolation of higher or-
der at more than one cell face locations. This is man-
ageable on structured grids, but rather difficult on un-
structured grids. (15) [p.229] FVM “compared with al-
ternative methods has a limited order of accuracy, usually
no more than second order”.(26) [p.19]. It is without
doubt, however, that high order FVM has not received
particular attention. This is due, essentially, to the fact
that one of the first application of FVM has been in CFD
(Computational Fluid Dynamics), where the field func-
tion is, generally, “not smooth” and therefore higher or-
der methods do not provide an increase in accuracy which
counter-balances the augmented computational €d4t.
the use of interpolating functions in any primal cell per-
mits us to obtain a higher order of convergence, as in
FEM. Thus a fourth order convergence is obtained con-
sidering the field functions quadratic inside the simplex,
i.e. the heat flwaffineinside any simplex. In this case
the heat flux is evaluated exactly by the midpoint rule.
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