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Finite Formulation of Electromagnetic Field

Enzo Tonti

Abstract—We show that the equations of electromagnetism can
be directly obtained in a finite form, i.e., discrete, thus avoiding the
traditional discretization methods of Maxwell’s differential equa-
tions. The finite formulation can be used with unstructured meshes
in two and three dimensions and easily permits to obtain fourth-
order convergence.

Index Terms—Computational electromagnetism, convergence of
numerical methods, discrete electromagnetism, finite formulation.

1. INTRODUCTION

OMPUTATIONAL electromagnetism is commonly based

on a discretization of Maxwell’s field equations. We
show that it is possible to express the laws of electromagnetism
starting directly from experimental facts by a set of algebraic
equations [1]-[3].

The finite formulation is based on five items:

1) the systematic use of global variables instead of field
functions;

2) the distinction between source, configuration and energy
variables;

3) the use of space-time elements endowed with inner and
outer orientations;

4) the use of two cell complexes, a primal one endowed with
inner orientation and a dual one endowed with outer ori-
entation;

5) the fact that global variables are related to oriented
space—time elements.

A. Global Variables

We use the term global variable as synonym of integral vari-
able. Physical measurements deal mainly with global variables,
such as voltages, fluxes, charge contents, and charge flows, not
field vectors. Global variables are continuous through the sepa-
ration surface of two materials while field variables are not. This
makes global variables best suited to deal with regions made of
different materials.

While field variables are indispensable in a differential for-
mulation, global variables are the natural tool for a finite formu-
lation. Contrary to field functions, which are functions of points
and instants, global variables are domain functions and the space
and time elements to which they are related will be put inside
square brackets.

The time integral of a physical variable, say, FE, will be
called its impulse and will be denoted by the corresponding
calligraphic letter, say, £.
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TABLE 1
FIELD AND GLOBAI, VARIABLES OF ELECTROMAGNETISM
{ source | config.
field p J D H|E B
space global Q I v F|E ¢
space-time global | @ Qf & F|E @

It is expedient to distinguish between global variables in
space and global variables in space—time. So, electric current I,
electromotive force E, and magnetomotive force F are global
variables in space while electric charge flow Qf, electromotive
force impulse £, and magnetomotive force impulse F are
global variables in space—time.

B. Configuration, Source and Energy Variables

Source variables are, first of all, those that describe the source
of the electromagnetic field, i.e., charges and currents and, in the
second place, all variables linked to them by algebraic or differ-
ential operations without the intervention of physical constants.
Table I collects the six main variables of this kind. Configuration
variables are those that describe the configuration of the field,
its potentials and all those variables that are linked to them by
algebraic or differential operations without the intervention of
physical constants. They are linked to the source ones by the
constitutive equations. Energy variables are those obtained by
the product of one source variable and one configuration vari-
able: examples are the electric energy density wg = D - E/2,
the Poynting vector S = E x H.

C. Oriented Space-Time Elements

With this name we mean points (P), lines (L), surfaces (S),
volumes (V), time instants (I), and time intervals (T). A further
property of space and time elements, not commonly stressed, is
that these elements can be endowed with two kinds of orienta-
tions, as shown in Fig. {: the inner and the outer one. The four
space elements endowed with inner orientation will be denoted
by P. L. S, V, while those endowed with outer orientation will
be denotedby P, L, S, V.Inan analogous way, the primal and
dual time elements will be denoted by I, T and 1T, respec-
tively, as shown in Fig. 3.

D. Cell Complexes

Since a finite formulation requires space and time elements,
not only points and instants, it appear natural to introduce cell
complexes instead of coordinate systems. Cell complexes ex-
hibit vertices, edges, faces, and volumes. In a finite formulation,
a pivotal role is played by the dual complex. If we make use of
a simplicial complex as a primal complex, then the commonest
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inner orientation

J( Inner orientation of a point:
P . a positive point is oriented as
T~ a sink.

Inner orientation of a line: it

is the basic notion used to give a
meaning to the orientations of
all other geometrical elements.

Inner orientation of a surface: it
is a compatible orientation of its
edges, i.e. a direction to go
along its boundary.

Inner orientation of a volume:
it is a compatible orientation of
its faces. It is equivalent to the

screw rule.
Fig. 1. Two notions of inner and outer orientations in 3-D space.
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b) Voronoi dual

a) cartesian dual ¢) barycentric dual

Fig. 2. Primal and dual cell complexes.

dual complexes are either the barycentric or the Voronoi dual,
as shown in Fig. 2.

A cell complex and its dual enjoy a peculiar property: once
the vertices, edges, faces, and cells of the primal complex have
been endowed with inner orientation, then on the cells, faces,
edges, and vertices of its dual is induced an outer orientation.

It follows that a pair formed by a cell complex and its dual is
the natural frame to exhibit all space elements and their orien-
tations.

E. Physical Variables and Space—Time Elements

With these premises, it is possible to build up a finite formula-
tion of electromagnetism. We need two principles that have been
inferred from a detailed analysis of global variables of classical
field theories [3].

First Principle: In every physical theory, global configura-
tion variables are associated with space and time elements that
are endowed with inner orientation, while global source vari-
ables are associated with space and time elements that are en-
dowed with outer orientation.

Second Principle: In every physical theory, there are
physical laws that link global variabies related to an oriented
space—time element, say, 2, with others related to its oriented
boundary, say, 0€2.
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outer orientation

Outer orientation of a volume:
the choice of outward or inward

normals. A positive orientation e \t:
has outwards normals.
Quter orientation of a surface:
it is the inner orientation
of the line crossing the surface. / g
Quter orientation of a line:
itis the inner orientation ~
of a surface crossing the line. L
Outer orientation of a point: P
it is the inner orientation
of the volume
containing the point.
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Fig. 3. Field variables and field laws are related to space and time elements.

The field laws of electromagnetism satisfy these principles.
Since configuration variables are associated with space ele-
ments endowed with inner orientation, as shown in Fig. 3, it
follows that they can be associated with the vertices, edges,
faces, and cells of the primal complex. Moreover, since source
variables are associated with space elements endowed with
outer orientation, it follows that they can be associated with
cells, faces, edges, and vertices of the dual complex.

II. FINITE FIELD EQUATIONS
The four field laws of electromagnetism in global form are
P[I, V] =0
&[T, 8S] = @[I~, S} — @[IT, S]
O[I, V] = Q°[I, V]
FIT, 8S] = U[It, §] — ¥[I~, S] + Qf[T. §]

(1)

These equations are valid for whatever shape of the closed lines
and of the closed surfaces involved for whatever material inside
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the region. For these reasons, field equations are fopological
equations and describe the structure of electromagnetism. The
three constitutive equations of electromagnetism are

(UL S] &[T, L]

3 =€ 7T whenS L L
< o[L. 8] =u F[?l L]., whenS L L )
S TL
f T Q ~
Q [':Il 8] =0 £IT, L], whenS L L.

The constitutive equations in the form (2) are valid only in re-
gions of uniform field, for homogeneous and isotropic mate-
rials, are valid only when S, S are plane surfaces and L, L are
straight lines orthogonal to them. The equations in (2) that re-
quire orthogonality can be applied to Cartesian meshes or to
Delaunay—Voronoi meshes. Equations (1) and (2) are the laws
of electromagnetism in the finite formulation we were searching
for [1].

Let us introduce a Delaunay—Voronoi pair of cell complexes
and let us denote by I, and s3 an arbitrary edge and face of
the primal complex. Let us denote with [ 3 and S, an arbitrary
edge and face of the dual complex, with cg, and ¢, 5 the cor-
responding incidence numbers. Inserting the constitutive equa-
tions in the two circuital equations we obtain [1]

T n— la~ ~
Ea+1/2 E! 1/2 + ET;I_ z :CoﬂFg _ I(r)}
R I
) ‘ 3)
qu
n+1 _ n £ . n+1/2
Fﬁ = Fy - 1155 [E cgaEa

. . . =
The electric current is the sum of an impressed current I,
and a conduction current

_ B E3+1/2 :—1/2
"=I"+¢ ;— ; Eoa 4)
If we put
def ot def oT
lf 4 27 ey 2T 5
o=1+5 2 )

the first equation, (3) becomes

bEg—W + 21 l“—T

En+1 2
[ /
a a €Sy

> GasFF I . (6)
Ii

If we use a Cartestan cell complex and its dual [see Fig. 2(a)],
like the one used in finite difference in time domain (FDTD),
these equations can be directly applied. In this case, one ob-
tains the same equations of FDTD [5, p. 303]. What is impor-
tant is that the same equations can be applied to a couple of De-
launay—Voronoi complexes [see Fig. 2(b)] because the orthogo-
nality condition requested in (2) is satisfied. This means that we
have obtained a natural extension of the FDTD formulation to
unstructured meshes. Equation (3) can be compared with [6, p.
939] and [7, p. 547].

A numerical comparison between classical FDTD technique
and the present extension for a resonant cavity has been done in
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Fig. 4. Cell complexes for the electrostatic problem.

[8]. The discrete method arising from this formulation, which
uses space global variables and a couple of cell complexes, has
been called cell method.

HI. SECOND-ORDER CONVERGENCE
A. Delaunay-Voronoi Complexes

With reference to Fig. 2(a) and (b), we can give in a straigth-
forward way a discrete formulation of Poisson’s equation

Vo= goiti Va=¢ 7. Ve Y dws¥s = Qi + By
i @ 3
(N

where ¢ is the inci~dence number of the primal node ¢ with the
primal edge « and dp is the incidence number of the dual face
(3 with the duali cell h, Q}, is the charge content of the dual cell
h, and By, is the electric flux related to the external boundary
of broken cells, as shown in Fig. 4. These relations are valid
both for a Cartesian cell complex and a simplicial complex of
the kind Delaunay—Voronoi. They are valid both for two-dimen-
sional (2-D) and three-dimensional (3-D) problems. Composing
these three relations and performing a little change of notation,
we obtain

|l T

ke T (h)

Shk

h

Shk
Ly

Ph — Z Ok =Qn+ By,

k€T (h)
(8)

where 7 (h) denotes the set of nodes that are connected with
the node & by an edge. The first member of this equation co-
incides with the one obtained with the finite-element method
(FEM): it is remarkable that it has been obtained in elementary
way avoiding variational formulation, Galerkin method, shape
functions, and weight functions. The order of convergence is
two.

B. Barycentric Subdivision

If one uses the barycentric subdivision instead of the De-
launay—Voronoi one, the constitutive equations in (2) cannot be
used in this form, but must be put in the traditional vectorial
form.

Remembering that constitutive equations are experimented in
regions of uniform field, we do the approximation of consid-
ering the field uniform inside every simplex. In this case, the
potential ¢ inside every simplex can be approximated with an
affine function ¢(&, ) = p + E¢€ + E,n being £ and 7 the
areal coordinates of the triangle and E; and E,, of the two com-
ponents of electric field vector E. From these, one can evaluate




the Cartesian components E, and E,. The three coefficients can
be expressed in terms of the three nodal values ¢y, ¢;. ¢;, as
shown in Fig. 4. We remark that the vector so introduced does
not require a limit process because, say, £, is the ratio between
the voltage referred to a line segment in the z direction to the
length. For anisotropic materials, we can write

o0 bt RV R
D, J. Ery Eyyl. LBy,

With the vector D so obtained, one can evaluate the electric
flux ¥ across the faces of the dual polygon contained inside the

triangle. If A denotes the area vector of a face of the dual cell,
the electric flux is given by

¥ = (A, Ay){D’}c.

10
D, (10)

In this way, we can evaluate the electric fluxes for every face
of the dual polygon and to insert them in the Gauss equation.
Doing so, we obtain the discrete formulation of the fundamental
equation of electrostatics for an anisotropic medium using the
barycentric dual (see details in [9]). Every dual polygon acts as
a tributary area for the internal node. The flux boundary condi-
tions can be directly inserted into balance equations. The fun-
damental matrix coincides with the one of FEM and the order
of convergence is two.

IV. FOURTH-ORDER CONVERGENCE

Since we introduced shape functions to deal with the barycen-
tric subdivision, we opened the way to obtain higher order ap-
proximations using quadratic interpolation polynomials, like in
FEM. If we consider the midpoints of the triangle edges as three
supplementary nodes, we can choose quadratic interpolating
functions. Doing so, the field vector E is no longer uniform, but
becomes an affine function and the same is for the vector D. On
account of the linear behavior of the field, in order to evaluate
the electric flux ¥ across every face of the dual polygon, it is
enough to evaluate the vector D in the barycenter of the face.
The scalar product of such vector times the area-vector of the
face gives the required flux. Then, even in the case of quadratic
interpolation, no integration is required.

To give an example, we shall refer to a square divided into
small squares, each one divided into two triangles. How to
choose the dual polygon? Here resides the main difference with
FEM: in the cell method, the tributary area of each node can
be chosen at will.

A first choice is the barycentric subdivision, shown in
Fig. 5(a): the order of convergence is slightly greater than two
(2.3) and then is lower than the one of FEM that, for a quadratic
shape function, is three {10, p. 85]. However, a second choice
for the tributary area is the one obtained using two Gauss points
on every edge as shown in Fig. 5(b): the order of convergence
is now four, as shown in Fig. 5(c). We remark that Abaqus
has a fourth-order convergence because it uses the points of
superconvergence (the library used is DC2D6). Contrary to
FEM, here the fundamental matrix is not symmetric. We remark
that in FEM “the system is symmetric which is a consequence
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a) barycentric dual b) Gauss dual
N cells cell method Abaqus cells-Abagqus
4 3,77E-03 3,77E-03 0, 00E+00
16 3,76E-04 3,76E-04 0, 00E+00
c) 64 2,49E-05 2,49E-05 0,00E+00
256 1,56E-06 1,56E-06 1,00E-15
1024 9, 68E-08 9,68E-08 4,00E-15
4096 6,02E-09 6,02E-09 1,40E-14
16384 3,75E-10 3,75E-10 -5,10E-14

Fig.5. With a proper choice of the tributary region of every node, as shown in
(b), the order of convergence is four.

of the choice of the Galerkin weighting and the symmetry form
of Poisson equation” [11, p. 251].

V. CONCLUSION

We have shown that, instead to discretize Maxwell’s equa-
tions, it is possible to give a direct finite formulation of elec-
tromagnetic laws. This formulation can be immediately used
in computational electromagnetism. When applied to simplicial
complexes (triangles in 2-D and tetrahedra in 3-D), the finite
formulation constitutes an extension of FDTD to unstructured
meshes. The use of interpolation functions permits to obtain or-
ders of convergence larger than the second one.
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