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Abstract. The target of this paper is to present a new approach to the electro-
magnetic field based on the systematic use of the global (i.e. integral) quantities.
The equations of electomagnetism are obtained in a finite form directly starting
from experimental facts without passing throught the differential formulation.
This finite formulation is the natural extension of the network theory to elec-
tromagnetic field and it is convenient for computational electromagnetics.
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1 Introduction

The laws of electromagnetic phenomena, as Faraday’s and Ampére’s laws, were formu-
lated by their discoverers using global quantities, such as charge, current, electric and
magnetic fluxes, electrimotive force and magnetomotive force. The network equations
of Kirchhoff were also expressed using current and voltage.

After the publication of Maxwell’s treatise, electromagnetic laws were written us-
ing differential formulation. Since that moment the field equations of electromagnetic
field were identified with the “Maxwell equations” i.e. with differential equations.

Numerical methods in field theories require the solution of a system of algebraic
equations. How are these equations obtained? It is standard practice to derive
them starting from the differential equations applying one of the many discretization
methods: this is the case of Finite Difference Method, of Finite Elements Method, of
Edge Elements Method, etc. This is summarized in the upper part of Fig.(1).

Even when we use an integral formulation, as in Finite Volume Method or in Finite
Integration Theory, an evolution of Finite Difference in Time Domain method, stan-
dard practice is to use integrals of field functions. Field functions are an indispensable
ingredient of differential formulation. At this point, one can pose the following:

Question: is it possible to express the laws of electromagnetism directly
by a set of algebraic equations, instead of obtaining them from a discretiza-
tion process applied to differential equations?

We show that such a finite formulation is possible, is simple and that it is useful
for numerical computation.

In this formulation the classical procedure of writing the laws of physics in differen-
tial form is inverted. Instead, we start from finite formulation and deduce differential
formulation whenever it is opportune to do so. In traditional methods, one is forced to
select one of many discretization procedures. This is not the case of finite formulation
as illustrated in the lower part of Fig.(1).

What we propose in this paper is not a refusal of the differential formulation of
electromagnetic laws but an alternative to it. Our aim is to show that it is better
to describe electromagnetism in a finite form from the beginning and later to obtain
differential formulation as a consequence.

Exact and approximate solutions. To avoid differential formulation as starting
point we need to completely revise our attitude.

In our culture, formed by three centuries of differential formulation of physical
laws, we find differential formulation so familiar that we are led to think that it
is the natural formulation for physics. Moreover we are convinced that differential
formulation leads to an exact solution to physical problems.
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Figure 1: (above) In traditional differential formulation to obtain an approximate
solution one is forced to pass through one of many methods of discretization.
(below) On the contrary, using global variables and complexes, one obtain a finite
formulation directly. {FF2}
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However, we know full well that only in a few elementary cases, with simple slab
geometry, we obtain a solution in closed form: hence the “exact solution” promised
by differential formulation, is almost never attained in practice. Moreover the great
scientific and technological advancement obtained in our days by numerical solution
of physical problems that do not admit a solution in closed form, suggests that this
progress arises mainly because we have found the way to obtain approximate solu-
tions to our problems. To our culture, modelled on mathematical analysis, the term
“approximate” sounds flawed. Nevertheless the goal of a numerical simulation is
agreement with experimental measurements .

To reduce error of an approximate solution does not mean to make the error
as small as we like, as a limit process requires, but to make error smaller than a
preassigned tolerance.

We are well aware that all measurements are affected by a tolerance: every mea-
suring instrument belongs to a given class of precision. In measurements an “infinite”
precision, in the sense of a limit process of mathematics, is not attainable. The same
positioning of the measuring probe in a field implies a tolerance.

The notion of precision in measuring apparatus plays the same role of the notion
of tolerance in manufacturing and of the notion of error in numerical analysis.

In conclusion one cannot deny the satisfaction of knowing the exact solution of a
physical problem when the latter is available. What we deny is the need to refer to
an idealized exact solution when this is not available in order to compare a numerical
result with experience.

2 Finite formulation: the premises

A reformulation of field laws in a direct finite formulation must start with an analysis
of physical quantities in order to make explicit the maximum of information content
that is implicit in definition and in measurement of physical quantities. To this end
it is opportune to introduce two classifications of physical quantities.

2.1 Configuration, source and energy variables

A first classification criterion of great usefulness in teaching and in research is that
based on the role that every physical variable plays in a theory. Analysis of the role
of physical variables in a theory leads to three classes of variables: configuration,
source and energy variables. These three classes for electromagnetism are shown in
Table (1). In every field of physics one can find:

• Configuration variables that describe the configuration of the field or of the
system. These variables are linked one to another by operations of sum, of
difference, of limit, of derivative and integral.
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• Source variables that describe the sources of the field or the forces acting on
the system. These variables are linked one to another by operations of sum, of
difference, of limit, of derivative and integral.

• Energy variables that are obtained as the product of a configuration for a source
variable. These variables are linked one to another by operations of sum and
difference, of limit, of derivative and integration.

This classification has a pivotal role in physical theories. One consequence is the
fact that it permits constitutive equations to be defined: they are equations that link
configuration with source variables of a physical field and contain material and system
parameters . This classification has been given by Hallen in 1947 [9, p.1]; by Penfield
and Haus in 1967 [21, p.155] and in 1972 by the present author [29, p.49].

Table 1: A classification of physical variables of electromagnetism. {ConfSourEner}

configuration variables
gauge function χ

electric potential V
e.m.f. E

electric field vector E
magnetic flux Φ

magnetic vector potential A
magnetic induction B, etc.

constitutive
equations

source variables
electric charge Q
electric current J
electric flux Ψ

electric induction D
magnetic field strength H

m.m.f. Fm

magnetic scalar potential Vm

energy variables
work, heat

electric energy density we

magnetic energy density wm

Poynting vector S, etc.

- �

2.2 Global variables and field variables

To introduce a finite formulation for electromagnetics we take a radical viewpoint:
we search for a formulation completely independent from the differential one. To
this end we avoid introducing field functions, and, as a consequence, we avoid the
integration process. For this reason instead of the term “integral” quantity we shall
use the equivalent term global quantity.

We must emphasize that physical measurements deal mainly with global variables ,
not with field variables. Field variables are needed in a differential formulation be-
cause the very notion of derivative refers to a point function. On the contrary a
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global quantity refers to a system, to a space or time element like a line, a surface,
a volume, an interval, i.e. is a domain function. Thus a flow meter measures the
electric charge that crosses a given surface in a given time interval. A flux meter
measures the flux (=flow rate) associated with a surface at given time instant. The
corresponding physical quantities are associated with space and time elements, not
only with points and instants.

One fundamental advantage of global variables is that they are continuous through
the separation surface of two materials while the field variables suffer discontinuity.
This implies that the differential formulation is restricted to regions of material ho-
mogeneity: one must break the domain in subdomains, one for every material and
introduce jump condition. If one reflects on the great number of different materials
present in a real device, one can see that the idealization required by differential
formulation is too restrictive.

This shows that differential formulation imposes derivability conditions on field
functions that are restrictive from the physical point of view .

Contrary to this, a direct finite formulation based on global variables accepts
material discontinuities, i.e. does not add regularity conditions to those requested by
the physical nature of the variable.

To help the reader, accustomed to thinking in terms of traditional field variables
ρ,J,B,D,E,H, we first examine corresponding integral variables Qc, Qf , Φ, Ψ, E ,Fm:
these are collected in Table (2). This table shows that integral variables arise by
integration of field functions on space domains i.e. lines, surfaces, volumes and on
time intervals. The time integral of a physical variable, say F , will be called its
impulse and will be denoted by the corresponding calligraphic letter, say F . The last
three variables of the left side, K, G, Λ deals with the hypotetical magnetic monopole
charge, monopole flow, monopole production. The role of these variables and of the
corresponding ones τ,Vm, η of the right side is clarified in Table (2).

It is remarkable that the integral configuration variables all have the dimension of
a magnetic flux and that integral source variables all have the dimension of a charge.
The product of a global configuration variable and a global source variable has the
dimension of an action (energy× time).

Table (3) shows the six integral variables that are measurable and the correspond-
ing field functions.

3 Physical variables and geometry

There is a strict link between physics and geometry. This is well known. What does
not seem to be well known is that global physical variables are naturally associated
with space and time elements, i.e. points, lines, surfaces, volumes, instants and
intervals. In order to examine such association we need the notion of orientation of a
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Table 2: Integral physical variables of electromagnetism (global vari-
ables) and corresponding field functions. Underlined variables are the
measurable ones. {LL1}

configuration variables source variables
(SI units: weber=volt× second) (SI units: coulomb=ampere× second)

gauge function χ elec. charge prod. Qp =
∫

T̃

∫
Ṽ

σ dV dt

elec. potential impulse V =
∫

T
V dt elec. charge content Qc =

∫
Ṽ

ρ dV

electrokinetic momentum p =
∫

L
A · dL elec. charge flow Qf =

∫
T̃

∫
S̃
J · dS dt

e.m.f. impulse E =
∫

T

∫
L
E · dL dt electric flux Ψ =

∫
S̃
D · dS

magnetic flux Φ =
∫

S
B · dS m.m.f. impulse Fm =

∫
T̃

∫
L̃
H · dLdt

(magn. charge flow) K =
∫

T

∫
S
k · dS dt (nameless) τ =

∫
L̃
T · dL

(magn. charge content) G =
∫

V
g dV magn. pot. imp. Vm =

∫
T̃

Vm dt

(magn. charge prod.) Λ =
∫

T

∫
V

λ dV dt (nameless) η

Table 3: The global variables of electromagnetism to be used in finite
formulation and corresponding field functions of differential formulation. {global}

finite formulation differential formulation
global variables field functions

electric charge content Qc → ρ electric charge density
electric charge flow Qf → J electric current density

magnetic flux Φ → B magnetic induction
electric flux Ψ → D electric induction

e.m.f. impulse E → E electric field strength
m.m.f. impulse Fm → H magnetic field strength
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space element.
In differential formulation a fundamental role is played by points: field functions

are point functions. In order to associate points with numbers we introduce coordinate
systems .

In finite formulation we need to consider not only points (P) but also lines (L),
surfaces (S) and volumes (V). We shall call these space elements . We use a boldface
characters for reasons that will be explained later. The natural substitute of coordi-
nate systems are cell complexes . They exhibit vertices, edges, faces and cells. The
latter are representative of the four spatial elements P,L,S,V.

3.1 Inner and outer orientation

The notions of inner and outer orientation of a space element play a pivotal role in
electromagnetism as well as in all physical theories. We shall refer to the left side of
Fig.(2).

Inner orientation of a line: it
is the basic notion used to give a 
meaning to the orientations of 
all other geometrical elements.

Inner orientation of a surface: it
is a compatible orientation of its 
edges, i.e. a direction to go 
along its boundary.

Inner orientation of a volume:
it is a compatible orientation of 
its faces. It is equivalent to the 
screw rule.

Outer orientation of a volume:
the choice of outward or inward 
normals. A positive orientation
has outwards normals.

Outer orientation of a surface:
it is the inner orientation 
of the line crossing the surface.

Outer orientation of a line:
it is  the inner orientation
of a surface crossing the line.

Outer orientation of a point: 
it is the inner orientation  
of the volume 
containing the point.

Inner orientation of a point:
a positive point is oriented as
a sink.  

 outer orientation inner orientation

P

L

S

V

P̃

L̃

S̃

Ṽ

Figure 2: The two notions of inner and outer orientations in three-dimensional
space. {CC15}

Inner orientation. We shall refer to Fig.(2). Points can be oriented as “sources”
or “sinks”. The notion of source and sink, borrowed from fluid dynamics, can be used
to define an inner orientation of points because it permits us to maintain the notion
of incidence number from lines and points. In particular we note that points are

8



usually oriented as sinks . This is never explicitly stated but it can be inferred from
the fact that space differences of a point function between two points P and Q are
given by (+1)f(Q)+(−1)f(P). This means that the line segment PQ, oriented from
P to Q, is positively incident in Q (incidence number +1) and negatively incident
in P (incidence number -1). In other words: in the expression (Q − P) signs can
be interpreted as incidence numbers between the orientation of the line segment and
those of its terminal points.

A line is endowed of inner orientation when a direction has been chosen on the
line. A surface is endowed with inner orientation when its boundary has an inner
orientation. A volume is endowed with inner orientation when its boundary is so.

Outer orientation. To write a balance we need a notion of exterior of a volume,
because we speak of charge contained in the volume. This is usually done by fixing
outwards or inwards normals to its boundary, as shown in Fig.(2 right). A surface is
equipped with outer orientation when one of its faces has been chosen as positive and
the other negative: this is equivalent to fixing the direction of an arrow crossing the
surface from the negative to the positive face, as shown in Fig.(2 right). We need the
outer orientation of a surface when we consider a flow crossing the surface. A line is
endowed with outer orientation when a direction of rotation around the line has been
defined: think to the rotation of the plane of polarization of a ligth beam. A point is
endowed with outer orientation when all line segment with origin in the point have
an outer orientation. Think, for example, to the sign of the scalar magnetic potential
of a coil at a point: its sign depends on the direction of the current in the coil.

The four space elements endowed with outer orientation will be denoted P̃, L̃, S̃, Ṽ.
Contrary to inner orientation, outer orientation depends on the dimension of the

space in which the element is embedded, as shown in Fig.(3). Hence exterior orienta-
tion of a line segment embedded in a three-dimensional space is a direction of rotation
around the segment; in a two-dimensional space it is an arrow that crosses the line
and when the segment is embedded in a one-dimensional space, it is represented by
two arrows as if the segment were compressed or extended. This is typical orientation
used in mechanics to denote compression or traction of a bar.

3.2 Time elements

Let us consider a given interval of the time axis and divide it into small intervals,
as shown in Fig. (4). The primal instants, we shall denote t0, t1, ..., tn−1, tn, tn+1, ...
are oriented as sinks, such as space points. The primal intervals, we shall denote
by τ 1, ..., τ n, τ n+1, ... will be endowed with inner orientation, i.e. they are oriented
towards increasing time. The dual instants t̃1, ..., t̃n, t̃n+1, ... are endowed with outer
orientation, i.e. they have the same orientation as primal intervals. The dual intervals
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Figure 3: The outer orientation of a space element depends on the dimensions of
the embedding space. {esterna}

Table 4: A time cell complex and its dual. {Z669}

- t

primal
- � - � - �

- -tn−1 tn tn+1

τn τn+1

dual t̃n t̃n+1

τ̃n

- -

- �
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τ̃ 1, ..., τ̃ n, τ̃ n+1, ... are endowed with outer orientation that is, by definition, the inner
orientation of the primal instants.

3.3 Global variables and space-time elements.

From the analysis of a great number of physical variables of classical fields one can
infer the

First Principle. In spatial description global configuration variables are
associated with space and time elements endowed with inner orientation.
On the contrary, global source variables and global energy variables are
associated with space and time elements endowed with outer orientation.

The reason for associating source and energy variables with outer orientation is
that they are used in balance equations and a balance require a volume with outer
orientation (outwards or inwards normals). In short:

configuration variables → inner orientation
source and energy variables → outer orientation.

This principle offers a rational criterion to associate global variables of every phys-
ical theory to space and time elements and, as such, it is useful in computational
electromagnetism. Figure (4) shows this association for physical variables of elec-
tromagnetism. It shows that a single cell complex is not sufficient but it is necessary
to introduce a dual complex .

To analyze this association we consider, first of all, the six measurable global
variables of electromagnetism. It is important to note that each one of these six
variables admits an operational definition.

3.4 Operational definition of six global variables

Since we take a new approach to electromagnetism starting from global variables
rather than field functions, we are obliged to give an operational definition of global
variables as we do for field functions in differential formulation. Fig.(5) shows the
operational definitions of the six global quantities.

Doing this we stress the fact that a finite formulation of the electromagnetic field
uses those global variables that can be measured. In this way there is a direct link
between measurements and computational electromagnetism without the intermedi-
ation of field functions and of differential equations.
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electric  field

magnetic  field
magnetic flux

refers to the surfaces
of the primal complex

electric flux
refers to the surfaces
of the dual complex

electric potential
refers to the points

of the primal complex

V

refers to the lines
of the primal complex

magnetic charge content
refers to the volumes

of the primal complex

Gc

electric charge content
refers to the volumes
of the dual complex

Qc

magnetic potential
refers to the points
of the dual complex

Vm

refers to the lines
of the dual complex

Φ

Ψ

m.m.f. Fm

e.m.f. E

Figure 4: Global physical variables of electromagnetism and space elements of
primal and dual cell complex with which they are associated. {analogies1}

Electric charge content Qc. Electric charge is an extensive quantity: from the
material viewpoint it is associated with a system, a body, a particle. From the spatial
viewpoint we must distinguish three aspects of charge: content Qc, outflow Qf and
production Qp. It is a basic physical law that electric charge cannot be produced, i.e.
Qp = 0. Charge content Qc is the amount of charge contained inside a volume at a
given instant. The notion of “inside” and “outside” presupposes an outer orientation
of volumes: for this reason we write Qc[Ṽ]: see Fig.(5a). We put into square brackets
the space and time element to which global variables are referred because global
variables are domain functions not point functions.

Electric charge flow Qf . Let us consider electrical conduction in a medium. If we
put in the medium two flat metal surfaces separated by a dielectric and connected
to an amperometer, as shown in Fig.(5b), we obtain a device called a rheometer . In
this way we can measure the electric charge flow that enters one disk and leaves the
other in a given time interval. Since the notion of “entering” or “leaving” a surface
presupposes its outer orientation, we shall denote the surface of the disk endowed
with outer orientation by S̃ and we shall write Qf [S̃]. The rate of this quantity is the
electric current I.

12



+

-

magnetic flux Φ

Vt

a) electric charge Q

Q

c)

A

B

Q

d)

+

-

electric current I

A

e)

electric flux Ψ

Q

null field
inside

f)

+

-
Anull field

inside

b)

Ṽ
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Figure 5: The operational definition of the six measurable variables of electromag-
netism {EE58a}
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Electric flux Ψ . Let us consider an electrostatic field. If we put a small metal disk
somewhere in the field along an equipotential surface, then charges of an opposite
sign will be collected on the two faces as a consequence of electrical induction. After
selection of one face as positive we call electric flux Ψ the charge collected on this
positive face of the disk. The electric flux is then related to an outer oriented surface.
If we change the outer orientation of the surface, the sign of the flux changes. As we
see from this definition, electric flux requires the notion of the outer orientation of a
surface and hence we shall write Ψ [S̃].

To measure electric flux, instead of one metal disk, it is better to use two small
metal disks. The disks will be held by an insulated handle and brought into contact,
as shown in Fig.(5c). If we separate the two disks also the electric charges will be
separated and each one can be measured with an electrometer. The charge collected
on a prefixed disk is, by definition, electric flux1.

Electromotive force E, voltage U . In an electrostatic field we can measure the
e.m.f. along a line from point A to point B with a method devised by Faraday. This
runs as follows: let us put at A and B two small metal spheres, as shown in Fig.(5d),
say of radii rA and rB. If we connect them by a wire of very small section, the charges
move from one sphere to another to maintain the whole set, spheres and wire, at the
same potential.

If the capacity of the wire can be neglected in comparison with the capacities of
the spheres we can neglect the charge on the wire. In turn the spheres are small
enough to make negligible the influence of charges collected on the spheres on the
sources of the surrounding electric field. In these hypotheses let us denote qA the
charge collected on the sphere in A and qB the one collected on the sphere in B: it
will be qA = −qB.

If we break the connection between the two spheres the charges remain trapped.
In the center of a sphere the potential of the charges q collected on its surfaces is
q/(4πεr). The fact that the potential of the two spheres connected by the wire are
equal implies that

VA +
qA

4πεrA
= VB +

qB
4πεrB

(1) {GZ23}

from which we obtain

VAB ≡ VB − VA =
−qA
4πε

(
1

rA
+

1

rB

)
. (2) {GZ24}

Hence we can measure e.m.f. measuring the charge collected on one sphere.

1 This direct measurement of electric flux is often ignored in books of electromagnetism. It can
be found in Maxwell [18, p.47] and in [8, p.71]; [7, p.61]; [25, p.230]; [26, p.25]; [12, p.80; p.225].
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In particular if we choose B on the grounds the ”sphere” B becomes the Earth
and then VB = 0 and 1/rB = 0: it follows [22, p.519]

VA =
−qA

4πεrA
. (3) {GZ28}

The e.m.f. refers to a line endowed with inner orientation: V [L] as shown in Fig.(5d).

Magnetic flux Φ. A magnetic field is completely described by two global variables:
magnetic flux and m.m.f.. Magnetic flux refers to surfaces while m.m.f. refers to lines.

Magnetic flux is linked to a surface endowed with an inner orientation and is
defined as the e.m.f. impulse induced in a coil that binds the surface [23, p.67] when
the magnetic field is switched off. If the coil is connected with a ballistic voltmeter
we can measure the e.m.f. impulse produced. The sign of the magnetic flux depends
on the direction chosen for the boundary of the surface, as shown in Fig (5e). Then
Φ[S].

Magnetomotive force Fm, magnetic voltage Um. We want to introduce a global
physical variable that gives a measure of the magnetic field along a line. To this end
we consider a long solenoid with a small cross section that has the line as its axis.
Let N be the number of turns and i the current. The magnetic field inside such a
solenoid is almost uniform and almost null outside it. The magnetomotive force Fm

along the axis of the solenoid can be defined as N i: this is a global variable in space.
The sign of this variable depends on the direction of the current in the solenoid,

i.e. it requires an outer orientation of the line. Accordingly, magnetomotive force is
associated with lines endowed with outer orientation.

To measure the magnetomotive force along a line segment in a static magnetic
field we introduce a small solenoid with N loops with a section much smaller than its
length, as shown in Fig.(5f).

We can adjust the direction and the intensity of the current i′ in the solenoid in
such a way that the component of the magnetic field along the line vanishes. In such
a way we have compensated the field in the interior region. Let us put I ′ = N i′: the
magnetomotive force along the line is then Fm = −I ′. This procedure is known as
the method of compensating coil [8, p.224]; [23, p.66]; [26, p.41].

This shows that magnetomotive force is associated with a line with the direction
of rotation around it: the direction is opposite to the one of the compensating current.
Denoting by L̃ a line segment endowed with an outer orientation we can write

Fm[L̃]
def
= −I ′. (4) {Z29}

An equivalent way to do the test is to consider a small tube of superconducting
material: the tube will be crossed by a uniform current I ′ that automatically makes
the interior field vanish [16, p.494].
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It is obvious that physical variables that are global in space and time are also
associated with time elements such as instants and intervals. Thus electric charge
content Q, electric flux Ψ and magnetic flux Φ refer to instants.

On the contrary the electric charge flow Qf refers to time intervals. Electromotive
force E can be integrated in time by giving the e.m.f. impulse E and for this reason it
is associated with time intervals. One argument for the introduction of e.m.f. impulse
is that this quantity is used to measure magnetic flux via Faraday’s law. Another
argument is that Ohm law U = RI can be written in an integrated form as E = R Qf .

Since magnetomotive force Fm = Ni can be integrated in time the corresponding
global time variable Fm = N Qf , the m.m.f. impulse, will refer to time intervals.

These associations do not specify, up to now, the kind of orientation, inner or
outer, of the time elements. This association becomes clear if we consider a space-
time complex and its dual. It is obvious that if a physical variable refers to spatial
elements of a space-time cell complex it must also refer to time elements of the same
cell complex as shown in Table (5). Classical “time reversal”, i.e. the operation of
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Figure 6: a) A space complex and associated variables; b) a three-dimensional
space-time and associated variables. {BB56}

reversing the order of events in time, corresponds to inversion of the orientation of the
primal time intervals and it coincides, by definition, with inversion of the orientation
of dual instants. It follows that if a physical variable refers to primal time intervals
or to dual time instants it changes sign under time reversal . Inversely, if a physical
variable refers to dual intervals or to primal instants it does not change sign under
time reversal. An example is the impulse of a force: if a body A impacts a body B
the impulse that A gives to B is directed from A to B. When we see the backward
motion, as a movie running backward, we see that velocities are inverted but the
impulse that A gives to B is always directed from A to B.
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Table 5: The global variables of electromagnetism and the associated
space and time elements. {PE4}

global physical variable symbol time element space element symbol
(orientation) (orientation)

electric charge content Qc instant (outer) volume(outer) ĨṼ
electric charge flow Qf interval (outer) surface (outer) T̃S̃
e.m.f. impulse E interval(inner) line (inner) TL
m.m.f. impulse Fm interval (outer) line(outer) T̃L̃
magnetic flux Φ instant (inner) surface(inner) IS
electric flux Ψ instant (outer) surface(outer) ĨS̃
electric potential impulse V interval (inner) point(inner) TP
magnetic potential impulse Vm interval (outer) point(outer) T̃P̃

The space and time association of global electromagnetic variables is summarized
in Table (5).

The space and time association is made clearer from a geometrical viewpoint, if
we use a three-dimensional projection of four-dimensional cube, as shown in Fig.(7).
The two draws of the central level show that the four variables Φ, Ψ, E ,Fm are referred
to surfaces: the first two to space-like surfaces, the last two to space-time surfaces.
The two draws on the lower level shows that the eight Maxwell equations express a
balance on a volume: two of them (Gauss’ laws) express a balance on a space volume,
the other six express a balance on a space-time volume.

3.5 Physical laws and space-time elements.

The first Principle states that global physical variables refer to the oriented space and
time elements. From the analysis of a great number of physical variables of classical
fields one can infer [31]:

Second Principle: In every physical theory there are physical laws that
link global variables referred to an oriented space-time element with others
referred to its oriented boundary.

We shall show later that the fundamental laws of electromagnetism satisfy this princi-
ple. To give an example from outside electromagnetism, we mention the equilibrium
of a body that links the volume forces acting on a region of the body with the surface
forces acting on the boundary of the region. This principle gives the reason of the
ubiquitous appearence of the exterior differential on differential forms.
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3.6 The field laws in finite form

Experiments lead us to infer the following laws of electromagnetism:

v
outer orientationinner orientation

boundary ∂S

surface S

boundary ∂V

olumeV

boundary ∂S̃

surface S̃

boundary∂Ṽ

volume Ṽ

Figure 8: The four manifolds to which the four Maxwell equations make reference. {G787}

• The magnetic flux referred to the boundary of a volume endowed with inner
orientation at any instant vanishes (magnetic Gauss’ law).

• The electromotive force impulse referred to the boundary of a surface endowed
with inner orientation during a time interval is opposite to the magnetic flux
variation across the surface in the same interval (Faraday’s electromagnetic
induction law).

• The electric flux across the boundary of a volume endowed with outer orientation
at any instant is equal to the electric charge contained inside the volume at that
instant (Faraday’s electrostatic induction law = electric Gauss’ law).

• The magnetomotive force impulse referred to the boundary of a surface endowed
with outer orientation in a time interval is equal to the sum of the electric charge
flow across the surface in that time interval and the electric flux variation across
the surface in that interval (Maxwell-Ampère’s law).

• The electric charge flow across the boundary of a volume endowed with outer
orientation in an interval is opposite to the variation of the electric charge
content inside the volume in the same interval (conservation of charge).
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These 4+1 laws can be written

Φ[∂V, I] = 0

E [∂S,T] = Φ[S, I−]− Φ[S, I+]

Ψ [∂Ṽ, Ĩ] = Qc[Ṽ, Ĩ]

Fm[∂S̃, T̃] = Ψ [S̃, Ĩ+]− Ψ [S̃, Ĩ−] + Qf [S̃, T̃]

Qf [∂Ṽ, Ĩ] = Qc[Ṽ, Ĩ−]−Qc[Ṽ, Ĩ+].

(5) {VV1}

Equations (5) are the 4+1 laws of electromagnetism in a finite formulation we are
searching for. These are algebraic equations that enjoy the following properties:

• they link physical variables of the same kind, i.e. configuration variables with
configuration variables and source variables with source variables;

• they are valid in whatever medium and then are free from any material para-
meter;

• they do not involve metrical notions, i.e. lengths, areas, measures of volumes
and durations are not required [37].

These five equations, that are equivalent to the integral formulation describe the
“structure” of the field and we shall call them equation of structure. Since they are
valid for whatever volume and whatever surface respectively they are of topologiacal
nature and we can name them also topological equations [20, p.20] [36].

4 Cell complexes in space and time

The equations (5) are the finite formulation of the electromagnetic laws. How to apply
them to solve field problems? The idea is a very simple one: we build up a cell complex
in the region in which the field is considered and then apply the equations in finite
form to all cells of the complex. Some equations must be applied to the cells others
to their faces; some equations must be applied to the cells and faces of the primal,
someother to those of the dual complex. Doing so we obtain a system of algebraic
equations whose solution gives the space and time distribution of the global variables
of the field. In this way we solve the fundamental problem of electromagnetism: given
the space and time distribution of charges and currents to find the resulting field .

To pursue this goal we must introduce the notion of cell complex and of its dual.
Let us consider, first of all, a cell complex formed by cubic cells, as shown in Fig.(9c).

The elements of the same dimension can be numbered according to any criterion.
The number is a label that permits us to specify the space element and play the
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same role of coordinates of a point in a coordinate system. We shall consider cell
complexes with a finite number N0 of vertices. Since vertices are points we shall
denote the typical vertex by ph. At first it seems convenient to assign to every edge
a pair of numbers, the labels of its bounding points. Thus the edge that connects
the vertex ph with the vertex pk can be denoted lhk. But this notation becomes
cumbersome. We have chosen to denote the edge with a single Greek index, e.g. lα.
If N1 is the number of edges the Greek index takes the values 1, 2, ...N1. We shall
denote with a Greek index also the face, e.g. sβ while the typical cell will be denoted
with a Latin index, e.g. vk.

As in space we have four elements, so in time we have two elements: instants I
and intervals T. When we consider a cell complex on the time axis we shall denote
by tn the time instants and τm the intervals. We shall use boldface letters to denote

Table 6: The “descriptive” and the “formal” notations we use for space
and time elements. {UT65}

descriptive formal descriptive formal
inner orientation primal complex outer orientation dual complex

point P ph vertex volume Ṽ ṽh cell

line L lα edge surface S̃ s̃α face

surface S sβ face line L̃ l̃β edge

volume V vk cell point P̃ p̃k vertex

instant I tn instant interval T̃ τ̃ n interval

interval T τm interval instant Ĩ t̃m instant

the elements of a cell complex for two reasons: the first is to distinguish between the
element and its measure. Thus lα denotes an edge while lα denotes its length; sβ
denotes a face while sβ denotes its area; vk denotes a cell while vk denotes its volume.
On the time axis τ n denotes a time interval while τn denotes its extension (duration).

The second reason will be explained in connection with orientation.
Cell complexes are basic tools of algebraic topology . In this branch of topology

many notions were developed around cell complexes including the notions of ori-
entation, duality and incidence numbers. In algebraic topology vertices, edges and
faces of cells are considered as cells of a lower dimension. The vertices are called
0-dimensional cells or briefly 0-cells , edges 1-cells , faces 2-cells and originary cells
3-cells . It follows that a cell complex in space is not only a set of 3-cells but a set of
p -cells with p = 0, 1, 2, 3. In four-dimensional space-time a cell complex is formed by
cells of dimension p = 0, 1, 2, 3, 4.

Table (6 left) collects the notations we use for space elements: when we must
mention points, lines, surfaces and volumes without reference to a cell complex we
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shall use a “descriptive” notation whith boldface, uppercase letters. On the contrary,
when we refer to a cell complex we must specify the labels of the elements involved
and accordingly we shall use a “formal” notation with boldface, lowercase letters with
indices.

A cell complex can be based on a coordinate system: in such a case the edges
of the cells lie on the coordinate lines and the faces on the coordinate surfaces. An
example is shown in Fig.(12 left). A coordinate-based cell complex is useful when
one aims to deduce the differential formulation from a finite one.

On the contrary, for numerical applications it is opportune to abandon the coor-
dinate based cell complex and to use simplicial complexes, i.e. the ones formed by
triangles in 2D and tetrahedra in 3D. Simplicial complex have many advantages over
the coordinate-based complexes. A first advantage is that simplexes can be adapted
to the boundary of the domain, as shown in Fig.(10). A second advantage is that
when we have two or more subregions that contain different materials the vertices of
the simplexes can be put on the separation surface, as shown in Fig.(10). A third

Figure 10: Finite formulation permits different materials to be treated assuring
continuity at the separation surface automatically. {dueMezzi1}

reason is that simplexes can change in size from one region to another. This permits
smaller simplexes to be made in the regions of large variations of the field.

Once we have introduced a cell complex we can consider the dual complex. In a
coordinated-based complex one can consider the barycenter of every coordinate-cell
as shown in Fig.(9). Connecting the barycentres of the adjacent cells one obtains a
dual complex. The term “dual” refers to the fact that not only every barycenter (dual
vertex) corresponds to a cell (primal volume) but also every edge of the dual complex
(dual edge) intersects a face of the primal one (primal face). Inversely, every primal
edge intersects a dual face. Lastly, every vertex of the primal lies inside a cell of the
dual. In a simplicial complex the commonst choice are either the barycentres of every
simplex or the circumcentres (in 2D) and the circumspheres (in 3D): in this paper we
consider only circumcentres and circumspheres. Since the straight line connecting the
circumcentres of two adjacent simplexes in 2D is orthogonal to the common edge the
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Figure 11: a) The six faces of a Voronoi cell contained in a tetraedron; b) the dual
Voronoi cell ṽh of a cluster of tetrahedra with a common vertex. {dualeVoronoi}

dual polygon thus obtained has its sides orthogonal to the common edge. This is called
Voronoi polygon in 2D and Voronoi polyhedron in 3D. The circumcentres have the
disadvantage that for triangles with obtuse angles they lie outside the triangle. This
is inconvenient when the circumcentre of one obtuse triangle goes beyond the one of
the adjacent triangle with the common sides. This is avoided when the triangulation
satisfies the Delaunay condition. This leads us to consider only Delaunay-Voronoi
complexes, as we shall do in this paper. As in coordinate systems it is preferable to
deal with orthogonal coordinate systems, so in a simplicial complex it is preferable to
deal with a Delaunay complex and its associated Voronoi complex as dual, as shown
in Figure (12 right).

The same can be done when we introduce a cell complex on a time axis, as shown
in Fig.(9d): the elements of time are instants (I) and intervals (T). If we take the
middle instants of intervals we can call these dual instants (Ĩ) and the corresponding
intervals as dual intervals (T̃). It is evident that to every instant of the primal
complex there corresponds an interval of the dual and to every interval of the primal
there corresponds an instant of the dual. Thus we have the correspondence I ↔ T̃
and Ĩ↔ T and this is a duality map.

A cell complex and its dual enjoy a peculiar property: once the vertices, edges,
faces and cells of the primal complex has been endowed with inner orientation, this
inner orientation induces an outer orientation on the cells, faces, edges and vertices of
its dual. It follows that a pair formed by a cell complex and its dual are the natural
frames to exhibit all space elements with the two kind of orientations.

Since we have stated that the configuration variables are associated with the space
elements endowed with innner rientation, it follows that the configuration variables
can be associated with the vertices, edges, faces and cells of the primal complex.
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Figure 12: A two-dimensional cell complex (thin lines) and its dual (thick lines).
In the simplicial complex the vertices of dual complex are the intersections of three
axes of primal 1-cells. This gives the advantage that 1-cells of dual are orthogonal
to primal 1-cells. {BB1}

Moreover since the source and energy variables are associated with spsce elements
endowed with outer orientation, it follows that these variables can be associated with
cells, faces, edges and vertices of the dual complex. One can say that the role of the
dual complex is to form a reference structure to which source and energy variables
can be referred.

4.1 Classification diagram of space-time elements

A cell complex and its dual in a space of dimension n permits a classification of space
elements of IRn, as shown in Fig.(9). Let us start with Fig.(9a) that shows a cell
complex in IR1. The primal complex is formed by points P and lines L; the dual one
is formed by dual points P̃ and dual lines L̃. The two complexes are shifted and to
a dual point there corresponds a primal line: P̃↔ L. Moreover L̃↔ P. These 2×2
elements can be collected in a diagram shown in Table (7a).

Fig.(9b) shows a cell complex in IR2 and its dual. The primal complex exhibits
points, lines and surfaces and its dual exhibits the same elements in reverse order.
These 3×2 elements can be collected in a diagram shown in Table (7b). From Fig.(9c)
we can infer the corresponding diagram for IR3 that is shown in Table (7c).

Fig.(9d) shows a cell complex on a time axis: the corresponding diagram is shown
in Table (7d).

Fig.(9e) shows a two-dimensional space-time complex whose corresponding clas-
sification diagram is reported in Table (7e). In the case of space-time complexes we
shift the columns so as to obtain a kind of assonometric view that will make the dia-
grams we shall present later more readable. The points of these space-time diagrams,
which in relativity are called events , will be denoted IP to mean that they combine
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an instant I with a space point P.
A three-dimensional space-time is shown in Fig.(9f ): the corresponding diagram

is shown in Table (7f). A complete four-dimensional space-time diagram is shown in
Table (7g).

These classification diagrams play a remarkable role in the description of physi-
cal properties. In fact the natural association of configuration variables to elements
of a complex and of source and energy variables to its dual respectively, lead to an
analogous classification diagram for physical variables, as we shall show later.

4.2 Incidence numbers

In network theory one introduce the node-edge and edge-loop incidence matrices
with their dual. Following the notations of Fig.(13) we are now in a position to define
the incidence number of a p -cell ch with a (p-1)-cell bk. This is a relative integer
ihk=[ch :bk] whose values are:

• +1 if bk is a face of ch and the orientations of bk and ch are compatible;

• -1 if bk is a face of ch and the orientation of bk and ch are not compatible;

• 0 if bk is not a face of ch.
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Table 7: Classification of geometrical elements of spaces and space-time
of various dimensions. {GG9}
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We point out that in the notation ikh the first index k refers to the cell of greatest
dimension.

In three-dimensional space there are three matrices which we shall denote by
G,C,D for the primal complex K and three matrices G̃, C̃, D̃ for the dual complex
K̃. We choose these three letters because they are the initial of the names of the
three formal differential operators gradient , curl and divergence to which they reduce
in the differential setting. In summary:

G
def
= ||gαh|| C

def
= ||cβα|| D def

= ||dkβ||

D̃
def
= ||d̃hα|| C̃ def

= ||c̃αβ|| G̃ def
= ||g̃βk||.

(6) {KU292}

From Fig.(13) we can see an important fact that, apart from the case point-line,
the incidence number between a p -cell and a (p-1)-cell of the primal cell complex is
equal to the incidence number between the corresponding dual cells. The exception of
the incidence point-line is due to historical reasons: points are implicitly considered
as sinks (inwards normals) while volumes have outwards normals.

Note that the indices of the matrix elements d̃hα and gαh are reversed and then
the corresponding matrices are transpose to one another. We have

−gαh
def
= −[lα :ph] = [ṽh : s̃α] = d̃hα → −G = D̃

T

cβα
def
= [sβ : lα] = [s̃α : l̃β] = c̃αβ → C = C̃

T

dkβ
def
= [vk :sβ] = [̃lβ : p̃k] = g̃βk D = G̃

T
.

(7) {B63}

When the equations (5) are applied to the corresponding cells of the two com-
plexes, we obtain a local form of the field equations of the electromagnetic field in a
finite setting, i.e.

∑
α

cβα E [τ n+1, lα] +
{
Φ[tn+1, sβ]− Φ[tn, sβ]

}
= 0∑

β

dkβ Φ[tn, sβ] = 0∑
β

c̃αβ Fm[τ̃ n, l̃β]−
{
Ψ [t̃n+1, s̃α]− Ψ [t̃n, s̃α]

}
= Qf [τ̃ n, s̃α]∑

α

d̃hα Ψ [t̃n, s̃α] = Qc[t̃n, ṽh]

∑
α

d̃hα Qf [τ̃ n, s̃α] +
{
Qc[t̃n+1, ṽh]−Qc[t̃n, ṽh]

}
= 0.

(8) {K896}

For computational purposes it is useful to make the following changes of symbols:
tn → n; t̃n → n + 1/2; Φ[tn, sβ]→ Φnβ; etc. In particular the two evolution equations
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can be written as (remember that c̃αβ = cβα)
Φn+1
β = Φn

β −
∑
α

cβα En+1/2
α

Ψn+1/2
α = Ψn−1/2

α +
∑
β

cβα (Fm)nβ − (Qf)nα.
(9) {K89F6}

It is convenient to introduce the rates of the five global variables E ,Fm, Qf ,V ,Vm

that are associated with time intervals.
The ratio of a global variable, associated with a time interval, with the duration

of the interval gives a mean rate. If the interval is small the global variable can be
considered to depend linearly on the duration and then the mean rate approximate
the value of the istantaneous rate at the middle instant of the interval. Since the
middle instant of an interval is the instant of the dual time complex one can write

E [τ n, lα]
τn

≈ Eα(t̃n)
Fm[τ̃ n, l̃β]

τ̃n
≈ Fmβ(tn)

Qf [τ̃ n, s̃α]

τ̃n
≈ Iα(tn) etc.

(10) {OC67}
The round brackets denote that the rates are functions of the time instants.

Voltages and fluxes are the most natural variables to be used in computational
electromagnetism. In particular the equations (9) are simple to use in numerical
solutions. The equations (9) can be written in a simpler form as

tn−1 tn

t̃n t̃n+1

t

n-1 n-1/2 n n+1/2

Figure 14: The leapfrog algorithm is a general algorithm to be used in finite for-
mulation for every field of physics, not only in electromagnetism. {cavallina}
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

∑
α

cβα Uα(t̃n) +
Φβ(tn)− Φβ(tn−1)

τn
= 0∑

β

dkβ Φβ(tn) = 0

∑
β

c̃αβ Umβ(tn)−
Ψα(t̃n+1)− Ψα(t̃n)

τ̃n
= Iα(tn)

∑
α

d̃hα Ψα(t̃n) = Qc
h(t̃n)

∑
α

d̃hα Iα(tn) +
Qc
h(t̃n+1)−Qc

h(t̃n)

τ̃n
= 0.

(11) {K8912}

This shows that while m.m.f., magnetic flux and electric current must be evaluated
on the instants of the primal time cell complex, e.m.f. and electric flux must be
evaluated in the intermediate instants i.e. the dual instants. This is the “leapfrog”
algorithm as shown in Fig.(14).

4.3 Constitutive laws in finite form {material}
The equations that link the source variables with the configuration ones are the
constitutive or material equations. In a region of uniform field the three material
equations of electromagnetism in finite form are

Ψ [t̃n, s̃α]

s̃α
≈ ε

E [τ n, lα]
τn lα

when s̃α ⊥ lα

Φ[tn, sβ]

sβ
≈ µ

Fm[τ̃ n, l̃β]

τ̃n l̃β
when l̃β ⊥ sβ

Qf [τ̃ n, s̃α]

τ̃n s̃α
≈ σ

1

2

(
E [τ n, lα]

τn lα
+
E [τ n+1, lα]

τn+1 lα

)
when s̃α ⊥ lα

(12) {L9}

in which τn, τ̃n, lα, l̃β, sβ, s̃α are the extensions of the corresponding cells. We note
that the notion of uniformity of a field does not imply the introduction of vectors: a
field is uniform when the global variables associated with space elements are invariant
under translation of the element.

To explain the particular form of Ohm’s law let us remark that while the electric
current Iα(tn) is function of the primal instant tn the e.m.f. is function of the dual
instant t̃n, i.e. Eα(t̃n), as shown in Eq.(10). Since the constitutive equations link
variables referred to the same instant we need to evaluate the e.m.f. at the primal
instant tn. Then we write

Eα(tn) ≈
Eα(t̃n) + Eα(t̃n+1)

2
. (13) {HD5F}
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These equations are valid if cells are cubes or if the simplicial complex is a Delaunay
complex and its dual a Voronoi complex, as is shown in Fig.(11). In these cases
1-cells of the dual are orthogonal to the primal 2-cells and viceversa. It is possible to
avoid the orthogonality condition and then to avoid the Voronoi complex using the
barycenter [17].

With reference to Fig.(15) the main properties are:

• They are valid in regions in which the field is uniform because these are the
experimental conditions under which they are tested;

• They link a variable referred to a p -cell of a complex with the dual (n− p)-cell
of the dual complex. This geometrical property is not apparent in differential
formulation.

• They contain material parameters.

• They require metrical notions such as length, areas, volumes and orthogonality.

We emphasize that Ohm’s law, written in terms of global variables, links two variables
that refer to the primal and dual time intervals respectively. This implies that under
time reversal (τ n → −τ n) e.m.f. impulses change sign while electric charge flow does
not. It follows that Ohm’s law is not invariant under time reversal and this reflects
the fact that electric conduction is an irreversible phenomenon.

Velectric tension

Fmagnetic tension

magnetic flux Φ

electric flux Ψ
electric current I

primal cell
inner orientation

dual cell
outer orientation

l

β

s
α

l̃

α
s̃β

Figure 15: Constitutive equations link a variable associated with a cell of primal
complex with a variable associated with the dual cell. {dueCubi}

While the field equations in finite form describe the corresponding physical laws
exactly , the constitutive ones in finite form describe the corresponding physical laws
approximately because they are experienced only in regions of uniform field.
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4.4 Computational procedure

When one combines the equations of structure (9) with the constitutive equations
(12), one obtains the fundamental system, i.e. the system whose solution is solution
of the fundamental problem of the electromagnetic field (to find the field given its
sources).

The computational procedure is collected in table (8). The notation “II ord”
means that with these approximations the convergence in time is of second order.

4.5 Classification diagrams of physical variables

As we have seen by using a cell complex and its dual we can classify space elements,
time elements and space-time elements, as shown in the diagrams of Tables (10)(9).
Since configuration and source variables of a physical theory naturally refer to space
and time elements it follows that we may use the same classification diagram for
physical variables .

The diagram is valid for finite and differential formulation. It clearly separates the
field equations that link the variables of the same vertical column, from the material
or constitutive equations that link the two columns. The horizontal links describe
reversible phenomena while the oblique ones describe irreversible phenomena.

The space-time diagrams can be conceived as an assonometric view of a building
whose “pillars” are the vertical columns and whose “beams” are the material equa-
tions. In the space-time diagrams we can see a front and a back. The links from back
to front, which are horizontal in the assonometric view, contain time variations. In
the diagrams we can see that boxes at the front describe electrostatics while those at
the back describe magnetostatics.

The variables on the same horizontal link are conjugated with respect to energy.
This classification diagram valid for many physical theories has been presented in [29],
[30], [32], [31], [33]. A similar diagram for electromagnetism, without a topological
basis, appears in the papers of Deschamps [5], [6].

5 The relation with differential formulation

The differential formulation of Maxwell equations does not require two cell complexes
in space or in time. Balance equations are applied to an infinitesimal cell bounded
by coordinate surfaces and circuital equations are written on an infinitesimal circuit
formed by coordinate lines. This is easily forgotten because infinitesimal dimensions
permit the use of partial derivatives. The notion of derivative of a function of one
variable at a point presupposes the existence of the limit of the incremental ratio
on the left and on the right and their equalities. This property is violated in the
space region in the direction normal to the surface of separation of two different
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Table 8: Computational sequence using a Delaunay-Voronoi complex.
{numero} {AA74}

?

?

?

?

?

?

?

?

?

1 Ψ n+1/2
α = Ψ n−1/2

α +
∑
β

c̃αβ F n
β − (Qf)

n
α

2 E n+1/2
α ≈ 1

ε

lα
s̃α

Ψ n+1/2
α (lα ⊥ s̃α)

3 E n+1/2
α ≈ τn+1 E n+1/2

α (II ord)

4 Φn+1
β = Φn

β −
∑
β

cβα E n+1/2
α

5 F n+1
β ≈ 1

µ

l̃β
sβ

Φn+1
β (̃lβ ⊥ sβ)

6 F n+1
β ≈ τ̃n+1 F n+1

β (II ord)

7 E
n
α ≈

1

2

[
En+1/2
α + En−1/2

α

]
(II ord)

8 (Ic)
n
α ≈ σ

s̃α
lα

E
n
α (lα ⊥ s̃α)

9 I nα = (Ii)
n
α + (Ic)

n
α

{
i = impres.
c =conduc.

10 (Qf)
n
α = τ̃n I nα (II ord)

�
 �	Φ

�
 �	E �
 �	E

�
 �	F

�
 �	Ψ

�
 �	F

�
 �	E
�
 �	Qf

�
 �	Ic

?
-

�

-

-

6

�

-

�
�
�� �

�
��

constitutive
magnetic

constitutive
electric

constitutive
Ohm

Faraday
Neumann

Ampère
Maxwell

4

3

5

7

8

2

6

10

1

1

configuration variables source variables

F = Fm ; tn → n; t̃n → n− 1/2 initial conditions: n = 0

Ψ−1/2
α = 0 F 0

β = 0 (Ic)
0
α = 0 (Ii)

0
α 6= 0 (Qf)

0
α ≈ τ̃0 (Ii)

0
α

⇐

⇐

⇐
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Table 9: The differential structure of electromagnetism {EE88}
configuration variables

primal complex: inner orientation
intervals instants

source variables
dual complex : outer orientation

instants intervals

����V

����E

����k

����λ

����χ

����A

����B

����g

����ρ

����D

����T

����η

�� ��p

�� ��J

�� ��H

�� ��Vm

V = ∂t χ A = −∇χ

?

�
�

�
�	

E = −∂tA−∇V
B = ∇×A

?

?

��

��	

∇×E + ∂tB = 0
∇ ·B = 0

?

?

��

��	

−∂t g +∇ · k = λ

?

�
��

�
��	

∂t ρ +∇ ·J = 0

6

�
��

�
���

∇ ·D = ρ
∇×H− ∂tD = J

6

6

��

���

D = ∇×T
H = −∇Vm + ∂tT

6

6

��

���

Vm = −∂t η
T = −∇η

6

��

���

D = εE -

H =
1
µ
B -

���
���

���
���

��
���

���
���

���
��:

J = σE

Electromagnetism
differential formulation

Ohm’s law

1TP

3TL

3TS

1TV

1IP

3IL

3IS

1IV

1ĨṼ

3ĨS̃

3ĨL̃

1ĨP̃

1T̃Ṽ

3T̃S̃

3T̃L̃

1T̃P̃
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Table 10: The discrete structure of electromagnetism {EE119}
configuration variables

primal complex: inner orientation
intervals instants

SI units: weber

source variables
dual complex : outer orientation

instants intervals
SI units: coulomb

����Vh

����Eα

����Kβ

����Λk

����χh

����pα

����Φβ

����Gk

����Qc
h

����Ψα

����τβ

����ηk

�� ��Qp
h

�� ��Qf
α

�� ��Emβ

�� ��Vmk

Vh = ∆tχh

pα = −∑h gαhχh

?

��

��	

Eα = −∑h gαhVh −∆tpα

Φβ =
∑
α cβαpα

?

?

��

��	

∑
β cβαEα + ∆tΦβ = 0∑

β dkβ Φβ = 0

?

?

��

��	

−∆t Gk +
∑
β dhβ Kβ = Λk

?

�
��

�
��	

∑
α d̃hαQf

α + ∆̃tQ
c
h = 0

6

�
��

�
���

∑
α d̃hαΨα = Qc

h∑
β c̃αβ Emβ − ∆̃tΨα = Qf

α

6

6

��

���

Ψα =
∑
β c̃αβτβ

Emβ = −∑k g̃βkηk + ∆̃tτβ

6

6

�
�

�
��

Vmk = −∆̃tηk

τβ = −∑k g̃βkηk

6

��

���

Ψα = ε
s̃α

lατn
Eα -

Emβ =
1
µ

l̃β τ̃n
sβ

Φβ -

���
���

���
���

���
���

���
���:

Qf
α = σ

s̃ατ̃n
lατn

Eα

Ohm’s law

Electromagnetism
discrete formulation

TP

TL

TS

TV

IP

IL

IS

IV

ĨṼ

ĨS̃

ĨL̃

ĨP̃

T̃Ṽ

T̃S̃

T̃L̃

T̃P̃
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media. It is for this reason that Maxwell equations are valid only in regions in which
the properties of material media are differential functions of the position. It follows
that, in the differential approach, the study of electromagnetic fields in regions that
contain different materials requires the separation into subregions and the use of jump
conditions .

Finite formulation requires the introduction of a primal cell-complex in such a way
that on the separation surface between two media the 2-cells (faces) lie on the surface,
as shown in Fig (10). Doing so, the very fact that we consider the e.m.f. on the edges
that bound the faces and that lie also on the separation surface, assures continuity
of the e.m.f.: this corresponds to the continuity of the tangential component Et of
differential formulation. At the same time considering the magnetic flux referred to
the faces we assure continuity of the magnetic flux that amounts to continuity of the
normal component Bn of differential formulation.

Thus finite formulation avoids jump conditions and hence permits a unified treat-
ment of field equations and of material discontinuities. This is a significant advantage
over differential formulation.

We may note that the description of physical laws in finite form contains in-
formation which is normally ignored in differential form. Differential formulation,
by ignoring the association of physical variables with space elements, consequently
ignores the distinction between two orientations and accordingly does not need a pair
of cell complexes.

The laws of electromagnetic field can thus be expressed in finite form without
losing any physical content and without adding any differentiability condition to the
physical phenomenon described [34].

5.1 Relation with other numerical methods

Finite element method (FEM) was invented in the sixties in the field af solid mechan-
ics: the unknown was the nodal displacements. FEM was introduced in electromag-
netism around 1969 by Silvester [27]. The application of FEM to electromagnetism
followed this line of thougth: since in continuun mechanics the displacements, i.e.
vectors, refer to nodes it appeared natural to consider the vectors E and H as homol-
ogous and hence considered as nodal unknowns.

This identification can be criticized for the following reasons. Since the sources of
the electromagnetic field are charges and these are scalar quantities, it follows that
all the integral quantities of electromagnetism are scalars. These are charge, current,
electric and magnetic fluxes, e.m.f. and m.m.f. . The laws of electromagnetism, when
one uses integral quantities, are all relation between scalar variables and then they are
expressed by scalar equations. If this is so, why do we commonly use vector quantities?
The reason can be found in the fact that there are physical variables that refer to
lines and surfaces: this is the case of electric and e.m.f., electric and magnetic fluxes
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Table 11: Correspondence between finite and differential formulation of
the electromagnetic equations {EE80}

finite formulation differential formulation
domain functions field functions

field laws
1 Faraday’s law∑

α

cβα E [τ n, lα] +
{
Φ[tn, sβ]− Φ[tn−1, sβ]

}
= 0

{
curl E + ∂tB = 0
n×(E+ − E−) = 0

2 magnetic Gauss’ law∑
β

dkβ Φ[tn, sβ] = 0

{
div B = 0
n · (B+ −B−) = 0

3 Maxwell-Ampère’s law∑
β

c̃αβ Fm[τ̃ n, l̃β]−
{
Ψ [t̃n+1, s̃α]− Ψ [t̃n, s̃α]

}
= Qf [τ̃ n, s̃α]

{
curl H− ∂tD = J
n×(H+ −H−) = K

4 electric Gauss’ law (electrostatic induction)∑
α

d̃hα Ψ [t̃n, s̃α] = Qc[t̃n, ṽh]

{
div D = ρ
n · (D+ −D−) = σ

5 charge conservation law∑
α

d̃hα Qf [τ̃ n, s̃α] +
{
Qc[t̃n+1, ṽh]−Qc[t̃n, ṽh]

}
= 0

{
div J + ∂tρ = 0
n · (J+ − J−) = 0

6 general solution of magnetic Gauss’ law

Φ[tn, sβ] =
∑
α

cβα p[tn, lα]

{
B = curl A
n×(A+ −A−) = 0

7 general solution of Faraday’s law
E [τ n, lα]
= −

∑
k

gαkV [τ n,pk]−
{
p[tn, lα]− p[tn−1, lα]

} {
E = −grad V − ∂tA
V + − V − = 0

material laws

8 Ψ [t̃n, s̃α] = ε
s̃α

τnlα
E [τ n, lα] D = εE

9 Fm[τ̃ n, l̃β] =
1

µ

τ̃nL̃β

sβ
Φ[tn, sβ] H =

1

µ
B

10 Ohm’s law
Qf [τ̃ n, s̃α]

τ̃n s̃α
= σ

(
E [τ n, lα]
2 τn lα

+
E [τ n+1, lα]

2 τn+1 lα

)
J = σE
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alongside with currents. Since for every space point there is an infinity of directions
one is led to introduce at every space point a vector to evaluate the integral variable
referred to a line and to a surface by the scalar product of the field vector at the point
and the vectors dL and dS that describe the geometrical elements, i.e:

V [L] =
∫
L
E · dL Φ[S] =

∫
S
B · dS

F [L̃] =
∫
L̃
H · dL Ψ [S̃] =

∫
S̃
D · dS I[S̃] =

∫
S̃
J · dS.

(14) {X8Y4}

On the contrary in continuum mechanics the sources of the field are forces, i.e.
vectors. This implies that all global variables of continuum mechanics are vectors.
Such are displacements, velocities, relative displacements, relative velocities, surface
and volume forces, momenta, etc. The relative displacements of two points depend
on the vector connecting the points. The force across a surface depends on the space
orientation of the surface. This fact leads us to introduce second rank tensors to
express the dependence of such vector quantities on the vectors that describe the
lines and the surfaces: such are the strain tensor, the strain-rate tensor and the stress
tensor. In continuum mechanics, where finite elements were born, displacements u
and forces f are vectors associated with points (mesh nodes). In electromagnetism the
vectors E and H, which are associated with lines are not homologous to the vectors of
continuum mechanics. The vectors in electromagnetism play the same role as tensors
in continuum mechanics. Stated in other words: the vectors of electromagnetism are
not the homologous of the vectors of continuus mechanics.

A numerical treatment of physical phenomena that does not take into account
these differences is an “act of violence” on the physics of the problem and gives rise
to inconvenients. This was the case of numerical treatment of electromagnetism by
the finite element method: the vectors E and H have been applied to nodes. This
gives rise to spurious solutions in electromagnetic guide waves with two dielectrics
as well as in three-dimensional electromagnetic problems [28], [11]. Much time and
ingenuity has been spent on finding the reason for such spurious solutions.

A further negative feature connected with field vectors is encountered in the solu-
tion of diffraction problems, where it is found that the electromagnetic field vectors
may become infinite at sharp edges of a diffracting obstacle while electromagnetic
energy in any finite domain must be finite: this is the so called edge condition [19].

Faced with the appearence of spurious solutions, in 1982 Bossavit and Vérité
[1] suggested abandoning the nodal values of field vectors E,H. Using tetrahedral
meshes, they introduced, in electromagnetic computations, electromotive and m.m.f.
along the edges of the tetrahedra [4, p.XV]. This was the birth of the edge element
method (EEM) introduced by Bossavit in 1988 [2]. This method is an extension of
FEM and it uses a single mesh. The same authors realized that the use of such global
variables is in harmony with the use of the exterior differential forms. Taking the
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latter as a starting point, the finite form was achieved via special differential forms,
the so called Whitney forms following a suggestion of Kotiuga [13].

A completely different method to give a finite formulation to Maxwell equations
was introduced in 1966 by Yee [43]. He started considering a cartesian mesh and
associating the three components Ex, Ey, Ez located in the middle of the edges and
the three components Hx, Hy, Hz located in the center of the faces. Doing so he
introduced a pair of dual grids, G and G̃, later called the electric and magnetic
grids. He considered the two differential equations containing curlE and curlH and
discretized them using finite differences. Yee’s method was called Finite Differences
in Time Domain (FDTD). It is a refinement of FDM based on a pair of dual cartesian
meshes and on an ad hoc association of physical variables to the two meshes.

The FDTD method of Yee has been developed by Weiland since 1977 [39]. The
author, in a paper of 1984 [40], [41] initiated the use of Maxwell equations in integral
form. The method has been named Finite Integration Theory (FIT) and is the method
used in the program MAxwell Finite Integration Algoritm (MAFIA). The integral
form was approximated considering the tangential component Et in the middle of the
edges of G and the normal component Bn in the middle of the faces of G. The dual
mesh G̃, called the magnetic grid , appeared as a natural completion of the mesh G,
called the electric grid to make the normal component Bn, which is normal to the
faces of G, tangential to the edges of G̃ [40, p.250]. In the FIT method spurious
solutions do not appear [41, p.229].

In 1996 Weiland [42] takes an important step forward when he introduces inte-
grated field as state variables rather than directly field components. In other words
the unknowns are now vectors like (e1, e2, ...en) where ek are e.m.f. along the edges.
Doing so he obtained an exact implementation of Maxwell’s equations. In the words
of Weiland “The oustanding features of Maxwell’s Grid Equations (MGE) when com-
pared with other numerical methods for solving field problems is that this set of matrix
equations is a consistent finite representation of the original field equations in that
sense that basic properties of analytical fields are mantained when moving from IR3 to
{G, G̃}.” Weiland went on in 1996 to consider electromotive and m.m.f. using a pair
of dual meshes while Bossavit [1] did the same in 1982 but on a single mesh. We can
see that, starting from different points of departure, computational electromagnetism
evolved towards the use of a pair of dual meshes and the use of global variables .

Outside electromagnetism, in fluid dynamics, the Finite Volume Method (FVM)
evolved in the same direction. Here one use a pair of dual meshes and make use of
global variables . We remark that FDM, FDTD, FIT and FVM use mainly cartesian
meshes while EEM uses simplicial complexes.

The finite formulation of electromagnetism we have presented in this paper, start-
ing from an analysis of global physical variables, joins the methods inaugurated by
Yee and Bossavit.
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5.2 The cell method

The main feature of finite formulation we have presented is the use of global variables
that are domain functions instead of local variables, i.e. field functions. This implies
that we do not use differential equations or differential forms. The solutions to field
problems can be achieved considering a simplicial complex K of Delaunay type and its
orthogonal dual K̃ of Voronoi. This presupposes a Delaunay-Voronoi mesh generator
in two or in three dimensions. This choice permits a simple implementation of material
equations, at least for isotropic media, because they link a physical variable associated
with a p -cell with another variable associated with the dual (n − p)-cell when the
cells are orthogonal.

Variables. The variables used are: magnetic flux Φ; electric flux Ψ ; electromotive
force impulse E and magnetomotive force impulse Fm.

Field equations. Field equations are implemented as follows:

• the Mawell-Ampère’s and Gauss’ magnetic laws on dual cells;

• the Faraday’s law and Gauss’ electric laws on primal cells.

Field equations have an exact implementation because we use global variables in space
and time.

Constitutive equations. The field inside every simplex is supposed to be uni-
form and the material homogeneous so that the material equations are exact in every
simplex: the only approximation we carry out is to assume uniformity of the field
inside simplexes.

Material dicontinuities. The working region can be filled with different mate-
rials. It is always possible to construct a simplicial complex whose simplexes do not
cross the separation surfaces but have a face that lies on them, as shown in Fig.(10).
This automatically assures that jump conditions will be satisfied because e.m.f. and
fluxes on the edges and faces respectively are the same for two adjacent cells.

A numerical method based on these rules will be called the cell method.

5.3 Conclusion

We have shown that it is possible to give a finite formulation to the electromag-
netic equations starting directly from physical laws, i.e. without passing from the
differential formulation. This put into evidence some features that are not commonly
considered in the differential formulation. First of all we use global variables instead
of (local) field variables. The global variables are associated with space and time
elements endowed with inner and outer orientation. These two kind of orientations
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are not explicit in the differential formulation. As consequence of this association,
global variables are domain functions while field functions are point functions. Co-
ordinate systems, that are a natural framework for field functions, are substituted
by cell-complexes. The role of orthogonal coordinate systems is played by a pair of
Delaunay-Voronoi complexes for which the p -cells of one complex are orthogonal to
the (n−p)-cells of the other.

The fact that some global variables are referred to space and time elements en-
dowed with inner orientation and other to outer orientation implies that some global
variables are naturally referred to the elements of the primal complex and other to the
elements of the dual one. This gives a fundamental role to a pair of cell complexes, a
notion that is lacking in the differential formulation.

The analysis we have done permits to clearly separate topological equations from
phenomenological equations.

The topological equations link physical variables referred to a same cell complex,
primal or dual, and are expressed by the operators gradient, curl and divergence in
the differential setting. Topological equations are independ of metrical notions: a
fact that is not usually stressed in the differential formulation. In fact the notion
of gradient, curl and divergence are usually presented in a metrical context. This
metric-independence, on the contrary, it stressed using exterior differential forms.

The phenomenological equations, i.e. the so called material or constitutive equa-
tions, link a variable associated with a p -dimensional cell with another variable asso-
ciated with the dual (n−p)-dimensional cell. Contrary to the topological equations
they depend on metrical notions. This is another feature hidden by differential for-
mulation.

In the theory of differential forms the topological equations on the primal complex
(inner orientation) are expressed by exterior differential forms while those on the
dual complex (outer orientation) are expressed by twisted or odd or impair exterior
differential forms.

The natural role of two cell complexes is of primary importance in computational
electromagnetism and gives a justification to the use of staggered meshes as done in
FDTD.

Acknowledgements. The author is grateful to Proff. A.Nicolet, L. Maniá and
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[19] J. Meixner, The behaviour of Electromagnetic Fields at edges, IEEE Trans. Antennas
Propag , AP-20, No 4, pp. 442-446 (1972).

[20] W. Pauli, Elettrodinamica, translation of Vorlesung Elektrodynamik , Boringhieri, 1964.

[21] P. Penfield, H. Haus, Electrodynamics of moving media, M.I.T. Press, 1967.

[22] E. Perucca, Fisica generale e sperimentale, 2, IV edizione (Unione Tipografica Editrice
Torinese, 1945).

[23] R. W. Pohl, Physical principles of Electricity and Magnetism (Blackie and Son, 1930).

[24] E.J. Post, Geometry and Physics: A Global Approach, Burge (ed.), Problems in the
Foundation of Physics, 4 (Springer-Verlag, 1971).

[25] V. Rojansky, Electromagnetic fields and Waves (Dover 1979).

[26] S. A. Schelkunoff, Electromagnetic fields ( Blaisdell, 1963).

[27] P. Silvester, Finite Element Solution of Homogeneous Waveguides Problems, Alta Fre-
quenza, 38, pp. 313-317 (1969).

[28] D.K. Sun, J. Manges, X Yuan. Z. Cendes, Spurious Modes in Finite-Elements Methods,
IEEE Ant. and Propag., 37, No 5, pp. 12-24 (1995)

[29] E. Tonti, On the mathematical structure of a large class of physical theories, Rend.
Acc. Lincei , LII, pp. 48-56 (1972).

[30] E. Tonti, A mathematical model for physical theories, Rend. Acc. Lincei , LII, pp.
175-181 (I part), pp. 350-356 (II part) (1972).

[31] E. Tonti, On the Formal Structure of Physical Theories, preprint of the Italian National
Research Council (1975) (unpublished).

[32] E. Tonti, The Algebraic - Topological Structure of Physical Theories, Conference on
Symmetry, Similarity and Group Theoretic Methods in Mechanics Calgary (Canada),
pp. 441-467. (1974).

[33] E. Tonti, The reasons for Analogies between Physical Theories, Appl. Mat. Modelling ,
I, pp. 37-50 (1976).

[34] E. Tonti, On the Geometrical Structure of Electromagnetism, in Gravitation, Elec-
tromagnetism and Geometrical Structures, for the 80th birthday of A. Lichnerowicz,
(Edited by G. Ferrarese. Pitagora Editrice Bologna) pp. 281-308. (1995)

[35] E. Tonti, Algebraic Topology and Computational Electromagnetism, Fourth Inter-
national Workshop on the Electric and Magnetic Fields: from Numerical Models to
Industrial Applications, Marseille, 1998, pp. 284-294.

43



[36] Truesdell C., Toupin R., The Classical Field Theories Handbuck der Physik, Band
III/1, Springer, 1960.

[37] D. Van Dantzig, Electromagnetisms, independent of metrical geometry, Proc. Amster-
dam Acad. 37 (1934) pp. 521-525 pp. 526-531, pp. 643-652, pp. 825-836.

[38] O. Veblen, J. H. C. Whitehead, The Foundations of Differential Geometry Cambr.
Tracts No 29, pp. 55-56, (1932).

[39] T. Weiland, Eine Methode zur Lösung der Maxwellschen Gleichungen für sechskompo-
nentige Felder auf diskreter Basis, AEÜ , band 31, Heft 3 (1977).
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