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Abstract

The paper shows that the equations of electro-
magnetism can be obtained in a finite (=discrete)
form directly, i.e. without passing throught the
differential formulation. This finite formulation
is the natural extension of network theory to elec-
tromagnetic field and it is convenient for compu-
tational electromagnetics.

1 Introduction

Computational electromagnetism requires the tra-
nsformation of Maxwell’s differential equations
into algebraic equations. This is obtained us-
ing one of the many discretization methods like
Finite Difference Method (FDM); Finite Differ-
ence in Time Domain (FDTD); Finite Element

Method (FEM); Boundary Element Method (BEM);

Edge Element Method (EEM), etc. Even in Fi-
nite Volume Method (FVM) and in Finite Inte-
gration Theory (FIT), that use an integral for-
mulation, it is standard practice to use integrals
of field functions; the last ones being indispens-
able ingredients of differential formulation. One
can pose the following question: is it possible to
express the laws of electromagnetism directly by
a set of algebraic equations, instead of obtaining
them from a discretization process applied to dif-
ferential equations?

The answer is: Yes, it is possible, it is easy
and can be immediately utilized in computation.
What we now present is an alternative to differen-
tial formulation. To display field laws in a finite
formulation we must introduce two classifications
of physical quantities.

1.1 Configuration, source and en-
ergy variables

A first classification is based on the role that
every physical variable plays in a theory: this
leads to three classes of variables: configuration,
source and energy variables as shown in Table (1).
In every physical field one can find:

e (Configuration variables that describe the
configuration of the field or of the system.
These variables are linked one to another by
operations of sum, difference, limit, deriva-
tive and integral.

e Source variables that describe the sources
of the field or the forces acting on the sys-
tem. These variables are linked one to an-
other by operations of sum, difference, limit,
derivative and integral.

e FEnergy variables that are obtained as the
product of a configuration for a source vari-
able. These variables are linked one to an-
other by operations of sum, difference, limit,
derivative and integral.

1.2 Global and field variables

A second classification distinguish global variables
from field variables. Global variables are those
commonly called integral variables: we avoid the
last expression because it refers to an integration
process performed on field variables.

We must emphasize that physical measure-
ments deal mainly with global variables: we mea-
sure directly voltages, fluxes, charge content and
charge flows, not field vectors. Field variables
are needed in a differential formulation because



Table 1: The three classes of variables of electromag-
netism.

CONFIGURATION VARIABLES:
gauge function
e.m.f. (impulse)
electric field vector
magnetic flux
electric potential (impulse)
magnetic vector potential
magnetic induction

SOURCE VARIABLES:
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electric charge content Q°
electric charge flow Q7
electric current density J
electric flux 4
electric induction D
magnetic field strength H
m.m.f. (impulse) Fo, (Fin)
magnetic scalar potential Vin
dielectric polarization P
magnetization M
ENERGY VARIABLES:

work , heat wW.Q
electric energy density We
magnetic energy density Wi
Poynting vector S
electromagnetic momentum G
momentum density g
electromagnetic action A

the very notion of derivative refers to point func-
tions. On the contrary a global quantity refers to
a system, to a space or time element, like lines,
surfaces, volumes, intervals, i.e. is a domain func-
tion. Thus a flow meter measures the electric
charge that crosses a given surface in a given
time interval. A magnetic tensiometer measures
the magnetic voltage impulse referred to a line
and a time interval. The corresponding physi-
cal quantities are associated with extended space
and time elements, not only with points and in-
stants.

One fundamental advantage of global vari-
ables is that they are continuous through the
separation surface of two materials while the field
variables are discontinuous. This implies that the
differential formulation is restricted to regions of
material homogeneity: one must break the do-
main in subdomains, one for every material and
introduce jump conditions. If one reflects on the

great number of different materials present in a
real device, one can see that the idealization re-
quired by differential formulation is too restric-
tive for the present technology.

This shows that differential formulation im-
poses derivability conditions on field functions that
are restrictive from the physical point of view.
Contrary to this, a direct finite formulation based
on global variables accepts material discontinu-
ities, i.e. does not add regularity conditions to
those requested by the physical nature of the vari-
able.

To help the reader, accustomed to think in
terms of traditional field variables we first exam-
ine the global variables corresponding to tradi-
tional field functions:
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These are collected in Table (2). This table shows
that integral variables arise by integration of field
functions on space and time domains i.e. lines,
surfaces, volumes and time intervals. The time
integral of a physical variable, say F, will be
called its impulse and will be denoted by the cor-
responding calligraphic letter, say £.

It is remarkable that global configuration vari-
ables all have the dimension of a magnetic flux
and that global source variables all have the di-
mension of a charge. The product of a global
configuration variable and a global source vari-
able has the dimension of an action (energy x
time).

(1)

Table 2: Integral (=global) physical variables of elec-
tromagnetism and corresponding field functions.

source variables
(coulomb)

v dt QC—/pdV

/A dL Q //J dS dt
// dLdt | w—
S
@:/B-ds ]-'mz/
s TJL

configuration variables
(weber)

V_




1.3 Cell complexes

As is well known there is a strict link between
physics and geometry. In spite of this it is not
commonly stressed that global physical variables
are naturally associated with space and time el-
ements, i.e. points, lines, surfaces, volumes, in-
stants and intervals.

In differential formulation a fundamental role
is played by points: field functions are point func-
tions. In order to associate points with numbers
we introduce coordinate systems.

In finite formulation we need to consider not
only points (P) but also lines (L), surfaces (S)
and volumes (V). We shall call these space ele-
ments.

The natural substitute of coordinate systems
are cell complexes. They exhibit vertices, edges,
faces and cells. The latter are representative of
the four spatial elements.

Once we have introduced a cell complex we
can consider the dual complex. In a simplicial
complex the commonst choices are either the bary-
centres of every simplex or the circumcentres (in
2D) and the circumspheres (in 3D): in this pa-
per we consider only circumcentres and circum-
spheres. Since the straight line connecting the
circumcentres of two adjacent simplexes in 2D is
orthogonal to the common edge the dual poly-
gon thus obtained has its sides orthogonal to the
common edge. This is called Voronot polygon in
2D and Voronoi polyhedron in 3D. The circum-
centres have the disadvantage that for triangles
with obtuse angles they lie outside the triangle.
This is inconvenient when the circumcentre of
one obtuse triangle goes beyond the one of the
adjacent triangle with the common sides. This
is avoided when the triangulation satisfies the
Delaunay condition. This leads us to consider
only Delaunay-Voronoi complexes, as we shall
do in this paper. As in coordinate systems it
is preferable to deal with orthogonal coordinate
systems, so in a simplicial complex it is preferable
to deal with a Delaunay complex and its associ-
ated Voronoi complex as dual, as shown in Figure
(1 right).

1.4 Inner and outer orientation

The notions of inner and outer orientation of a
space element play a pivotal role in electromag-
netism as well as in all physical theories.
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Figure 1: Three kind of dual: those of the first and sec-
ond columns satisfy the orthogonality condition, be-
tween dual elements.

Inner orientation. Points can be oriented as
“sources” or “sinks”. The notion of source and
sink, borrowed from fluid dynamics, can be used
to define an inner orientation of points because
it permits us to maintain the notion of incidence
number from lines and points. A line is endowed
of inner orientation when a direction has been
chosen on the line. A surface is endowed with
inner orientation when its boundary has an inner
orientation. A volume is endowed with inner ori-
entation when its boundary is so. The four space
elements endowed with inner orientation will be
denoted P,L,S, V.

Outer orientation. To write a balance we need
a notion of exterior of a volume, because we speak
of charge contained in the volume. This is usu-
ally done by fixing outwards or inwards normals
to its boundary. A surface is equipped with outer
orientation when one of its faces has been chosen
as positive and the other negative: this is equiv-
alent of fixing the direction of an arrow crossing
the surface from the negative to the positive face.
We need the outer orientation of a surface when
we consider a flow crossing the surface. A line
is endowed with outer orientation when a direc-
tion of rotation around the line has been defined:
think to the rotation of the plane of polarization
of a ligth beam. A point is endowed with outer
orientation when all line segments with origin in
the point have an outer orientation. Think, for
example, to the sign of the scalar magnetic po-
tential of a coil at a point: its sign depends on
the direction of the current in the coil.

The four space elements endowed with outer
orientation will be denoted IN’7 i, g, V.



A cell complex and its dual enjoy a peculiar
property: once the vertices, edges, faces and cells
of the primal complex has been endowed with in-
ner orientation, this induces an outer orientation
on the cells, faces, edges and vertices of its dual.
It follows that a pair formed by a cell complex
and its dual is the natural frames to exhibit all
space elements with the two kind of orientations.

1.5 Cell complex in time

Let us consider a given interval of the time axis
and divide it into small intervals, as shown in
Fig. (2). A primal instant I is oriented as sink,
such as space points. A primal interval T will be
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Figure 2: Cell complex on time axis and its dual.

endowed with inner orientation, i.e. it is oriented
towards increasing time. If we choose an instant
inside every interval we obtain a dual instant I
that is authomatically endowed with outer orien-
tation. The interval T between two dual instants
is a dual interval and is authomatically endowed
with outer orientation.

In this fashion every instant of the primal
complex there corresponds an interval of the dual
and to every interval of the primal there corre-
sponds an instant of the dual. Thus we have the
correspondence I < T and I « T and this is a
duality map.

1.6 Global variables and space-time
elements

From the analysis of a great number of physical
variables of classical fields one can infer that: [3],

[4]

FIrRST PRINCIPLE: Global configura-
tion variables are associated with space
and time elements endowed with in-
ner orientation while global source vari-
ables are associated with space and time
elements endowed with outer orienta-
tion.

Table 3: Global variables of electromagnetism.

global physical variable symbol
electric charge content Q[IV]
electric charge flow Q'[TS)
e.m.f. impulse E[TL]
m.m.f. impulse FulTL]
magnetic flux P[IS]
electric flux WIS
electric potential impulse V[T P]
magnetic potential impulse Vi, [T P]

This principle gives the reason of the use of differ-
ential forms in electromagnetism [5]. The reason
for associating source variables with outer orien-
tation is that they are used in balance equations
and a balance require a volume with outer orien-
tation (outwards or inwards normals). In short:

source variables
outer orientation

configuration variables
inner orientation

This principle offers a rational criterion to as-
sociate global variables of every physical theory
to space and time elements and, as such, it is use-
ful in computational electromagnetism. Figure
(3) shows this association for physical variables
of electromagnetism.

It is important to note that each one of these
six variables of Eq.(1) admits an operational def-
inition [7]. One can say that the role of the dual

magnetic voltage Fp,,

magnetic flux ¢__ o

primal cell "
inner orientation

dual cell
outer orientation

" electric flux ¥
electric current

ei ectric voltage V

Figure 3: Global physical variables are associated with
elements of a cell complex and its dual.

complex is to form a reference structure to which
source variables can be referred.

The space and time association of global elec-
tromagnetic variables is summarized in Table (3).



1.7 Physical laws and space-time el-
ements.

The first Principle states that global physical vari-
ables refer to the oriented space and time ele-
ments. From the analysis of a great number of
physical variables of classical fields one can infer

3], [4]:

SECOND PRINCIPLE: In every physi-
cal theory there are physical laws that
link global variables referred to an ori-
ented space-time element, say €2, with
others referred to its oriented bound-
ary, say 0€2.

The fundamental laws of electromagnetism sat-
isfy this principle. This principle motivates the
role of exterior differential on differential forms

[5].

1.8 Field laws

Experiments lead us to infer the following four
laws of electromagnetism (refer to Fig. (4)):
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Figure 4: Field laws are associated with space and
time elements.

e The magnetic flux @ referred to the bound-
ary of a volume endowed with inner orien-
tation at any instant vanishes (Gauss).

e The electromotive force impulse & referred
to the boundary of a surface endowed with
inner orientation during a time interval is

opposite to the magnetic flux @ variation
across the surface in the same interval (Fara-
day).

e The electric flux ¥ across the boundary of a
volume endowed with outer orientation at
any instant is equal to the electric charge
Q° contained inside the volume at that in-
stant (Gauss).

e The magnetomotive force impulse Fy, re-
ferred to the boundary of a surface endowed
with outer orientation in a time interval is
equal to the sum of the electric charge flow
Qf across the surface in that time interval
and the electric flur ¥ variation across the
surface in that interval (Ampere-Maxwell).

In formulae:

BL,OV] = 0
E[T,08] = S[1,8] — B[TT, 8]
P[I1,0V] = Q°[L, V]
FulT,08] = w[It,§]—w[i,S]+ Q'[T, S

2)

Equations (2) are the four laws of electromag-
netism in a finite formulation we are searching for
[7]. These algebraic equations enjoy the following
properties:

e they link physical variables of the same kind,
i.e. configuration variables with configu-
ration variables and source variables with
source variables;

e they are valid in whatever medium and then
are free from any material parameter;

o they are valid for whatever surface and what-
ever volume and then are valid in the large
as in the small;

e they do mot involve metrical notions, i.e.
lengths, areas, measures of volumes and du-
rations are not required.

These properties show that field equations do
not require infinitesimal space elements and then
they are not responsible of differential formula-
tion.



Comparison with other methods. Since the
distinction between the two classes of physical
variables is not commonly done and since it is
not recognized that two kind of orientations are
needed, it follows that differential formulation
uses only one kind of infinitesimal cells. It fol-
lows that FEM, arising from a discretization of
differential equations, ignorate the need of two
dual complexes and only one complex is used
whose cells are the elements. In 1966 Yee [10],
using a cartesian complex and with an appro-
priate choice of points at which the various field
components are to be evaluated, opened the way
to the introduction of a pair of dual complexes
done by Weiland [8], the electric and magnetic
grids. Nevertheless the two complexes were not
justified by physical considerations but only by
computational advantages. In the realm of dif-
ferential forms the two kind of orientation gives
rise to normal and twisted forms [1, p.183].

Local formulation. In order to obtain a set of
algebraic equations we must introduce a cell com-
plex and its dual. All elements must be labelled.
Let 1,53 the edges and faces of the primal com-
plex respectivly; ig and S, the same for the dual
complex, cqg,drg, etc the incidence numbers.
When equations (2) are applied to the corre-
sponding cells of the two complexes, we obtain
a local form of the field equations of the electro-
magnetic field in a finite setting. We can write

Zcﬁa E[Tni1,1a] + Ptry1,85] — é[tnvsﬁ] =0
deﬁ @[tn, S,@] =0
/8 -~ ~ ~
Z Eaﬁ ]:m[%na 1[3] - Lp[tn-‘rla ga} + Q/[tn, ga]
B
= Qf [%n; §o¢]
Z Jha q/[Ena éa] = QC[Ena {’h]
(3)
For computational purposes it is useful to make
the following changes of symbols: t, — n; t, —

n+ 1/2; P[t,,sg] — Pj; ete. In particular the
two evolution equations can be written as (¢og =

CBa, See [7])
R ST

= Q271/2 + Zcﬂa (Fm)j — (Qf)g

5
(4)
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This gives rise to the leapfrog algorithm.

1.9 Material laws

The equations that link the source variables with
configuration ones are material or constitutive
equations. In a region of uniform field the three
material equations of electromagnetism in finite
form and for orthogonal duals 8, 1 1, are

Ulty, Sa Eltn,la)
Z Ly Pad — etimiol
Sa Tn la
@[tn, Sﬁ] _ fm[‘f'n,iﬁ]
Sp 7~—n ZNﬁ
f ~ ~
Q .[,Tnj Sa] - 5 1 S[Tnala] + E[TnJrlvla]
Tn Sa 2 Tnla T+l la

()
in which 7,, 7., la, ig, 53,34 are the extensions of
the corresponding elements. To explain the par-
ticular form of Ohm’s law let us remark that
while the electric charge flow QF is referred to
dual intervals, the electric tension impulse £ is re-
ferred to primal ones. These equations are valid
if cells are cubes or belong to a Delaunay-Voronoi
complex, as is shown in Fig.(1). In these cases
1-cells of the dual are orthogonal to the primal 2-
cells and viceversa. It is possible to avoid the or-
thogonality condition and then the Voronoi com-
plexes using barycenters [2].

The main properties of material laws are:

e They are valid in regions in which the field
is uniform because they are tested under
such conditions;

e They link a variable referred to a p-cell of
a complex with the dual (n — p)-cell of the
dual complex. This geometrical property is
not apparent in differential formulation.

e They contain material parameters.

e They require metrical notions such as length,
areas, volumes and orthogonality.



While field equations in finite form describe

the corresponding physical laws exactly, the ma-
terial ones in finite form describe the correspond-
ing physical laws approximately because they are
tested only in regions of uniform field.

The material equations became approximate

only when applied to a non uniform field.

At this point we have two alternatives:

1. To perform the limit process on the dimen-
sions of the cells in order to obtain uniform
field at the limit. This is the traditional
way that leads to differential formulation.

2. To assume that the field is uniform inside
every cell. This is the only moment in which
we perform an approximation. In this way
we arrive to obtain an algebraic system of
equations useful for computation.

The last choice is the one offered in this paper.
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