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32 INVERSE PROBLEM: |ITS GENERAL SOLUTION

Enzo Tonti / Istituto di Scienza della Costruzioni, Universitd di Trieste,
Trieste, Italy

1. INTRODUCTION

Every book on the calculus of variations starts with the typical phrase: '"Let us consider
a functional . . . ." Today much interest is given to the inverse problem: ""Given an
equation, does a functional exist that admits the given equation as its Euler-Lagrange
equation?" This is known as the inverse problem of the calculus of variations.

In the literature the statement of such inverse problem varies greatly from one
author to another. Let us examine these different statements.

The first distinction lies in the fact that some people limit the variational formu-
lation to differential equations ignoring initial or boundary conditions while others take
account of these.

In the first case the study is made on the mathematical form of the differential equa-
tion and the main interest is finding the lagrangian: we shall call this the formal inverse
problem.

In the second case the kinds of additional conditions (initial and/or boundary condi-
tions) are an essential part of the problem: we shall call this simply the inverse
problem.

In both cases one must say whether the equation may be transformed in another by
an integrating factor or not. We shall speak of extended and restricted variational formu-
lation, respectively.

We shall deal with the inverse problem in its full meaning (not in the formal sense):
a precise definition of it will be given in the next section.

We want to deal with the problem from a very general point of view, without distin-
guishing among ordinary or partial differential equations; among equations containing
first, second, ... order derivatives; single equations or systems of them; among differ-
ential, integral, integrodifferential equations or equations with retarded arguments, etc.
To make this possible we must use the operatorial notation.

A Brief Historical Survey

The history of the inverse problem has a curious feature: it is formed by two branches
that developed separately for about eighty years (Fig. 1).

Both branches started in the same year (1887): one with Helmholtz, which deals
with the formal inverse problem; the other with Volterra, which uses functional analysis.
The singular fact is that no papers of one branch quote a paper of the other branch: the
developments of the two branches are entirely separate.

Let us consider the first branch.

In 1887 Helmholtz [15] gave the necessary conditions in order that a single ordinary
equation of second order may be considered as an Euler-Lagrange equation.

In 1897 Hirsch [16] gave the analogous condition for an equation of order n.

In 1928 Davis [3] gave the conditions for a partial differential equation to be of vari-
ational kind: he introduced the integrating factor.

In 1941 Douglas [6] developed Davis theory.

In 1957 an expository article of Havas [14] appeared dealing with the search for inte-
grating factors.
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The second branch starts in 1887 with three papers on the theory of functionals [42].
In paper I (p. 104) the symmetry of the second derivative of a functional appears.

In 1913 Volterra published a book in French [41] in which he gave the condition for
the variational formulation and the formula to find the functional (p. 43).

In 1930 Volterra published another book in English [42] that contains the same
results (Ch. V, Sect. II, Sec. 2).

In 1933 Kerner [19] published a paper giving the result of Volterra (its reference 4).

In 1954 a book of Vainberg [40] appeared (in Russian) that contained the theorem on
the variational formulation. He quoted Kerner (its reference 42b).

In 1954 a book of Volterra and Pérés in French appeared [44] in which the theorem
on the variational formulation was given (p. 98).

In 1959 Volterra's book [43] was reprinted by Dover.

In 1964 Vainberg's book was translated into English.

In 1969 the paper [39] appeared connecting the two branches. With the intention of
giving an elementary exposition of the operatorial approach (the second branch), the
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author obtained the integrability conditions of Helmholtz and of other authors of the first
branch. (See [28], p- 14 and p. 204.)

A third branch originated in more recent times: it is centered on the problem of
giving a variational formulation to equations (including the initial/boundary conditions)
that do not admit one in a classical context, as, for example, the Fourier equation of
heat transfer. The inverse problem is here involved in a nonformal sense.

One of the first methods devised was that of adding the adjoint equation. This method,
inaugurated by Morse and Feshbach in their book ([23], p. 298), consists of the arbitrary
addition to a given linear equation of the adjoint homogeneous equation. The system of
the two equations is symmetric. The adjoint function has no physical meaning. This fact
and the fact that the adjoint problem introduces adjoint boundary conditions make the
method artificial.

In the above-mentioned book (p. 299) the authors say: "By this arbitrary trick we
are able to handle dissipative systems as though they were conservative. This is not
very satisfactory if an alternate method of solution is known . . . . " Today an alternate
method is known (see below) and the Morse and Feshbach technique may be abandoned.

Since 1953 many pseudovariational formulations have been devised: they have been
named "quasi" or "almost" or "restricted" variational formulations. The reader may
see [10] for a critical review.

The method that opened a new era is the one introduced by Gurtin in 1964 [11,12].
He showed how to give variational formulation to linear initial value problems. This
means that the initial conditions were taken into consideration from the beginning.

Gurtin's idea was the preliminary transformation of an equation into an integro-
differential equation and the introduction of the convolution product of two functions.

This method opened the way to giving variational formulation to many linear initial
value problems and a large number of papers appeared, mainly in engineering reviews.

The method of Gurtin was simplified in 1973 by the present author [38] who showed
that the preliminary transformation of the differential equation into an integrodifferential
equation is not necessary. The essential point is the introduction of a convolutive bilinear
functional to give a variational formulation to a linear initial value problem whose equa-
tion has constant coefficients. In this paper Gurtin's method was included in the opera-
torial approach (see Fig. 1).

The idea of adapting the bilinear functional to the given operator was brought up to
its apex by Magri, in 1974 [21]: he showed that every linear equation (not only those
with constant coefficients) admits a variational formulation giving the explicit way to
obtain the functional.

This result overthrows the common belief that equations admitting a variational
formulation constitute a privileged class. At this date to every linear problem one may
associate many functionals whose stationary value is attained at the solution of the prob-
lem. In general these functionals are not extremum at that point.

In 1978 Reiss and Haug [26] using Magri's result explored the possibility of finding
among the many functionals those that give an extremum principle for linear initial value
problems.

What about the larger class of nonlinear problems ? Some attempts have been made
to extend the method of adjoint equation to nonlinear problems [9]: the method suffers
the same drawbacks of the linear case.

In 1979 Telega [31] first tried to extend Magri's result to nonlinear problems: the
class of operators that was included was severely limited.

In 1982 the present author [32] showed that every nonlinear problem admits a vari-
ational formulation giving the explicit form of the functional. This result was further
developed toward practical applications in the paper [33]: in particular nonlinear initial
value problems have been solved using the Ritz method and the gradient method.

In the present paper I summarize the results of papers [32, 33] stressing the concep-
tual framework that makes possible the variational formulation to (practically) every
nonlinear problem.
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2. OPERATORIAL NOTATION

For better adherence to physical applications we shall consider operators with domain
and range in two different spaces U and V.

Let us remember that an operator A is said to be equal to an operator B if D(A) =
D(B) and if A(u) = B(u) for every u € D(A). An operator A is called a restriction of an
operator B if D(A) C D(B) and if A(u) = B(u) for every u € D(A). The operator B is
called extension of the operator A. Every element u, of D(A) such that A(u) = Oy is
called a null element of A ([2], p- 91), the set of null elements is called the null mani-
fold of A.

A differential equation is formed by a differential expression equated to zero. The
differential expression is called formal differential operator ([41], p- 146; [38]).

To form a full operator we must select a set of functions, for example those of an
assigned functional class. The operator so defined has a very large domain: any supple-
mentary boundary or initial condition gives rise to a new operator that is a restriction
of the initial operator.

To give a variational formulation to a problem, say N(u) = Oy, we need a real-
valued, bilinear functional V X U — R, denoted (v,u}), that is nondegenerate: we we shall
call it the scalar product of v € V and u ¢ U. The two spaces U and V are said to be
put in duality by the bilinear functional (v,u) and V is called the dual of U and is de-
noted by U*.

It is at this stage that we introduce norms on U and V such that the bilinear func-
tional be continuous in both arguments.

We call the adjoint of a linear operator L with respect to a given bilinear functional
{v,u) the linear operator L* that satisfies the relation

(Lp,q) = (L*q,p) (2.1)
for every p € D(L) and every possible q which will form the domain D(L*).
An operator L is said to be symmetric if

(Lp,q) = (Lq,p) (2.2)
for every p,q € D(L). Comparing (2.2) with (2.1) we see that in general it will be
D(L*) D D(L), i.e., the operator L* is an extension of the operator L. If the two do-
mains coincide we have L = L* and the operator is called self-adjoint.

Given a formal differential operator &, the formal differential operator #* that
satisfies the relation

fu gudx = fﬁ&e’*u dx + {boundary terms} (2.3)
is called formal adjoint. If ¢= £* the formal operator is called formally symmetric or
formally self-adjoint, the two names are equivalent ({18], p. 274).

If F is a real functional, i.e., F: D(F) C U — R and if N is an operator N: D(N) C
U —~ V=10U* and if

6F{u} = Fl'l{u;éu} = (N(u), du) (2-4)

is true with the condition D(F) = D(N), then the operator N is called the gradient of the
functional F and F is called the potential of N; N is said to be a potential Lerator The
symbol 6 is the usual one of the calculus of variations: 6F coincides with the Gateaux
differential of the functional.

To say that the functional F is stationary at u, means that 6F {u} =0 at u; € D(F).
The elements u, for which the functional is stationary are called critical points and the
set formed by them is called the critical manifold.

Let Nj(u,6u) denote the Gateaux differential of N and Njj(u; - ) the (linear) Gateaux Giteaux
derivative calculated in u.

At this point we are able to enunciate two forms of the inverse problem.
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Inverse Problem in the Restricted Sense. Given a problem N(u) = O, with D(N) C U and
R(N) € V= U* find a functional F, if any, whose gradient is the operator N.

Inverse Problem in the Extended Sense. Given a problem N(u) = Oy with D(N) C U and
R(N) C V = U* find a functional F, if any, whose critical points are the solutions of the
problem and vice versa.

The inverse problem in the "extended" sense requires only the coincidence of the
critical manifold of the functional F with the null manifold of the operator N. The inverse
problem in the "'restricted" sense requires a stricter link between N and F: N must be
the gradient of F with respect to a given bilinear functional. In this case it follows that
the domain of N coincides with the domain of F and moreover the null manifold of N co-
incides with the critical manifold of F.

Stated in another way: in the extended sense the gradient of the functional F will be
an operator N linked in some way with N and with the same null manifold while in the
restricted sense the gradient of F must coincide with N.

The inverse problem in the restricted sense was solved for the first time in 1913 by
Volterra [41,43] with the following theorem.

Theorem. The necessary and sufficient condition in order that an operator N: D(N) C U
— R(N) C V = U*, whose domain is simply connected, be the gradient of a functional is
that

(N (sp), q) = (N (u;q), p) (2.5)

Putting w(s) = su + (1 - s)u, the functional is

1
Flu} = F{u} + [ (Nw(s)), aw(s)/s) ds (2.6)
0

The condition (2.5) expresses the symmetry of the Gateaux derivative of N and we
shall call it the Volterra symmetry condition.

The condition (2.5) is necessary: the hypothesis that D(N) be simply connected (an
implicit hypothesis in the original Volterra formulation) is almost always satisfied in
practice. In fact, usually the domain is either a linear or a convex set. In the particular
case in which the operator is linear, condition (2.5) becomes

(Lp,q) = (Lq, p) 2.7

i.e., the linear operator must be symmetric (not necessarily self-adjoint).
In the linear case the functional (2.6) may be cast in the closed form

F{u} = F{up} + 1/2 (Lu, u) - (f, u) (2-9)

Historical Remark

Volterra's theorem is usually called Vainberg's theorem or Kerner's theorem. But
Vainberg [40] quoted Kerner (its reference 42.b) and Kerner [19] quoted Volterra (its
reference 4). The theorem was contained in the book published by Volterra in 1913 [41]
(in French) and in the book (1930) [43] (in English); the latter was reprinted by Dover
in 1959.

3. RELATIVITY OF SYMMETRY

The keystone for giving variational formulation of problems lies in the observation that
the symmetry of an operator is relative to the bilinear functional considered. Then,
contrary to a common belief, the adjoint of an operator is not necessarily unique, and
there can be many different possible bilinear functionals. Moreover, if a given operator
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does not satisfy the Volterra symmetry condition with respect to a given bilinear func-
tional we may look for other bilinear functionals with respect to which this condition is
satisfied. The following example will clarify this statement. The linear operator

D = {d/dt, u(0) = 0,u e C*(0,T)} 3.1
is not symmetric with respect to the cartesian bilinear functional
T
(viuye = [ ity u dt (3.2)
0
because its adjoint is
D* = {-d/dt, v(T) =0, v e AC(0,T)} (3.3)
But if we consider the convolutive bilinear functional
T
(via) g = [ v@-tuwat (3.4)
0

the adjoint becomes
D* = {d/dt, v(0) =0, v € AC(0,T)} (3.5)

Since D C D* the operator is symmetric with respect to the convolutive bilinear func-
tional.

This observation opens the way to the variational formulation for problems that do
not admit one in the "classical" sense.

At this point a question arises: given an operator, does a bilinear functional exist
such that it lets the given operator satisfy the Volterra symmetry condition?

The answer was given for linear operators in 1975 by Magri [21] and for nonlinear
operators in 1982 by the present author [32].

Magri has shown how to find a bilinear functional that makes symmetric a given
linear operator: the operative rule is the following.

Let L be a linear invertible operator with domain in a vector space U and range in
a vector space V. Let

Lu = f (3.6)

be the given problem.
Let us consider the cartesian bilinear functional on VX U

T
(v,u)o = [ v(t) u(t) dt (3.7
0

and let us suppose that the spaces U and V be such that the functional (3.7) is nondegen-
erate.
Let us introduce a real bilinear functional (v,v) on VXV

T T
v,v) = (v, Kv) = [ vt) [ Kk(t,s) v(s) ds at (3.9)
0 0

that is symmetric and nondegenerate. These two conditions are satisfied if k(t,s) = k(s,t)
and if the integral transform

T
wit) = [ Kk(t,s) v(s) ds (3.9)
0

is invertible.
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Let us define a new bilinear functional (v,u) on VXU by

T T
(v,u) = (v, La) = (v, KLu), = [ vt) [ Kt s)Lu(s) ds dt (3.10)
0 0

The bilinear functional (v,u) is nondegenerate because L is invertible. The operator L
is symmetric with respect to this bilinear functional and the solution of problem (3.6) is
the critical point of the functional

F{u} - F{u} = 1/2 (Lu, u) - {f,u) = 1/2 (Lu, Lu) - (f, Lu)
= 1/2 ( Lu, KLu), - (f, KLu), (3.11)

To extend this result to nonlinear operators we need to introduce the notion of inte-
grating operator.

4. INTEGRATING OPERATOR

An observation of capital importance in our problem is the following: the change of the
bilinear functional is equivalent to the application (on the left) to the given operator L of
a suitable linear operator R.

Let us show this equivalence in a particular case referring to the operator D defined
by Eq. (3.1). Let us define the convolution operator

cvit) = v(T - 1) (4.1)

and the convolutive bilinear functional

(v,u>c = (Cv,u>0 (4.2)

We have the symmetry of D with respect to (v,u)¢c, and thus
(CDu, u)o = (Du, u)c = (Du, u)c = (CDu, u)o (4.3)

that proves the symmetry of CD with respect to the bilinear functional (v,u}g.
More in general if L: U — V is a linear operator symmetric with respect to the
bilinear functional

(v,u>R = (Rv,u), 4.4)

where R:V — V is a linear, invertible operator, then RL:U — V is symmetric with
respect to the cartesian bilinear functional (v,u Yo

The operator R has the same role of the integrating factor used with differential
equations: we shall call it an integrating operator. The requirement that R be invertible
(i-e., kernel-free) assures that the bilinear functional be nondegenerate.

5. HOW TO FIND THE INTEGRATING OPERATOR

Let us start with a linear system of algebraic equations

Ax = b (5-1)
If we apply to both members the adjoint matrix A* we obtain the system
A*Ax = A¥b (5-2)

whose matrix is now symmetric with respect to the cartesian bilinear form
k
(x,x) = Z}ﬁ(x (5.3)
k

and then the solutions of problem (5. 1) make stationary the function
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f(x) = 1/2 (A*Ax, x) - (A, x) (5.4)

Then the matrix A* is an integrating operator, provided that it is invertible; if it were
not there would be critical values of f(x) that are not solutions of problem (5.1).

Is it possible to extend this procedure to general linear operators, say to differen-
tial operators ? Let us consider the operator

Du=f D ={d/dt, u©)=0, uc C{0,T), fc C(0,T)} (5.5)

If we consider the adjoint with respect to the cartesian bilinear functional (3.2) given by
(3.3), we see that it is applicable to both members of problem (5.5) only if the domain
of D¥ contains the given function f. This implies that f € AC(0,T) and that f(T) = 0.

While the derivability requirement is satisfied, because C(0,T) € AC(0,T), the
second condition is not, a priori, satisfied.

One may be tempted to add to f(t) the additional condition f(T) = 0. But we take as a
fundamental principle that of imposing no supplementary conditions on the functions en-
tering a problem different from the ones that are assigned to the problem. In fact, if
the given problem expresses a physical law or a geometric condition or a technical
process, every additional condition imposed would exclude possible source distributions
or possible configurations. Even the simple condition that the unknown functions be of
class c§° (0, T) would result in an inadmissible restriction of the domain and conse-
quently a restriction of the range.

Observing that the main hindrance to the application of the adjoint operator D* is
the final condition f(T) = 0, the idea arises of performing a preliminary transformation,
like the following:

T

fty = [ kit,s) £(s) ds (5.6)
0

in which the kernel k(t, s) must satisfy the following conditions:
k(T,s) = 0 k(t,s) = k(s,t)
and moreover be such that the integral operator K defined by (5.6) be invertible. In such

a way the final condition I(T) = 0 is satisfied.
One then obtains the integrodifferential equation

T T
J kt,s) d/ds us) ds = [ kt,s) f(s) ds (5.7)
0 0

that has the same solution of the given problem. Now we may apply the operator D*
(adjoint of D with respect to the ordinary cartesian bilinear functional):

T T
-d/dt [ kit,s) d/ds u(s) ds = -d/at [ k(t,s) £(s) ds (5.8)
0 0

Let K denote the integral operator (5.6). We may write problem (5. 8) as follows:
D*KDu = D*Kf (5-9)
We see that the operator D*K is the integrating operator we were searching for. In fact,
((D*KD)u, u), = ((Du), K(Dw) ), = ((Du), K(Du) Yo = ((D*KD)u, u), (5.10)
The corresponding functional is
F{u} = F{uy} + 1/2 (Du, KDu), - (f, KDu), (5.11)

If the operator K is also positive definite then the critical points of the functional
are points of minimum.
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The integrating operator is

T
Rv(t) = D*Kv(t) = -d/dt | K(t,s) v(s) ds (5.12)
0

that is, an integrodifferential operator.

It is not difficult to find integral operators K meeting these requirements: all Green
functions of linear positive definite operators may be used. For example, the inverse of
the operator

§ = {-az/dt?, u(0) = 0, w(T) = 0; uc C?(0,1)} (5.13)

is
T
w(t) = Kv(t) = f {-(t -s)Ht -s) - (T - s)} v(s) ds (5.14)
0

being H(t), the Heaviside function. It is w(T) = 0.

Then, at least for linear operators, we have succeeded in finding a variational for-
mulation under the hypothesis that L is invertible.

In particular, if L is symmetric with respect to the cartesian bilinear functional
putting K = L-! the functional

F{u} = F{ue} +1/2 ( Lu, KLu) - (f, KLu) (5.15)
reduces itself to
F{u} = F{up}+ 1/2 (Lu, u) - (f,u) (5.16)

that is, the classical one.
Then, in the linear case, the extended variational formulation contains the re-
stricted one when this exists.

6. NONLINEAR PROBLEMS
It is possible to extend this procedure to nonlinear problems. We have the following [32]
Theorem. Let us consider two linear spaces U and V such that a nondegenerate, real

valued, bilinear functional (v,u’ may be defined; let the two spaces be endowed with a
norm that makes (v,u) continuous in both arguments. Let

N = Oy 6.1)

be a problem, whose operator N: D(N) € U~ R(N) € V is such that its domain is simply
connected and it admits (linear) Gateaux derivative Nj(u;-) for every u e D(N). Let
N{*(u; - ) be its adjoint with respect to the bilinear functional (v,u): if Ny*(u;*) is
invertible for every u ¢ D(N) and D(N}) is dense in U, then for every operator

K: D(K) C V — U such that

(1) D) O R(N),

(2) R(K) C D(Ny™),

(3) is linear,

(4) is invertible, i.e., kernel-free,

(5) is symmetric, i.e., (v,Kv)= {v,Kv),

(6) is positive definite, i.e., (v,Kv) >0 (v # 0oy,
the operator N defined by
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N() = N!*(u; KN() (6.2)

has the following properties:

(a) it has the same domain of N;

(b) it has the same null manifold of N;

(c) it is potential (i.e., it satisfies the Volterra condition);
(d) it is a gradient of the functional

F{u} = F{u,} + 1/2 (N(w), KN(u)) (6.3)
(e) the functional is minimum at the critical points.
Proof. If uc D(N), for the properties (1) and (2) also u € D(N). Contrarily, if u € D(N)

it follows from (6.2) that u € D(N): this proves property (a).
If u, is a solution of N(u) = Oy, on account of the linearity of N *(u;+) and of K we

have

N = N'* s = N'* s = N'* : = .

N(u) Nu (uO,KN(uO)) Nu (u0 ,KOV) Nu (uo ’Ou) OV (6.4)
i.e., it is a solution of ﬁ(u) = Oy, too. Contrarily, if u, is a solution of ﬁ(u) = Oy,
since N;* and K are invertible, it is

K'l(N' *)—l(u sNu,)) =0 (6.5)

u 00 v

i.e., uy is also a solution on N(u) = O;. This proves property (b).

Since N{*(u;w) is linear on w from Eq. (6.2) we have

N ! ; — 1%y 1 ; + N'"*(u; 1 ; .

Nu(u 6u) (Nu )u(u KN(u), 6u) Nu (u KNu(u du)) (6.6)
Now

(ﬁ:l(u;éu), w) = <(Nl'1*)l'1(u;KN(u), su), w) + (Nl'l*(u;KNl'l(u;éu)), w) (6.7)
From the relation that defines the adjoint

(N!(u3p), @) = (N'*(u3q), p) (6-8)
by differentiation with respect to u we obtain

1t . = 1%y .

(N}, (@sp, 6w, @) = ((NI¥)!(usq, 6u), p) (6.9)
Relation (6.7) becomes

(Nil(u;du), w) = (N;u(u;w, su), KN(u)) + (N:l(u;w), KN&(u;cSu)) (6.10)
The second Gateaux derivative is symmetric:

N;u(u ;p,q) = d?/dadb[N(u + ap + bg)]= d%/dbda[N(u + ap + bq)]= Nuu(u ;a,p) (6.11)

From this property and from the symmetry of K it follows that

(N (us 0u), w) = (Nll(u;w), su) (6.12)

which proves the symmetry of ﬁﬁ' Then property (c) is proved.
Putting w(s) = su t (1 - s)u, the functional is given by the general formula

T T

F{u} = [ (Nw(s)), ow(s)/0s)ds = [ (N *w; KN(W)), 0w/0s ) ds
0 0
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T T
S (N! (w; ow/0s), KN(w)) ds = [ (sN(w), KN(w))
0 0

T

1
= f 8 [(1/2) (N(w), KN(w) )] = (1/2) [(N(w), KN(w) )],
0
= F{u0}+(1/2)<N(u), KN(u) ) 6.13)
Taking account of the symmetry of K we obtain
8F{u} = (6N(u), KN(u) ) = (N(l(u;du), KN(u ) = <N:1*(u;KN(u)), ou) (6.14)
and then if
6F{u} = (N:l*(u; KN(), éu) = 0 (6.15)

since 6u € D(N;) and this domain is dense in U, and (v,u}) is nondegenerate and con-
tinuous, it follows that

'¥(u; = .1
N * (w5 KN(W) o, (6-16)
which proves property (d).

Since

F{u} - F{u} = (1/2) (N(w), KN()} > 0 (6-17)
for every N(u) # Oy it follows that F{u} is minimum at the solution: this proves prop-
erty (e).

We remark that the continuity of the operator N is not required and that the Gateaux
derivative (not the Fréchet one) is involved. Q.E.D.

The theorem shows how, under mild conditions on the operator, one may give vari-
ational formulation in the extended sense to nonlinear problems without changing the
initial or boundary conditions or even the functional class of the functions entering the
problem. Moreover, it is always possible to find a functional that is minimum at the
critical points.

In the particular case that N is a potential operator the functional F does not reduce
to the potential of N. To have this inclusion a further generalization of the theorem is
necessary; this has been done in [33].

7. CRITICAL REMARKS

The preceding theorem enables us to give many variational formulations to a problem
whose operator satisfies few requirements. This means that one may actually charac-
terize the solutions of the problem N(u) = Oy as those elements of the domain of N that
make minimum some functional.

From this it follows that the common belief that the existence of a variational prin-
ciple for a given problem may be used as a criterion to accept or to refuse possible

physical laws is meaningless.
But the usual belief, often expressed, sometimes written and never proved, that

dissipative phenomena cannot be described by a variational principle is invalid even in

a classical context.
For example, if we throw a book on a table its motion is uniformly retarded accord-

ing to the law
mqt) = -kmg (7.1)

where k is the dynamic frictional coefficient. Nothing is more dissipative than this
motion! Yet the Lagrangian exists: it is
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L(q, q) = 1/2 m ¢*(t) -k m g q(t) (7.2)
Another well-known example is that of the equation of the harmonic oscillator with
damping term, i.e.,

m g(t) +hqet) +kqt) = 0 (7.3)
It admits the integrating factor exp (h/mt). The corresponding lagrangian is
L(g, @ = 1/2 exp (W/mt){ma*(t) + ka*(t) } (7-4)

Yet the motion is dissipative.

These two examples show that even on the classical ground a selection criterion
does not exist.

The fact is that the variational formulation is based on the form of the equation. We
know that every linear second order ordinary differential equation can be cast in self-
adjoint form, The transformation to a self-adjoint form changes the form of the equa-
tion, not the solution set, i.e., the substance. Then a mathematical requirement (vari-
ational formulation) that is based on the form (self-adjointness) when we let it be altered
by an integrating factor cannot be reasonably used as a discriminating criterion.

8. CRITIQUE OF THE HAMILTON PRINCIPLE

Let us consider the Hamilton principle in mechanics. This principle ignores the initial
condition on the velocity and adds a fictitious final condition. So the initial value problem

mg+tkq=0 q@) =a;q0) =b (8-1)

has an operator that is formally symmetric (with respect to the cartesian bilinear form).
The term arising from the integration by parts is

m {q(T) 6q(T) - q(0) 6q(0)} (8.2)
The given initial conditions imply 6q(0) = 0 and §q(0) = 0 and then only the second term
vanishes. Of course we do not know q(T). What do we do? We add a fictitious final con-
dition q(T) = ¢ so that 6q(T) = 0. The whole boundary term vanishes and the operator is
now symmetric. The functional is

T
Afq} = 1/2 [ {m@? - ke?} dt (8.3)
0

We arrive in this way at the Hamilton principle. In its statement the natural motion is
compared with those motions that respect the same initial and final conditions.

It is evident that in order to obtain a variational formulation we have had to alter
the problem: we have forgotten the initial condition on the velocities and added a ficti-
tious final condition. In operatorial language this means that the domain of the functional
is not the domain of the operator.

This expedient has invaded all physics: it is used in all evolution phenomena, in
field theories of classical, relativistic, and quantum physics.

There is no longer a reason to use the mathematical trick necessary for the Hamilton
principle when we know that the solution of the problem of motion makes minimum a
functional like

T T
Fla} = 1/2 | {4 - ft; 9,8} kit,s){d(s) - f(s39,8)} ds dt (8-4)
0 0

The lagrangian of this functional is no longer a function of q, g as in the classical case,
but is an operator. Many formalisms used dealing with the calculus of variations, like
the theory of exterior forms, cohomology theory, the notions of jets, spray, etc., can-
not be applied.
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Faced with such a loss one may be tempted to reject the extended variational formu-
lation considering in some way unacceptable an integrating operator.

But where is the line of demarcation between integrating factor and integrating
operator?

May we accept the integrating factor exp (h/mt) to make formally symmetric the
operator of the damped harmonic oscillator and refuse an integral operator that makes
the operator symmetric only because it destroys the differential nature of the equation?

What is more important: to change the form of the problem keeping intact the solu-
tion manifold or to change the solution manifold to preserve the form of the problem ?

A mathematician is free to change the additional conditions or the functional class if
the equation is for him a pretext to utilize a given algorithm. But a mathematician, a
physicist, an engineer cannot do the same if the equation describes a phenomenon or a
process that he must study or solve.

When we form an equation and the additional conditions to describe a process, what
we have in mind is to characterize the solutions of the problem among all functions of a
certain set. The form of the equation is immaterial. Two mathematical formulations
that lead to the same set of solutions are equally acceptable. So when we know the Green
function of an operator we may transform a differential equation into an integral one
without changing the solution. For example, the problem of the harmonic oscillator (8.1)
is equivalent to the integral equation

T
at) = %k/m | (t-s)H(t -s)q(s) ds +a+ bt (8-5)
0

The form is changed but the content is the same. The passage from (7.1) to (8.95) is
equivalent to the application of the integral operator

T
R(-) = J (t-s)H{t-s) - ds+a+bht (8-6)
0

in which the kernel is the propagator for the problem
Gty = f(ty  q(0) =0 q@0) =0 (8-7)

This is an example of application of an operator fo a given problem that changes the
form but not the content of the problem.

There is one last thing to be said on the Hamilton principle: we cannot apply to it
the direct methods of the calculus of variations, say the Ritz method, because we don't
know the final value q(T). On the contrary, a direct method has been applied with suc-
cess to the functional (8.4): see [33].
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