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VARIATIONAL FORMULATION FOR EVERY
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Abstract—It is shown that for every linear or nonlinear problem, whose solution exists and is
unique, one may find many functionals whose minimum is the solution of the problem. They are
obtained after a transformation of the given problem into another by the application of an
“integrating operator™: this transforms a differential problem into an integro-differential one. The
procedure used to obtain such functionals is straightforward and is described in detail. Examples
are exhibited and the numerical effectiveness of the method is tested. The variational formulation
so obtained contains the classical formulation as a particular case when it exists.

1. INTRODUCTION

THE PROBLEM of giving a variational formulation to all linear or nonlinear problems has
so far remained unsolved.

There is a precise test to find out whether a given problem has a variational formulation
or not. This test is the symmetry of the operator, if this is linear, or the symmetry of its
Gateaux derivative, if the operator is nonlinear.

The essential point, no usually stressed, is that the symmetry of a linear operator, like
that of a matrix, is not an absolute notion: it is relative to a bilinear form.

If the given problem does not meet this symmetry condition, one may try to transform
the given problem into another one that meets the symmetry condition.

Three methods can be used:

1. To transform the given problem into another one with the same solutions.

2. To change the bilinear form (which is implicit in a variational formulation).

3. To change the function.

As we shall see, the first two methods are equivalent (Section 3) so that every trans-
formation of the original problem corresponds to a bilinear form and vice versa.

There are equations that have long resisted a variational formulation. This is the case
of the Fourier equation (heat conduction) and of the Fick equation (diffusion), which was
given a truly variational formulation around 1964. This result was obtained by Gurtin[14],
who showed how to give a variational formulation to linear initial value problems having
an equation with constant coefficients. .

Gurtin’s idea was to make a preliminary transformation of an equation into an
integro-differential one and the introduction of the convolution product of two functions.
This method has led to the variational formulation of many linear initial value problems
and a great number of papers which have appeared mainly in engineering reviews.

Gurtin’s method was simplified in 1972 by the author[46] who showed that one may
introduce a convolutive bilinear form to give a variational formulation. to linear initial
value problems having an equation with constant coefficients.

The idea of adapting the bilinear form to the given operator was perfected by Magri
in 1974[24], he showed that every linear equation admits of a variational formulation,
giving an explicit method for obtaining the functional.

This result contradicts the common belief that equations admitting a variational
formulation form a priviledged class. At this stage every linear problem may be associated
with many functionals; for each of these the stationary value is attained in correspondence
to the solution to the problem. In general, these functionals are not extreme at this point.

In 1978 Reiss and Haug [34], using Magri’s results, explored the possibility of finding
among the many functionals those that give an extremum principle for linear initial value
problems.

But what about the larger class of nonlinear problems?
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Apart from the particular results obtained by the trial-and-error method applied to
single equations, a first attempt at an extension of Magri’s result was made by Telega in
1979(39] (see Appendix 5). The method we have followed may be summarized as follows.
To give a general procedure for transforming the given problem into another problem with
the same solution but such that it admits of a variational formulation. This idea evolved
from the theory of the integrating factor. By “integrating factor” is usually meant a
function or, more generally, a matrix whose entries are numbers of functions. In all cases
an essential requirement is that the factor be invertible to assure that no new solutions are
added to the given problem.

As an example let us consider the boundary value problem

mi+hij+kg=f O0<t<T 1)
q(0)=0 ¢(T)=0 q(t)eC*0,T). '

Since the operator is not symmetric, the problem does not admit of a variational
formulation. If we multiply the equation by the integrating factor

p(t) = exp (ht/m) (1.2)

the problem becomes

d
m%[exp (ht/m)£]+k exp (ht jm)q = exp (htjm)f (1.3)
which is symmetric. Now a variational formulation is possible. The functional is

T 1 1
Flq]= f exp (ht/m)[imq'2 -3 kq® —fq] de. (1.4)
0
In general the existence of the integration factor for the problem

f(t:9,4,4)=0 (1.5)

is put in the following terms: does a function r(t; q, §) exist such that the equation

r(t;4,4)(t;9,4,4)=0 (1.6)

is the Euler—Lagrange equation of a functional? An obvious requirement is that r(t, g, )
should not vanish identically for some function g(¢).

The problem stated in this form seldom admits a solution. The function r(¢; g, ¢) must
satisfy a partial differential equation that expresses the integrability condition. An explicit
solution of this equation in general is not possible: particular solutions can be found by
trial-and-error.

But why should we limit our search to an integrating factor and not consider an
integrating operator? When we differentiate both sides of an equation or perform a Laplace
transform or multiply a system of differential equations by a matrix, we apply an operator.

Then one may search for an integrating operator R such that the equation

R(q:/(t;9,4,4)) =0 )

has the same solution as the old one. If one puts the problem in this form one can prove
that not only does an integrating operator always exist but that there is an infinite number
of such operators. These integrating operators can be found explicitly, as can the
functionals.
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It turns out that the new equation has the form

L r(t,q(2), 4(1);7, 4 (1), (1) (z, 9(2), 4(7), §(x)) dr =0, (1.8)

i.e. the transformed equation becomes integro-differential.

Moreover, integrating operators can be found such that the functional is an extremum
at the solution and so that direct methods of the Calculus of Variations may be applied.
This statement is valid for linear or nonlinear equations, with total or partial derivatives,
of any order (odd or even). The equation may be of an integral or integro-differential type,
or it may be an equation with retarded argument, or it may even be a system of differential
or integral equations, etc.

In this way we may obtain a variational formulation for nonlinear initial value
problems that, up to now, have been excluded from a variational formulation.

In doing so, we lose the possible physical meaning of the functional; this is
counter-balanced by the fact that the minimization of the functional can be used for
numerical calculations. This is what we show in Section 7.

2. NOTATION

We shall use an operational approach because it is both synthetic and conceptually
simple. To make it technically simple as well, we shall clarify what is understood by the
operational notation.

In talking about equations, we mean any kind of equation; whether differential,
integral, or integro-differential; both a single equation and a system of equations and linear
or nonlinear. This paper deals essentially with nonlinear operators: when the operator is
linear this fact will be expressly stated.

An equation is usually associated with additional conditions that specify initial,
boundary and regularity conditions, as well as the functional class. The functions
considered may be real or complex-valued, scalar vector or tensor-valued. The set formed
of an equation and all additional conditions constitutes a problem. Every problem may be
written in the general form

N@u) =9, @1

where N denotes an operator and u is a function or a set of functions. This notation is
analogous to that of matrix theory, such as Lu =0 or L{u}={0}. The round brackets
in (2.1) are customary in the theory of nonlinear operators, just as the notation f(x) =0
is customary in the theory of functions.

The set of elements u that satisfies the prescribed initial or boundary conditions and
the given functional class is called the domain of the operator and will be denoted as D(N).
This domain will be conceived of as a subset of a vector space U.

The set of elements v = N(u) constitutes the range of the operator and will be denoted
by R(N); it is supposed to be embedded in another vector space V. §, denotes the null
element of the V-space. The two spaces U and ¥ may coincide: they are not considered
to be Banach or Hilbert spaces: a norm will be introduced after the introduction of a
bilinear functional.

A linear problem written in the form

Lu=f .2)

where L: D(L) = U-V denotes a linear operator, may be included in the general form
(2.1) by letting N(u) = Lu —f. This operator is nonlinear; in particular it is an affine
operator.

The notations N(u) =9, or Lu =f do not rule out that there may be functions,
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different from u and f, that make up the operator. So the problem

ity
may be written
L(p(x), q(x); u(x)) =f(x) 24
or simply
Lu(x) = f(x). @.5)

In an analogous way an equation that links a ‘“source” function f with a
“configuration” function u may be written

N(f;u) =0y (2.6)
or simply
N(u)=0, @7

depending on whether we want to stress the presence of an assigned function f(¢) or not.
We may remark that, in the case of differential operators, the linearity of the operator
implies both the linearity of the formal differential operator and the linearity of its domain,
which in turn requires homogeneous boundary or initial conditions.
Non-homogeneous linear boundary conditions make the domain a convex set and
render the operator nonlinear (in particular affine).
Let us perform the following decomposition

N@ +ew)— N(u) = L(u; ew) + R(u; ew) 2.8)

where w is such that u + ew belongs to the domain of N for every u.
L is a linear operator on w that contains « in an arbitrary way; R is a nonlinear operator
on w also containing u such that

lim R(u; ew)/e =9, for every ueD(N). 2.9
=0

The limit is defined by the topology of the V-space. The element v = L(u;ew) of the
V-space is called the Gateaux differential of N at u and the operator L = L(u; .) is called
the Gateaux derivative of N at u.}

One may write L(u;.)= N, (u;.). From eqn (2.8) and taking into account eqn (2.9)
we have

Ni(u;w)=N,w=d/de[N(u + ew)]._,. (2.10)
The second notation makes clear the linearity on w (no brackets), while the first one points
up the dependence on u. In other words, the operator N, (u; w) is an operator linear on
w and has variable coefficients that are formed of  and its derivatives. Letting du = ew,

the linear part of the variation (Gateaux differential) may be denoted by N (u). Then

ONu)= N (u;déu)=Nu. 2.11)

+ In the author’s paper[47] the Gateaux derivative was erroneously called the Frechét derivative.
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The symbol § applied to operators is an extension of a similar symbol used for
functionals in the Calculus of Variations. If F denotes a functional, one may write

OF[u] = Flu; éu] = F,ou. (2.12)

To give a variational formulation to a problem we need a bilinear functional. The
reason for this may be seen by observing that there is a surprising analogy between the
notion of an operator, i.e. a mapping between two function spaces U and ¥, and that of
a vector field in 3-dimensional space. A vector field may be defined as a mapping of points
of the 3-dimensional space on vectors of another 3-dimensional space. In this analogy, the
point of the 3-dimensional space corresponds to the point of a function space, i.c. a
function; a line in 3-space corresponds to a one parameter family in function space. The
notion of a scalar product between a vector v and an infinitesimal vector dr in
3-dimensional space corresponds to a bilinear functional (v, du) where du e Uand v € V.

Now the question of knowing whether a given problem admits of a variational
formulation is similar to the question of knowing if a vector field admits of a potential.
In the latter case the necessary condition is that the circulation »(r) - dr along a line be
dependent only on the extreme points. In the former case, the analogous condition is that
the “circulation” (N (u), éu ) must be dependent only on the extreme functions of the
“line” in function space. The reader may find an elementary exposition of these notions
in [47].

A bilinear functional that we shall denote as (v, u ), is a map B: ¥ x U—R that must
fulfil the following requirements.

(1) It must be real-valued (even if U and V are vector spaces over the complex number
field).

(2) It must be bilinear over the real number field.

(3) It must be non-degenerate, i.e.

if {(v,uy=0 forevery veV then u= ¢,
if (v,uy=0 forevery uelU then v, = ¢,.

The real number s = (v, u ) is then called the scalar product of the two elements v € V
and u € U; the V-space is called the dual of the U-space and one writes ¥ = U*. One also
says that U and V are put into duality by the bilinear functional (v, u ), which is called
“canonical” to distinguish it from other possible bilinear functionals.

The bilinear functionals used in practice are of the following kinds. Let us denote as
v - u the local scalar product, i.e. a scalar valued function formed of two vector-valued or
two tensor-valued functions of opposite variance, such as

Xk: v(x)u*(x) %‘: (X (x). (2.13)

In the case of tensors of second rank, the two tensors must have the same symmetry: both
must be symmetrical, as in the case of continum mechanics with stress and strain tensors,
or both must be anti-symmetrical, as in the case of the electromagnetic tensor F,,G*.

If we denote by £ a subset of R” and by x a point of @, i.e. x = (x, x% ... x"), we shall
take as “‘canonical” the bilinear functional

(vuy= f v(x) - u(x) dQ. (2.14)

This is the bilinear functional usually employed in physical theories. It is not the most
general bilinear functional. If 4 : U-U and B : V>V are two linear invertible operators
whose domains are the entire U- and V-spaces respectively, a more general non-degenerate
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bilinear functional is

(vu)= va(x) - Au(x) dQ. (2.15)

The requirement of non-degeneracy is a restriction both on the pairs of spaces U and
¥ and on the mappings N that are candidates for a variational formulation. For example
a problem such as

divD(x) = p(x)

{n-Dlsl=0 (2.16)
cannot as it stands be a candidate for a variational formulation, because on the spaces
of scalar-valued functions p(x) and those of vector-valued functions D(x) a non-
degenerate bilinear functional cannot be defined.

Of course, to problem (2.16) the corresponding adjoint problem may be added
D(x) = —¢ grad V(x) with SuS; = 6Q. @2.17)
V(x)ls,=0 ‘

The whole problem made up of (2.16) and (2.17) becomes a possible candidate for a
variational formulation because on the spaces of scalar valued functions p(x) and V(x)
one may define a non-degenerate bilinear functional.

Note—the two spaces U and V are required to be linear over the real or complex
number field. To make a variational formulation one needs a real-valued, non-degenerate
bilinear functional over the real number field.

In dealing with complex-valued functions, one has to deal with hermitean functionals
(in U x U) or sesquilinear functionals (in ¥ x U): these are complex-valued non-
degenerate functionals that fulfil the requirements

Qwluy=A{v|u) (v|iu)y=Av|u) (2.18)

where 4 is an arbitrary complex number and 1 its complex conjugate. These functionals
are linear with respect to the first element and “half-linear” for the second one. To deal
with the variational formulation, one must construct the functional on V x U

<v,u>=§[<v|u>+m1 2.19)

which is real-valued, non-degenerate and bilinear on the real number field. Every operator
that is hermitean with respect to the sesquilinear functional (2.18) is automatically
symmetric with respect to the bilinear functional (2.19).

Once a bilinear functional has been introduced it is natural to introduce a topology
in both spaces in such a way that the bilinear functional will be continuous with respect
to both arguments. Such a topology is said to be compatible with duality.

For example, if we have an operator N whose domain is that of differentiable functions
defined in (0, 1) that vanish at x = 0, and if the bilinear functional is the usual one (2.14),
one may choose D(N) = U = C'(0, 1) and R(N) = V = C(0, 1). The topologies induced by
the norms

Ju] = max [uGo)l + W] ol = max o)l (2.20)

are compatible with duality. To prove this let us observe that the two spaces are complete
and if |u, —uy| <e¢

<0, th) = (0, 1) | = 1€ty — ) | =

Sfl [v(u, —uy)| dx =fl lv|lu,—uy] dx < (max |v])-e- 1. (2.21)
0 0

1
J v(u, — uy) dx
0
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Since v is continuous and the interval is finite the property follows. Once the continuity
is assured, if u belongs to a dense subset D of a linear space U the condition {vy, u) =0
for every u € D assures that v, is the null element of V.

3. VARIATIONAL FORMULATION

Let F be a functional, i.e. a mapping D(F) « U— R. If we consider a variation du we
can write the corresponding variation éF as

S5F[u] = (E(u), ou) 3.1)

as is usual in the “&-process” of the Calculus of Variations.

The relation between E and F can be expressed by saying that the operator E:
D(E) c¢ U—V = U* is the gradient of F, and in turn that the functional F is the potential
of E. An operator E that is the gradient of a functional is called a potential operator. An
element u, such that 6F|, =0 for any u, = U is called a critical point of the functional
F. This is said to be stationary at u,.

The element v = E(u) is called the variational derivative of the functional F, or even
its functional derivative [30]. When E is a differential operator, if we denote by & the
corresponding formal differential operator, the equation

Ew)=0 (3.2)
is the usual Euler equation while
Ew)=0, 3.3)

is the Euler problem. We may remark that a variational formulation makes sense for a
problem, but not for an equation: both boundary and initial conditions are essential
ingredients of a variational formulation.

The problem of finding out whether a given operator is the gradient of a functional
and of finding the functional is known as the inverse problem of the Calculus of Variations.
Conversely, the simple problem of finding the gradient of a given functional may be called
the direct problem.

We now have the concepts needed to distinguish between two kinds of variational
formulation:

(a) Variational formulation in the restricted sense
Given a problem N(u) =9, with N: D(N) « U—V = U¥, find a functional F, if any,
such that the operator N is the gradient of F, i.e. such that

6F = (N(u), bu). (3.4)

This implies that the solutions to the problem are the critical points of the functional F and
vice versa.
This form of the inverse problem is the one given by Hirsch in 1897 ([19], p. 52).

(b) Variational formulation in the extended sense

Given a problem N(u) =0, with N: D(N) € U~V = U*, find a functional F, if any,
whose critical points are solutions to the problem and vice versa.

This implies that for a given operator N an operator N exists such that

OF = (N(u), ou) (3.5

and the problems N(u) =0, and N(u) =0, have the same solutions.
This statement is less demanding than the former one, because it requires only that the
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critical points should coincide with the solutions, without positing the additional require-
ment that N must be the gradient of the functional. The gradient of the functional Fwill
be another operator, say N, that will be linked in some way to the operator N.

Figure 1 shows the relation between the two formulations.

This form of the inverse problem is the one given by Davis in 1928[5] and used by
Douglas in 1941 ({9], p. 71).

The existence of the variational formulation in the restricted sense for a given problem
is based on the following fundamental theorem.

Theorem 1 (Volterra, 1913 [52])

In order that an operator N: D(N) « U-R(N) < V =U* be the gradient of a
functional it is necessary that the circulation of the element v = N(u) along any reducible
closed line contained in D(N) vanishes. Taking an infinitesimal parallelogram the vanishing
of the circulation is expressed by

(N, ) ={N, ), (3.6)

i.e. the operator N, (u;.) must be symmetric.

If the domain D(N) is simply connected, condition (3.6) becomes sufficient. In this case
if n(1) denotes a one-parameter family of elements (a “line” from u, to u) with n(0) =u,
and n(1) = u, the functional is given by

A=1

F[u]=F[u0]+J

A=0

<N(n('1)), %> dA. (3.7

A historical remark

While the symmetry condition (3.6) was established by Volterra in 1887 ([53], p. 104),
the preceding theorem was established for the first time by Volterra in 1913 ([52], p. 47),
where he wrote:

“On peut tirer de méme de la formule (12) la condition pour que

b
f X |xg(6),n]16x(n) dn

a

soit la différentiale totale exacte d’une fonction de ligne que nous saurons alors calculer.

Il faut que
X |[x50), n, 1| = X7 | [xa(e), &, mll,

le second paramétre indiquant toujours dans les expressions precédéntes, le point ou I’on
effectue la dérivation.
C'est la condition de symmétrie de la dérivée seconde que nous avions déja indiquée.
On peut énconcer le résultat précis suivant. La condition nécessaire et suffisante pour

SFlul=0 SFul=0
i
|
strict| extended strict
|
1
|
|
Nlu) "ﬂv S Mu)= ﬂv

Fig. 1. The restricted and extended variational formulation.
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que

X |[xa(2), 7l
soit la dérivée d’une fonction de ligne
Fxaol
est que

X'\ [xi(), n, €11 = X" [[x2(2), & nll.

On saura calculer cette fonction de ligne.
On aura

5 b
FIlx®O]l — F ()] = J ds f X10xetts), nll S g

Furthermore, we observe that in 1918 Evans published a book in which he wrote
([10], p. 23]: “The condition

¢"[C| MM = ¢"[C| M M]

.. .was originally stated by Volterra.”

In 1933 Kerner ([21], p. 550) reported these results and quoted Volterra (his Ref. [4]).
In 1964 Vainberg ([50], p. 56) gave the same results, quoting Kerner (his Ref. [42b]). In
1969 Tonti [47] popularized these results, quoting Vainberg (his Ref. [1]). The result of all
this is that some authors attribute this theorem to Kerner see [30], [32], p. 42), ([39], p. 176);
others to Vainberg (see [3], p. 33), ([33], p- 75), ([51], p. 1179) and still others to the present
author (see [38]).

The fundamental observation is that the symmetry condition involves the use of a
bilinear functional. This implies that if an operator does not satisfy the symmetry condition
(3.6), one may change the bilinear functional. This is one key for giving a variational
formulation to problems that, when classical bilinear functionals are used, do not admit
of one.

We may summarize this fact in the following sentence. The variational formulation
requires symmetry, and the symmetry is related to a bilinear functional.

Let us take an example. The operator D given by

D ={d/dt,u(0)=0,u e C'(0, T} 3.8
which is not symmetric with respect to the usual bilinear functional

(vu)= ~[Tv(t)u(t) dt 3.9
0

becomes symmetrical with respect to the convolutive bilinear functional
T T
(v,u>c=J o(T — Du(t)de =J v()u(T — 1) dt (3.10)
0 0

as is easily shown [46].
If C denotes the convolution operator defined by

Co(t)=v(T—1) 3.11)
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we may write
(v,u),={Cv,uy=_v,Cu) (3.12)

because C is a symmetrical operator.
The symmetry of D with respect to the convolutive functional, i.e.

(Du,u’y,={Du’,u), (3.13)

is equivalent to the statement that CD is symmetric with respect to the canonical bilinear

functional
{CDu,u’y ={(Du,u’y,={(Du’,uy,={CDu’,u). (3.19)

This is a general fact: the change in bilinear functional is equivalent to pre-multiplication
by an operator. .

This result implies that to say that the symmetry of an operator is related to a bilinear
functional is equivalent to saying that the operator may be made symmetric by application
of an integrating operator.

Thus, instead of changing the bilinear functional we may search for an integrating
operator. This is a second key to use in trying to give a variational formulation.

For linear operators, the choice of one or the other point of view is a matter of taste,
but for nonlinear operators it is simpler to use the canonical bilinear functional and apply
an integrating operator (otherwise the bilinear functional would depend on u, i.e. using
the language of differential geometry, it would be a local bilinear functional).

It is easily seen that in this equivalence the requirement that the new bilinear functional
be non-degenerate is equivalent to the requirement that the integrating operator be
invertible (i.e. kernel-free).

4. EXTENDED VARIATIONAL FORMULATION

In exploring, from a general point of view, the possibility of finding an integrating
operator for a given operator we shall take an induction approach.

In matrix theory a system Au = b may always be transformed into another system by
pre-multiplication by a matrix C. If C is invertible, the new system CAu = Cb has the same
solutions as the old one. In particular, this is the case when the adjoint matrix 4* is
invertible: the system becomes 4*Au = A *b. In this case the vector u that solves the system
makes the function stationary

fu)=|4u—b| @.D

and this gives rise to the least square method.

Thus, if 4 is a square matrix and if 4 * is invertible, the solution of the original system
Au = b makes the function (4.1) stationary.

In general, the same procedure cannot be performed on differential operators. To show
why, let us consider the linear differential operator

D= {d%, u(0)=0, ueC'(0, T)} 4.2)

and the problem
Du=f with feC(0,T). 4.3)
The adjoint operator is

D*={——%,v(T)=0,veAC(O, T)} 4.9)
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where AC(0, T) denotes the class of absolutely continuous functions. It is true that D*D
is a symmetric operator, but D* cannot be applied to both the members of the problem
(4.3) because f does not fulfil the final condition /(7)) = 0 and thus does not belong to the
domain of definition of D*. When the method is applied to differential equations, it is
assumed that fe D(A4) (125], p. 496).

In other words, the domain of the operator D*D is a restriction on the domain of D.
If Du = fis an equation representing a physical law, all elements f € R(D) describe possible
sources. Thus, the restriction of the domain required by the application of the operator
D* excludes elements f and, therefore, possible source distributions: this cannot be
accepted.

We may think of applying to the problem (4.3) an integral operator, K: R(N )-U, ie.
we may try to perform an integral transformation, so that f will be transformed into a new
function [ that fulfils the final condition f(T) = 0. We may choose an operator like the
following

= jrk(t, T)f(r)dr 4.5)
0

with the condition k(7,7)=0. Or we may choose an integral operator of the kind of
Volterra

ft)= J (1, 1) (x) dr. (4.6)
0

The problem (4.3) becomes
KDu = Kf. 4.7
We can now apply the operator D*
D*KDu = D*Kf. (4.8)

The new problem (4.8) has the same solutions as the given one if D* and K are invertible
operators. Moreover if the integral operator K is symmetrical, the operator D*KD is also
symmetrical, and thus the Volterra condition (6.1) is fulfilled. This means that problem
(4.8) admits of a restricted variational formulation and thus, problem (4.2) admits of an
extended variational formulation.

As we can see, the role of the integral operator K is to modify the range of D, making
it “digestible” by the operator D*. This problem does not arise in matrix theory because
the domain of the matrix is the whole vector space.

The procedure indicated above may be extended to nonlinear operators, as is shown
by the following theorem[40].

Theorem 2
Let us consider the problem

N@) =0, 4.9

where N is a nonlinear operator N: D(N) € U—R(N) = U* such that (1) the solution of
the problem exists and (2) it is unique; (3) D(N) is simply connected; (4) N(u;.) exists;
(5) D(N)) is dense in U; (6) N,*(u;.) is invertible for every u € D(N).

Then for every operator K that fulfils the following conditions: (7) D(K) > R(N); (8)
R(K) = D(N.*); (9) it is linear; (10) it is invertible; (11) it is symmetrical, the operator N
defined by

N(u) = N*u; KN(u)) (4.10)
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has the following properties: (a) its domain coincides with that of N; (b) the problems
N@) =0, and N(u) =0, have the same solution; (c) it is a potential operator.

From properties (b) and (c) it follows that the solution of problem (4.9) is the critical point
of the functional

Flu] = % (N(u), KN(u)) @11

whose gradient is the operator N. The functional vanishes when the solution is reached.

Moreover if (12) K is positive definite, then (d) Flu] is minimum at the critical point.

Proof. Figure 2 will help us to simplify the proof: the operators are represented by
pipes, the ingress represents the domain, the egress represents the range.

It can be easily seen that conditions (7) and (8) are represented by the fact that the
ingress to the second pipe contains the egress from the first one.

The operator X is represented by the central part of the pipe. It is then clear that the
operators N and N have the same domain: (a) is proved.

The linearity of N/, and of N.*, together with the linearity of K, also implies that
N*(u; Ko) is linear on ¢: this assures that @, is mapped into itself. Then if u, is the
solution to problem (4.9), it follows that

N(uo) = Ni¥(uo; KN (ug)) = N *u; KOy) = N *(up; 01) = 0y (4.12)
This means that u, is also the solution to the problem N(u) = @,.
Conversely, let u, denote a solution of N(u) = @,. Conditions (6) and (10) assure that
0, is mapped into itself. In fact, since
N *(ug; KN (up) = By (4.13)
if we apply (N.*)"' to both members
KN(up) = (N*)"'0, =0, 4.14)
and then apply K~' we obtain
N(u) = K~'0, =0, 4.15)

Then u, is also solution of the problem (4.9). Conditions (2), (6) and (10) assure that a
sequence like, for instance, that represented by a dotted line in Fig. 2 cannot arise. Thus,
(b) is proved.

integraling operator given operalor

O(NJ =D(N)

R (linear) N (non linear)

Fig. 2. Relation between the operators.
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To prove the existence of the potential one may perform the test of symmetry of N,:
if this is satisfied and since the domain is simply connected for condition (3), the existence
of the potential follows. Alternatively one may find the potential directly: we shall follow
the latter method, while the former is developed in Appendix 1.

We have (see (3.7))

L S ! 0
L <N(n), £> di=| <N:,*(n; KNG, a—}> s

r1 a 1
-] <N;<n;—a—%>, KN(n)> di = L <alai”—) KN(n)> di

1

rt T 1 ‘
=7 [5 (N@), KN(n)>] di = [5 (N(n), KN (n)>l

1 1
=5 (N(u), KN(u)) — 3 {N(up), KN (u5)). - (4.16)
Equations (4.16) tell us that a functional exists and is given by
_ 1
Flul= 3 {(N(u), KN(u)). “4.17)

Let us prove that the gradient of F is N

8F[u] = (N(u), SKN(u)) = (N(u), KSN(u)) = (N(u), KN (u; 6u)) = (N (u; u),
KN(u)) = {N*(u; KN(u)), du) = (N(u), ou) (4.18)

then the vanishing of F[u] implies the vanishing of the last term for every du. Since du
belongs to the domain of N, which is dense in U, and since the bilinear functional is
continuous, it follows that the condition 6F[u] = 0 implies N (#) = §,. This means that the
critical point of the functional coincides with the solution to the problem N(u) = 9, and
therefore with that of the given problem.

Finally, if condition (12) is fulfilled from the definition of positive definite operator we
have

F-[u]=%<N(u), KN(u)>=%<v, Kv)>0 4.19)

for every v € D(K) and v # 9. Since Flu,] = 0 it follows that F is minimum at u,: property
(d) is thus proved. (End of the proof.)
The linear operator

R(u;v)= N *(u; Kv) (4.20)

transforms the given operator N into a potential operator N(u) = R(u; N(u)) and is,
therefore, an integrating operator.

The theorem then gives, under generous conditions on the operator N, an infinity of
integrating operators, i.e. one for every operator K that fulfils the five conditions (7)-(11).
This theorem then provides an extended variational formulation for nonlinear problems.

The relations between the various operators is shown in Fig. 3. Figure 4 shows the flow
diagram of the operations to be performed in order to give a variational formulation to
a given problem.

5. HOW TO CHOOSE THE INTEGRATING OPERATOR

The integrating operator for an operator N has the general form of (4.20). The integral
operator K must be invertible, symmetric, wiht a range contained in D(N.*).



1356 E. TONTI

]
O(N)— N
K
Rix)—
N
om;'/—L g
v v=uy*

DN/ —

- R(N)

IS X3

Fig. 3. Relation between the operators.

linear operotors /\ non linear operoftors
yes ~operator not

linsar ?
Mu)=0

given problem given problem

Gateaux
derivative

adjoint of
Gatooux denv.

7

0!,
X
that  fulfils
condit 7-11

Flul exists

Flul exists Flul exists

Flul
stotionory

Flul Flul
stotionary minimum

Fig. 4. The flow chart to give a variational formulation to a problem.

One source of such operators is the inverse of symmetric positive-definite differential
operators: these are integral operators whose kernel is the Green function of the differential
operator. So if one considers the operator

2
L ={—%,u(0)=0,u(T)=0,u e C¥(0, T)} ¢
which is symmetric positive-definite (and thus invertible), its inverse is

Kv=fr[—(t—r)H(t—r)+(T—1:)%i|v(r)dt (5.2)
0

where H(z) is the unit-step Heaviside function.
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In principle every Strum-Liouville formal differential operator

d d
£ = —E[P(I)a—t]'i'qa) (5.3)

with p(t) > 0 and g(¢) = 0 in (0, T), associated with boundary conditions that make the
operator L symmetric and invertible, gives rise to an operator K = L~ ' that is symmetric,
invertible and positive definite. Table 1 gives some of these operators. The six Green
functions of Table 1 are plotted in Fig. 5.

The use of Green function to form integral operators K for problems of several
variables has two serious drawbacks.

The first is that Green functions for partial differential operators are known only for
very simple domains, like circle, rectangle, half plane, etc. When one considers the great
flexibility of the finite element methods for domains of arbitrary shape, this appears as a
serious defect. The second is that even for simple domains the Green functions are
expressed by series. In numerical applications one must truncate the series. Unfortunately
the resulting kernel is degenerate and then X is not invertible. It is invertible only in the
subspace spanned by the functions contained in the truncated kernel.

Fortunately we can easily find another method to determine an integral operator K.
To show it we shall take an inductive approach.

Let us consider at first problems in one variable, say f, and suppose that the interval
is (0, 1). Let ¢(¢) be a function that belongs to the domain of N.*. In practice, since N.*
is a linear operator, the boundary/initial conditions associated with it must be homoge-
neous. Then @(¢) must satisfy these homogeneous boundary/initial conditions. Let us
suppose that these are w(0) =0 and w(1)=0. Let us consider the integral transform

w(t) =Ko = L f@ D)oo ()w(r)d 4

where (up to now) f(¢, t) is an arbitrary function symmetric in the two variables z and 7.
The function w(¢) satisfies the same homogeneous boundary conditions of ¢(¢) and then
it belongs to D(N.*). If we can find a function f(z, t) that makes the operator K positive
definite it will be surely invertible.

Table 1. Integral operators K for ordinary differential equations

given operator (symmetric) inverse operator (symmetric)
addit. conditions T
Formel K (t.r) wlT) dv ositive
operator v o= B v P i
initial| final ag definite
dz t
1 - ez ui@r=e u(To=0 elt,T)=~{t-¥) H(t-¥ )+(T—'e)—7r— yes
d2 .
2| - T u@r=o u(TO=0 g(t,r)==Ct-T) H(Lt-T X+ T-T2 yes
d
3i -C Yy —_ u¢Tr=0 9(t, ¥ I)=H(T~-t-T) (Caconvol. operator) not
dz —_— u(TOo=6
4| -C — . (t,z)=(T-t-v) H(T-t-T) not
dt2 —_— u(T)=0
1 1 1
u(8 =0 u(THr=08 glt,T o= —(t=-TIPH(L-T I+—A{T L3 +=B(TOL2
d+ 6 6 2
51 + . . T i . yes
dt+ ucer=e ulTO=0 z=1—?iﬂ(z)=—(1—z)2(1+22); B(TO>=(1-2)>2Tz
1 1 1 1
u¢9r=9 ulT>=0 9(t.t’)=a( t—‘c)H(T—z)*g—l-mz)t+4—l-8(t)t+-ﬂl:(‘z)t°
ds . . T )
6| - Toe u(@éd=o ulTO=0 z=1-}-; R(T )=z3(622-15z+18) yes
Uce =0 licTr=0 BT I=Tz3(~322+72-4); C(r)I=T2z3(z2-2z+1)/2
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bed
Green function of the operator -D ucto Green function of the operator —Deu(t)
boundary conditions u(@J)=@ u(T)=9 boundary conditions u'i8r»=9 ulTi=g

Green function Green functicn of the operator

operator -CDul(t)?

2
final condition =CD u(t) u(Tr=@ wu'(T>=0

Green function of the orerator [
Green function of the operator -0 ulty

4
+D uCt) = ‘@)= v =
u "' iar=0 W' (Tr=B u(@r=8 u'{@r=0 u''(Bl>=0

u(9d =0 ulTHr=@

ulTi=@ u'(Tr»=B8 u''(Tr=P

Fig. 5. Green functions to form the operation J¢".

A first condition is that f(¢, ) must not be a polinomial; in this case the kernel would
be degenerate. Let us take, e.g., the function f{z, ) = exp (¢7). It will be

{(v,Kv)= fl v(t)J‘1 exp (11)e (o (t)v(r) dr dt
0 0

=§Ki, lt"v(t)(P(t)dtJ11K0(1)¢(T)d7
0o K Jo

0

[
=[V]8
x| =

(mg)* = 0. (5.9
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Let us observe that the momenta m, are simultaneously zero if and only if v(¢) is identically
zero. It follows that for v(z) # 0, is

{v,Kv)>0. (5.6)

Thus we have found an integral operator that satisfies all conditions of Theorem 2.

In the case that the boundary/initial conditions involve the vanishing of the first
derivatives, say w’(0) = 0 it is enough to choose a function ¢(¢) that satisfies both the
condition ¢’(0) =0 and ¢(0) = 0. Since

wi(t) = L o) +fo'Ole () (z) d (5.7

it follows that w’(0) =0.
For 2-dimensional problems an integral operator may be the following

Kv = L L exp (x&yn)o (x, y)o(&, nv (¢, n)d¢ dn (5.8)

where @(x, y) satisfies the homogeneous boundary/initial conditions of D(N.*).
This method of finding operators X is particularly suited for numerical applications.

Remark 2

If the operator N is linear and symmetric, so that a restricted variational formulation
exists, the extended variational formulation contains it as a particular case. In fact if we
choose K = L~! the functional Flu] is reduced to

Flu] =%<Lu, KLu) =%<Lu, u)y = Flu]. (5.9

Then for linear operators the extended variational formulation includes the restricted one
as a particular case.

What happens if the operator K is potential but nonlinear? We need a generalization
of Theorem 2 to include operators K that depend on u and are symmetric, i.e. such that

(Y, K(u; 0)) = (P, K(u; ¥)). (5.10)

Such a generalization is given in Appendix 2.

Remark 3
The condition that the range of K be contained in the domain of N,* si required to
give meaning to the expression N,*KN(u). But if we start with the functional

Flu] = % (N(u), KN(u)) (5.11)

and choose any K that is positive definite and is applicable to N(u), we have a
generalization of the least squares method. For V' =U and K =1 (I is the identity
operator), we obtain the least squares method.

In conclusion, if we give up the condition D(N *) o R(K), the functional of the
extended variational formulation includes that of the least squares method as a particular
case. We stress the fact that the extended variational formulation is not in itself a
generalization of the least squares method because it requires the condition
D(N*) > R(K).
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6. APPLICATIONS

To explain the procedure to be followed in practice, we here give two examples.

The procedure is divided into two steps. First, we test whether the given operator
satisfies the six conditions of Theorem 2 and second, we select an operator X that satisfies
the five conditl\gns of Theorem 2 (and, if possible, the sixth one).

Example 1

A first order linear ordinary differential equation with initial condition.

Let us start with a very simple example. We want to give a variational formulation in
the extended sense to the problem

d/deu(t) =f(¢) 0<tgT
uw0)=0 ueC'0, Ty [fECO,T)

6.0

that does not admit of a classical variational formulation. It is an initial-value problem.
As a first step, we must check whether the given operator satisfies the six conditions of
Theorem 2.

Let us take as U the space C'(0, T) of continuously differentiable functions that vanish
in the origin, and as V the space C(0, T). The bilinear functional

j Tu(t)v(t) dt (6.2)

puts the two spaces into duality. The norms

T T
— 2 = 2 63
1 \/J; woyde o] =n /fo v3(e)de (6.3)

induces topologies that make the bilinear functional continuous in both arguments.
If u, and u, are two functions of the domain, then also the convex combination

() = (1) + (1 — Duy(1) (6.4)

belongs to the domain. The domain is convex and thus, a fortiori, simply connected. In
practice, every time we have linear (initial or boundary or mixed conditions) whether
homogeneous or non-homogeneous, the domain is convex. Thus we may omit to check
for the condition of simple connectivity in the following examples.

Let us perform the Gateaux derivative

N@u)= {E% u, u(0)=0, ue CI(O, T)} 6.5)
Nip = {ad—, 0. 9(0)=0, 9 C'(Q, T)} 66)
NXy = { — % ¥, y(T)=0, y € AC(0, T)} 6.7)

The Gateaux derivative thus exists. Its domain is formed of the functions of class C'(0, T):
they form a dense subset of U with respect to the topology induced by norm (6.3) (in this
case the domain coincides with U).

Since the adjoint homogeneous problem

d
V=0 ¥M=0 (6.8)
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has only the null solution, the operator N_* is invertible. We thus see that the first six
conditions of Theorem 2 are fulfilled.

If we choose an operator K whose kernel is one of the Green functions of Table 1, we
satisfy conditions 7-11 of Theorem 2. In fact, the domain of K is that of measurable
functions and thus contains R(N). On account of the final conditions g(7, ¢) =0, the
transformed function Kv satisfies the final condition y(T) = 0. The operator X is obviously
lincar, invertible and symmetric.

In particular, the Green functions 1, 2, 5, 6 make the operator K positive definite and
thus satisfy condition 12 of Theorem 2.

If we consider the Green functions of row 2, which make the operator K positive-
definitive, we obtain the integrating operator

Ry = -—% OTg(t, t(t)dr = LT _6g_g;r_) v(T)dr
=JTH(t—T)U(T)dT =flv(t)dr 6.9)

which is simply the indefinite integral! If we apply it to Problem (6.1) we obtain the
problem

u(t)—ftf(t)dr =0 (6.10)

that has the same solution as the given one. In this very simple example, we have obtained

the solution directly.
To find the functional of the linear problem (6.8), we may proceed directly by

multiplying by du and integrating. We, therefore, obtain

T l t

F[u]=j [Euz(t)—u(t)ff(t)dt]dt. (6.11)
0 0

This functional may also be obtained by the general procedure explained in Section 6,

choosing #(4) = Au. The same functional may be obtained by starting with the general

form (4.11), i.e.

Flu] =1+ ! 4 -1 i .0 S u@) - f) |de de (6.12)
=21, dr LBV ‘

and performing the integration by parts, assuming the initial condition u(0) = 0.

In conclusion the linear initial value problem (6.1) admits of an extended variational
formulation: its solution is the minimum of the functional (6.11).

We may remark that the integrating operator R has the form stated in eqn (1.7).

We also observe that if one uses the Green function of the convolution operator (row
3 in Table 1), the operator K is not positive and the corresponding functional is not
minimum at the solution.

Example 2
A nonlinear ordinary differential equation of the first order with initial condition.
Let us consider the problem
u()=f(t;u(®)) u@=a ueC0,7T) 6.13)

where f is an assigned function. Since this is a Cauchy problem, the existence and the
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uniqueness of the solution is assured under the usual hypothesis. We have

N(u)= {%u(t) —f(t;u(?), u(0)=a, ueC'(0, T)} (6.14)
d 9
Nip = { Lo~ Lo, 0@=0, peCi, T)} (6.15)
: of
Nu*¢={——w(t)——w(t) W(T)=0, ¥ e4CO, T)} (6.16)

The adjoint homogeneous problem is
of
l//(t)———l//(t)—O ¥(T)=0. (6.17)

The equation is linear with variable coefficients containing (). It can be easily seen that
it has only the null solution, and thus the operator N_* is invertible. The conditions 1-6
of Theorem 2 are satisfied.

If we choose any Green function from Table 1, we have a variational formulation of
Problem (6.13). If we let

h(t; u(t), u(r)) = u(t) — f(t; u(?)), (6.18)
we obtain the functional

Flu]= % Lrh(t; u(t), u(r)) Lrg(t, Th(t; u(t), u(r)dr de. 6.19)
Choosing Green function 2 from Table 1, the integrating operator becomes
R(u,v) = [ - ——] f [—@—1H( —-1)+ (T —1)p(r)drs, (6.20)
which after an integration by parts becomes
R(u,v)= J v(t)dt —— J [ —7)H(E —1)+ (T —1)p(r)dr. (6.21)

It is a linear operator on the argument v(z) with coefficients that contain u(z).

One of the advantages of the presence of the operator X is that in the functional one
can remove the higher order derivatives by integrating by parts. The kernel g(z,7)
“absorbs” the derivatives. By contrast, with the least squares method, this elimination is
not possible. An expression like

f Ta(z) J Tg(t,t)t)(t)dt (6.22)
0 0

is equivalent to

j (t)jTa 8(L7) t)drdi+ 4 —2B (6.23)

= [u(®) [g@t, DU 23k 2§ (6.24)
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fT (t)[ AR ()] dr (6.25)
=0

as can be seen by performing two integrations by parts.

With a proper choice of the Green function one may obtain 4 =0 and B =0 (for
example, the Green functions 1, 5, 6 of Table 1). Such a choice the functional (6.19)
becomes with

Flul= J ()J Frem —u(t)dz dt+.[ f(; u(t))f —u(r) dr dr

1 T T
+§J f(t;u(t))f g, ) f(r;u(z))dr de. (6.26)
0 0
In the following section we shall give a numerical solution to this problem.

7. NUMERICAL EXPERIMENTS

In order to check on the numerical performance of the variational formulation
obtained, we have tested it on some equations of different kinds.

These experiments are only a taste of some possible applications: a systematic
comparison with existing numerical methods is left to more specialized authors.

In every test, we used integral operators K that assure the minimum of the functional.
Ritz method of undetermined coefficients was used. To find the minimum of the
functional, we used the second order gradient method, which approximates the functional
with a “parab0101d” at every point ([1], p. 64).

The procedure is the following. We approximate the solution with the linear combina-
tion

a(t)=¢o(t)+;ax¢x(t) (7.1)

where ¢,(f) satisfies the given non-homogeneous conditions and the ¢.(¢) satisfies the
corresponding homogeneous conditions. Letting a=(a,,a,,...4,) and denoting the
residual by r(u(t)), every functional, with our choice of K, has the form of

_ 1 T T
F[14]=§J0 r{u(t)) J; g({t, r(u(r)) dr dt (7.2)

and since u is a function of a, F is reduced to the function

f(a) =%J;T t(t; a) fng(t,t)r(t; a)dr dt (7.3)

which is quadratic on the residual. When the equation is linear, the residual is linear in
a: it follows that the function f(a) is quadratic on the coefficients.

By selecting an initial vector a, we are going to find the vector that makes the function
f(a) minimum. The variation in f(a) for a variation in the coefficients is given (in second
order approximation) by

1
Af (a) = Z gx(a)dax + Z 3 enx(a)da,day (7.4
K hK
from which, considering the symmetry of g(t, 7), it follows that

2,(a) = fra’(’ D) (7 o a) de dr (1.5)
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ex(a) = J.OT or 6(:1’:) J; ! g(t,7) gf—gél’;—) dr dz. (7.6

The vector g and the matrix e are the gradient and the hessian of the function 4f(a),
respectively. The maximum decrease in the variation Af(a) arises for the variation of a that
satisfies the system

; ew(a)dax + g,(a) = 0. (7.7)

By solving the system, we find the Aa; and with it the new vector
&K= aK+AaK. (7.8)

This procedure will be repeated until, say, the first four digits remain fixed.

We have tested 5 ordinary differential equations of the first and second orders, each
one associated with initial conditions, both homogeneous and non-homogeneous. None
of these problems admits of a variational formulation in the restricted sense (i.e. in the
classical sense). These 5 problems are summarized in Table 2, and then solutions are
summarized in Fig. 6.

On account of their preliminary value, the calculations have been made with a personal
computer (an Apple II). The graphs are the hard copy of the graphic page.

Each picture reports both the exact solution and the graph of the error (with a different
scale). We have used the Ritz method with 5 coefficients and powers of ¢ as trial functions.
The integrations have been performed with Gaussian quadrature formulas (10 points).

An interesting point must be noted: in solving second-order equations we have
obtained good results even by using Green functions that do not satisfy the initial
conditions. For example, in Problem 4 (Table 2), if one uses Green function 2 (Table 1),
which does not satisfy the boundary condition #(0) = 0, the result is even better than that
obtained with the Green function 5 (Table 1). This is a consequence of the fact that when
K is only a positive definite operator that does not satisfy the condition D(N*) o> R(K),
the functional is a generalization of the least squares method.

We have also performed some tests by means of the finite element method, obtaining
good results. The main novelty is a complication arising from the integro-differential
nature of the modified equation. When one evaluates the contribution of every element
to the whole integral, every element shows the contribution of all the other elements, and
not only of the adjacent ones. It follows that the stiffness matrix is no longer banded, as
it usually is.

CONCLUDING REMARKS

One may say that the integro-differential nature of the equation is the price we have
to pay to give a variational formulation to equations that do not admit of one in the
restricted sense.

Theorem 2 gives both the general form of the integrating operator and the explicit form
of the functional.

Table 2. Selected problems chosen to test the method

differential equation condition exact solution
expi-0.1t) 1-t
1l uw=98.1u - 2 ————— u(eir=1 = exp(~-8.1t) —
(1+toz v T oexe 1+t
2) u'= exp(-tir(l+u) u<er=e u = -1+ 3-2expl(-t)
2t expl(t) 1+t2
3l u'= - uz; u(B8r»=e.s U = ————
l+exp(t) C1+¢)2 l+exp(t)
uc@e =0
4] u" +u =20 u'tedi=1 u = sin(t?
i uc@r=1 ’
S| u"-u'- (3-tlexpl(-2t) u3=@ u'Cer=-1 u = expitirsCi-t7
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FPROGRAM NAME :

&20 REM VAR S 111

EXACT SOLUTION:

430 UE(K) = EXP ( - 0.1 # T) % (

1-Tr /7 (1 +7
RESIDUAL:
170 R = DU + 0.1 *# U + 2 * EXP (

= 0.1 #T) /7 ({1 +T) % (1 +

™
INTERVAL: 0,3 INITIAL VALUE: 1
GREEN FUNCTION: 2  BAUSS FOINTS: 10
COEFFICIENTS: S COEFF. TOLERANCE: 1E-04

FUNCTIONAL MINIMUM: S.248876BSE-06

MAX ABSOLUTE ERROR: &.31047504E-03

All)r= -1.99041328 A(2)= 1,573591146
A(3)= -.743893787 A(4)= , 198751639
A(3)= -.020832488

AllY=s 978100362

1365

FROGRAM NAME:

620  REM VAR S I

EXACT SOLUTION:

430 UE(K) = -1 + 8SOR (3 - 2 *
EXP ¢ - T))

RESIDUAL:

170 R = DU -~ EXP ( -T) /7 U+ 1

INTERVAL: 0,2 INITIAL VALUE: Q
GREEN FUNCTION: 2  BGAUSS FOINTS: 10
COEFFICIENTS: S COEFF. TOLERANCE: 1E-04
FUNCTIONAL MINIMUM: 1.54546449E-07

MAX ABSOLUTE ERROR: 9.47717112E-04

A(2)= -.B05386958

AT . 4738135226 Al4)= -, 167117925
A(S)Y= .0250240013

TN
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PROGRAM NAME:
620 REM VAR § I1I
EXACT SOLUTION:
430 UE(K) = (1 + T # T) / (1 + EXF
)
RESIDUAL:
170 R =DU - 2 % T /7 (1 + EXP (T

M)+ EXP (T /7 (1 + T *T) %

Uy
INTERVAL: - (1,5 INITIAL VALUE: .5
GREEN FUNCTION: 2  BAUSS POINTS: 10
COEFFICIENTS: S COEFF. TOLERANCE: 1E-06
FUNCTIONAL MINIMUM: 7.92102174E-06
MAX ABSOLUTE ERROR: .0132357305

All)= -, 218696872
A(3)= —-. 242312676
A(S)= ~3,42543548E-03

A(2)= .450533836
A(4)= .0487751473
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FROGRAM NAME:

620 REM VAR SEC I1 (G6=5)
EXACT SOLUTION:

420 UEW) = SIN (T)

RESIDUAL :
170 R = D2 + U

INTERVAL: 0,3.14159 INITIAL VALUE: Q
GREEN FUNCTION: S GAUSS POINTS: 10
COEFFICIENTS: S  COEFF. TOLERANCE: 1E-04

FUNCTIONAL MINIMUM: 1.22808961E-11

MAX ABSOLUTE ERROR: 3.90639552E-04

All)= -2.14762539E-03  A(2)= ~.161653378
A(3)= -G.80557105E-03  A(4)= 0120451442
A(S)= -1,27804284E-03
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FROGRAM NAME: PROGRAM NAME:
&20 REM VAR SEC 11 620 REM VAR SEC I
EXACT SOLUTION: EXACT SOLUTION:
430 UE(K) = &IN (T} 430 UECGK) = EXP (T) /7 (1 - T)
RESIDUAL: RESIDUAL :
170 R = D2 + U 170R = D2 - D1 - (3 - T) » EXP
(-2 T) »U*U*U
INTERVAL: 0,3.14159 INITIAL VALUE: 0
GREEN FUNCTION: 2 GAUSS FOINTS: 10 INTERVAL: 0,.4 INITIAL VALUE: 1
COEFFICIENTS: S COEFF. TOLERANCE: 1E-04 GREEN FUNCTION: 2 GAUSS POINTS: 10
FUNCTIONAL MINIMUM: 2.11363562E-09 COEFFICIENTS: <1 COEFF. TOLERANCE: tE-04
MAX ABSOLUTE ERROR: 2.47057913E-0S FUNCTIONAL MINIMUM: 2,286646592E~-07
All)= -9.76962197E-04 A(2Y= —. 163122323 MAX ABSOLUTE ERROR: 2.24309042E-05
A(3)= ~4.9998196E-03 A(4)= ,0118300141 All)= 2.5150128 A(2)= 2.35933726
A{S)= -1,25579596E-03 A(3)= 5.0587168 A{4)= -5.38084805

A(S)r= 14.3043253

Loy b v b b

exact ~._solution

™., ‘_

L S O I A
|
S A I B B B AN )
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i
|
,
,
(R R R R KAL)

L

Fig. 6. Apple II.

The method seems particularly promising for the equations of fluid-dynamics, because
it is applicable both to evolution equations and to nonlinear equations.

It must be stressed that this method provides a general procedure to find the functional
whatever the boundary conditions might be, whether homogeneous or not.

One may be disappointed by the fact that the form of the equation is greatly altered
by the application of an integrating operator. Without any doubt, the change in form
obscures the search for peculiar properties of the solution. Traditional criteria used to
identify properties of the solution from the structure of the equation become useless. But
from a physical point of view, what is essential is not the form of the equation but the solution.
We describe physical laws in differential form because this is today the most simple and
direct way. But the transformation we have performed on the equation changes the form,
not the content, of the equation. The solution is not changed, and this is the important
fact.

With Theorem 2 we have shown that the variational characterization depends on the
form of the equation: it is always possible to change the form of the equation in order
to obtain a variational formulation. Thus, the characterization of a physical phenomenon
according to its admitting of a variational formulation or not is a formal criterion, not
a substantial one.

To stress this point, let us compare two classical variational formulations: the Dirichlet
variational principle for the Poisson equation and the Hamilton principle for the equation
of the motion of a particle. In the first case the boundary conditions are an essential part
of the variational formulation: the solution of the Poisson equation makes the functional
minimum. The solution may be found by applying the direct methods of the Calculus of
Variations.

In the second case, the initial conditions are not an essential part of the variational
formulation: one has to ignore the physical condition of the initial velocity and must add
a fictitious final condition. The natural motion is privileged by the stationary property
of the action functional in a class of functions that satisfy one given initial condition and
one fictitious final condition. The physics of the problem is violated. A typical initial value
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problem is artificially changed into a boundary value problem in order to obtain a
variational formulation. The result is that one cannot use the Hamilton principle to obtain
the solution by direct methods. The added final condition is not known.

This comparison shows that the characterization of physical phenomena based on the
existence or not of a variational formulation, even in a classical context, masks substantial
differences. Classically, the variational formulation is a property shared by some boundary
value problems. Initial value problems cannot be encompassed in it. One must artificially
change an initial value problem into a boundary value one in order to obtain the
variational formulation.

If we insist on giving a variational formulation to initial value problems, it is more
natural to change the form of the equation, preserving both the solution and the given
physical initial conditions. In this way one may find functionals that attain their minimum
at the solution, and the solution can be found by direct methods.

Acknowledgement—The author is grateful to the engineering student F. Beltram for his invaluable help in the
editing of the paper.
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APPENDIX 1
We propose to show that the operator N defined by the relation

N(u) = N*@u; KNw)) (ALD)
has a symmetric Gateaux derivative. To this end, we may consider it to be a composed operator
N@)=N*u;y) with ¢ = KN(u). (Al.2)
The total Gateaux differential is
Niu; 6u) = (N¥Yu; ¥, du) + (NF(u; 9). (A1.3)
To perform the adjoint, we make the scalar product
(N us bu), Py = (N 2V ¥, u), ) + SV 25 89), ). (A19)

From the relation defining the adjoint

(Nifu; @) ¥ ) = (N M@ 9, @) (ALS)
one obtains, by partial differentiation in u, the relation
(Nuaku; @, 0u), 4 ) = (N *Yu; ¥, 0u), 0 ) (AL6)
and in ¥
(Nifu; 9), 0 ) = (N 2y 89), 0, (ALT)
With these identities Relation (1.4) becomes
(Nifu; 8u), @) = (Nolu; @, 0u), ¥ ) + (N (u; 0), 8 ). (A1.8)
Since
oY = KN (u; ou) (A1.9)
the last scalar product becomes
{N(u; @), KN (u; u)). (A1.10)
Then
(N ifu; 6u), @) = (N (u; @, 6u), ¥ ) + (N (u; @), KN (u; ou)). (AL1D)

Let us observe that the second derivative of a non linear operator is symetric

dd
N o, W)=£5N(“ +ep +vp)  =NLw Y, ) (A1.12)
8

Besides, if we remember the symmetry of K we can say that the two scalar products of the second member are

"

€
v
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symmetric in ¢ and Ju. It follows that
(Nfus su), 9y = (N'fu; @), du. (A1.13)

Thus the Gateaux derivative on N is symmetric.

APPENDIX 2

Theorem 2 may be even more generalized by assuming that the operator K, while remaining linear and
symmetric, contains ». It will be denoted as by K(u;.). Such a generalization has the purpose of making the
variational formulation of a nonlinear potential operator into a particular case of the extended formulation.

Theorem 3
If the operator K(u;.) satisfies the same conditions as Theorem 2 and the additional condition

Ki(u; Ni(u; 9), ¥) = Ki(u; Ni(u; ), @) (A2.1)
then the operator
N(u) = N*(u; K(u; N(u))) = N.*KN(u) (A2.2)

is potential.
Proof. Let us consider N as a composed operator

N(u)=N*u;y) with ¢ =K(;x) and y=N(u) (A2.3)
The total Gateaux differential is

- Niu; du) = (N *)iu; ¥, u) + (N *)y(u; 8¢). A24)

To perform the adjoint, we make the scalar product

(Niu, u), @) = ((N*)lus ¥, 6u), @) + ((N)y(u; 89), ¢ ). (A2.5)
Using the identities (A1.6) and (A1.7), we obtain
(N, 0u), 0y = (Niu; @, 0u), ¥ ) + (Ni(u; 9), 8% ). (A2.6)

The first scalar product of the second member is symmetric in the couple ¢, éu on account of the identity (A1.12).
Since

oY = K(u; 1, u) + K (u; 83) (A2.7)

the second scalar product becomes
(N #), 89) = (N s 0), Kilus 1, 8u)) + (N5 0), Ko(u; 0y ). (A2.8)

From the symmetry condition of K
{n K, 2)) =t K3 1)) (A2.9)

we obtain, by partial differentiation in u

{n, Kifus x, 8u)y = (x, Kiu; m, du)) (A2.10)
and by partial differentiation in y
(n, Kifu; 63)) = (82, K(u; m))- (A2.11)
Inserting eqns (A2.10) and (A2.11) in eqn (A2.8) we obtain
(N3 0), 89y = (N(u), K(u; Nifu; @), u + (N i(u, 6u), K(u; Ni(u; 9))). (A2.12)

The scalar product of the second member is symmetric in ¢ and du by condition (A2.1); the second scalar product
is symmetric by condition (A2.9). Then the first member of eqn (A2.12) is symmetric: it follows from egn (A2.6)
that

(W ifu, 6u), @) = (N iu; @), 0u) (A2.13)

which is what we wished to demonstrate.

APPENDIX 3

Gurtin’s original method{14] is a particular case of the present method. To prove this, let us observe that
Gurtin’s method consists of two steps. The first one is a preliminary transformation of the differential equation
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into an integro-differential one; the second one is the use of the convolution of two functions. In [46] it was shown
that the essential point was the convolution; the preliminary transformation is unnecessary.

In spite of this we want to examine both steps. The transformation of the differential equation into an
integro-differential one is performed by a Laplace transform, then by division by s or s? (s is the parameter of
the Laplace transform) depending on whether the given equation contains first or second-order derivatives, and
by an antitransformation. These 3 operations are equivalent to applying the operator

wo(t) =r(t — oy H(t —t)(r)dr (A3.1)
0

where n is the order of the time derivative.
The second step is equivalent to the application of the convolution operator

T
Cv(t)=v(T—~t)=f 8T —t —t)(r)dr. (A32)
0
Combining the two operators, we see that Gurtin’s method is equivalent to the use of the integrating operator
T
Rv(t) = CHo(t) =J~ (T—t—ty 'H(T -t —1)(r)dr (A3.3)
0

As a test, let us show that we obtain one of Gurtin’s results. Let us consider the heat-conduction problem ([14],
eqn (3.1))

a2V 2u(x, t) — du(x,t)=0 xeR
{u(x, 0)=uy, u(%t)=UG) % edR. (A34)

The operator is affine and will be denoted as 4. To apply the integrating operator R = CW we first apply
Whn=1)

T

JTH(t — )W 2u(x, t) — du(x, 1)) dr =f
0

0

T
a®V u(x,7)dt —f du(x,t)dr
0

=a?» P2u(x, 1) — u(x, 1) + ug(x) = 0. (A3.5)

which coincides with eqn (3.6) of paper[14]. If we now apply the operator C, the operator becomes potential.
Since the application of the convolution operator and the subsequent use of the Cartesian bilinear functional
is equivalent to the use of the convolutive bilinear functional

T
(v, udc= j J v(x, Hu(x, T — t)dt dx (A3.6)
rJo
the functional will be given by the general formula
T 5r]
Fiu] = WAn(4), — Ydi (A3.7)
o 04
and letting n(A) = Au(x, t), we obtain the functional

H
F[.;]:J jrj [02 % P2Au(x, 1) — Au(x, £) + uo()ux, T — t) dA dr dx
RJO 1]

T
= —%j j [« Vu(x, t)- Vu(x, T —t) + u(x, OHulx, T — t) — 2uy(x)u(x, T — t)] dt dx. (A3.8)
kJo

Since Gurtin considered a functional depending on ¢, he denoted 2,(u), we obtain it taking a variable ¢ instead
of a fixed 7. The integral over (0, ¢) then becomes a convolution product and we obtain

1
Qu)= ——z—j [oe? * Vu(x, t) * Pu(x, £) + u(x, ) # u(x, £) — 2u(x) = u(x, t)] dx, (A3.9)
R
which coincides with the functional given by Gurtin ({14], eqn (3.7)].

APPENDIX 4
Magri’s method[24] is a particular case of the present formulation. To show this, let us remember that Magri’s
procedure for giving a variational formulation to linear problems requires two steps. The first one is the definition
of a symmetric and non-degenerate bilinear form on V x V, denoted (v, v,); the second one is the definition of
a bilinear form on U x V by the relation (v, u) = (v, Lu).
The first bilinear form may be chosen to be of the kind

T
v, v) = J‘ v,(t) jrk(t, T)v(t) dr dt (A4.1)
0 0
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where k is a symmetric positive definite kernel ([24], eqn (3.4)]. The second bilinear form is

{v,uy=(v, Lu)= JTv(t) J'Tk(t, 7)Lu(tr)dr dt (A4.2)
0 0
and the functional is
1 1 T T
Flul =-(Lu,u) = —f Lu(l)J k(t, t)Lu(z)dz de. (A4.3)
2 24, 0
If we denote as
(v, ude= J‘Tv(t)u(t) dt (Ad.4)
0

the Cartesian bilinear form on U x V, the preceding functional may be written as
1
Flu] = E(Lu, KLu), (A4.5)

which coincides with the functional given in Theorem 2.

In the two examples given in [24], the operator K is chosen to be of the Volterra kind in order to assure
invertibility. The kernels are exactly those given in rows 3 and 4 in Table 1. Since the corresponding operators
K are not positive definite, the functionals are not minimal but only stationary. Any other kernel from Table
1 would have caused Magri’s functionals to be extrema.

APPENDIX 5

Telega[39] gives a first extension of Magri’s rule to nonlinear operators. The idea may be summarized as
follows.

Starting with a symmetric, non-degenerate bilinear functional (v, v;) on ¥ x V and taking an element u,, since
N(uy; @) is linear on ¢ one may define a bilinear functional on ¥ x U as

{0, 0 o= (0, N {up, @))- (A5.1)
now
(N5 9), ¥ Do = (N (15 9), Nifug ¥)) (A5.2)
and
(N ¥), @ )0 = (N5 ¥), N (ug; ). (As.3)
If the operator N is such that an element u, exists for which the condition
(N3 @), Niug ¥)) = (Niu; ), N (ug; 0)) (A5.9)
holds, it follows that
(NS 9), 0 )0 = (N (1 0), ¥ 0 (A5.5)

and thus the operator N is symmetric with regard to the bilinear functional (A5.1): it follows that it admits of
a variational formulation.
We see that the variational formulation is possible for those operators that satisfy condition (A5.4).



