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We show that the fundamental physical quantities of electromagnetism
are naturally associated with geometrical elements of space-time such as
points and instants (events), time-like lines (intervals), space-like lines,
space-like surfaces, etc. This association requires a distinction between
an inner and an outer orientations of the geometrical elements. This
leads us to analyze physical quantities and equations in a discrete setting

∗E. Tonti, “On the Geometrical Structure of Electromagnetism”, in Gravitation, Electromag-
netism and Geometrical Structures, for the 80th birthday of A. Lichnerowicz, Edited by G. Ferrarese,
1995, Pitagora Editrice Bologna, pp.281-308. Author’s address: Department of Civil Engi-
neering, University of Trieste, Piazzale Europa 1, 34127 Trieste, Italia. E-mail: tonti@univ.trieste.it

1



using a space-time cell complex and its dual, describing the distribution of
physical variables by means of cochains. Afterwards, using a space-time
coordinate system, one may pass to differential formulation. This associa-
tion leads us to make use of the cohomology theory by means of cochains
in a discrete setting and of exterior differential forms in the differential
setting.

1 Discrete formulation

We propose to show that one may give a discrete formulation of electromagnetism
using the elementary notions of algebraic topology and one may pass from it to the
differential formulation via the exterior forms.

The mathematical description of physical phenomena rests upon the existence
of quantitative attributes of physical systems that may be described by physical
quantities. The descriptive and predictive power of a physical theory depends on the
information content of physical quantities. We want to show that physical quantities
contain more information than are considered normally. Among them:

• Many physical quantities are associated with four spatial elements, points (P),
lines (L), surfaces (S) volumes (V) and with two temporal elements, time in-
stants (I) and intervals (T). Considering space-time elements we may see that
they are referred to eight possible combinations of space-time elements: events
(PI), space-like lines (LI), time-like lines (PT), space-like surfaces (SI), time-like
surfaces (LT), space-like volumes (VI), time-like volumes (ST) and hypervol-
umes (VT). This suggests an introduction of cell complexes in space-time and
the study of physical laws in a discrete setting before going over to a differential
setting.

• In this association the notion of inner and outer orientations of a space-time
element plays a central role.

• In a discrete setting, if we use a cell complex and its dual, some physical quan-
tities can naturally be associated with cells of a cell complex while others to its
dual.

These properties reveal an underlying geometrical structure that pervades all phys-
ical theories.

Association with space-time elements. To illustrate further our viewpoint
we quote Henry Lebesgue “les grandeurs de la physique directement measurables
apparissent d’ailleurs toujours comme de fonctions de domaine; . . . il peut s’agir de
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domaines sur la droite, c’est a dire d’intervals, de domains plans ou de domains a
plus de trois dimensions . . . ” 1

This is the case of global quantities, i.e. those we usually obtain as line, surface,
volume and time integrals of field functions. Table (1) lists the global variables of
electromagnetism 2. We may easily see that every global quantity on the left hand

Table 1: Global physical variables of electromagnetism. The measurable
quantities are in boldface

first-kind variables second-kind variables
inner orientation outer orientation

gauge function χ elec. charge prod. Qprod =
∫
T̃

∫
Ṽ

σ dṼ dt̃

elec. potential imp. V =
∫
T

V dt elec. charge content Qcont =
∫
Ṽ

ρ dṼ

(no known name) π =
∫
L

A · dL elec. charge flow Qflow =
∫
T̃

∫
S̃

j · dS̃ dt̃

elec. tension imp. U =
∫
T

∫
L

E · dL dt elec. flux Ψ =
∫
S̃

D · dS̃

magnetic flux Φ =
∫
S

B · dS magn. tens. imp. F =
∫
T̃

∫
L̃

H · dL̃ dt̃

magn. charge flow Gflow =
∫
T

∫
S

k · dS dt (no known name) α =
∫
L̃

T · dL̃

magn. charge content Gcont =
∫
V

g dV magn. scalar pot. imp. V(m) =
∫
T̃

V (m) dt̃

magn. charge prod. Gprod =
∫
T

∫
V

τ dV dt (no known name) η

SI unit: weber SI unit: coulomb

side has the same physical dimensions as the dimension of the magnetic flux, and
therefore the same unit (weber in the SI system). Also the global quantities of the
right hand side have the same dimensions as the dimension of a charge, and therefore
they may be all measured in the same unit (coulomb in the SI system). We remark
that the product of the electric charge for the magnetic flux (that has the same
dimensions of a magnetic charge) is the Action. The diagram of Tables (5) gives a
classification of the global variables of electromagnetism in a discrete setting while
Table (4) gives the classification of the usual field functions in the differential setting.

1“Physical quantities that are directly measurable arises moreover as functions of domain; . . . it
may be a line domain, i.e. an interval, a plane domain or a domain of more than three dimensions
. . . ” Lebesgue [18, p.20].

2The tilde over the symbol representing the space-time elements denote outer orientation, as will
be explained later.
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The very fact that these global quantities are expressed by space and time inte-
grals suggests that they have a natural association with the corresponding space-time
elements, say points (P ), lines (L), surfaces (S), volumes (V ), time instants (I), time
intervals (T ) and various combinations of them.

Inner and outer orientation. A comparison of the integrals on the left and on
the right columns of Table (1) shows that the same spatial elements have different
kinds of orientations. Therefore, the magnetic flux Φ is associated with a surface
element and inner orientation, i.e. with a prescribed direction along its boundary.
On the contrary, the surfaces regarding the integrals of the right hand side such as
the one of the electric flux Ψ , require an outer orientation, i.e. a specific direction
across the surface element from one side to the other.

The same is for the electric and magnetic tension impulses 3: the first is referred
to lines endowed with an inner orientation, while the second with lines endowed with
outer orientation. To prove the last statement, let us remark that in Ampère law the
change of the current direction in a circuit implies a change of the magnetic tension
sign: this means that an outer orientation of the line is involved in the definition of
the magnetic tension. The association of global electromagnetic variables with space
and time elements is shown in Fig.(3). The six quantities are:

Table 2: The six global variables of electromagnetism.

U(τ n, lα) electric tension impulse weber

Φ(tn, sβ) magnetic flux weber

F(τ̃ n, l̃α) magnetic tension impulse coulomb

Ψ(t̃n, s̃β) electric flux coulomb

Qflow(τ̃ n, s̃β) electric charge flow coulomb

Qcont(t̃n, ṽk) electric charge content coulomb

The fact that global electromagnetic quantities are associated with different kind
of orientation can be inferred from their operative definition illustrated in Fig.(1). As
shown in a) and b), we first measure the force and then we evaluate the work W ∗ for
every virtual displacement L. The electric tension U along the line L is then defined
as the virtual work W ∗ per unit charge and the magnetic flux Φ as the virtual work
per unit current 4,

U(L)
def
=

W ∗

q
Φ(S)

def
=

W ∗

i
(1)

3We use the term “tension” as synonymous of “voltage”.
4See Langevin [16, p.494].
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Figure 1: The operative definition of global electromagnetic quantities.
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thermal field
the temperature T
is referred to Points
of the primal cell complex

the temperature difference P
is referred to Lines
of the primal cell complex

electric field

the potential V
is referred to Points
of the primal cell complex

the tension U
is referred to Lines
of the primal cell complex

elastic field

the displacement
is referred to Points
of the primal cell complex

the relatice displacement
is referred to Lines
of the primal cell complex

magnetic field

the magnetic flux Φ
is referred to Surfaces
of the primal cell complex

the magnetic charge G
is referred to Volumes
of the primal cell complex

is referred to Volumes
of the dual cell complex

the heat Q
is referred to Surfaces
of the dual cell complex

the electric charge content Qc

is referred to Volumes
of the dual cell complex

the electric flux Ψ
is referred to Surfaces
of the dual cell complex

the volume force
is referred to Volumes
of the dual cell complex

the surface force
is referred to Surfaces
of the dual cell complex

the magnetic tension Fm

is referred to Lines
of the dual cell complex

the magnetic potential Vm

is referred to Points
of the dual cell complex
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G

Q
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Vm

the heat production

u
u

h

h

Fv Fv

Fs

Fs
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Figure 2: The root of analogies lies in the association of global variables to
space and time elements. Heavy lines denote the primary complex, light
lines the dual.
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where q denotes the test charge and i the test current 5. If we change the inner
orientation of L then both W ∗ and U change sign. The corresponding definition of
the magnetic tension and of the electric flux are, see Fig.(1) c) and d)

F (L̃) = n I Ψ(S̃) = Q, (2)

where I denotes the current that nullifies the field inside the test coil 6 and Q denotes
the charge induced on the positive face 7 of the surface element that nullifies the
electric field inside the region bounded by two discs 8. Here I and Q are measured,
while in the Eq. (1) the corresponding quantities i and q are assigned and the virtual
work is evaluated after the force has been measured.

It is important to note that some of the physical quantities are associated with
cells of a given complex, while others are to its dual 9. To explain this let us consider
a thermal field. If the two cells of Fig.(2) are conceived as two rooms it is natural
to assign the internal energy U to both rooms and the energy flow (heat) Q to the
separating wall. It is natural also to associate the temperature of each room with their
barycenters respectively. Consequently the temperature difference P is asssociated
to the lines connecting the two barycenters. In doing so we notice that both cell
complexes (primary and dual) are involved in the association of physical variables
with the spatial elements. It is remarkable that the constitutive equation of Fourier
links the variables Q and P that are associated with a pair of dual elements.

This property is common to many physical theories as may be seen in the other
examples of Fig.(2).

The variables associated with a p -cell and to its dual (n-p)-cell are conjugated in
the sense that their product gives energy (an action in a space-time cell complex).
The prototype of conjugated variables are force and displacement. Force is a covector
(or form) while displacement is a controvariant vector. Usually we consider force
as an element of the dual space with respect to the space of displacements (tangent
and cotangent spaces of differential geometry). We see now (see Fig.(2), last line)
that the volume forces ar associated with volumes of the dual cell complex, while the
displacements are associated with the points of the primary cell complex.

We find an interesting property: physical variables, which are dual in the sense
of vector spaces are associated with dual cells when considered in the physical space
or in space-time. Moreover, constitutive (or material) equations in physical space or
in space-time, are relations between physical variables associated with pairs of dual
cells. Such equations are usually described as mapping between a vector space and

5See [22, p.148].
6See Langevin [16, p.494]; Fouillé [9, p.224]; Pohl [25, p.66]; Schelkunoff [27, p.41].
7The arbitrariness of the choice of a face as positive is the same of the choice of a positive face

in the definition of surface force in a material continuum.
8See [9, p.71]; Fleury-Mathieu [7, p.61]; Maxwell [21, p.47]; Rojansky [26, p.230]; Schelkunoff [27,

p.25]; Jefimenko [14, p.80; p.225].
9See Branin [5].
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Figure 3: The six global variables of electromagnetism and the correspond-
ing space and time elements.
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its dual.
All these remarks bring us to give a precise meaning to the notion of inner and

outer orientation of a spatial element. Before doing this we must ask ourselves if
there is any natural framework that may emphasize the spatial elements and their
orientations. Such a natural framework exists if we use the notion of cell complexes
from algebraic topology, in particular homology theory 10.

2 Cell complexes

To analyze the geometrical background of physical quantities we find useful to work in
a discrete setting using a cell complex: this will play the role of the coordinate system
used in the differential setting. To do this we consider a domain of the physical space
as being an affine space and subdivide it into subdomains in contiguous cells of what-
ever shape and dimensions. Vertices, edges, faces and volumes are called respectively
0-cells, 1-cells, 2-cells and 3-cells. The edges and the faces may be straight or curved:
we shall consider cell complexes with straight edges and plane faces. In Fig.(4) we
show two cell complexes in a two-dimensional space. While in algebraic topology one
consider simplicial complexes, in physics it is preferable to use cell complexes formed
by parallelotopes because they make easy the passage to the differential formulation.
For the numerical solution of physical problems, on the contrary, simplicial complexes
are more flexible because they permits to fit better the boundaries of the region and
to do local refinements in the mesh.

A simplicial complex in two dimensions is said a Delaunay complex if the circle
passing from the three vertices of a simplex does not contain any other vertices of the
complex. This condition assures that the circumcenters of two adjacent simplexes,
even if not contained in their respective cells, are not inverted. Analogous definition
is valid in IE3 taking the circumsphere. If in a Delaunay complex we choose as dual
vertices the circumcenters of its simplexes, the corresponding 1-cells connecting these
vertices are orthogonal to the (n − 1) cells of the Delaunay complex. One obtain in
this way a couple of Delaunay-Voronoi complexes 11, as shown in Fig.(??right) that
are, in a discrete setting, the equivalent of an orthogonal coordinate systems in the
differential setting.

The notion of inner orientation is of combinatorial nature: it arises when we con-
sider the simplex of IEn and the possible ordering of its vertices. So if A, B, C denote
the vertices of the simplex of IE2, the arrangements 〈A, B, C〉, 〈B, C, A〉 and 〈C, A, B〉,
which differ for an even number of permutations of the sequence, define an (inner)
orientation while all arrangements that differs for an odd number of permutations
define the opposite orientation.

10The idea of considering the association of physical variables with the cells of a cell complex and
its dual was introduced by Branin, an IBM engineer, in 1966 [5].

11See Frey and Cavendish [11].
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Figure 4: A two-dimensional cell complex (thick lines) and its dual (thin
lines). In the triangular complex the vertices of the dual complex are the
intersections of the three axes of the primary 1-cells, instead of barycenters
used in algebraic topology. This gives the advantage that 1-cells of dual
are orthogonal to primary 1-cells.
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projection of a four-dimensional simplex and cube respectively.
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In order to define the orientation of the p -cell we decompose the p -cell into p -
simplexes, we orient one simplex and then we propagate the orientation to the other
simplexes of the cell. The 0-cells are oriented when all are considered “sources” or
“sinks”. The notion of source and sink, borrowed from electromagnetism and fluid
dynamics, may be used to define an inner orientation of points because it permits to
maintain the notion of incidence number from a (p +1)-cell and a p -cell also when
p = 0.

In an affine space if one introduce a rectangular coordinate system one may con-
sider as 3-cells the regions delimited by the coordinate planes. The edges of such
cells have as natural orientation the one of coordinate lines and the faces have the
orientation of the coordinate planes, say xy, yz, zx as shown in Fig.(6).

In a cell complex all cells of a same dimension p are numbered according with
some convenience criterion.

2.1 Dual cell complex

Given a cell complex in a 3-dimensional space we are led to introduce the dual cell
complex defined as follows. We start by considering a point inside every 3-cell: in
particular one may consider its barycenter or its circumcenter. The 1-cells of the dual
are the lines connecting the 0-cells contained in two adjacent 3-cells. The 2-cells of
the dual are the surfaces delimited by the 1-cells of the dual. The 3-cells of the dual
are the volumes delimited by the 2-cells of the dual. Then for every p -cell of the
primary complex there is a corresponding (n-p)-cell of the dual. The correspondence
consists in the fact that a primary p -cell contains or crosses or is contained in an
(n-p)-cell of the dual. This one-to-one mapping permits us to assign the same label
to a p -cell and the dual (n-p)-cell.

The one-to-one mapping between primary p -cells and (n-p)-cells of the dual per-
mits us to define the notion of outer orientation. Following Veblen and Whitehead 12

we call outer orientation of a p -cell of the dual cell complex K̃ the inner orientation
of the corresponding (n-p)-cell of the primary complex K. With this definition we
have a systematic way of defining outer orientation of the p -cells of the dual. In
particular we note that points are usually oriented as sinks . This is never explicitly
stated but may be inferred from the fact that the space differences of a point function
between two points P and Q is given by (+1)f(Q) + (−1)f(P ). This means that the
line segment PQ, oriented from P to Q, is positively incident in Q (incidence number
+1) and negatively incident in P (incidence number -1). In other words: the signs of
a difference may be interpreted as incidence numbers between the orientation of the
line segment and those of its terminal points.

In physics the fact that points are orientes as sinks conflicts with the traditional
convention of outgoing normals for volumes and this justifies the omnipresent minus
sign in front of the gradient, as in the relation of electrostatics E = −∇ϕ. In fact we

12See [34, p.56]
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have defined as outer orientation of a p -cell of the dual complex the inner orientation
of the corresponding (n-p)-cell of the primary. If the 0-cells of the primal (points) are
oriented as sinks and the corresponding 3-cell of the dual (volume) is oriented with
outwards normals, then the outer orientation of the 3-cell is opposite to the inner
orientation of the 0-cell of the primal.

A cell complex and its dual permit us to classify the spatial elements of a manifold,
as shown in Fig.(6).

x
y

z

P

sink

V

P
Lx

Syz

Lz

Ly

Szx

Sxy

SxyL z

P

Ly
Lx

V

Syz Szx

outward 
normals

1P

3L

3S

1V

1V

3S

3L

1P

dual
cell complex

primal
cell complex

Figure 6: A classification of the spatial elements of a cell complex and
its dual in a three-dimensional affine space. The numbers refers to the
families: so 3L stands for (Lx, Ly, Lz) while 3S stands for (Sxy, Syz, Szx).

In the study of a physical theory, say thermodynamics, electromagnetism, elas-
ticity, fluid dynamics, etc. if one introduces a cell complex and its dual one may
associate the global variables of such theory with the cells of various orders of the
cell complex, i.e. to the 0-cells (points, nodes, vertices), 1-cells (lines, edges) to the
2-cells (surfaces, faces) to the 3-cells (volumes, elements, cells).

So in space we have

potentials (like temperature) are associated with 0-cells
tensions (like voltage) are associated with 1-cells
fluxes (like energy flux) are associated with 2-cells
contents (like entropy content) are associated with 3-cells.

while in space-time we have
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functions (like gauge function) are associated with 0-cells (events)
potential impulses (like

∫
V dt) are associated with time-like 1-cells

circulations (like
∫

A · dL) are associated with space-like 1-cells
tension impulses (like

∫
U dt) are associated with time-like 2-cells

fluxes (like magnetic flux) are associated with space-like 2-cells
flows (like energy flow) are associated with time-like 3-cells
contents (like mass content) are associated with space-like 3-cells
productions (like entropy prod. ) are associated with time-like 4-cells.

It follows that the variables associated with inner oriented elements are naturally
associated with the cells of the given cell complex K while those associated with outer
oriented elements are naturally associated with the cells of the dual cell complex K̃.
These remarks lead to a general classification diagram of the physical quantities of
whatever physical theory as Tables (5) and (4).

To analyze the geometrical content of physical equations we summarize the notions
of chain, boundary, cochain and coboundary

2.2 Incidence numbers

The (p-1)-faces of a p -cell are those (p-1)-cells that are incident on the given p -cell.
Given a p -cell consider all (p+1)-cells which have a p -cell as common face. These will

3-cofaces2-cofaces1-cofaces

0-cell ph

lα

1-cell lα 2-cell sα

sβ

vk

Figure 7: The coboundary of a p -cell defined as the set of all cofaces.

be called cofaces of the p -cell as shown in Fig.(7). Since the set of all faces of a p -cell
form the boundary of a p -cell, therefore the set of all cofaces form its coboundary .

We are now in a position to define the incidence number of a p -cell ch with a
(p-1)-cell bk. This is a relative integer ηhk = [ch :bk] whose values are:

• +1 if bk is a face of ch and the orientations of bk and ch are compatible;

• -1 if bk is a face of ch and the orientation of bk and ch are not compatible;

• 0 if bk is not a face of ch.

We remark that the order of cells in the square brackets is irrelevant, i.e. [ch :
bk] = [bk : ch], while in the notation ηkh the first index refers to the cell of greatest
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dimension 13

In the three-dimensional space there are three matrices which we shall denote as
G,C,D for the primary complex K and three matrices G̃, C̃, D̃ for the dual complex
K̃.

From Fig.(8) one may see an important fact that the incidence number between a
p -cell and a (p-1)-cell of the primary cell complex is equal to the incidence number
between the corresponding dual cells . Note that the indices of the matrix elements d̃hσ
and gσh are reversed and then the corresponding matrices are adjoint to one another.
We have 

gαh
def
= [lα :ph] = [s̃α : ṽh] = d̃hα G = D̃T

cβα
def
= [sβ : lα] = [̃lβ : s̃α] = c̃αβ C = C̃T

dkβ
def
= [vk :sβ] = [p̃k : l̃β] = g̃βk D = G̃T

(3)

Since the usual convention about points is that they are oriented as sinks while
volumes are oriented as sources it follows that d̃hα = −gαh. This fact is the basis
of all adjointness relations between the differential operators of field theories. In
particular it may be shown that the adjointness relation between the divergence and
the minus gradient, i.e.∫

V
f div v dV =

∫
V

v · (−gradf) dV +
∫
∂V

∂f

∂n
v ·n dS (4)

is the differential analog of the algebraic relation d̃hα = −gαh.

2.3 Chains

Let us consider an aggregate formed by a set of p -cells ck, each with a definite
orientation and with a definite multiplicity, and a set of number nk describing the
orientation and multiplicity of the cell ck in the set. One may represent the members
of this aggregate by couples (ck, nk) and call every couple an elementary chain. This
aggregate is an algebraic entity called p -dimensional algebraic chain with integer
coefficients. Briefly one call this a p -dimensional chain, or p -chain. It is an essential
requirement of a chain that if the orientation of one cell of the chain is inverted then
the corresponding coefficient in the chain is changed to its opposite, i.e.

if ck → −ck then nk → −nk (5)

This property is called the oddness condition.

13 See Alexandrov [2, p.275]; Franz [10, p.30]; Patterson [23, p.103]; Hocking and Young [13, p.223];
Lefschetz [20, p.99]. The reader should be aware that some authors use the opposite convention for
the order of indices in ηhk.
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ṽh

k
v

kv
p
k k

Figure 8: The incidence numbers of a pair of cells are equal to those of
the dual pair.

Denoting with ck the k-th p -dimensional cell of K and with c̃k the k-th p -
dimensional cell of K̃ a p -chain may be written as a formal linear combination of
the p -cells, 14.

Cp =
∑
k

nkc
p
k C̃p =

∑
k

nkc̃
p
k (6)

according to whether the cells belong to the primary or dual complex. We shall
distinguish chains on a cell complex from those on its dual by putting a tilde over the
cell symbol and the chains symbol of the dual 15. An oriented p -cell with associated
coefficient +1 may be considered as the smallest p -chain and it is called an elementary
p -chain 16.

While the p -cells are point sets and then topological entities, an elementary p -
chain is an algebraic entity 17. Point sets cannot be added, elementary chains can
be added. The sum of two p -chains is defined as the p -chain whose coefficients are
the sum of the corresponding coefficients of the given p -chains. In particular, the
p -chain whose coefficients are all vanishing is called a null p -chain denoted as Θp.

14 Seifert [29, p.61]) Franz [10, p.31], Hilton [12, p.56] Hocking [13, p.226]; Patterson [23, p.117]
Alexandrov [1, p.18]; Alexandrov [2, p.264]; Wallace [36, p.105]; Patterson [23, p.117]; Hilton [12,
p.58].

15 This notation is new because books on algebraic topology do not consider chains on the dual
cell complex.

16Franz [10, p.31]; Hocking [13, p.297].
17Alexandrov [2, p.20].
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As a consequence of the definition of the sum of (algebraic) chains, the p -chains on
a cell complex K form an additive group denoted Cp(K), called the p -dimensional
chain group. Since there are two cell complexes, the primary K and the dual K̃, there
are two p -dimensional chain groups Cp(K) and Cp(K̃). Since the elements of these
groups may also be multiplied by relative integers, the groups have a richer structure.
They are moduli over the ring of integers Z. Observe that they are not vector spaces
because the integers do not form a field as reals do.

Remark. One may also give a more general definition of a p -chain as a function that
assign to every oriented p -cell an element of a commutative group (additively written) 18.
When the coefficients belong to an arbitrary additive group the intuitive geometrical content
is lost. If one wants to maintain a geometrical content, as we do, the group must be that of
integers 19. For this reason we shall consider only the relative integers as coefficient group.

2.4 Boundary of a chain

The boundary of a cell is a point set of one dimension lesser. An analogous notion
may be defined on a chain. Let us denote with

Cp =
∑
k

nkck and Bp−1 =
∑
h

mhbh (7)

two chains of dimensions p and (p-1) respectively. With reference to Fig.(9) we may
define the boundary of a p -chain Cp as the (p-1)-chain Bp−1 whose coefficients mh are
the sum of the coefficients nk of the cofaces of the (p-1)-cell bk, each multiplied by
the corresponding incidence number

mh
def
=
∑
k

nk [ck :bh]. (8)

This is represented symbolically as

Bp−1 = ∂Cp. (9)

The process of forming the boundary is called the boundary process and the operator
∂ is called the boundary operator.

We see that the boundary operator is a linear mapping with integer coefficients
between the group of p -chains and that of (p-1)-chains, i.e. ∂ : Cp → Cp−1.

A closed line is a line with no boundary; its algebraic description is a closed chain,
i.e. a chain such that ∂C = Θp−1. This is called p -dimensional cycle. The obvious
fact that the boundary of a surface is a closed line may be restated as “the boundary
of a surface has no boundary”. In the same way “the boundary of a volume has no

18Hocking [13, p.225].
19Hilton [12, p.58]; Bourgin [4, p.22]; Wallace [37, p.6].
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Figure 9: The geometric description of the boundary process on p -
dimensional chain.

boundary”. In the language of chains it is said that the boundary of the boundary of
a chain is the null chain

∂∂Cp ≡ Θp−2 (10)

where Θp−2 is the null (p-2)-chain. This peculiar identity plays a central role in the
theory of chains, and is the algebraic formulation of a primitive topological property.
The identity (10) may be expressed by the relations 20

∑
k

[di :ck][ck :bh] ≡ 0. (11)

Referring to Fig.(8) and remembering Eq.(3), we may write
∑
α

[sβ : lα][lα :ph] =
∑
α

cβα gαh ≡ 0∑
β

[vk :sβ][sβ : lα] =
∑
β

dkβ cβα ≡ 0
(12)

or
CG = 0 DC = 0. (13)

As we shall show these relations are the discrete counterpart of the differential iden-
tities

curl grad f ≡ 0 div curl v ≡ 0 (14)

and it is for this reason that we have used the letters G,C,D that are the initials of
the words “gradient”, “curl” and “divergence”.

2.5 Cochains

The fact that global physical variables are associated with p -dimensional submani-
folds of an n-dimensional manifold (say potentials to points, tensions to lines, fluxes to

20Hocking [13, p.224].
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surfaces, contents to volumes in the three-dimensional space) implies that with every
p -cell and every p -chain one may associate a certain value of the global variable. This
mapping gives the distribution of the physical variable on the submanifolds.

Such a mapping is called p -cochain in algebraic topology. So the potential of
a vector field gives rise to a 0-dimensional cochain; the circulation of a vector to
a 1-dimensional cochain; the flux to a 2-dimensional cochain and the contents to a
3-dimensional cochain.

The notion of a p -cochain of a global physical variable is the generalization of the
notion of field function used in the differential setting. As a field function associates
an element of a vector space with every point, so a 0-dimensional cochain is a function
that associates an element of a vector space to every 0-dimensional cell. A p -cochain
is a set function.

Thus pressure is a scalar field function while its corresponding global variable, i.e.
the normal surface force, is a 2-dimensional vector valued cochain defined on the dual
cell complex because it is associated with the outer orientation of the surface.

A p -cochain fp on a cell complex is a function that with every p -chain Cp of a
cell complex, associates an element of an additive group G i.e. one that satisfies the
additive property 21

fp
(
Cp + C′p

)
= fp(Cp) + fp(C′p). (15)

One may say that a p -dimensional cochain is an homomorphism of the group of
chains Cp on the group G 26 or a linear mapping with integer coefficients of the group
Cp on the group G, i.e. fp : Cp 7→ G 27. In particular, the group G may be a vector
space of real or complex numbers, a function space, or it may be an algebra, like
matrix and Clifford algebras.

Denoting with f the value of the p -cochain fp on the chain Cp, we may write

f = fp(Cp). (16)

A peculiar property of a p -cochains is that the value f associated with a p -chain
changes its sign when its orientation is inverted. This comes from Eq. (15) by
putting C′p = −Cp. This is the oddness condition of p -cochains that corresponds to
the analogous condition on chains. We then have

fp(−Cp) = −fp(Cp). (17)

Moreover, to the null p -chain Θp there corresponds the null element Θ of the group
G.

21 There are many notations for cochains in books of algebraic topology: the most common are
cp(dp) 22 and cp · dp 23; (dp, cp) 24; (cp, dp) and (cp)cp 25.

26Franz [10, p.42-46].
27Dubrovin [6, p.32]; Hocking [13, p.300].
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A p -cochain is assigned when we allot to every elementary p -chain ck the quantity
fk = fp(ck). From Eq. (15) it follows that

f = fp(Cp) = fp
(∑

k

nkck

)
=
∑
k

nkf
p(ck) =

∑
k

nkfk (18)

i.e. the value f of a p -cochain fp on a p -chain Cp is the sum of the values fk of fp on
the cells, each multiplied by the coefficient of the cell in the chain.

The introduction of a cell complex in the space considered permits us to select
some p -dimensional domains, formed by a set of p -cells. The algebraic entity that
describe them are p -chains. Corresponding to points and coordinate systems used in
traditional physics the cells and their labels are used in our description.

In space-time, circulations (line integrals) are described by 1-cochains; fluxes and
tension impulses by 2-cochains; flows are described by 3-cochains; productions (e.g.
entropy production) by 4-cochains.

2.6 Coboundary of a p -cochain

The coboundary process on a p -cochain generates a (p +1)-cochain. It is remarkable
that this process plays a key role in physics because balance, circuital and differ-
ence equations may be expressed by the coboundary process performed on 3-, 2-,
1-dimensional cochains, respectively. This process in the differential setting is the ex-
terior differentation on exterior p -forms and leads to typical operators such as grad,
curl, div, along with time derivatives 28.

We present the coboundary process in a geometrical language which makes it very
simple as compared to the corresponding analytical definition of exterior derivative
on p -forms. With reference to Fig.(10), we shall introduce the following notion:
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Figure 10: The geometric description of the coboundary process on p -
dimensional cochains.

28Hilton [12, p.72].
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Given a (p -1)-cochain fp−1, we may obtain a p -cochain gp by the following process:
we associate with every p -cell ck the sum of the products of the quantities fp−1(bh)
associated with its (p-1)-faces each multiplied by the relative incidence number. In
this way we associate with every p -cell the quantity gp(ck) given by

gp(ck)
def
=
∑
h

[ck :bh] fp−1(bh). (19)

represented symbolically as
gp = δfp−1. (20)

The process so performed is called the coboundary process and the operator δ is called
the coboundary operator.

Let us consider a chain Cp and its boundary B(p−1) = ∂Cp. Remembering Eq.
(8) we have the following fundamental relation

(δf)p(C) = gp(C) = gp
(∑

k

nkck

)
=
∑
k

nkg
p(ck) =

∑
k

{
nk
∑
h

[ck :bh]f
p−1(bh)

}

=
∑
h

{∑
k

nk[ck :bh]

}
fp−1(bh) =

∑
h

mhf
p−1(bh) = fp−1

(∑
h

mhbh

)
= fp−1(∂C).

(21)
This means that as the boundary process on a chain lowers the degree of the chain
by one unit so the coboundary process on a cochain raises the degree of the cochain
by one unit.

As an example, with reference to Fig.(10), the coboundary of a 1-, 2- and 3-cochain
assigns to a 1-, 2- and 3-cell respectively the quantities

g = +q− p g = (p− r) + (q− s) g = (p− s) + (q− t) + (r− u) (22)

This example is very important because it corresponds to three common processes
of physics, those of forming the difference of a potential between two points, the
circulation of a vector along a closed line and the sum of the fluxes across a closed
boundary.

2.7 Discrete Stokes theorem

Equation (21) may be rewritten as

(δf)p (C) = fp−1(∂C). (23)

Stated in words: the value of the coboundary of a (p -1)-dimensional cochain on a
p -dimensional chain is equal to the value of the cochain on the (p -1)-dimensional
boundary of the chain 29.

29Dubrovin [6].
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Relation (23) is the algebraic form of Stokes theorem and is called “generalized”
or “combinatorial” form of Stokes theorem 30. This shows that the definition of
coboundary process is such that Stokes theorem be an immediate consequence of it.

This also shows that Stokes theorem is a purely topological relation 31 and that the
various continuity and differentiability conditions usually required in its proof depend
on the fact that one uses the field functions. This is a typical situation in physics:
many continuity and differentiability requirements are not ineherent physical laws but
are imposed by the differential tools used in their description.

The notion of coboundary operator which raises the degree of a cochain by one
unit, corresponds to the notion of exterior differential which raises the degree of an
exterior differential form by one unit 32.

From the identities (23) and (10) we obtain the important identity

(δδf)p+1(Cp+1) ≡ (δf)p(∂C)p ≡ fp−1(∂∂C)p−1 ≡ fp−1(Θp−1) ≡ 0. (24)

It means that when the coboundary process is performed twice in sequence it gives
rise to the null element of group G. This is the algebraic root of the differential
identities, ∇× ∇ ≡ 0 and ∇ · ∇× ≡ 0. Physical laws in their original form, as
inferred from experiments, naturally involve global variables associated with spatial
and temporal elements and not field functions. The forming of densities and rates
and then the passage to the limit to form the field functions that is typical of field
and continuum theories, deprives physical variables of their geometrical content. As
far as physics is concerned it appears natural to utilize in a discrete setting the p -
dimensional cochains to describe the global variables associated with p -dimensional
manifolds. It is enough to cover the space-time region with a cell complex K and its
dual K̃ and to approximate the p -dimensional manifolds with p -dimensional chains.
In this way, an amount of the global physical quantity is associated with every p -
chain and then a p -dimensional cochain is obtained. The association of an amount
of a physical variable with every p -cell gives rise to a set function that is the natural
extension of point functions used in physics.

3 Topological laws

According with Table (1) the Maxwell’s equations may be written as follows Φ(I, ∂V ) = 0

U(T, ∂S) + Φ(∂T, S) = 0

 Ψ(Ĩ , ∂Ṽ ) = Qcont(Ĩ , Ṽ )

F(T̃ , ∂S̃) = Qflow(T̃ , S̃) + Ψ(∂T̃ , S̃).
(25)

30Franz [10, p.43]; Hocking [13, p.301].
31Synge [30, p.267].
32Hilton [12, p.72].

21



where I stands for instant and T for interval . This is a compact notation equivalent
to the usual integral formulation. So the last equation is∫

T̃

∫
∂S̃

H · dL̃ dt̃ =
∫
T̃

∫
S̃
j · dS̃ dt̃ + ∆̃t

∫
S̃
D · dS̃. (26)

The symbols ∆t and ∆̃t refer to time differences between the values of a quantity
referred to a primary and dual time cell complex as shown in Fig.(3):

∆tf = f(tn)− f(tn−1) backward difference

∆̃tg = g(t̃n+1)− g(t̃n) forward difference
(27)

It is evident that these relations relate global quantities of the same kind and do not
involve metrical notions: length, areas, measures of volumes and durations are not
required. It is for this reason that we call them topological equations .

In Fig.(3) we have presented six global variables (in space) of electromagnetism
and the corresponding spatial elements. This leads to introduce three space-time
cochains defined as follows

2-cochain of magnetic fluxes Φ(2)

{
U (2)(τ n, lα) electric tension impulses
Φ(2)(tn, sβ) magnetic fluxes

2-cochain of electric fluxes Ψ(2)

{
F (2)(τ̃ n, l̃α) magnetic tension impulses
Ψ (2)(t̃n, s̃β) electric fluxes

3-cochain of electric charges Q(3)

{
Q(3)flow(τ̃ n, s̃β) electric charge flow
Q(3)cont(t̃n, ṽh) electric charge content

(28)
We may write Maxwell’s equations in space-time in the form:

δΦ(2) = 0 δΨ(2) = Q(3) (29)

That is the discrete analogous of the two equations (A, B, C, P, Q denote tensorial
indices in space-time notation)

∂AFBC + ∂BFCA + ∂CFAB = 0 ∂QGPQ = JP (30)

used in the differential formulation. When equations (29) are applied to the cells
of the two complexes, we obtain a “local” form of Maxwell’s equations in a discrete
setting, i.e.

∑
α

dhα Φα = 0∑
β

cαβ Uβ + ∆tΦα = 0


∑
α

d̃hα Ψα = Qcont
h∑

β

c̃αβ Fβ − ∆̃tΨα = Qflow
α .

(31)
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These equations are to be used for numerical solution of electromagnetic problems.
Some authors use chains with coefficients on the Reals instead of cochains to

describe the association of physical quantities to p -cells.
We now show that the use of chains instead of cochains implies that one cannot

describe a fundamental feature of physical quantities i.e. their additive property.
The homomorphism of p -cochains to p -chains expressed in Eq. (18) is an essential

property for global physical variables because the amount of a physical quantity that
corresponds to a domain is the sum of the amounts corresponding to its parts. For
a better understanding of this property let us remark that in physics one defines an
extensive quantity as one that is additive on volumes. It is not commonly stressed
(even if it is commonly used) that quantities associated with lines and surfaces are
additive. So the electric tension along a line is the sum of the electric tensions on its
parts; the magnetic flux associated with a surface is the sum of the fluxes associated
with its parts. Additivity allows expression of global variables as line, surface and
volume integral of field functions. Global quantities in physics are always additive
as consequence of their own definition. This addittivity cannot be expressed by
the notion of chain with coefficient domain in a group G instead of integers. This
is because the notion of sum of two p -cells is lacking. On the contrary it can be
expressed by the cochain notion because there is the notion of sum of two p -chains
with integer coefficients and this permits an algebraic treatement of p -dimensional
manifolds formed by p -cells.

With reference to the use of chains or cochains in physics Post 33, said “Epistemo-
logically it is better if the cohomology of fields is given a primary physical role than
the homology of chains over wich these fields are being integrated.”

Some authors justify the choice of chains instead of cochains due to the fact that in
a finite-dimensional cell complexes one may establish a one-to-one mapping between
p -chains and p -cochains with the same coefficient group G. Hilton and Wylie wrote:
“This does not justify us in concealing the distinction between these two notions, for
the correpondence depends on a choice of basis of Cp. The situation in vector space
theory is entirely analogous. Although a finite-dimensional vector space is isomorphic
to its dual, the elements of the dual are linear functions and it is essential that the
two spaces be not confused” 34.

Since a p -dimensional domain can be described by a p -chain with integer coeffi-
cients, it follows that cochains are a natural tool to describe set functions.

In the same book, Lebesgue quoted as saying: 35 “Si pourtant, on parle peu de
ces fontions [les fonctions d’ensemble], c’est que les mathématiciens n’ont pas encore
créé l’Algèbre et l’Analyse des fonctions de domaine. ” 36 We see that the notion of

33Post [24, p.517].
34Hilton [12, p.67].
35Lebesgue [18, p.293].
36“Thus, one talks less of a set of function, it is because mathematicians have not invented Algebra

and Analysis of set-functions.”
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cochain and the theory of cohomology are the tools that Lebesgue was talking about.

4 Metrical laws

In Fig.(11) we see that the three constitutive equations of electromagnetism link
global variables associated with dual cells. In such a link the notion of orthogonality
is essential; moreover the length and area of line and a surface elements are indis-
pensable. This shows that the constitutive equations, contrary to the topological
equations, require metrical notions. Constitutive equations are valid also in a finite

magnetic flux  
magnetic tension

Φα

Fα

Fα

Φα Uβ

Ψβ electric flux  
electric tension

Ψβ

Uβ

electric current  
electric tension

Ι β

Uβ

Figure 11: The constitutive equations require metrical notions.

setting, but only in a region of uniform field . It is important to notice that consti-
tutive equations are experimentally determined in a laboratory on a specimen under
the condition of uniform field. The three constitutive equations of electromagnetism
are

second-kind variables first-kind variables
Ψ(t̃n, s̃α)

s̃α

law
= ε

U(τ n, lα)

τn lα

F(τ̃ n, l̃β)

τ̃n l̃β

law
=

1

µ

Φ(tn, sβ)

sβ

Qflow(τ̃ n, s̃α)

τ̃n s̃α

law
= σ

U(τ n, lα)

τn lα

(32)

in which τn, τ̃n, lα, l̃β, sβ, s̃α are the extensions of the corresponding cells. These equa-
tions are valid if cells are orthogonal parallelotopes (parallelepipeds, rectangles), or if
the simplicial complex is a Delaunay complex and its dual a Voronoi complex. Only
in these cases, 1-cells of the dual are orthogonal to the primary 2-cells and viceversa.
As consequence of the natural association of physical variables with the space-time
elements endowed with inner or outer orientations, we have obtained a natural sepa-
ration between non metrical and metrical equations of electromagnetism as obtained
Kottler [15], Heargraves and Van Dantzig [33].
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It is remarkable that the constitutive equations of every physical theory are links
between a variable associated with a cell and another associated with its dual.

5 Conclusion

To conclude we quote some sentences taken from a paper of Bohm, Hiley and Stu-
art 37 “The laws of electrodynamics were first expressed in terms of integrals of fields
over cycles of varying dimensionality, e.g. Ampère’s law, Faraday’s law, Gauss law,
etc. It is only from the extrapolation of these integrals to infinitely small cycles
that one obtain Maxwell’s equations. Thus these equations go considerably beyond-
what can be inferred from observations alone. The relative ease of the mathematical
application of the differential form of Maxwell’s equations has made this approach
attractive. However the infinities that arise in the indefinite extension of this form,
both classically and quantum mechanically imply that it may be appropriate to go
back to the integral form in spite of the possibility of greater mathematical difficulty.
The appropriate mathematics for doing this is the theory of complexes of chains and
cochains that we have described earlier”.

Acknowledgments. The author is grateful to Gianni Landi and Alain Bossavit for
their critical reading of the manuscript.
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Table 3: The correspondence between the discrete and the differential
formulation of the electromagnetic equations.

discrete formulation differential formulation
global variables field functions

1 charge conservation∑
α

d̃hα Qflow(τ̃ n, s̃α)

+
[
Qcont(t̃n+1, ṽh)−Qcont(t̃n, ṽh)

]
= 0

{
div j + ∂tρ = 0
n · (j+ − j−) = 0

2 Gauss’ law∑
β

dkβ Φ(tn, sβ) = 0

{
div B = 0
n · (B+ −B−) = 0

3 Faraday’s law∑
α

cβα U(τ n, lα) +
[
Φ(tn, sβ)− Φ(tn−1, sβ)

]
= 0

{
curl E + ∂tB = 0
n×(E+ − E−) = 0

4 electrostatic induction∑
α

d̃hα Ψ(t̃n, s̃α) = Qcont(t̃n, ṽh)

{
div D = ρ
n · (D+ −D−) = σ

5 Maxwell-Ampère’s law∑
β

c̃αβ F(τ̃ n, l̃β)−
[
Ψ(t̃n+1, s̃α)− Ψ(t̃n, s̃α)

]
= Qflow(τ̃ n, s̃α)

{
curl H− ∂tD = j
n×(H+ −H−) = K

6 electric constitutive law

Ψ(t̃n, s̃α)
law
= ε

s̃α
τnlα

U(τ n, lα) D
law
= εE

7 magnetic constitutive law

F(τ̃ n, l̃β)
law
=

1

µ

τ̃nl̃β
sβ

Φ(tn, sβ) H
law
=

1

µ
B

8 Ohm’s constitutive law

Qflow(τ̃ n, s̃α)
law
= σ

τ̃ns̃α
τnlα

U(τ n, lα) j
law
= σE

9 general solution of Gauss’ equation

Φ(tn, sβ) =
∑
α

cβα Π(tn, lα)

{
B = curl A
n×(A+ −A−) = 0

10 general solution of Faraday’s equation

U(τ n, lα) =
∑
h

gαhV(τ n,ph)

−
[
Π(tn, lα)−Π(tn−1, lα)

] {
E = −grad V − ∂tA
V + − V − = 0
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Table 4: The differential structure of electromagnetism

configuration variables
primal complex: inner orientation

intervals instants

source variables
dual complex : outer orientation

instants intervals

����V

����E

����k

����λ

����χ

����A

����B

����g

�� ��ρ

�� ��D

�� ��T

�� ��η

����p

����J

����H

����Vm

V = ∂t χ A = −∇χ

?

�
�

�
�	

E = −∂t A−∇V
B = ∇×A

?

?

��

��	

∇×E + ∂t B = 0
∇ ·B = 0

?

?

��

��	

−∂t g +∇ · k = λ

?

�
��

�
��	

∂t ρ +∇ ·J = 0

6

�
��

�
���

∇ ·D = ρ
∇×H− ∂t D = J

6

6

��

���

D = ∇×T
H = −∇Vm + ∂t T

6

6

��

���

Vm = −∂t η
T = −∇η

6

��

���

D = εE -

H =
1
µ

B -

���
���

���
���

��
���

���
���

���
��:

J = σE

Electromagnetism
differential formulation

Ohm’s law

1TP

3TL

3TS

1TV

1IP

3IL

3IS

1IV

1ĨṼ

3ĨS̃

3ĨL̃

1ĨP̃

1T̃Ṽ

3T̃S̃

3T̃L̃

1T̃P̃
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Table 5: The discrete structure of electromagnetism
configuration variables

primal complex: inner orientation
intervals instants

SI units: weber

source variables
dual complex : outer orientation

instants intervals
SI units: coulomb

����Vh

����Uα

����Kβ

����Λk

����χh

����pα

����Φβ

����Gk

�� ��Qc
h

�� ��Ψα

�� ��τβ

�� ��ηk

����Qp
h

����Qf
α

����Umβ

����Vmk

Vh = ∆tχh

pα = −∑h gαhχh

?

��

��	

Uα = −∑h gαhVh −∆tpα

Φβ =
∑
α cβαpα

?

?

��

��	

∑
β cβαUα + ∆tΦβ = 0∑

β dkβ Φβ = 0

?

?

��

��	

−∆t Gk +
∑
β dhβ Kβ = Λk

?

�
��

�
��	

∑
α d̃hαQf

α + ∆̃tQ
c
h = 0

6

�
��

�
���

∑
α d̃hαΨα = Qc

h∑
β c̃αβ Umβ − ∆̃tΨα = Qf

α

6

6

��

���

Ψα =
∑
β c̃αβτβ

Umβ = −∑k g̃βkηk + ∆̃tτβ

6

6

�
�

�
��

Vmk = −∆̃tηk

τβ = −∑k g̃βkηk

6

��

���

Ψα = ε
s̃α

lατn
Uα -

Umβ =
1
µ

l̃β τ̃n
sβ

Φβ -

���
���

���
���

���
���

���
���:

Qf
α = σ

s̃ατ̃n
lατn

Uα

Ohm’s law

Electromagnetism
discrete formulation

TP

TL

TS

TV

IP

IL

IS

IV

ĨṼ

ĨS̃

ĨL̃

ĨP̃

T̃Ṽ

T̃S̃

T̃L̃

T̃P̃
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[18] H. Lebesgue, Leçcons sur la theorie de l’integration, Chelsea.
[19] Lefschetz S., Algebraic Topology, AMS Colloquium Publ., v. XXVII.
[20] Lefschetz S., Introduction to Topology, Princeton Univ Press, 1949.
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