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Fisica matematica. — A4 mathematical model for physical theories.
Nota I di Exzo TonTt1 ), presentata ©” dal Socio B. Finz1.

RIASSUNTO. — Si presenta un modello matematico per le teorie fisiche basato sulla con-
siderazione di coppie di spazi funzionali messi in dualita da funzionali bilineari e di corrispon-
denze tra questi spazi. Ognuno di tali spazi funzionali & relativo ad una variabile fisica e le
corrispondenze rappresentano le equazioni che legano tra loro le diverse variabili. Dalla
struttura degli operatori che descrivono tali corrispondenze si deducono, sotto forma di
teoremi, le principali proprietd matematiche del modello.

1.1. INTRODUCTION

Many physical theories exhibit a common mathematical structure that is
independent of the physical contents of the theory and is common to discrete
and continuum theories, be they of classic, relativistic or quantum nature @,
The starting point of this structure is the possibility of decomposing the funda-
mental equation ® of many physical theories in three equations, known in
classical fields of the macrocosm as definition, balance and constitutive equations,
whose operators enjoy peculiar properties. The properties are as follows:
the operator of balance equation is the adjoint, with respect to an opportune
bilinear functional, of the operator of definition equation (if the last is lincar)
or of its Gateaux derivative (if it is nonlinear). Moreover, the operator of
constitutive equation is symmetric (when it is linear) or has symmetric
Gateaux derivative (when is nonlinear). Such a peculiar decomposition per-
mits us to obtain a profound introspection into the mathematical structure of
a theory. The fact that this decomposition can be achieved in a large number
of physical theories and the fact that when it exists we can deduce easily a
large number of mathematical properties, suggest constructing a mathematical
model for physical theories.

1.2. THE MATHEMATICAL MODEL: THE ASSUMPTIONS

Let us suppose we have:

1) a first set of # functions of space and time coordinates (¢, x1, % x%)
(with £=1,2,---,%), that will be called configuration variables. They

(*) This work has been sponsored by Consiglio Nazionale delle Ricerche.

(**)} Nella seduta del 15 gennaio 1972.

(1) We refer the reader to the paper On the mathematical structure of largs a closs of
physical theories, « Rend. Acc. Lincei», 52, 4856, denoted by [1].

(2) With this name we indicate the field equation in field theories, the equation of motion
in mechanical theories, i.e. the equation relating the configuration of the system with the
sources.
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can depend only on time variable ® or on space variables @ can be of finite
or infinite number. They can be real or complex functions, can be the compo-
nents of a vector, a tensor, a spinor or may do not have special transformation
properties. Every given set of these » functions, will be denoted with ¢.
Any linear function space of elements ¢ will be denoted with ® and called
Junctional configuration space.

2) a second set of # functions o, (¢, 21,22 ,43) (with 2=1,2,.--,%)
that will be called sounrce variables. They depend from space and time coordi-
nates ® have the same tensorial order, the same tensorial symmetry pro-
perties and the same real or complex nature of configuration variables. Every
given set of these variables will be denoted with 6. Any linear function
space of elements o, denoted by X, will be called functional source space.

3) a bilinear functional defined on the elements of the two function
spaces @ and % that will be denoted (o, ). It must be such that for every
o € X, different from the null clement 9, there exists at least one ¢ such that
(¢, 9) =0 and analogous requirement on ¢. Under these conditions the
two spaces are said to be pus in duality by the bilinear functional [2, p. 88].

4) a topology on the spaces ® and X that makes continuous every
lincar functional (o, 9) with g €Z and (s, @) with ¢ € ®. It can be
shown that for every lincar functional /[@] continuous with that topology
a unique clement o, € £ can be found so that /9] = (5;, ¢ [2, p. 91].

5) a third sct of s functions 2, (¢,21, 242, 48) (with f=1,2,---, m)
of space and time coordinates, with 7 >n that we shall call first kind
variables. Every particular set of such functions will be considered as an
element #. Any linear function space formed by elements % will be denoted
by U. : .
' 6) a fourth set of # functions v, (2,21, 2%, 2%) (with A=1,2,...,m)
of space and time coordinates that we shall call second kind variables such that
every 7, has the same tensor nature and the same tensorial symmetries of the
first kind variables 2,. Every particular set of such functions will be denoted
by 2. Any linear function space formed by elements v will be denoted
by V.

7) a bilinear functional defined on the clements of the two spaces U
and V denoted by (v, z) that satisfies the same requirements of point 3).

8) a topology for U and V spaces with the same rcquirements of
point 4). '

(3) As the Iagrangian coordinates in mechanics and the extensive parameters in the
irreversible thermodynamics of discrete systems.

(4) As in time-independent field theories (static and stationary fields).

(5) Source variables can depend on space and time coordinates either directly as
when they are assigned (fixed or impressed sources) or indirectly as when they are linked with
configuration variables of other systems (interaction) or with those of the same systcmn
(self-interaction), ’ :
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Up to this point we have two pairs of function spaces in duality equipped
with suitable topologies. The need to introduce a topology arises from
the fact that we wish to treat subjects as stability, perturbations, convergence
of iterative methods, error bounds in approximate methods and existence.
of solution. About mappings among these spaces we suppose to have:

9) a mapping D, generally nonlinear, between some subset ® (D) C @
(its domain) of the functional configuration space and a subset & (D) CU
(its range) of the function space U of first kind variables. When 7 > # the
operator D is a gradient-like operator. The equation z = D¢ will be called
definition equation; '

10) a mapping C, generally nonlinear, between a subset ® (C) D & (D)
of the U-space and a subset & (C) of the V-space. The operator C will be
supposed symmetric, if linear, ie. (Cu',2'"y = (Cu"’, o'y or with symmetric
Gateanx devivative, if nonlinear, i.e. (C,u',u'") = (C, ", u'). Moreover it is
supposed that C does not contain the configuration variable . The equation
v = Cu will be called constitutive equation.
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11) a Jinear mapping B between some subset @ (B) C& (C) of the
V-space and a subset & (B) of the Z—space that be the adjoint of the mapping
D (if D is linear) or be the adjoint of its linear Gateaux derivative (if D is

nonlinear) ¥, we shall use the notations B = D and B=D, respectively.

(6) In physical theories the operator D is generally not continuous, being often a diffe-
rential operator working on a Banach space (in particular on Hilbert and Sobolev spaces).
It follows that the Gateaux derivative is not continuous in this case. Some Authors speak
of Gateaux derivative only when continuity is assured [7, p. 40] {8, p. 114]. This usage is
very restrictive: we adhere to the more general definition (sec for ex. Tapia in [8, p. 51]).
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When s > n the operator B is a divergence-like operator. The cquation
Bv = ¢ will be called ébalance equation. )

We emphasize the fact that of the three mappings we shall take as
primitive, only two of them are independent i.e. D and C. In the sequel will
be shown that the mathematical properties of the model rest upon the pro-
perties of these two operators. The scheme of fig. 1 summarizes what we have
said up to now. ‘

1.3. THE MATHEMATICAL MODEL: FIRST PROPERTIES.
a) FUNDAMENTAL EQUATION

The sequence of mappings D:®»U,C:U»V,B:Vi>Z induce
a mapping F=BCD:® > X we shall call fundamenial mapping. The
corresponding fundamental equation has the form

(1.3.1) DCDgp = o D,CD¢ = ¢

in the linear and nonlinear case respectively. The fundamental mapping F
enjoys many properties: we shall consider in this paper the case in which D
and C are Jinear operators. In the second part we shall deal with the nonlinear
case. '

THEOREM 1: If D and C are linear operators the operator F is symmeé‘rz'c.
Proof: A
(1.3.2) (Fg',9"y = (DCD¢’, 9"y = (CD¢’, D¢"y = (CDe", Dg"y = (DCDo" .
But D 2D [9, p. 168] and then if ¢ € D(F)

(1.3:3) (Fo', ¢"y = (DCDg", ¢’y = (Fp" , ¢').
From the symmetry of F follow two properties: they are

THEOREM 2 (VARIATIONAL FORMULATION): #f the operator F fs symmetric
and o does not depend on @, the solutions of the fundamental equation, when
it exist, make stationary the functional

def 1

(1-3-4) , S [¢] == —- (CDe¢, D¢g) — ¢, ). -

Proof:
(13.5) 35 [p] = (CDp,Ddg) — (s, 3g) = (DCDp — 5, 3¢) =o.

This theorem, stated in other words, asserts that the fundamental equation
is the Euler-Lagrange equation of an action functional. We thus see that
the existence of an action functional for the fundamental cquation, that is
assumed as postulate in field theory, is here deduced as theorem.
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THEOREM 3 (RECIPROCITY THEOREM): if the operator ¥ is symmetric let
us be o' and o'’ two different sources and @', ¢'" two corresponding solutions then

(1.3.6) v (o', 9") = (", 9')-
Proof: .
(1.3.7) (o', ") = (Fo', ¢") = (Fo", ¢) = (¢", 9'). (qee.d.)

A frequent case is that the operator C be definite positive. When this happens
we have the following properties:

THEOREM 4 (MINIMUM OF THE FUNCTIONAL): #f C is a positive definite
operator, i.e. (Cu,uy >0 for u==0 then the solution of the fundamental
equation, when exists, makes mintmum the action functional S of Theorem 2.

Proof: being 8S[p] = (ﬁCDcp — o, dp) will be
(1.3.8) 32 S[e] = (DCD3o, 8¢) = (CDSp, Ddg) = (Cdu«, 811y >o0.

THEOREM 5. if C is a positive definite operator the fundamental operator
has the same null manifold of the definition operator:

O (F) = 9 (D)
Proof: :
(1.3.9) ¢, €N (F) = Fg =0 = (Fo ,¢) =(CDg , Dy =0 =
= Do, =0 = ¢ =9 (D)

(1.3.10) ¢ €9 (D) = Dg, =0 = CDg, = 0 = DCDg, =0 =
= Fo =o0= ¢ = 9T(F).
From this theorem follows as a lemma the

THEOREM 6: (UNIQUENESS). [f the operator C is positive definite and
the operator D has no null manifold, the solution of the fundamental equation,
when exists, is unique.

The existence of a null manifold of the definition operator D implies the
existence of a compatibility condition on the source term o irrespectively
of the positive definite character of the operator C.

THEOREM 7: if the definition operator D has a null manifold, denoted with
¢, = Lx the general solution of the homogeneous equation D¢ = o then. in
order that the fundamental problem admits a solution must be Lo = o,

Proof:
(1.3.11) DLy =o0 = LD =0 = LDCD¢ = L6 = 0.

(7) Because the symmetry of C does not enter in this theorem while it is essential for
the variational formulation (see Theorein 2) we see that the link between gauge invariance
and conservation laws is essentially of non-variational nature NO@Iher theorem requiring a
variational principle is then very demanding.
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The property DLy = o is commonly known in physics as gauge inva-
riance. The theorem establishes a link between the gauge invariance of first
kind variables and the existence of compatibility conditions that usually

mean conservation laws [3].

1.4 THE MATHEMATICAL MODEL: 4) CANONICAL FORM

If the constitutive mapping is one to one we can consider the inverse
mapping C™%. In this case we can reduce the three basic equations to the
following two equations

(1.4.1) Dp=Cly , Dv=o.
These two sets will be called the canonical system.

THEOREM 8 (VARIATIONAL FORMULATION): the solutions of the canonical
system, with o assigned, make stationary the functional

(1.4.2) S[e,21= (,Dg) — L (@,C %) — (o, )
Proof:
(1.4.3) 85 [¢,2] = {8 ,Dp —CLa) + Dv—o0,dp) =o.

The functional S [¢, 2] will be called the canonical action functional.
The canonical equations can be written in a matrix—differential form

as follows
o D ) c
(1-44) =l [ = (5]
If we introduce two vectors $==(@;,+*+, @, ; v, - -,2,) and 1 =(01," "+, 0a,;

0,-:+,0) putting

o
_C

[e]

(1:4.5) L=|%

ISR

(o] (o]

the canonical system can be written as
(1.4.6) Ly + K =y

Often D is a first order linear operator: in this case the matrix—differential
operator I. can be decomposed in the form
3

Al )
1.4. ' - L= Lowe
(1-4.7) 2.Lagge

where L, denotes some square matrices of (m - #)? elements. The canonical
system then assumes the typical form
3

oY 3
(1.4.8) 2 la s ¢ K=y
0
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used in the matrix-algebraic approach to the relativistic theory of particles
of arbitrary spin [4, p. 378] [5, p- 270] [6, p. 143].

THEOREM 9 (SYMMETRY OF THE OPERATORS L AND K). 7ke matrix—-
differential operator L and the operator K are symmetric with respect .to the
bilinear functional

(1.4.9) L0 e, ) Hv 2.

Proof:
(1410 @49 = B, 0) 4 ', D) = @/, D" -+ (Bo” ) =L, 1)
(I.4.I I) <K¢’, 4,"> — <__ c1 vl(’ 2}N> — <_ C-1 vll’ U’) — (KLIJ” , 4},)

Using the bilincar functional (1.4.9) the canonical action functional
(1.4.2) can be written

(14.12) Sl = L, %) +5 (K, &) — &

(the proof is straightforward).
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Fisica matematica. — A4 mathematical model for physical theories®.
Nota IT di Exzo TonTi, presentata ©? dal Socio B. Finzi.

R1assUNTO. — In questa Nota si continua ’esame delle proprietd di un modello mate-
matico di una teoria fisica, presentato in una Nota precedente. Tali proprietd riguardano
in particolare la formulazione variazionale, Pinvertibilitd del legame costitutivo, la decom-
posizione dell’equazione fondamentale in una parte spaziale ed una temporale, nonché la
costruzione dello schema duale.

1.1. INTRODUCTION

This is the second part of a paper which deals with a mathematical model
for physical theories [3]. In this paper we prove a number of mathematical
properties that follow from the assumptions given in [3]. In this paper
we take away the limitation concerning the linearity of definition and
constitutive operators used in the properties shown in the preceding paper.

1.2. INVERTIBLE CONSTITUTIVE MAPPINGS

Many mathematical properties of the model are based on the possibility
to invert the constitutive mapping C. The necessary and sufficient condition
is that C be one-to-one. This leads to investigate sufficient conditions in order
that C be one-to-one. When C is linear a sufficient condition is that it be
positive definitz i.e. {Cu,u)>o0 for u==9 (% is the null element of the
U-space). This property is frequently met in physical theories. :

When C is nonlinear we have the ,

THEOREM 10 (INVERTIBILITY THEOREM): a sufficient condition in order
that a mapping C be one-to-one (and then be invertible) is that C be strictly
monotone, .e.

(1.2.1) C@)y—C"y,d—u"y >0 for wa=u" O,

Proof: if C is strictly monotone and #'=f= %" must be C (%) == C («"").
This assures that two different elements #' and #'' cannot correspond to the
same element v and then the mapping is one-to-one. Because the condition of
being strictly monotone reduces to that of being positive definite in the linear

(*) This work has been sponsored by C.N.R. Istituto di Matematica del Politecnico
di Milano.

(**) Nella seduta del 12 febbraio 1972

(1) When > is replaced by > we have the definition of wnotone operator.
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case, we shall consider in the sequel only strictly monotone operators. What
can be said about the inverse of a strictly monotone operator? We have

THEOREM 11: The inverse of a strictly monotone operator is also a s#ictly
monolone opevator.

Proof: with the position # = C™'(v) rclation (1.2.1) becomes

(1.2.2) @' —2",C ) —C1@")) >0 for v'==0".

1.3. 'SPACE AND TIME PART OF THE FUNDAMENTAL MAPPING ®

When configuration variables depend on space and time coordinates
it can happen that the definition operator D be the sum of two operators,
generally nonlinear, formed with space and time derivatives respectively.
In this case we can decompose the operator D and the set of first kind
variables according to the scheme

) D

wo B

This amounts to considering the U-space as the sum of two subspaces

U, and U, i.e. U=U,®U,. When this happens the balance equation can
be written in the form (D is the adjoint of D)

(1.3.2) @ j,lﬁ,] {5'—] = D, > D}, and B, D,

in the ncn linear case

and the V-space can be conceived as the sum of two subspaces V=V, ®V,.
Moreover the constitutive operator C can often be decomposed accord-

ing to the scheme .
(2 2]~ e 12

where C, and C, can be nonlinear operators.
Under these hypotheses on the decomposition of D and C the fundamental

mapping becomes

(1.3.4) D,C,D,¢ + D,C,D, 9o =¢.

(2) In order to/ have an example to support the fnind, the reader can think of the
elastodynamic field/ whose fundamental equation is : '

9_
tw
(Navier equation) where the operator C; is Hooke tensor Cigrs, Ctis p a2y, @ is the displa-

_cement vector w*, ¢ is the body force f;, az; the metric tensor, Dy is the symmetrical
part of gradient of the displacement vector x#, D; the time derivative.

(R r s s 7 ’
pay, [-51—] ut + [———V‘] Crie [—é—(V W+ V)| =F,
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The subspaces U,,U, (and V,,V,) can be disjointed and conceived as
two distinct spaces.
The corresponding scheme is shown in fig. 1

¢ z G
. %
Ot '[j/: \
Dg Ut Vi D,
Vt: Ci’ Ut —_—
Ug Ve

Vs= Csus : . > Vs

Fig. 1. »

~ The decomposition into a time and space part of the operator C has
several mathematical advantages. For example in many physical theories
the operator C is not monotone, while C, is.

Another property is expressed by the following

THEOREM 12: if D, isa /z‘nmr operator with dense domain in the O—space
then if C, is monotone the operator F, = D,C, D, is also monotone.

Proof: »
(1.3.5)  (C,(x")—C, (#"), ' —u""y = (C, (D,9") —C,(D,9'),D,¢'—D, ©'y=
= <fj-r C-r (D:CPD ——13ch (D.r(P”) ’ (PI — (P”> =0.

From this property it follows that the fundamental mapping F written in
the form

(1.3.6) F,o=-—F, 9 +o

has the typical structure of monotonic evolution equations to which many
Theorems about existence, uniqueness and continuous dependence on initial
data can be applied [1] [4].

I.4. THE POTENTIALS

One of the assumptions of the mathematical model (n. 10) is that the
constitutive mapping C: U |-V be symmetric (if linzar) or have a symmetric
Gateaux derivative (if nonlinear). Such operators enjoy the property that the
circulation of the vector v = C («) along a line in the U-space connecting
two fixed points does not depend on the line chosen [5]. In other words
the mapping » = C (2) can be regarded as describing a conservative vector
field in the U-space. This fact leads us to consider a potential that is a

functional defined by
A=1

(1.4.1) Elu] = E[u) + [(C (), 8 and then SE[u] = (C(x), 54)

A=0
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being w =+n(\) so that %(0) = wo, %{1) == . For this reason the opcrator C
is said to be a potential operator. It is also called the gradient of the functional
E [#]. When C is a linear operator we can choose n(A) = M and eq. (1.4.1)
reduces to

1
(1.4.2) E[u] = f (Che, udy = L u, Cal
1]

a well known result. The link between C and E is reinforced by

THEOREM 13. If Cis a monotone (resp. strictly monotone) operator, the
potential E[u] is a convex (resp. strictly convex) functional and viceversa:

(1.4.3) Eht'+ 0 —Nu"] < E[]+ (0 —2) Ef2"] (resp. <).

For the proof see [1; Theorem 1.2].

THEOREM 14: (VARIATIONAL FORMULATION IN THE NONLINEAR CASE).
The solution of the fundamental equation (with o = 0) makes stationary the
Sunctional S [@] = E [D (@)] being E [u] given by eq. (1.4.1.).

Proof.
(1.44)  3,S[e] = 8E[De] = (CD(¢), 8D (9)) = (CD9, D;3¢) =
= (D,CD(9), 3¢) = 0.
S[e] will be called the action functional.

THEOREM 15: [If C s invertible mapping the inverse operator C™1 is also
of potential kind.

Proof. It suffices to show that the elementary circulation

(1.4.5) (8o, C (@)

1is the variation of a functional (automatically the circulation does not depend
the line connecting two points). '
From the identity

(1.4.6) (Su, ) = 8 v, uy — (v, Su)
it follows
(47)  (0,Cle)=3@,C @) —E[CTE)] =

= 3{(2,C (@) —E[C @]} = 3E 2] .

The new functional
def

(1.4.8) E[s] = [v,C ()] — E[C @)]

will be called the dnal potentz';zl. The transform (1.4.8) is known as Legendre
transform. :
Combining Theorem 13 with this result we can state the

THEOREM 16: If C is strictly monotone then the dual potential E[v] is convex.
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1.5. DUAL BALANCE EQUATION

If we look at definition equation # — D(p) as an equation in which
# is assigned and ¢ must be found we are faced with compatibility conditions
on u (that are existence conditions for ¢)- If these conditions are found,
be they R (%) = o we shall call the operator R an annichilator of D because
RD (¢) = o.

This means that null manifold of R contains the range of D i.e.
OT(R) D & (D). '

If all elements 2, for which Ry = 0 can be cast into the form uy = Do
then we call R a minimal annichilator because its null manifold coincides
with the range of D : 9U(R) = R D). ' i

In this case the compatibility condition Rx = o is not only necessary
but also sufficient to assure that the equation # = D¢ admits a solution.

While the domain of R lies in the U-space, its range lies in another
function space we choose Znmear and that we shall denote with T and call
dual source space.

If definition equation is of the form 2 == #y + D (9) then the compati-
bility condition is R(% — #,) = 0. If D and R are linear, this equation can
be written R« = ©. The ¢ incompatibility ” term < that can be viewed as
a dual source variable. The cquation Rxz = t is then calied dual balance
equation. Alongside the linear T-space we are lead to introduce another linear
function space whose clements are of the same tensorial order as those of T.
This space will be denoted with ¥ and called dwal configuration space. These
two spaces are put in duality introducing the bilinear functional denoted with
(¢, 7). The spacz ¥ and the bilinear map (J,7) will be chosen so that.
the duality be separating and both spaces will be equipped with topologies
that make the bilinear functional (¢, %) continuous.

1.6. RELATION BETWEEN THE DUAL BALANCE AND THE DUAL
DEFINITION OPERATOR (linear case)

With the bilinear form we can define the adjoint of the operator when -
the last is Znear and when its domain is dense in the U-space

(1.6.1) (, Ruy = Ry, u)y.

Now we can casily sce that #e equation v=R{ gives a solution of the homo-
geneous: balance equation Dv = o,
We have in fact the following

THEOREM 170 If R is a linear operator with domain dense in the U-space
and range in'T, that be an annichilator of D, then D is an annichilator of R.

Proof.
(1.6.2) @, RDg) = (RY, Dg) — (DR, ¢) .
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Now if ¢ € D(D) RDg == 0 because R is an annichilator of D: then
(¥, RDg) = o for every ¢ € W. In particular this is truc if $eD(R) then
from (DRY, @) ==0 being peD(D) and DD)=U follows DRy =o.
Thus D is annichilator of R.

An obvious question can be raised: is the solution »= Ry general,
i.e. such that all elements z, such that Dy, = o are of the form v, = R{?
This implies that & (ﬁ) =9 (IN)) As we shall now seec the answer is linked
with the question: is the condition Ru =0 sufficient to assure that #==Deg?
We have in fact the following

THEOREM 18: Let U and T be two complete topological vector spaces. If R
is a closed linear operator with domain dense in U and closed range in T that
is @ minimal annichilator of D, and if D is a closed linear operator with closed
range then the operator D is a minimal annickilator of R.

Proof.  The hypothesis that R be a minimal annichilator means
O(R) = & (D). Then 9'(R) = #'(D). But, on account of the general
property

(1.6.3) I R) =HK(R) and &KYD)=9D).

Then :ﬁ(}N{) = Zfl(IN)) Because D is a closed operator its null space is also
closed [6] i.e. DT (D) = 9 (D). Because R is closed with closed range then
also R has closed range [6] then & (R) = (R). It follows

(1.6.4) $#(R) = 9t (D)

then D is a minimal annichilator for R.

From this Theorem it follows that under the conditions given in the Theorem
the equation v = R{ gives the genera/ solution of the balance equation
Dy =o.

1.7. THE GENERALIZED THEOREM OF VIRTUAL WORKS

The principle of virtual works of mechanics is a formulation of equili-
brium expressed as a link between source variables (the forces) and configu-
ration variables (the position vectors). The actual dependence of sources
from configuration, i.e. constitutive equations, does not enter into the principle.
We now show that the principle can be restated as a Theorem valid in the
mathematical model on account of the relation between definition and balance
operators.

THEOREM 19 (GENERALIZED THEOREM OF VIRTUAL WORKS): the balance
equation is equivalent to the equation

(1.7.1) (v, du) = (o, 3¢)
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Proof.
(17.2) (v, 34y = (0, 3D(s)) = (v, D},3¢) = (B0, 3¢) = (s, 3¢) .

COROLLARY 19-bis: #f D is a linear operator, balance equation z':.eguz'valent
to the eguation

(1.7.3) (v, u) =(c,9)

THEOREM 20 (DUAL GENERALIZED THEOREM OF VIRTUAL WORKS). Jf
the annichilator R is linear then the dual balance equation is equivalent to the
equation

(1.7.4) : v, uy= (3, 7). -
Proof.
(17:8) ¢, )= (8, Ru) = (R, u) = ORY, ) = (S0, ) .

1.8. THE DUAL SCHEME

In order to relate dual source variables with dual configuration variables
we need a mapping V — U. When the constitutive mapping C can be inverted
then its inverse C! realizes the mapping V1> U. When this happens we
can consider the dual scheme ¢ - v % — 7. The mapping RC1 Ry ==
will be called the dual fundamental mapping.
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