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PREFACE

“The aim of Mathematical Physics

is not only to facilitate for the physicist

the numerical calculation of certain constants

or the integration of certain differential equations.
It is besides, it is above all, to reveal to him

the hidden harmony of things

in making him see them in a new way. "

Henri Poincaré
The value of Sciences, Dover, 1958

This report collects the first results of a trial to
make a synthesis in physics from the point of view of formal
properties. Under the name "formal structure" we mean algebraic,
topological, geometrical, analytical and others mathematical
structures.

Perhaps the most concrete result is the construction of
a classification scheme for the physical quantities and the
equitions of every physical theory. A number of such schemes
are quoted in % 8, These schemes are all written using a single
system of physi .al quantities, the rationalized M,K.S.A. systenm.
Symbols and names are those recommended by the International
Union of Pure and Applied Physics (S.U.N. Commission).

This collection of schemes,dealing with many physical
theories, may form the core of an "Atlas of the physical theo-
ries" that under the name of many specialists of the various
field of physics, may be printed in successive editions of in-

creasing content.

Detailed comparisons between different physical theories
have progressively displayed the existence of a common mathema-

tical structure, that in turn, come up from a common topological



"pack-cloth" of physical theories.

This comparison was made at first using concepts and
tools of function spaces, like operators and bilinear forms
(see reference (130] ). Such powerful devices permit to go
over the distinctions between one or more functions of one or
more indépendent vari~bles. The usual analogies between diffe~
rent theories are revealed by the fact that corresponding o-
perators have the same structure. A typical adjointness rela-
tion between pairs of operators arising in every theory comes
into appearence as the main mathematical proverty shared by -
physical theories. In fact it is exhibited by linear and non-
linear theories, dealing with discrete or continuum systems,
of classic, relativistic and quantum nature.

The existence of such unity of mathematical structure
led us to construct a mathematical model (see reference [129] ).
It is dictated from the principle of economizing proofs in the
single physical theories, showing the links between various
properties commonly used in physical theories.

As the comparison was progressively extended to more and
more theories we had the pleasant feeling that such mathematical
structure has more deep roots.

The reason of such mathematical structure come into ap-
pearence when it was realized that in every physical theory
there are physical variables that are naturally associated to
simple geometrical and chronometrical elements like points, 1li-
nes, volumes, surfaces, time instant and time intervals and
combination of them,

At this point a paper of F.J, Branin jr. offered us the

key to translate this association between physics and geometry

II

in mathematical language: this key is the algebraic topology,
in particular the homology theory of cell-complexes. It is
shovm that with the language of '"chains" and that of “coboun-
dary" one can describe the typical operations of forming the
various physical variables.,

The adjointness between operators that was previously
realized appeared as consequence of the adjointness of the
boundary and coboundary operators, a well known property of

homology of cell-complexes,

The point of viéw under taken in this paper is that of
an experimentalist which tries to infer general conclusions
from a body of experimental facts: these "facts" are here the
existing physical theories. We have not tried to invent "new
theories”". On the contrary we have taken an inductive point
of view,

£ word about the style of the paper., J{ has been written
in suct way to be understand:ble by the largest audience: by
experimental and theoreticnl physicists, by chemists, engin-
eers, ~nd also, by students of the last years of these faculties.
In order to mnke possible this we have explained from the start
tne main algebraic and topological concepts giving an elementary
and compact presentation of them and stressing how they arise
quite naturally in the description of physical sciences. These
mathematical tools are presented from a physicist point of view:
this implies that sometime they may be lacking of mathem=tical
rigour,

In dealing with this research the author was in an isola-

ted position: our time is rhrracterized hy over-specialization



in all field of sciences. The author ask for contacts, collabo-

ration and constructive criticism.

The content of this report will be pubblished in some re-

view.

Author adress is: Tonti E.,

Istituto di Matematica del Politecnico
Piagza Leonardo da Vineci, 32

20133 MILANO (Italy)

(phone 23.66.163)
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INTRODUCTION

At the fundation of every physical theory we introduce so-
me measurable physical quantities from wich, in subsequent stages,
other physical quantities are derived. It is at this initial sta
ge that one make the important remark that
a) in every physical theory there are basic physical quantities

that are naturally referred to the most simple geometrical
and chronometrical elements like points, lines, surface, vo
lumes, hypervolumes, time instants and time intervals.

Let us give some examples: we speak of mass or electric

charge contained into a volume of the probability o7 vindinz a

.particle into a volume. We speak of electric potentiai at o

at a given time instant of the displacement of a point or a

material continuum, We speak of radius vecto:r of a particlc at a
time instant, of impulse given %0 a particle during a time inter
val, of displacemen’ of 2 particle during a time interval., We
speak also o7 electric flux through a surface, of energy and mo-
mentum flux throug a surface during a time interval, or of in-
ternal energy produced into a volume during a time interval.

The remark a) leads to the Zollowing remark
b) in every physical theory there are basic physical laws that

state that a physical quantity referred to a p~-dimensional

manifold W, like lines, surfaces, volumes, time interval,

etc. is equal to a physical quantity referred to its (p-1)-

dimensional boundary w,

Typical laws of this kind are those expressed by balance
equations, in particular continuity equations, equilibrium equa-
tions, equations of motion; circuital equations, in particular
gompatibility equations; the equations that give the general so-
jution of one of the proceeding equations; the eouations defining

the gradients; and so on. Exam-



ples of balance laws are: in magnetostatics the sum of the magne

tic fluxes through the boundary of a volume vanishes; in continu

um mechanics the law of equilibrium states that the sum of the

forces acting on the boundary of a volume is equal to the sum of

the external forces acting on that volume. The principle of con-
servation of energy states that the outgoing emergy flux through

the boundary of a volume during a time interval plus the energy

stored into the volumevthe same time-interval is equal to the e-
nergy produced into the volume in the time interval considered.
This law can be restated, with reference to space-time, by say-

ing that the outgoing energy flux through the three-dimensional

boundary of a four—-dimensional region is equal to the energy pro

duced inside it.
An examples of circuital laws we mention the Ampére circui

tal law: the magnetomotive force along the boundary of a surface
throvgh R
is equal to the current flowing v the surface. Often circuital e-

quations arises as compatibility conditions of gradient-like e-
quations., So in fluidynamics the condition that the circulation
of the velocity vector along a closed line vanishes implies that
the velocity vector is the gradient of a scalar function (veloci
ty potential). In the thermodynamic configuration space the stat
ment of the vanishing of the circulation of the vector field,who
se components are the "intensive" variables, along a closed line
(Maxwell reciprocity relations) amounts to the statment of the
existence of the entropy.

Perhaps this connection between physics and geometry

is well known from long time. But it does not seem that it has

been realized how far one can go in the understanding of the for

mal structure of physical theories by exploring the consequence

of thig remarkable connection,

2 A PRELIMINARY CLASSIFICATION
OF PHYSICAL VARIABLES

2.1, Configuration and source variables.

Since we propose to study the link between physical va-
riables and basic geometrical elements we need a preliminary
examination of the main physical variables and equations of
a physical theory.This is a difficult task because of the greath
difference in terminology of different physical theories: vhat
ever name we will chose to denote a typical entity of a theory
we are sure to be exposed to criticism., Since from some part we
must start, we decide to use, ad far as possible, the terminolo
gy of mechanics, both analytical mechanics and continuum mecha
nics, The reason is that much part of physical theories 1s mo-
delled on mechanics, among them field theories.

One of the basic notion of mechanics is that of "“configu
ration” of a mechanical system. In discrete mechanical system
the configuration is discribed by a set of n generalized coor-
dinates, universally denoted by qk. In continuum statics the
configuration is described giving the displacement vector of e
very point of the continuum: this is almost universally deno-
ted the letter u., The coordinates q¥ and the vector u will be
called "configuration yariables" of the respective mechanical
system, In field theories the analogsous of the mechanical con-
figuration variables are the field functions (also called field
variables), The variables that describe the configuration of a

system or of a field will be called confipuration variables,

So the configuration variable of an electromagnetic fiecld
is the vector potential f}t ; the configuration variable of the
gravitational field in the relativistic description in the metric
tensor Q“V - The configuration variables of a thermodynamical sy
stem may be the intensive variables, In guantum mechanics +the
configuration variable of a quantum~mechanical system is the sta

te vector that give the probability amrlitude,
Y



Another basic entity of mechanics is the force concept.

In continuum statics the body force is considered as a source
of the change in configuration of the system. In particle me-
chanics the force is the source gﬁ the motion of the particle.
The notion of "force" is replacéaYgther physical theories by
that of 3source of a field. S0 the electric cha ées are the

gources of the electrostatic field, the electric currents are
the sources of the magnetic field. The variables that descri
be the source of a field or of a phenomenon will be called

gource variables,
The choice of a set configuration variables and a set of

source variables in a physical theory is not unique: reasons
of convenience may lead to prefere one choice to another,

Typical pairs of configuration and source variables are
the lagrangian coordinates qk and the generalized forces Qk
of analytical mechanics; the electrostatic potential and the e
lectric charge density in electrostatics; the displacement vec
tor and the body force vector in continuum mechanics, the me~
tric tensor Quy and the stress-energy-momentum tensor T;Ly in
the relativistic gravitational theory; the state vector ql and
the interaction term © in quantum mechanics.

But other choices are possible: so in analytical mecha-
nics one may choose the momenta Px and the generalized veloci
ties é“ as configuration and source variables respectively.In
continuum mechanics one may choose the stress potentials as con
figuration variables and the dislocation tensor as source va-
riable. In magnetostatics one may <choose the pair vector poten
tial H/‘-current density J/" or the pair scalar potential X—mg
nopole charge density ﬂh)as configupation and source variables
respectively.

In the general field theory a theory which esgentially

rests upon formal properties common to many field theories,
the configuration variables are the field functions, usually
denoted by \Ph « Usually no e*plicit mention is made of the
source variables that, in the case of external sources inte-
raction field are implicy included in the interaction lagran
gian,

About the mathematical nature of the configuration and

source variables we find the largest variaty of tipes: they
may be real or complex numbers vectors, tensors, quaternions,
motors, multivectors, Clifford numbers, matrices, spinors,ope

rators, and so on.

2.2, Independent variables.

In continuons systems and fields the configuration and

source variables depend from some indipendent variables like

the time and space coordinates. In discrete physical systems
and in those with lumped parameters the configuration varia=-
bles may be considered at the same time indipendent varia-
bles.This is the case of the intensive variables of thermody-
namics and of generalized coordinates in analytical statics,
“hen the physical system under study exibits gome gymmetry(li
ke plane symmetry, spherical symmetry, etc.) one may use a o
wer number of variables. In other cases one may treat one o
more variables as parameters.

pendent variables as coordinates of some point of a space.
When we say that in every physical theory there are some phy
sical quantities that are naturally referred to the geometri

cal elements of a space we refer to the space of indipendent

variables. Since the choice of indipendent variables is not



unique it follows that the same physical quantity may be refer-

red to different geometrical elements in different spaces.

So the electric potential (P will be referred to points of the
three-dimensional physical space or to time lines of the four-

dimensional space-~-time.

2.3, Configuration-kind variables.

In a physical theory, once we have chosen the configura-
tion variables and the indipendent variables, we may consider
those variables that are linked to the configuration variables
by means of operations of sum and difference,of total or partial
derivatives and total or partial integrals with respect to the
indipendent variables. All this without the intervention of phy
sical constants, material parameters, coupling constants, pheno
menological coefficients and other parameters 1inkéd to the geo
metry or the physics of the system. Exception is made for the
light speed in vacuo.

These variables, including the configuration variables

themselves, will be called confipuration~kind variables.

In continuum mechanics typical configuration-kind varia-
bles are the geometrical and kynematical variables like the di-
splacement, strain, velocity, deformation gradient, angular ve-

locity, vorticity, rate of deformation, etc.

2.4, Source-kind variables.

In analogous way let us consider those variables that are
linked to the source variables by means of operations of sum
and difference, of total or partial derivative and total or par
tial integrals with respect to the indipendent variables. All
this without the intervention of physical constants, material
paranmeters, coupling coefficients, phenomenological constants or

any other parameter linked to the geometry or the physics of the

system, with the exception of the light speed in vacuo. All these
variables, including the source variable-themselves, will be cal

led source-kind variables.

In continuum mechanics typical source~kind variables are
statical and dynamical variables like the body force, body cou-
ple, momentum, angular momentum, stress, stress functions, stream

functions, etec.

2.5. Phenomenological equations.

Configuration and source~kind variables of the same physi-
cal theory are linked by constitutive equations, also called ma-

terial equations or equations of state. They include physical

constants, geometrical and material parameters,

The interaction between two phenomena is described by gi-

‘ving the link between the source-kind variables of one theory

and the configuration-kind variables of the other. These are the

interaction equations that contain coupling coefficients., Roth

the constitutive equations and the interaction equations are of
phenomenological iind and are usually called phenomeneological

bhienomenological
equations.

2.6. Other physical variables,

In every physical theory one encountersother physical va-
riables that are defined as function of the configuration-kind
and source-~kind variables. 30 in particle mechanics one define

the potential U and the kinetic energy T respectively as

» v
‘l‘___’!ff(,.).dp Ti’cf pv)-dv
o o

that depend from the source-kind variables;f;}) and from the con
figuration-kind variables P, ¥ . Once the constitutive equations

are given one may evaluate these physical variables. So when



v
p=mYV or  P=—2
|/ vZ
we obtain {-.C-'?
—imv? T=mc2[ ! _1]
T 3 o i

that are the typical expressions of the kinetic energy of classi
cal and relativistic mechanics respectively. In electrostatics

and in magnetostatics one introduce the variables

& 8
aof . P .
w, % j DE)-dE  wp# fo H(B)-d8

that are defined as function of the source and configuration-kind
variables of the respective theories. Once we specify the consti

tutive equations we obtain these new variables as function of the
configuration-kind variables only. Another example of physical va
riable- of the electrostatic field is the Maxwell tensor giving

the stresses
£ — D"E, - L (D"E.) &
= ” 2 r LY
This physical variable is function of the two variables‘?and l’.

Once we specify the phenomenological equation D=D(£) the stress

tensor becomes function of the configuration—kind variableEonly.

2.7. Other equations,
The equations that link the various oonfiguration~kind va

riables of & single physical theory do not contain physical con-
stants, neither material parameters, as we have said. These equa
tions contain time or space derivatives and their linear combi
nations, algebraic sums and time or space integrals. Typical are
the equations defining the gradients, those arising from circui
tal laws,_and compatibility equations, Of this kind are the equa

tions

BuanthA  vo g g, =y

Also the equations that link the various source-kind variables of
a theory are of this kind. Thypical are the balance equations and

the conservation laws, for ex, the equations

M =f* f-pla)-pte) [ 8 nois-o

Equations of this kind have not a particular name in the physical
literature. Since in the following we shall deal mainly with this
kind of equations we use tentatively a single name and call them

equations of structure.

The equation of structure and the phenomenological equations
do not exhaust, of course, the equatinns arising in a physical
theory. But they are, so to speak, the building blocks of almost
all equations of the physical theorys So the Poisson equation

oy [A (~gradp)] =p
arises as a mixing of two equations of structure with one phenome
nological equation, In general the wave equations and the field
equations are obtaindd by combining phenomenological and structu
ral equations,

All what we have said can be represented in a block diagram,
see table 2.7.1.



3 ALGEBRAIC TOPOLOGY:
CHAINS AND COBOUNDARY

(nteractiorn
equations

Qe
Y 8§ 3.1. Introduction.
. &N
SR }: To point out the basic geometrical elements of a space it
D 3 2 Y
{-.g 8“& is useful to subdivide a region of the space in cells of whate
<
3 " ever shape and dimension; in this way we construct a cell-conmplex.
“w > ____._l_—

This is what we usually do in physics when we write balance equa
tions in a local form: for this purpose we use a small paraliele

piped that is understood as a cell of a cell-complex built up in

the region in which the field or the continuous system is consi-

3,
@ $ $ . o A
% - 'g g{, dered. Such a cell-complex exhibits vertices, edges, faces and
D ¢ -
-'s E'{: 3_3 volumes, i.e. four basic elements {in the three—~dimensional spa-
Q “ 'g ? T
> S & L3
v The study of cell-complexes is one of the branches of alge

braic topology: this is essentially a method, initiated by Poin-

caré, to study the topological properties of a manifold (‘).

Another branch of algebraic topology is the homotopy theory, also
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3\ ﬂ;.; 8 useful in the study of physical theories (Post, 1971). In the pre
Q [N
“g é‘g’ “6 sent paper we use only the first branch called the homology theo
> EE ‘§ ® ry of cell-complexes. For the benefit of the reader we give here
~ O S
x . . .
8 & §§ a brief survey of the homology theory of cell-complexes restric-
-9 )
g’ ‘8;*}. ted to those concepts and tools that will be used in this paper(z).
< !
S : ' —'———'———I (1) - A clear and elementary account of thic method is given in the article
o7 Alexandrov contazined in the book: Mathematics. Its content, Metnhods and
Y Meaning, edited by Alexandrov, Kolgomorov a2nd laurent'ev, KIT Fress; 1963.
9
13 s (?) - For further study the interested reader may see: hlexandrov (1956),
%i‘ (1961), Hocking-Young (1961), Franz (1968), Hilton-Wylie (1360), Patterson
3 g (1956}, ¥allace (1957).
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taste 2.0 1 preluminary classification of physical variables of a physical theory



3.2, Cell-complex.

Let us consider at first, a three-~dimensional spacel?’and
a region (1 contained in it. Let us divide such region in three-
dimensional cells. The vertices, edges, faces and three-dimensio
nal cells are cailed reespectively O-cells, 1-cells, 2-cells and’

3~cells. All these cells of various orders form a cell-complex

that we denote K. The shapes and dimensions of the 3-cells may
be arbitrary: nevertheless we shall find convenient to consider
3~cells delimited by the coordinate surfaces of a coordinate sy
stem, as is customary in physics.

More in general we shall consider n-dimensional spaces of
the kind R” and finite n-dimensional regions {2 ¢ R” . Such
.eglons may be covered by an atlas: this is a set of local coor
dinate systems that satisfy the two well known properties.,

To construct a cell-complex in {1 we use the n-dimensional cells
of local coordinate system, i.e., those n-dimensional regions of {2
that are delimited by the n families of (n-1) dimensional coordi
nate manifolds. The cell-complex so obtained enjoy the proper
ty that all its p-cells lie on p-dimensional coordinate mani-
fold . Since for every point of R” there pass (g) p~dimensional
coordinate manifolds we may divide the p-cells in (”) families.
So in R® we have (J) families of 0-cells, (3) families of 1-cells,
(g) families of 2-cells,(3) families of 3-cells. Since we are
particularly interested to spaces withn7<¢4we shall use special
symbols for the cells of the various orders. So a O-cell (point)
will be denoted P, an 1-cell (line segment) L, a 2-cell (surface
segment) S, a 3-cell (volume) V and a 4-cell (hypervolume) H.

For n=1 the space is stright line. A cell-complex then re-
duces itself to points, P, that are the O-cells and to line seg-
ments, L, that are the t-cells. A typical example is that of the
time axis when the variable is the time: the O-cells are the time
instants and the i-cells are the time intervals respectively. For

n=2 the representative space is a plane. A cell-complex exhibi%s

12

COMPLESSI - A-9-3

3
S

e
Z
733

13



points P, line segments L, and surface segments S. A 2~dimensio
nal space i arises, for ex., in the study of the longitudinal
vibrations of a bar: in this case one variable is a spatial
coordinate and the other is the time., Examples of cell-complex
for n=1,2,3 are given in Fig.3.24 (heavy lines). The simbols we
have introduced to denote the p-cells and their possible physi
cal meaning are:

O-cell: P- point, time instant, event.

i-cell: L~ line segment, time interval,

2-cell: S- surface segment, line segment x time interval.
3-cell: V- volume, surface segment x time interval.

4-cell: H- hypervolume, volume x time interval,

The number of families of p-cells will be written before the
symbol of the cell. So in space time we have one family of O-
cells, four families of 1-cells, six families of 2-cells, four
families of 3-cells and one families of 4-cells: we shall wri-~

te 1P, 4L, 6S, 4V, 1H respectively.

3.3. Dual cell-complex.

In phycical theories we are lead to consider phycical quan
tities referred to the baricentric points of the n-cells: these
baricentric points may be concidered as vertices of a second
cell-complex that is called the dual of the initial cell-complex
K and we shall denote it by K. The 0,1,2,3,4-cells of K will
be denoted by 5, i, §, V, ﬁ respectively. The dual cell-complex
for n=1,2,3 is indicated in fig. 1 (dottes lines). From the way
the dual cell~complex has been defined, it follows that to every
p-cell of K there correspond a (n-p)-cell of ¥ ana viceversa.
All that we have said up to now permits to obtain a classifica-
tion scheme of the basic geometrical elements of a cell complex

and its dual as shown, in table 3.3.{.

14

3.4 Numeration of the cells
It will be useful to number all O-cell of a cell-complex. A
nalogous numbering will be made for all 2-cell, 3-cells, etc, The

numbering of the p-cells of K is completely indipendent from the
numbering of the (p-1)-cells of K . We shall denozs a} the num-
ber of p~cells of K . But to number the cells of K it will be
useful to assign to a p-cell of FE the same number of the corre—
sponding (n-p)-cell of K . We denote with NP the number of p-
cell of K and with B, the number of q-cella of K. Then

O(P =fBn-p (Frans, p.144).

The faces of a p-cell are those {p-1)-cells that form the
boundary of the p-cell. The cofaces of a p~cells are those (p+1)-
cells that have the given p~cell as common face, Se if we consider
a wall that separate two rooms we can say that the two rooms are
the cofaces of the wall,

15



a classification scheme of the basic
geometrical elernents of a cell-cornplex K
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3.5. Orientation of the cells,

A polygon is said to be oriented when we have chosen a
direction to go along its boundary. To give an orientation to
a polygon it's sufficient to give an orientation %o one of its
sides and then to propagate the orientation to the adjacent si
des according to the rule that if a side enters a vertex, the
adjacent side leaves it(ﬁg.&ila). Give two polygons with a com
mon side, if the first one is oriented we can introduce and o-
rientation on the second one with the analogous rule that the
orientations induced by the two polygons on their common side
be opposite (Fia.351.%), This rule assures the compatibility of
the orientation of a set at adjacent polygons(’)

A polyedron is oriented when one of its faces is oriented
and the orientation is propagated by induction to all faces
(F@.lilé. The two possible orientations of a face imply two pos
sible orientations of the polyedron. Using the right-hand screw
rule one can see that the two possible orientations of a polye
dron correspond to the two possible choices of the inner or ou
ther normals to its boundary. A cell-complex is said oriented
when we have fixed an orientation to all its cells of the va-
rious orders.

An orientation of the p-cells of such a cell-complex is the one

suggested by the following orientation of the coordinate lines

(Fig. 3.5.2)

1-cells: the same orientation of the coordinate line x*;

2-cells: we give an orientation to a 2-simplex (= triangle) of
the coordinate manifold x”, x? taking the orientation

0P1P2 and then propagate the orientation to the whole

(3) - Of course for two-sided surfaces: !obius strips and Klein bottles are

excluded from our considerations.
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coordinate manifold. For the other coordinate mani-
foldc x? x® and x3,x’ we choose the oriented simplexes
OP2P3 and OP3P1 respectively;

3-cells: we give an orientation to the face P1P2P3 taking the
vertices in this order, propagating the orientation to
the 3-simplex 0P1P2P3; then we propasate the orienta-
tion of the 3-simplex to all 3-cells;

and so on for the cells of higher order.

3.,6. Chains.
Let us consider a cell~complex K built up in a three—dimen

sional region filled of a material continuum, With every

3~cell of K we may associate the amount of mass contained

19



into the cell: let Vh denotes..the h~th 3~-cell and mh the corre-
sponding mass. We can represent the mass distribution by the se

quence

(g, 1Ty, <. Py ) (3.6.1)

7’1'9. 352

In analogous way we may consider the contract forces trasmitted
,, be the h-th 2-cell and F, ve

the corresponding contract force (the orientation of the 2cell

through every 2-cell of K. Let S

is here essential). We may represent the distribution of con-

tract forces by the sequence

(F, . F.... 7';2) (3.6.2)

Sequences of this kind are called "chains", On account of the
fact that the masses are referred to 3-cells the sequence (3.6.1)
is called a three~dimensional chain or briefly 3-chain, while
the sequence (3.6.2)1is calle(_l a 2-chain.

The masses m, and the forces F, are called the “"coefficients"of

20

orientation of the cells :77+3

the O-cells are positively
oriented (f the incorming lines
are considered as positive ( This is
the meaning of the symbol +>)

> the {-cells are

oriented according
with the coordinate
lines

X

L4
2 z
Jdb.,
“ AT

the 2-cells are oriented

according with the cyclic

permutation of pairs of

coordmate lirnes

21



the corresponding chains. We emphasize the fact that in the
first case the coefficients are numbers, while in the second ca
se they are vectors,

When the coefficients are vectors, and not merely numbers,
they are applied to different space points, If we wont to con-
ceive them as elements of a single vector space we nast tran-
gport them at a common space point, No problem arises if the
space is of euclidean kind, because the notion of parallel tran
sport is the customary one, largerly used in physics. Neverthe-—
less the introduction of an euclidean metric is not necessary.

It suffices that the region f2 be equipped with an absolute paral

lelism (or teleparallelism). This means that the-ééhnection be

such that the curvature tensor vanishes.In what follow,we assu
me that the n~dimensional region {2 of R be flat.

After these preliminary considerations we return to the
general case. Let us consider an n-dimensional region 0 of 1i
near spaceﬁ?nilet us cover the region ) with a cell-complex K
that will be oriented and numbered. Let us consider a set B of
elements which an operation of sum is defined, i,e., with the
struecture of an additive abelian group. Por the purposes of phy
sical theories this may be the group R of reals, the group C of
complex numbers, the groups mm, ¢ of m-ples of real complex num
bers, the group of mxm matrices, the group of quaternions or
that of Clifford numbers, of spinors, of infinite matrices of of
operators acting on some linear space, etc.If we associate with
every oriented p—cell 6: of K an element 8,€ 6 we have defined
a p-chain with coefficients in the group ¥ . (Hocking-Young,225;
Alexandrov>286).

Then a p-chain is a mapping that assigns to every p-cell
an element of % . A p-chain can be denoted with the symbol

a”=(a,, a,, - 8u,) (3.6.3)

22

Two p-chains can be summed according with the rule
def
a® + P 22 (a,+8,,8,+0,, - - ,a.(P+b,,F) (3.6.4)
lioreover one can introduce the null p-chain, we denote it by
0(p), whose coefficients are all equals to the null elements
of the group % ., In this way the set of all p-chains on K has

the structure of a group called the chain group.

3,7. Incidence matrices.

Given a p-cell, one may consider those (p=1) cells that
are incident with it: these are called the faces of the p-cell.
lloreover one may consider the (p+1) cells that are incident
with the p-cell: these are called the cofaces of the p-cell.

To every pair formed by a p-cell and a (p+1)-cell we may
assign an incidence number that is zero if the two cells are
not incident and is + 1 or - 1 according if they are incident
with compatible orientation or with opposite orientation. The
incidence number of the k-th p-cell with the h-th (p+1)-cell
will be denoted by e;f"{

The fact that the incidence numbers of the p-cells with
the (p+1)-cells have two indices permits to consider them 25 en

tries of an incidence matrix

iprv,p) def .
£ “leﬁ "")/ (3.7.1)

For a n-dimensional space we have n incidence matrices. So in R3

we have the three matrices
3,2) 12,4) 71.0)
£ £ £ (3.7.2)

A look to an incidence matrix permits to detect the cofaces of

a given cell alongside with their mutual orientation. If given
N el

a region {2¢/R” the cell-complex covers the whole region L) then

the connectivity properties in the large of the region are re-
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flected by the incidence matrices of the various orders: (Ho-

cking~YoungJ224) more precisely they can be inferred from the

ranks of these matrices (Patterson, 1966). m
3.8, Coboundary of a chain. Eﬂ‘

Let us consider a p-chain a ¢ we perform the follo-

1c)

wing two~steps process to obtain a (p+1)-chain

1)} for every p-cell we consider the set of its cofaces. Then

2¢)

2) summing the mathematical elements assigried lo every (p1jcell

we transfer the mathematical entity associated with the p-
cell to every coface, with the same or opposite sign accor
ding to the fact that the orientation of the coface agrees
or not with that induced from the p-cell;

2) for every (p+1)-cell we sum the amounts of the mathematical

entities that are transferred to it from its faces. The sum

?

so obtained is naturally referred to the (p+1)-cell.

In this way we have constructed a (p+1 )-chain that is called

the coboundary of the given p-chain. The two-step process is
shovm in Fig.3.8.1.1In symbols we write:

¢ = §a™ (3.8.1)

15)

the process of forming lhe cobouncary

where & denotes the coboundary overator. A matrix representation

of this operator is possible using the incidence matrices.
Let

a*=(a,, a,, -.. aqp) crn =(c, , Cay et c“’;w) (3.8.2)

Fig. 3.6.1

then eq. (2.8.1) becomes

1) transferring the rmathematical element to the cofsces of & p-cell
*a,

<p
Ch = ka ell;:—"'”ak (3.9.3)

-a‘

—
Q,

2a)
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examples of coboundary of chains

-5
+38 m
5 -38
53 7 %
35 4 17
* /
.
( . S
0
S

co=(17,38,-5) 8¢ =(17-38,38+5) =(-21, 43)

dc’a(0,0,-27,+8,+27,-8,0)=
=(0,0,-19,+27,-8,0)

2

¢2 =(7,22,13,0,0,...0) Oc2 u(-7+22,-22+/3)=(15,-9)

29



3.9, Poincaré lemma

One car easily check by examples that repeating two times
in sequence the process of forming the coboundary of a p-chain
the (p+2)-chain so obtained is the null chain olp+2)

&5&5a™ =07 (3.9.1)

. In symbols

Stated in words: the coboundary of the coboundary of a p-chain

vanishes identically. This fundamental property of the cobounda

ry process is lmown as the Poincaré lemma. As we shall see later
(§#) it is the origin of many identities largerly used in physi-
cal theories like the identities curl grad y =0 , div curlva=0,
It is also the key to find the compatibility conditions and the
general solutions of an equation (7). Stated in terms of the in-
cidence matrices the Poincaré lemma becomes

E®"ET =0 , ECVETT =0, et (3.9.2)

3.10, Particular chains

Among the p-chains there are some whose coboundary vanishes,

N
¢ =0 (3.10.1)

These are called cocycles (Franz, 1968, p. 44). A p-chain that
is the coboundary of a (p-1)-chain is called a p-coboundary .From
the Poincare lemma follows that the coboundary of a chain is a

cocycle but the inverse is not generally true, i.e. a cocycle is
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erample (llustrating the property &8c®-8*

5 3 r2
¢« given 8 O-chain C°=(5,3,12,9 7 4)
4 7 S
\LS ils coboundary (s given by
-5 3V -3 2

lJc"=0c'=(-2.+9, 23,22-4,43,*1)
-2 »9

+2 N
L 7
+5 +3
®
‘1\ \ = "U U '3
-4 -7
5 5 %

\La of this 1-chain (s
7

Y

>

4 T -7 49 the null chain 8%
lé‘d'c’- &%-(0,0)

N
|| @@

3 »2

not necessarily a coboundary, Those cocycles that are also co-

boundaries are called bounding cocycles: the existence of non

bounding cocycles is linked to the multiply connected nature of

the region {0 covered by the cell-complex.

3.41 Homologous chains

oy
Two p-chains &' and '™ are said Ihomologous if their dif-

ference is a coboundary, i.e.

P - H™ = Sz (3.11.1)



To denote that @™ and 5™ are homologous one writes @™ ~ 3,
Twoc?mmologous p-chains have the same coboundary: this fact is re
flected in physical theories by the notion of gauge invariance.
The notion ofug:omologous chains provides a justification of the
name onmolcgy theory of cell-complexes" given to this branch of

algebraic topology.

3.12, Chain spaces
The spaca of all p-chains with coefficients in the linear

space @ defined on a cell-complex K is denoted by CT(K.€).
It is a linear space of the kindR“’because its elements are the
ordered seis Of Xp elements &,,8,,...8«, Where 2, € €.

The p-cocy.lzs form a subspace denoted by Z7(k,¢) . The bounding
p-cocycles form another subspace, contained in the previous one,
that is denoted by B%(K,€) . The coboundary o'{:er‘sﬂ;or(’)~ is a 11
Bp+1

near operator whose null space is Zp and whose range is
We show in Fig_!.rz.«_ the various chain spaces pertinent to a cell-
com-iex tha% covers a region of a *hree-~dimensional space.

The chains of the various 12 A.-».nsioﬁs of K and ¥ in R7 are
represented in table 3124. The 0, i, 7, 3-chains are pertinent to
the geometrical elements P,L,S,V respectively. In order to obtain

a simple notation in this and in the following schemes we denote
by the same letter, say b(l), both an arbitrary 1-chain and those

1-chains that are the coboundary of a O-chain. So b(” in the se

(1)

cond frame, L, is an arbitrary 1~chain while b appearing in
the upper rectangular frame, &7 =G&a'®” , denotes a 1-chain that
is the coboundary of a O-chain.

The sequences of fig., 6 clarify this point: when we consi-

(1)

der the coboundary of those 1-chains b that are in turn the

(o)

coboundary of a O-chain a we obtain the null~chain 0 : &8a™=0™

(1)

. There may be other 1-chains b that are not of the
xind H"=dSa’”’ but nevertheless are such that &2 = 0%,
Lastly there are 1-chains b(’) such that &85 *0"?, The fact
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chain spaces (n=3)

space of O-chains C°(K,€)
space of O-cocycles Z(KE)

\ /
\ /|
\ ¥ Fa
coboundary operator ——j\—}r—é Fa |
vV \NY /!

space of 1-chains C'(K.€)
space of 7-cocycles Z'(K®€)
space of bounding 1-cocycles B'(K,€)

\ /]
\ \\ \\ y / P
coboundary operator % & II a
AR /
\ \\Y )

space of 2-chains CKE)
space of 2-cocycles ZK€)

space of bounding 2-cocycles  B(K,¢)
\ \\\\ y ////,
coboundary gperator \ s /
\ \\ * III /

space of 3-cthiains CUKE)

space of bounding 3-cocycles B'(K,¥)

Fig.3.2.4
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of using the same symbol b to denote both a general 1~-chain
and a bounding 1-chain may appear at the beginning rather confu
sing.

But once we remind the distrinction we obtain a very great

semplification in all subsequent schemes,

3.13. Generalized Stokes' theorem

Let us consider as a preliminary examples the two-dimensio

nal cell complex on Fig.3.34 . Let a’=(8,,8,....8)be a 1-chain

and »?=~(4,, H,) its coboundary Since
b, ~t+018,+ 1)@y +(-1)4, +(-1)8;
b,=(+1)A; +(+1)8; +(-1)8, +(-1)8, (3.13.1)

Fig. 3131

adding the two equations we obtain the relationship
b, +b, = (41)@, #(+1)@5 +(+1)@; + (1)@, +(-1)8, +(-1)@; (.15, )

This identity states that the sum of the mathematical enti
ties associated with the 2-cells of a two~dimensional wanifold by
the coboundary process is equal to the sum of the mathematical en
tities associated with the 1-cells that form the boundary of the
manifold, This is the essence of the celebrated Stokes theorem:it

is a simple consequence of the process of making the coboundary
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of a 1-chain. It is also apparent that one can obtain analogous
theorems starting from p-chains. To prove it let us consider a
{p~1)-chain a(p—” and its coboundary O™ = Sa'” ",

This means that
op
bh 'Zkefﬂ,”"'ak (5.13.3)
. [

An usual 8, and b,, are elements of a linear space 6. Let
us chose an arbitrary set of p-cells and denote by Wp the p-di-
mensional manifold covered by them, Let us sum the mathematical

entities b,, of the various cells of (J, : we obtain

Y,b,= L, (L, ernr"a) =L (2yerx?"a,) (5.13.9)
wp we Wp

In the last sum many terms vanish: first of all vanish all terms
pertinent to those (p-1 )-cells that are not faces of one of the
p-cells that belong to wp(their incidence numbers vanish) and se
condly vanish all pairs of terms that correspond to those (p-? )-
cells that are common faces of twn adjacent p-cells (the sum of
their incidence numbers vanishes). At the end only those terms
survive that are pertinent to the oriented boundary Qw,,of the p-
dimensional manifold wp ,with the sign plus or minus according if
the orientation of the (p-1)-cell agrees or not with that of the
boundary 9(.0,, .

Finally we can write
Sab, =2, ()8, (3.13.5)
wp 's)mP

This relationship expresses the generalized Stokes'Theorem (Franz,
1968, p. 46). It is "generalized" in two distinct ways: first be
cause it is valid for a p-dimensional manifolds instead of the
usual Stokes' theorem valid for p=2 and second because is valid
whatever the mathematical nature of @, and 5,, may be, while the
ordinary Stokes theorem is usually proved under the hypotesis

that &, and &, are numbers {(or at most tensors). In particular
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when they are numbers we have

for p =3 Gauss theorem

for p =2 Stokes' theorem

for p=1 fundamental theorem of the integral calculus.

The proof we have givean shows that the generalized Stokes®
theorem is a simple and immediate consequence of the coboundary
process. Since no metrical properties are involved in this pro-
cess the non metrical nature of Stokes' theorem is apparent.(Syn
ge~Schild, 1956, p. 267). )



4 CHAINS AND COBOUNDARIES
IN PHYSICAL THEORIES

Among the physical quantities of a physical theory,there a
re some that are naturally referred to the geometrical objects of
the space of the indipendent variables. If we introduce a cell-

complex in this space the distribution of these physical quanti-

ties may be described by chains., To single out these physical

quantities we observe that they are usually global quantities,
i.e. in field theories they arise by integration of the field va

riables on lines, surfaces, volumes, hypervolumes, etc.

4.1. Examples of chains
Ve give here a number of examples. The magnatic flux, ziven

by the integral

‘75“/'4‘3”’7;.0’5 RN

is naturally referred to the surfaces (3). In particle mechoanics

the displacement veottor given by
t
S =f vdt (a4.1.0)
t

is naturally referred to the time intervals (L); in continuum ne
chenics the displacement vector uh iz naturally referred to the
points (P). Always in continuum mechanics the stress tensor phk

gives rise by integration on a surface to the contract force

f ==J(Z?F%k77k‘%s (3.1.3)

that is naturally referred to surfaces (S). The electromagmetic
potential Ay give rise, by integration on a space-time line, to

a circulation
o
¢ =fLA,,,c/L (4.1.4)

that is naturally referred to lines (L). The stress—energy-momen
tum tensor give rise, by integration on a volume, to the energy-

momentum vector
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Fu ’.[[[ Tu"ry oV ' (4.1.5)

of space~time that is naturally referred to volumes (v).

In quantum mechanics the probability ¥ to find a particle
into a volume at a given time instant is naturally referred to
the volumes (V); the probability production 7 is naturally refer
red to the product of a volume by a time interval and then to an
hypervolume (H).

As we have said al these physical quantities give rise to
chains: the coefficients of these'chains are the amount of  the
physical quantity associated with the corresponding cells. They
can be real or complex numbers, vectors, tensors, matrices, ope-
rators, etc. So in quantum mechanics, according to the Heisemberg
formulation, to every time instant (P) we may associate an infi-

nite dimensional matrix Q whose entries are (Born-Jordan, 1967)
Gron () = iy € 2RV (4.1.6)

Then we have a O-chain with coefficients in the linear spa
ce € of the infinite dimensional matrices. In the mechanics of
polar continua with every 3-cell two vectors are associated: the
external force and the external couple. The aggregate formed by
a polar and an axial vector is called "motor" (Schaefer, 1967)
(Brand, 1947). It comes out that a motor is a particular Clifford
number, like the quaternions, the complex numbers end the spinors.

The space of coefficients iS the linear space of Clifford
numbers, The amplitude Y of the Schrédinger field give rise to a
O-chain with coefficients in the complex field €. The operators
of quantum mechanics will be referred to the same geometrical ob
jects to which the corresponding classical observable are refer-

red.
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4.2, Examples of coboundaries

We now propose to show that there are some typical equations

of every physical theory that can be described by the coboundary

process. Of this kind are the balance equations, in particular
the conservation laws, the equilibrium equations, the statical ba
lances (e.g. the Gauss theorem of electrostatics). Of this kind
are also the equations that deal with a circuital law (e.g. Ampé
re law of currents) the compatibility equations, in particular
those that states the irrotational nature of a vector field. Ano
ther class is that of the equations that define the gradients of
a scalar, vector or tensor field, those that deéfine the velocity
(that will be considered as a time gradient). Of this kind are
also the general solutions of the balance equations as, for ex.
those that introduce the stress potentials in continuum mechanics

or the dual electromagnetic potential in electromagnetism, etc.

4.3. Balance equations

The typical structure of a balance equation

amount of a amount of the [amount of the

physical quantity physical quantity physical quantity

PRODUCED inside »=43TORED inside + OUTFLOWED

a volume during the volume during from the boundary

a time interval the time interval during the time in
terval

We shall consider a balance equation in a local form: to this
we consider a 3-cell of a cell-complex in I?abounded by six coor

dinate surfaces and we orient the 3-cell
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Fig. 4.3.1

chosing the outher normal to its boundary. Also the time axis will
be divided in 1-cells. It will be useful to consider a four dimen

. . 2
sional space~time, as the space of the four variables t, :(1, X

x3 o and to consider a space~time cell-complex. Let F ve a phy
sical quantity: we shall denote byfwthe amount of F produced in
side a 3—cell during a time interval (¢-¢): then F P is refer
red to an hypervolume (4-cell) of R*. Let F, the amount of F -
contained into the 3}-cell at the time instant t: the amount of

F stored in the time interval (¢-¢) is F & =K - F 1 it
is naturally referred to those 3-cells that are of spatial kind
(x,7,2). Now let us denoteby#, the amount of F that outflow
through the face yz during the time interval (£'-¢): then Fe is
naturally referred to those 3-cells that are of mixed kind, i.e.
the cells (y,z,t). Let us denoteby}‘;:the corresponding amount per

tinent to the opposite surface, The balance equation

F{P)HF(S,*F(U) (4.3.1)

(8) —~ This is a kinematical space that need not to have a metrical structu-
re, in particular it is not necessarily the space-time of relativity.
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can be written
F o= (Fu-F)e(Fu-Fo)+ (P - Fy) + (P~ ) (4.3.2)

An useful picture can be obtained ignoring one space cOOI
dinate, say 2z as shown in Fig.434, The balance equation (43.2)
mst be valid for every 4-cell of the cell-complex K in the spa-
ce~time. Then if we consider the h=th 4-cell, and refer at a first

time to Fig.434 for notations, we may write eq. (432) as follows

F, ™ = (+)Fy +(-0F (0 F =) #(s0f7 210 F =
(4.3.3)

=e,,qﬁ; "’el,},f’; *e/_,/'f/.' +ehiﬁlehl"(_*ehm;r-n

where €p; denote the incidence numbers of the h-th 3-cell with
the K-th 2—cell. Returning to the general case we may write

3
E™ =§" ek, (h =~1,2,3,..,) (2.3.4)

Is this sum the physical quantities F; that are referred
to those }-cells that are not faces of the h-th 4-cell does not
appear, because their incidence numbers vanish. Since the F, de-
scribe a 3~chain on K and the I";,’P) describe a 4-chain we may

write

F® <(F,F, ... i)
614) =(’;(P)’ 2/")’ . }; IP))

+

and then eq.{4.3.4) is a realization of the equation
G(‘) = é‘}-ﬂ) (4.}.6)

i,e. the balance equation (43.2) asserts that a given a 4-chain ic

the coboundary of a given 3—-chain.

Ve emphasize that the mathematicel nature of the physical
quantity F (scalar, vector, matrix, operzator, etc,) is completely
arbitrary: a balance is essentially indipendent from the nature

of the physical quantity on which the bzlance is made. This is
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reflected in the language of the homology theory of cell-complex

by the fact that the coboundary process is indipendent of the na

ture of the space of the coefficients ¥ of the chains on which

it is performed. The universal nature of the balance equations is
evidentiated by the natural association of the measurable quanti

ties with the geometrical objects. Balance equations do not wuse

metrical properties of the space; they do not depend on the sha-

pe of the space~time region on which the balance is made, neither
on the measure of the areas, volumes and time intervals. So the

displacement of a particle in space, during a time interval, is

associated with that time interval and does not depend from the

measure of the time interval itself. Perhaps this is difficult to
accept because we are used to assign time intervals giving the

measure of it with reference to a conventional time interval.

4.4, Conservation laws

When a physical quantity F is not produced, i.e. it is con
served, the balance becomes a conservation law.

The equation @.3.6) becomes

SF® = o™ (4.4.1)
and this states that the 3-chain F™is a cocycle. Then a conserva

tion law can be stated asserting that a given 3-chain is a cocy-

cle. This point links the notion of cocycle of the homology theo

ry with the conservation laws of physical theories,

4,5, Equilibrium equations

Let us consider a material continuum and, in it, a three-di
mensional region. The equilibrium condition asserts that the sum
of the contract forces transmitted through the boundary of the re
gion is equal to the external force acting on the matter contai-
ned in the region. If we consider as usual a 3-cell and call f}

the exterior force acting on the h-th cell, fin the contract force
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acting on the m-th 2-cell we may consider the two chains

FO=(F R, ... &)
(4.5.1)

FO=(f hL L fy)

with reference to Fig.4.5.1 the balance equation can be written

F, = +t; it f -t £ - (4.5.2)
or
o2
5 = Z’k el:A L, th=1,2,...0) (4.5.3)
l1.e.
FY=5F% (4.5.4)

Then an equilibrium equation states that a given 3-chain is_the

coboundary of a given 2-chain.

4.6. Circuital laws

Let us consider a small parallelogram as indicated in F@}

4.51 and a physical quantity F referred to the lines,

A typical circuital law has the form

Fig 4.5.1
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F=+f/{-f;+f;_f‘m (4.6.1)

where F is the amount of # associated with the 2-cell. This

law can be written

%y
F, = %ke;i'"ﬁ (4.6.2)
or
FA e & e (4.6.3)

where we have put

fm’(f;,f;,-uﬁt,) Fm‘:(ﬁ,f;....,':() (4.6.4)

2

Then g circuital law is a statement that a given 2-chain is the

coboundary of a given 1~-chain,

4.7. Irrotationality conditions

The typical condition for a vector field to be irrotational
is that the circulation of the vector along every reducible clo-
gsed line vanishes. Since with the circulation we may define a 1-

chain ¢!’ +the irrotationality condition becomes

Sc a0 (4.7.1)

i.e, if a vector field is irrotational the corresponding 1-chain

of the circulations is an 1-cocycle,

4,8, The gradients

Let us consider the process of forming the gradient of a
scalar, vector or tensor field. The first act is that of forming
the differences between the physilcal quantitics f: and ﬂ re-
ferred to two points 7 and B (see Fi9.4-5~l). This difference

ﬁ,s;;‘-f; (4.8.1)
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is associated with the line segment: we may write

%o
Fr = Zeeri®f (4.8.2)
or
FPu & £19 (4.8.3)

Then we see that the construction of the gradients of a physical

quantity associated with the points is equivalent to the process

of forming the coboundary of a O-chain.

4,9. The compatibility conditions

Given an equation of the kind

b(pol} - §a'® (4.9.1)
we may consider 5f®*” as given and ask for a chain &’ that sol
ves it. We may ask for the conditions on the (p+1)-chain »*' in
order that a solution exists. A necessary condition is easily
found as consequence of the Poincaré lemma:

SHPHI = ptPr2) (4.9.2)
i.e. D" npust be a cocycle. This condition is sufficient if
the region ) coveread by the cell-complex is simply connected to
the order (p+1) (i.e. all closed (p+1)-dimensional manifolds are
reducible). When this do not happens the condition {4.9.2) must be
supplemented with the condition

Lebo =0 (4.9.3)

Ipsy
where J)p,s 1s an arbitrary closed (p+1)-dimensional manifold
formed by (p+1)-cells, the index K assumes all the va
lues corresponding to the (p+1)-cells that form Fp»t o Lastly (0]
denotes the null element of ¥ . This is the first de Rham theo

rem for chains,

4,10, The general solution

Given an equation of the kind
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(el
b =éda™ (4.10.1)

with a given (p+1)=-chain bt we may ask for the class of p-
chains @’ that satisfy the equation. If @’” is a solution of
the equation and C‘®-‘) denotes an arbitrary (p-1)-chain also
the p-chain

.07 (») (P-4
a™=a™+8c (4.10.2)

is solution of the equation. From the definition of homologous
chains we see that the all solutions of eq.(_4.l0.1) are homologous
chains. This fact establishes the link between the general solu-~

tion of an equation and the theory of homology between chains,

4,11, Gauge invariance
The statement that @ and &'” are both solutions of the

equation (4. IOJ) means that A'?*” considered as defined by the
eq.@.lo.l) does not change if to a™ we add the coboundary of an
arbitrary (p-1)-chain. This is the well-known gauge invariance
for the eq. (4.|0.4) .« Then the gauge invariance is linked with

the notion of homologous chains.

The fact that so a large number of equations typical of all
physical theories can be expressed by a single process of perfor
ming the coboundary of a chain indicates the existence of a formal

structure common to physical theories.

48

S5e A CLASSIFICATION SCHEME: DISCRETE CASE

In § 4. we have shown that those physical quantities that g
re referred to geometrical elements of the space of the indipen-
dent variables give rise to chains and that many physical laws can
be described by the coboundary process.

In this section we show that if the chains described by the confi
guration-kind variables are defined on a cell-complex K +then the
chains described by the source-kind variables are naturally defi-
ned on the dual cell-complex R . Moreover we show that the vario-
us chains of K and K and their connecting equations can be in-
serted into a scheme that is the same for many physical theories

(table 5.3.4).
To do this we take as usual an experimental point of view

and analyze two simple theories: electrostatics and classical par
ticle dynamics. The results of such an analysis will indicate the

way to obtain a similar classification for other theories.,

5.1 Electrostatics

Let us consider an electrostatic field in a region ). of the
three-dimensional space: this region will be covered a cell complex
K and its dual K .

Let us consider the electric potential (P that describes the

configuration of the electric field; it is associated with the
points, then its distribution in the reg;:.onﬂ is described by a
O-chain., Since it is immaterial to consider O-cells of kK or of K
for this assignement, we decide to choose those of the primal cell
complex K .Then we can write

cham

0-
4 ©) = /S"u e - (Fd") ( o K (5.1.1)

The electric voltages v, are naturally referred to the cou

ples of points of K ,i.e. with the 1-cells of K .Then we can
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write
v — (V... Ve, ) (1=chain of K )  (5+1.2)
The relation Vh = % -(p,- implies that

v = 8ptd (541.3)

i.e. the 1—-chain of the electric voltages is the coboundary of

the O-chain of the electric potential.

The electric charge Q , the source of the electric field,
is naturally referred to three~dimensional regionss: it follows
that are the charge distribution in the region_n_ is described
by the 3—chains that assigns to every 3-cell the amount of char-
ge contained inside the cell.

It is natural to refer the electric charge to the 34cells
of K.

Q" =(Q,@, . &g,) Verain of K) (5.1.4)

The electric flux (P ig naturally referred to the surfaces:
it follows that the electric flux distribution ig described by a
2-chain that assigns to every 2—-cell the amount of flux through
the cell, Now we are no longer free %o assign the fluxes to the
2-cells of K or of I?but we are constrained to assign them to the
2-cells of }? , In fact Gauss theorem requires a balance between
the charge contained inside a thres—dimensional region and the

flux through its boundary. Then we can write

For what we have said in § 3.9 Gauss theorem can be written as
S(}S/z)___ Q{-’) (valance equation: Gauss theorem) (5.1.6)

This can be stated as follows: the 3-chain of the electric charges
is the coboundary of the 2-chain of the electric fluxes,
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table 5.1.1 the classification scheme of electrosiatics

cell complex k oval cell complex kK

7P
electric potential o
fconfiguration)

y

definition equation| v ad& @

3L
electric voliage QD_)_

7(2) = JV”,

v
@ electric charge
rsouvrce)
@ (2) | Dolonice equation
U Q P (Gsuss theorern)

B o frvn) —)—Q”’ electric flvx

constitutive eq.

¢{2) = J}V“,

ar
©

v =83

~

D
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dary of the O-chain (P“’ and then in this case its coboundary may

do not vanish
8‘\';(/) =J'(2) ) (5 1.11) :

This 2-chain so obtained may have a physical meaning.

The scheme indicates the possible chains: only a part of
them may be filled of physical content. The remaining chains.  mnay
be useful only for the mathematical treatment of the theory or may
acquire a physical meaning with the progress of the knowledge in

the theory.

5e2 Particle dynamics.

As a second example let us consider the motion of a point
particle. The physical variables like the radius vector the velo-
city, the momentum, the force, etc, are all functions of the time.
Then we consider the time axis as the space of the indipendent va
riable. On it we choose a time interval (0,T) in which the motion
is studied and we cover it with a cell-complex. The O-cells (P)
are the time instants and the 1-cells (L) are the time intervals.
The dual cell-complex is formed by the time instants (?) in the
middle of the time intervals L and by the corresponding time in-

tervals (L) (see fig.5.2.1)

P L
K T )
R m N '4 142 )t
n
Z p
Fig. 5.2
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The configuration of the particle is described by the radius
vector M : it is natural to associate it with the instants
~ of the primal cell complex K . The time dependence of »/* is then
described by the O-chain of K

plo) = (r,/ ra,.. r-,,,) (O-chain of K) (5.2.1)
The displacement & of the particle during a time interval is de
scribed by the 1-chain of K

sM o (su S:,... Sd,) (1-chain of K) (5.2.2)

Since the displacement is linked to the radius vector by the defi
nition equation (see Fige. 5.2.1 for notations)
sk = rm-l'l —rm (5-203)
we have the relation
st = dre) (5.2.4)
As source variable we take the impulse A , a physical
quantity referred to the time intervals. It is natural to refer

o
them to the time intervals of X . Hence the time distribution of

the impulses given to the particle is described by an 1-chain:

N
h' = //'/,bz/ b/s,) (1-chain of K ) (5.2.5)
on the dual cell-~complex R" « The momentum P is then naturally

associated with the dual time instants P and its time distribu-—

tion is described by the O-chain of F(v
“~
ID(O):- /P’I le Fﬂ" (O-chain of k) (5.2.6)

The link betweer the impulse and the momentum is expressed by the

balance equation (see fig. 5.2.1 for notations)

6]’ =2 P’,/ —»P! (5.207)

and then it is expressed by the relation

h()— §P t0) (balance equation-
Newton's equation) (5.2.8)

54

At this point we consider the constitutive equations, In the
nonrelativistic mechanics the link between momentum and displace=

ment is given by

S
Px=m ‘7?" (constitutive equation) (5.2.9)
P

where m is the mass of the particle and 7;. is the measure of the
time interval to which the displacement is referred. Once more we
see that the constitutive equétions require the intervention of the
?n?t"ry because we need the extension of the 1-cells. Another consti
tutive equation exists when the impulse is linked with the radius

vector (and perhaps with the displacement) as in the elastic resto

ring force with viscous damping described by the relation

l’k“’ —p T.R -VvS, (constitutive equation) (5.2.10)

The two constitutive equations (5.2.9) and (6.2.10) can be resta
ted as mappings between chains of K and R' as follows

Plo) _____f (5(:))

A =g (r, sw) (5.2.41)

All these things may be collected in a classification scheme
as shown in Tab. 5.24.The two previous examples suggest the construc
tion of a classification scheme for the physiéal quantities and e-
quations for every pfzysical theory.
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table 6.2.1 : the classification scheme of particle dynarmics

cell complex K el cell compler K
constitutive eg.
P L
ro h=glra st) H"
radiys vector impulse

definition bolamce
equation st =dr U hi=Sp eyua;"fon

constitutive eg. .

s Pm = f{sm) P/o)

displacernent mornerturrn
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5.3 Classification scheme

In order to construct a classification scheme for a physical
theory, the first thing to do is to choose independent variables
on which the other physical quantities depend. This choice is lar
gerly a matter of convenience. Moreover once we have found a set
of variables we are free to choose only some of them as indepen—
dent variables and to consider the remaining as parameters.

so if (f:/x,y,z,tv) is g function of space and time variables,
one may be interested to the time evolution of (f at a given point:
in this case we may consider the time t as independent variable
and the remaining space variables as parameters. In this case the
space of the independent variables is one dimensional (the time
axis).

But one can also be interested to the space distribution of
4 at a given time instant t: then we may consider the three spa
ce variables as independent variables and the time as a parameter.
In this case the space is three-dimensional.

If one spatial dimension, say z, can be neglected or if the
function has constant value along # , one may omit @ and consi-
der X,y,t, as independent variables. And so on.

After these premises the construction of the scheme proceede

along the following steps:

1) We choose a set of n independent variables, and consider
the n-dimensional space R™ of the independent variables. Since
every independent variables has a domain of variability, se are in
terested not the whole lf\?n but to a region f) whose points have
admissible coordinates.

2) The region {1 will be covered by a cell-complex K ana
by its dual "? whose O-cells are the baricentric points of the n-
cells of KK

3) At this point we remember the prelininary classification
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of physical variables we have given in § 2, Those configuration-
kind variables (§2.3) that are referred to the geometrical objects
of R"™ will be described by chains of K , while those source-
kind variables (§2.4) that are referred to the geometrical objects
of R™ will be described by chains of K .

4) The various chains of K and K are then inserted in
the scheme of table 5.3.1.

5) The constitutive equations are represented by mappings
between the chains of the two columms,

6) The equations of structure are deseribed by the cobounda

ry process, i.e. by mappings between the chains of a same column.

We remark that only some of the chains of the scheme may ha
ve a physical content, The remaining ones may be useful for the ma
thematical treatment of the theory or may acquire a physical mea—
ning as consequence of the description of new phenomena,
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6. MULTIVECTOR CALCULUS

6.1 Introduction

In order to pass from a discrete cell-complex to the conti
nuum we must find an algebraic tool to describe a p-cell. Like
an infinitesimal oriented 1-cell may be described by an infinite
simal vector, so an infinitesimal oriented 2-cell may be descri-
bed by the geometrical object formed by two infinitesimal vectors
with a common origiéEalled wpivector'. In general an infinitesi-
mal oriented p-cell may be described by a set of P infinitesimal
vectors with the same origin i.e. by an infinitesimal "p-vector".

This leads us to use the so-called multivector calculus: it co-

mes out that the multivector calculus is a cormner-stone of many
mathematical tools used in physics. It is that natural generali-
zation of the vector calculus that retains two main features:the

geometrical content and the syntetic notation.

We shall show in a later chapter that the multivector theo
ry lead to the concept of Grassmann number conceived as the ag-
gregate formed by a scalar, a vector, a bivector, an n-vector,
where n is the dimension of the space. On such aggregates one de
fine naturally the notion of exterior product and obtain in this

way an algebra, the Grassmann Algebra. With the introduction of

another product, the Clifford product one comés to the Clifford
algebra. It turns out that Grassmann and Clifford algebras con-
"tain as particular cases, or is related to,many algebraic toolsy
used in physics as indicated in table.

Is this chapter we deal with the multivector calculus, Sin
ce this powerful tool is not easily found in the tooks of alge-
bra (it is a matter of multilinear algebra) and is completely ab

sent in physical books, we shall give a short survey of it, man-

teining our exposition as simple and intuitive as possible.We start

with the three—dimensional euclidean space:later in this chapter
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we give a more general version taking in mind particularly the

needs of space-time.

6.2 Bivector

Two vectors with a common origin not alligned, taken in a
definite order can be considered as a unit, a gsingle object, cal
led bhivector,

As a vector is a natural tool to describe oriented line
segments and physical quantities related to them, like forces and
velocities, so a bivector is a natural tool to describe plane o-
riented areas and physical quantities related to them, like cou-
ples and angular velocities,

The area of parallelogram formed by the two vectors of a
bivector is called the measure of the bivector, The plane of the
bivector will be called the support of the bivector (Schouten,1%1
p.12). The order in which the two vectors are taken defines the
orientation of the bivector. A bivector formed by the two vectors
g and V¥ will be denoted provisionally b(u,v).

Two bivectors are said equal when they have the same support,the

same origin, the sane orientation and the same measure. This does

not imply that they are formed by the same vectors.




If two bivectors b(u,v) and b(u’,v’) are equal their vectors are
linked by the relation
{“'z od b + F \ 4

Vv = J’“ + JV (6.2.1)

with oS —Fa’—_—.{ . In facts W', ¥' have the same support of w,v
the same origin; their parallelogram has the same oriented area
of the parallelogram formed by & and V¥, as can easily be shown,

The role of eq. (6.2.4) can be reversed and it can be used
to define the equality of two bivectors without mentioning the a
rea of the parallelogram and then without using a metrical pro-
perty.

The notion of sum of two bivectors can be inferred from that
of sum of two couples or of two angular velocities, just as the
notion of sum of two vectors was inferred from the sum of two for
ces (Varignon parallelogram law) and from the sum of two veloci-
ties (Galileo parallelogram law). To define the sum we transform
every bivector in an equal one such that their first sides lie on
the intersecting line of the two supports. The bivector formed by
this common vector (taken as the first vector) and by the sum of
the two remaining vectors is called the sum of the two bivectors.
In symbols if b{W,¥) and b(w,z) are two bivectors if we construct

two bivectors

b(u'v)=bmv bug')= b(wx) (6.2.2)

then by v) .+ b(w,2) = blu,v')+ b(wg')= b V+E)
The product of a bivector by a number A is defined as the
pivector with the same support the same origin and a
measure that be A time that of the originary bivectors.
The bivector b (W,W) is called the opposite of b (u,V) and
we write b (M,W) = — b (W, V).
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6.3 Trivector

Three linearly indipendent vectors u, v, w, with a common
origin taken in a definite order can be considered as a unit,as
a single geometrical object called a trivector and denoted provi
sionally vy & (&,V, V).

A trivector is a natural tool to describe oriented volumes
and physical quantities related to them, like electric charge
and mass., Two trivectors are said equal when they have the same
origin, enclose the same volume and have the same orientation i.e.
are conzruent.

The volume enclosesy'{he parallelogram is called the measure
of the trivector. Two trivectors are said equals if they have the
same origin, the same measure and the same orientation. The-
se conditions are equivalent to the condition that the vectors U,
v, W of the first trivector and W, Vv, w’ of the second be lin-
ked by the relation

N':.,du+pV+J’W
v o 8u+ev+;w
W = nu + OV + AW

=+1 (6.3.1)

5 O R
ORI
&-».NQ(

The sum of two trivectors can be defined as follows: we reduce the
two trivectors to other two with their first two vectors in common.

The sum is the trivector formed by the common two vectors
and the sum of the two remaining vectors.

In general we speak of multivector to denote trivectors, bi
vectors, vectors and scalars One may also use the name p-dimensio
nal vector or briefly p-vector. )

The dimensionality of a p-vector refers to the dimensionali
ty of .the support of the p-~vector. The order of a rmultivector, say

p refers to the dimensionality of its support. So the support

of a 2-vector (= bivector) is a plane (ddmension two), A scalar

is referred to a point and then it is a O-vector, -
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Since in a threedimensional space we cannot have more that
three linearly indipendent vectors the trivectors are the multi-
vectors of higher order we can consider. Two multivectors are cal

led orthogonal when their supports are orthogonals.

6.4 The exterior product
A bivector b (M, V) can be considered as the result of an

operation performed on the two vectors @ and V. Such operation

ig called exterior product of the two vectors and is denoted with
the symbol " A " called vwedge" or "hook®. Then

urv & bru,v) (6.4.1)

Then the exterior product.of two vectors with the same origin is

the bivector formed by the two vectors taken in the given order.

On account of the property (6.2.4) we have

val = binu)=-buyv)=-trv (6.4.2)

that shows the skew-symmetric property of the exterior product of
two vectors. This reflect the fact that a plane area may have two
opposite orientations.

The exterior product of a bivector b (u,v) for a vector
Ww with the same origin is defined as the trivector t ls,v, W)
formed by them

i
b, v)aw Z Efu,v,w) (6.4.3)
We require that the exterior product be associative so that

(BAV) AW = BA (VAw) (6.4.4)

In this way we may omit the brackets and denote the trivector for
med by & V W simply as

66

Uavaw (6.4.5)

Of particular importance is the trivector formed by the three ba
se vectors @, @ , @, of a coordinate system, It is denoted by
€ and it is called the base trivector

def
€ = €,/,8,78 (6.4.6)
The exterior product of two multivectors with the same origin gi
ves a multivector of greater order. More precisely the exterior
product of a p~vector for a g-vector with p+9g 3 gives a
(p+q)-vector. The exterior product of two mltivectors whose =up

ports have a common part ol dimension greatest then zero,vanishes,

6.5 Scalar product of two p~vectors

The scalar product of two bivectors is the number obtained
by multipication of their measures by the cosinus of the angle

between their oriented supports

(UA V). (waz) -_-.[meas.{k,«v}][meas./wAzj[wsinus ang/e] (6.5.1)

In particular the scalar product of two bivectors vanishes when
their supports are orthogonals,

It can be shovn that
U.-w u-=
v.-w v-3

The scalar product of two trivectors is defined as the product of

(6.5.2)

(Uav)- (waz) =

their measure with the plvs or minuus sign according to the fact
that the two trivectors have or not the same orientation. This is

equivalent to define the scalar product of two trivectors by the
formala
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u-a “'b «.c
(urvaw).(anbre)=| y.a wv.b v (6.5.3)

wea Wb ¥

6.6 Inner products
The scalar product of two p~vectors is a number i.e. a O-

vector, One may introduce a kind of inner product for multivectors
of different rder according with the following definition: if p
denotes a p-vector, 4 2 g-vector with ps<q and ) a {q-p)
vector then the left inner product of P and q is a ( 9-p )-vector
& denoted

s = P g q (6.6.1)
definite implicitly by the formula
(P_Jq).r g_-'/q.(r/\p) (6.6.2)

To make esplicit this left inner product we consider particular
cases so if p=W and = V A w

[u 4 (v/\w)].-: =(vaw)-(2r8) (6.6.3)

performing the scalar product of the second member one find the

explicit formula
U (VAW) = —w (&eV) + v (4+w0) (6.6.4)

This shows that the left inner product Qf a vector for a bivector
ia a vector that lies in the support of the bivector, is orthogo
nal to the projection of the vector on the plane of the bivector
and its measure is the product of the measure of the bivector for
that of the projection of i
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Alongside with the left inner product one may define a right
inner product of a p—vector p and a q-vector q for which p32q. It
is défined implicitly by the relation

(q,,,.) P = r-(pt q) (6.6.5)
Proceeding along the same way one may show that
(vrvw) 8 = W (UeV) - ¥ (BW) (6.6.6)
More in general it can be shown that

P9 E(__’)q(r-q) q-p (6.6.7)

The following identity is often useful

pLl(grr)=(pLq)Lr (6.6.8)

In particular putting raq one deduce that the inner product of two

multivectors is orthogonal to the one of lower order,

The various inner products between a p-vector and a g-vec—

tor of E3 are summarized in the following scheme

s v b t

s'|s-s |suv|suyb| sut
v|vits| vev| vub} vuE
blbrs| biv| b-b| but
| tes| tiv| tb| bt

Table 6.6.1
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6.7 The supplementary multivector

The classical notion of cross product of two vectors in vec
tor calculus is transferred in the notion of supplementary of a
bivector. The supplementary of a bivector b is defined as the
vector, denoted b'\' , that is orthogonal to the support of the
bivector, whose norm is equal to the measure of the bivector and
whose orientation is such that the trivector b/\bl' has the sa-
me orientation of the trivector € . The vector b‘L coincides
with the customary cross product (*), of the two vector WM andV

that form the bivector
1
UxV = (u A V) (6.7.1)

The supplementary of a vector W is defined as a bivector, de=
noted Il.l whose support is orthogonal to w whose measure 1is

+ has the sz

equal to the measure of ¥4 and such that WA W
me orientation of € . The supplementary of a trivector l: de~
noted tL is defined as the scalar equal to the volume enclosed
by £t end equipped with the plus or minus sign according if t
has the same or opposite orientation of & . One may extend this
notion of supplementary to a scalar considered as a O-vector:the
supplementary of a O-vector is a trivector whose measure is equal
to the absolute value of the O-vector, and whose orientation is
the same or opposite to that of € according if the O-vector is po

sitive or negative. The various supplementaries are collected in

the following scheme

(#) Historically the introduction of the cross product, made pos
sible by the three—dimensional nature of our every day space,
originated a great development of the vector calculus to the

expense of the multivector calculus.
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multivector supplementary
O-vector 3~-vector
(scalar) (trivector)
1~vector 2-vector
(vector) (bivector)
2-vector 1-vector
(bivector) (vector)
3-vector O-vector

(trivector) | (scalar)

From the properties of the inner product of two multivectors it
can be shown that the supplementary of a p-vector in Ea can be
written as follows

1

P = €L P (6.7.2)

The left and right inner products occur frequently in phy-
sics if SL denotes the angular velocity bivector (L — NJ' )
and ¥ the radiug vector, the velocity W of a point of a rigid

body with a fixed point can be written as

v=Qur (6.7.3)

Moreover if b denotes the magnetic induction bivector (b—_—B")

and J the current density, the force density is given by

f=J- b (6.7.4)

The passage form the usual notation to the proceeding one is ea-

sily done by means of the indentity

(P>a) €L (prq) =(eLp)-q (6.7.5)
So, for ex, using eq. 671

vawxr =(war) = €L (War) = (€Lw)Lr =Nor
The equivalence between the usual operation of vector calculus and
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the corresponiing ones of the mltivector calculus is the follo-

wing

vector product L UX VY = (u A V_)'L
scalar triple product (zax V)w;-_.- (8‘ AVA
vector triple product (Jle) XN = (u A V)[_ ¥

AL
) (6.7.7)

6.8 Components of multivector in g3

The following p-vectors formed by the base vectors &, a-

re called base p-vectors:

(6.8.1)

® € 9 three base 1-vectors

erd, enty €4 &, three base 2-vectors
A8 AL one base 3-vectors

A given p-vector can be written as the linear combination of the

base p-vectors as follows

=ve+vie +vie = '/{7 vke,
12 23 3
b - b%esre, + bPere; L b esne =i,b""’q,,«ek

hiei
t = t'Perene = jé t"™ e 18 1€ (6.8.2)

The coefficients of these l-near combinations are called the com
ponents of the vector, bivector and trivector respectively. More
precisely these are the controvariant components of the p—-vector:

the exhibit the typical skew-symmetrie character
12

bh_ _bkh prei_ _ kb Lhik (6.8.3)

This establishes the fundamental link between o-vectors and skew--

-symmetric tensors or rank P : the components of a v-veclor

form 2 skew symmetric tensor of rank 9 . The componants of a bi

vector b= B AY are linked to those of the vectors M and ¥
by the relation

h h
phr Wy R gkyh whoux sr 8%
=WV -UWV = = . wutvs (6.3.4}
veove| T 8y 8

as may be easily proved. In analogous way we oolain for 2’:")1/\‘]/\57

the components

hice . . . , , . .. . \
FM Rt wk it s utuhw e - gy - u v w ey

uh ukout Y L T
= h gk ' = . ‘ Syt
4 v v = Ss 3 5—‘ urviw (6.8.5)
h [ i A K ¢ # 00/
whowt W Sy & &

Ve may introduce the generalized Kronecker deltas (Synge-8child,
1956, P. 242) (Brand, 1947, p. 353)

n &
K
8"" de &y 37 Sh’d def 5:
rs rat =
8% 5% s

73

. i
3% oL
3% 9 (6.8.6)
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that form a mixed tensor. They assume the value O when two indi-
ces of the same variance are equal, the value + 1 (-1) when the
upper indices are an even (odd) permutation of the lower cnes,

With the Kronecker deltas we can write the components of
the bivectors and trivectors as follows

hk /] 1 L] rys

b - Uy b =,7/75r,u VS e
hied 7 f hid

t:b/\w t _Zﬁé‘f’tarv5wt

Using the components of a multivector one may show that the inner

products of two multivectora can be written as follows

b_tLu b‘"’=71/t*“u,,
v-bru V"=-"-b"hak
1! (6.8.8)
v_tbtLh vh o 21! L.ikhbik
s =t ¢ s =.-?l;thk"[.hk‘.
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table

. rmvltivectors
v A \
[73
u
u UAv
UxXV ={UAV)L 0
uaAv

)
Y
xl
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x

Z=(UAVILW

75 the iright) interior prooict of
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6.9 Multivectors in finite dimensional spaces

The theory of multivectors as summarized in the previous
sections is restricted to a three-dimensional space with euclidean
metric, Metrical and non-metrical properties were mixed togheter
in order to have an elementary and intuitive approach, It is of
greath interest for the analysis of the formal structure of physi
cal theories to single out those definitions and properties of the
multivector calculus that are of non metrical nature, i.e. that a
re independent from the kind of distance chosen in the space. To
this aim we sketch here the essential facts about multivectors in
an n—dimensional space without metric,

Let us consider a linear space U of finite dimension "N ,
We call gimple p-vector the geometrical object formed by p li-
nearly indipendent vectors taken in a definite order. If we deno-
te u,, uz/ uP the p-vectors, the corresponding p-vector will
be denoted p (a,,uz/... a,,) « The linear space spanned by
these p vectors is called the support of the p—vector,

6.10 Equal p-vectors
Two simple p—vectors

p(d, b,  W,) snd W[, &, . ap) (6.10.1)
whose vectors are linked by a linear relation
— kK
such that

det [L,* [ =+ (6.10.3)

are said equal (Bourbaky, 1958, p. 96), ‘In particular two simple
p-vectors that are formed by the same vectors but taken in an or-

der that differs only by an even number of inversions, are equal.
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Two simple p-vectors whose vectors are linked by the rela—

tion (610.2) but with
det L)) =-1 (6.10.4)

are said opposite. In particular two p-vectors formed by the same
vectors taken in an order that differs by an o0dd number of inver
sions are opposite.

The simple p-vector formed by p vectors that are linearly
dependent is called null p-vector. Since in an n-dimensional spa-
ce all p-vectors with p>n are linearly dependent it follows that
the p-vectors with p>n are all equal to the null p-vector.

6,11 Exterior product
The exterior product of two simple multivectors P(u,l... RP)

and g (V. Vq) is defined as the multivector r(u,j...u,,)v,,...vq)
of order r= F+q . In symbols

p/\q==r (6.11.1)

In one or more vectors ¥, are linearly dependent from some u,
the multivector » is the null multivector and then the exterior

product vanishes. From eq.6.10,3 and 6.10.4 follows the connection

P9 =) gap (6.11.2)

rule

In particular )
Ay =~ V/\u (6.11.3)

The exterior product is associative, i.e.

WA {aAv)=.(wAu),\v (6.11.4)

This property makes possible to write simply WA ¥ AV instead
of WA (HAV) or (WAK)AV.

17



The definition of exterior product between two multivectors must
be completed for the case that one of the two is a scalar accor—
ding with the following deminitions (Bourbaky, 198, pag. %) (Ko
walsky, 1963,pag. 101)

Sap g’:,: PAS ;"Ps SAFx ¥ss

6.12 Sum of two multivectors

In a three-dimensional space the sum of two bivectors is de

fined using the intersection of the corresponding linear manifolds:

one reduce both bivectors to other two with the same first vector.
This process cannot be used, in general, in spaces with n»3

because two-dimensional linear spaces may do not intersect along

a one~dimensional linear space. This is the case of space-time

where the system
Q, X%+ b x'+c,xtedx?=0
Ay x2 + bypxts CpX?u ApxI=0
ayx® + bgx'< Cyxts dyyio
QuX° + bax' + € x> ¢+ dgx3_0o
admits in general only the null solution i.,e. the two linear sub-

spaces intersect only at the origin. In space-time we are then for

ced to introduce the concept of compound bivector as the aggrega—

te of two simple bivectors whose linear manifolds do not intersect,
The two linear manifolds are called the blades of the compound bi
vector (Schouten, 199, pag. 15). The compound bivector formed by
the two bivectorsd AV and WAZ will be written
b= urv + wrz
Now the sum of two compound bivectors in space time say
b=llAV+WA? and b= &rV . w\7

is defined as follows: we consider the intersection of the support
of say, OTAV with one of the two blades of B Let us suppose that
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the intersected blade be that of wA @, We may sum the two simple
= . ’ ’
bivectors UAV and WA Z to obtain a simple bivector & A V. Analo—
gous sum will be made between the bivectors WA T and ®AV the re
sult will be a simple bivector WA & .The sum of two compound bi-
vectors b and b will be by definition
T ’ ’

b+b = WAV +WaAR

An analogous procedure may be used to define the sum of two com-

pound multivector on a linear space U.

6,13 Simple and compound bivectors

Since a compound bivector of space~time is formed by two
bvlades it cannot exist a vector orthogonal to the whole bivectors

then a bivector b is simple if there exist a vector W such taht
bLqu or bhkuhzo

this means that "
det 1bps .’ =0

So the electromagnetic bivector F of the electromagnetic field in
space-time is compound (Fokker, 1965, pag. 125) while the orbital
angular momentuum L = )"AP is simple.



6.14 Base p-vectors
1f we introduce a base e,/ ez/ ... @, in the linear spa
ce U we can consider the [Z/ simple bivectors @, Aek with

h<k and call them base bivectors. In an analogous way one can

consider the (:/ p-vectors @, A€ A.. A8, with h<k<

¢..¢r and call them base p-vectors. Of particular interest is
the simple n~vector

de,
c X———[ e e n. e, (6.14.1)
that plays a pivotal r8le in the multivector calculus.

6.15 Components of a multivector:

Using the decomposition of a vector ©= u"e,' we can Ob
tain-an analogous decomposition of a simple bivector as follows

Ury= (u"@)A(v'&) = uhvv @ 1@, -

. 6.15.1
_.___21' (ubhvi-urvh) @, ne, (6.15.1)

the numbers

h wh h 4
bhe— _b"* = ubvh_uny (6.15.2)

for which h<i are called the essential components of the bi-
vector aAV[]. The numbers & without the restriction h <k
are called the components of HAV .

In analogous way one can define the components of a simple
p-vector,

The components of a compound p-vector are defined as the
sum of the components of the same index of the simple p~vectors
that form the p-vector, So if b and S are simple bivectors,
the compound bivector ﬂ;, b+ E has for components
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/5 e phey Bk (6415.3)

6.16 The tensorial nature of the components of a multivector

Let us consider a p-vector that remains fixed for a change
of the base it can be shown that its components: form a controva
riant tensor of order P . But if we consider p-vectors  that
change for a change of the base then their components do not form
a tensor. So the base n-vector € given by eq. (6.14.1) in a

new base becomes
é x= A€ A 1T, (6.16.1)
end is, in general, different from @ .If we put

€, = F,_" e, e. = /_k’ e (6.16.2)

it is easily shown that

22 7—-—— D g D= a/ef///i,"/ (6.16.3)

o
S~ Y
The components of the n-vector e change as follows: since

e }’: "i/ &k (& a8 n &)
) '¥=',,!‘/ er-s (e.nen.. ne) (6.16.4
- L e L L)L (@n&a- &)
remembering eq (6./6.3 ) will Ve

B KUr= DLLy L5 €77 (6.16.5)
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and then the components of e transform as a controvariant ten-—
sor density (Synge-Schild, 1949, p. 244), eP7 e is the
permutation symbol whose values, in all the coordinate systems,a
re + 1, - 1, when the indexes A k,.. S are an even or odd per—
mtation 0f 1, 2, ees, n and ara O when two indices are equal.

This point is of importance because the ordinary presenta-
tion of the multivector calculus rests upon the definition of a
p-vector as a completely skew-symmetric tensor of rank P and,
as such, does not include tensor— densities. The presentation we
have given of the multivector caloulus has a more geometrical
character, does not rest upon the tensor calculus and permits %o
treat those multivector, like the base p-vectors, that are not
fixed but change with the change of the basis.

6.17 Components of the exterior product

Remembering the definition of the generalized Kronecker

symbol one can easily show the identities
[ Shef rge- b hic.. & 61701
';_/ Sr_g... ¢ P = P (6.17.1)

/ ghk...(
ol Crset CNABA.Cr= @QABAN-€  (6.17.2)

These idendities are of large use. So the components of the ex-
terior product of a bivector and a trivector are obtained as fol

lows

raba l‘:/z{, b"e, ec)/\/;f, P e, neyn€ ) =
(6.17.3)

= 2’/73’4' b"‘ff”i’e",\ek/\e,,/\e?/\e,

42

In this equation is h £ k and p £ q # r. But since every. index
runs between 1 end n there are some values of h and k that are ¢
qual to some values of p, q, r. The corresponding terms in the
sum vanish. Then if a #£b #c #d #e are a get of five indices we '
may write: -

abede
€16 ACpr & N = L Sm.,.,r erarerene 1T

Then

7 /1 4 abede [ by LPor
F=5 (2.’3,’ Oipar bt enenene ng (6175
It follows that are components of the exterior product r- b/ll’
are given by

abede

abede
r = hipgr

Z b b g rer (6.17.6)

4
2! 3.

More in general if P and 9 are two multivectors the exterior

product = P/\q has a components

- 17 ab... b
rabe =% A S PR (6.17.7

In particular when P and 9 are vectors, denoted by {§ and ¥

respectively, we have

b .
ret= /://I/ 52 utvr= utvboutve (6.17.8)

as we have already seen.
The exterior product of three vectors can be.obtainéd as

follows: if
P=UAVAW =@V )AW (6.17.9)
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then

pake_ 1.4 Jak //' 5"" qu‘?}W":

3: (‘ hkr
b (6,17.10)
abe
= SF?' uPv? wt
where we have used the property
/ abe 4 abe
27 5,,," 5/,9 = 5/,” (6.17.11)

6.18 Dual space

One of the main concepts of modern mathematics is that of
considering alongside with every linear space (/ another linear
space V and to define a bilinear form, that associates with e-
very pair of elements # ¢ v and V& V a real number, de
noted <V 4> , and called the scalar product of V¥ and & .
It is a common requirement that the bilinear form be nondegenera
te or separating, i.e., if {Vo,U) =0 for every # ¢ then

Y, is the null element of the space YV , and inversely if<{V,#o>=0
for every WVé& V tnis implies that &, is the null element of the

space U . The two spaces (/ and V are then said to have
been put in duality or to form a pair of dual spaces (Schaefer,
1971, p. 123) (Bourbaky, 1966, p. 88).

A vector Ve V and a vector &el’ are said orthogonal if

{vuy=0 (6.18.1)

The notion of orthogonality is easily extended to two subspaces
as followst a linear variety A of the V -gpace is said ortho-
gonal to a linear variety B of the U/ -space if every vector
Ve A is orthogonal to every vector U ¢ B .
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6,19 Dual basis
If we choose a base €, €;,.. €, in the U- space and a
base G', 67/. G" in the V -gpace we can consider the scalar

products

(6" e)= a" (6.19.1)

b

In particular we can always construct a base g/ @ . 8"
the V— space such that

<§h, e.) = g‘:c (6.19.2)

where 3',‘, is the Kronecker éymbol. Such a base is called dual

of the base el/ ez .. 8, of the {) -space. In other words: re
quiring that a 5" we agsociate with a base in U a well
defined base in V . This link between the two basis implies
that if we change the first base also the dual base changes, So

if
g -0k EBs- L5 g~

r= Cpn €. K (6.19.3)
are two linear transformations of the base vectors of the U -

space and of the V ~gpace respectively in order to satisfy eq.
(6,19,2) it must be -

L5 L3 = 5F (6.19.4) -

'’

The the matrix L is the transpese. of the inverse of the) matrix
£ (Gel'fand, 1961). Now for a change of the base vectors @

the components of a vector ll- change according to the law

.
= L5 us (6.19.5)
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that involves the transpose of the inverse of e » For this rea
son it is said that the components l,l‘s are goLtro—variant (with
respect to base vectors e,‘ Y. In analogous way the components

Vk of a vector ‘l‘év are contro-variant with respect to a chan

ge of the base of the V-spacé i.e.
V., = £° v, (6.19.6)

But since they have the same transformation law of the base vec
tors e,. of the space U/ wa can say that they /are- covariant
with respect to the base vectors @ .In this way the variance
of the components of ¢ and of ¥ are referred to the variance

of the base of the space ) . This opposite variance is memori-
zed putting the indexes at the bottom (covariance) and at the top
(contxjovarj.ance). One can see that

) My

T v = (v e
uh = <€ uy ‘ (6.19.7)

Then the scalar product of two vectors can be computed using the

components pertinent & dual base by the equation

IV uy>= v, ut (6.19.8)

6.20 Scalar product
I'he notion of scalar product can be extended to a simple bi

vector u,AUz on the U -space and a simple bivector V,sz on the

V—space by the defining relation
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Y, u> (v, u)

{V AV, u,/\uz)'-_li.f (6.20.1)
S e 7 [ v, u> v,

More in general (Planders, 1963, p. 14) - (Bourbaky, 1%8,p.102)
(witney, 1957, p. 48) — (Greub, 1967, p. 104)

Y AVyn.. Vo, U AlLA - RP%‘?—‘-L det [[¢V, @,5[s.20.2)

In particular the scalar product of two base p-vectors gives

(@' €. L, A Z = Si’;‘_j (6.20,3)

where use has been made of eq. (6.19.2), The natural countepart

of the n-vector & on ) is the n-vector & on V defined by
d;/ P =2 3
5%: engin.. ne" (6.20.4)

From eq. (§. 20 3) one can see that (Kowalsky, 311)

g &, {erey =+ | (6.20.5)

Analogous definition can be used for the product of two compound
p-vectors, Moreover it can be shown that if T8 is a p-vector on
the V-space and P a p-vector on the U-space isg

<7';PZ, =g Tt P Thr.. P (6.20.6)

1
P!
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(Greub, 1967, P. 106). The components of a p-vector can be calcu
lated by the relation

Phn... — (ehn ek/\"'/ P}P

7Tr . == < ‘.: e’, A eS A >P . (6.20.7)

In particular for the n-vectors € and @ we find

+1
g e = <¢h,\ @ n...,8ACA - e,,}n =/o
-1

— ! 2 n *

ers = <Q s} e A ... e » er/\ eA..Z;. 0 (6.20.8)
-/

showing that the éhk"' are the components of controvariant ten

sor-density and the €. that of & covariant tensor-densiby.
(Schouten—Kulk, 1949, p.19).

6.21 Inner products
The notion of scalar product of two p-vectors permits to in

troduce a new operation called t‘he inper product of a p-vector p
on {/ with a gq-vector q on V . For Psg we define the left
inner product of P and q as that (q-p)-—vector y» on V , deno=
ted P.J that is defined implicitly by the relation (Mal'cev,

1973, p. 279) - (Kawalsky, 1963, p. 310) — (Bourbaky, 19%58,p.105).

':f or eve (6.21.1)
<prg.8y L<qmapy  (oonn

(e ,&1q) 4 4@,\25/ 9>

A b 7; udes A Huirtre
L . . . Adoahs

The components of the left inner product, are given by

F=p-9 (6.21.2)

r _L hk...
rg... == P qfhk P (6.21.3)

thét shows the connex ion with the usual tensor composition. The
main identity relating the left inner product with the exterior
product is the following: denoting with a a.ndb two multivec~
tors on the {/ -space and with € a multivector on the V—spa—
ce such that cpa+b is

@nrb)iu = ailbru) (6.21.4)

and those obtained by iteration as

[aAbAc)_/u = @i[bs [c.:a)] (6421.5)

When Paq we can define the right inner product by the implicit
relation (Graeub, 1958, p. 102)

{9/\ r, P>P ¢ P+ 9)’0_? (6.21.6)

where P is a p-vector on U and q is a q-vector on V « The
right inner product is a (p-q)-vector on the U—space. Its ex~

pression in components is the following: putting

£'= P—I-'-q (6.21.7)

we obtain
hite 1S

Lrse éL;’ 9;,;,_... /D (6.21.8)

(Graeub, 1958, p. 103)

<o<4f\yuw} = {(dap) o, V)



We remark the following mnemonic rule: in the left inner

product the indices not% summed are on the left, and in the right

., not summedl .
inner product the jindicesvare on the right.

We have the identity

(PL9)Lg = pr(9r® N <PLu’(éf.gf?)

from which by iteration we obtain

pLiarbng)=[pLa)Lbjr e (6.21.10)

A p-vector P on U and g-vector 9 on V are said orthogonal
when their left or right inner product vanishe

We emphasize that while the exterior product of two multi-
vectors on the same space is a multivector, on the same space,
the inner product involves a multivector on one space and a mul
tivector on its dual space, The result is a multivector on the
gpace of the multivector of greatest order.

When P"i the left and right inner products coincide and
are equal to the scalar praduct, We see that while in the ordina
ry vector calculus we have only the scalar product, (also called
inner product} in the miltivector calculus we have a scalar pro-
duct for multivectors of the same order and two kind of inner pro
ducts for multivectors of different orders,

The right inner products is gometime denoted as follows

PLg=1:(9)pP (6.21.11)
(Bourbaky, 1959, p. 155) (Goldberg, 1962, . 171) ~ (Greub, 1967

ps 118). The exterior product is sometimes denated

Pr9 = /«/p)q (6.21,12)

(Greub, 1967, p. 116) = (Goldberg, 1962, p. 96). The two opera-—
tors l(“) and /‘4 /‘l) with el are used in quantum field
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(p,4AVAYy = pLiuny )

s(é%@\&g@

theory where are interpreted as vabsorption” and "ommission" ope
rators for fermion fields (Kastler, 1961, p. 298).
Among the identities involving the inner and exterior pro-

ducts there are the following

(prq)ru = @Lu)Aq + ()T pn(gLu) (6.21.13)
(Soriau, 1964, p. 230) end

wi(prq) = (0 1p)ag+r-)Fpausq) (s.2100)

(Hermann, 1973, p. 30) whose proof is not easily found in the 1i

terature.

6.22 Supplementary multivector

The notion of inner product permits to define the right-sup
plementary of a p-vector p on V as an (n-p)-veclor P“' on U by
means of the relation (Kowalsky, 1963, p. 311)-(Witney, 1957,p.47)
(Mal'cev, 1963, p. 280) - (Bourbaky, 198, p. 108)

A

p = €LP (6.22.1)

that in components becomes

@.L) hx... - L Wé@% Prs ef‘éf"”‘ (6.22.2)

P’

In analogous way the left supplementary of a g-vector q an U is

defined as the (n-q)=-vector 'lqoany means of the relation
L def
9= ¢ € (6.22.3)

that in components becomes

befgoo

(17j,:... = ?"/, E.. L. ‘7 (6.22.4)
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It can be shown that
(‘q)'=q  PI=P (6.22.5)
In fact
L |7 /j---E
[Cg)] "=t

= _l:, é‘hfj..- 9 hk... = ‘7 I'j'--

l\

(6.22.6)

S~

.

that prove the first identity: analogous proof for the second one.

The supplementary of a multivector is orthogonal to the mul

tivector: in fact (€LP)LP = €L /PAP)E €L 0 =0,
There are many identities relating the exterior and inner
products with the supplementary. So

(m, p>f = {_/)P""”) &pin> (6.22.7)
n-p
(PJ7}1 = pA ‘il (6.22.8)

(Kowalsky, 1963, p. 314) ~ {Bourbaky, 1958, p. 109)

‘prq) = LP AqQ (6.22.9)

(Witney, 1957, p. 48).
The theory of multivectors we have summarized here has
been developped without recourse to any metric in the U—spaee:
) ana V are a pair of dual spaces that satisfy anly the re-~
quirement of linearity,
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6.23 Grassmann algebra
We now show how the multivector calculus may be structured

in order to obtain en algebra, Let us consider the bivectors on
a real linear space U of finite dimensions: they can be added
and multiplied by a real number. Then the set of all bivector on
U is in turn, a linear space that is ca.lled the space of bivec
tors and is denoted /\2 U.

In analogous way one can congider the set of all p-vectors
on U and this is a linear space also: it is denoted /\PU +Then
the p-vectors can be considered either as compound objects of a
given linear space U or as elementary objects of another linear
space APU..

The idea arises to consider the aggregate formed by a sca-
lar (O-vector), a 1-vector, a 2-vector, ... an n-vector on U

Such aggregate, we shall denote by @ can be represented
(for ex, for N=3 ) as follows

a-(s,v bt (6.23.1)

exactly as a complex number can be denoted by Z= (X, y} « But
just as a complex number can be denoted also Z= x,,iy so the

aggregate € can be written as a formal sum

d-s+v+ b+t (6.23.2)

This is an hypercomplex number ‘Using the base multivectors one

may write
A=$s+vhe. +} b ene. + 4 ta re.ne (6233

The mumbers S, VA, bhk Ehke etc. will be called
the components of the hypercomplex number,
The set of all aggregates @  has the structure of a li-

near space when we define the two operations
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A+8 L (5+8) v+ W) +(b+b)+-
Jda 4 18+ Av+Ab+- (6.23.4)

The new linear space so constructed is formed by the aggregate of
an element of A°) (a scalar), one of AV (a vector)... one of
AU (an n-vector): it is denoted AU . Now the reason for
the introduction of the aggregate of multivectors of different oxr
ders lies in that, if we introduce the exterior products of two
aggregates @ and _Q— as the aggregate denoted aAa and
defined by (for ex. for n=3)

ara-= [s+v+b+l-)/\(5+7+5+5)=
_ SAS+S¥rSAb+ S+
+ VAS + VAV « VA B+
+ baS + bAV+ (6.23.5)
+ EAE

Then the result is again an element of AU « The linear space
equipped with this product becomes an algebra that is called the
exterior or Grassmann algebra. (Mal'cev, 1963) (Witney, 1957,
P. 42).

On account of the associative property of the exterlor pro

duct among multivectors it follows that
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(6.23.6)

and then the Grassmann algebra is agsociative. Every aggregate

is called a Grassmann number, (6.23.2) show that a Grassmamn num
ber has (o 4.{,” oo /’? - 2" components.

We remark that this is also the number of coordinate mani-
folds of the various orders passing through a point of Rn

6.24 Scalar and innerxr products

A1l that we have said up to now cen be repeated for the dual
space /\V : then we can construct the Grassmann algebra over /\V.
The space AV can be put in duality with the space introducing
the bilinear form (Mal'cev, 1963, p. 278)

@, a>% <s,sy + <V, v +<b,by + KE b, +-
b (6.24.1)
—3 $5+ Vh V""‘ b’lh‘ bhh 3, hkll- k‘

The scalar product is useful to pik-up the components of a Gras—«,

smann number., SO

(a e"e*s= < b"e.res, e"ne")- 37 J,‘s‘k (6.24.2)
- bhk

In particular the scalar part of a Grassmamn number is given by

$=<¢ 1) (6.24.3)
The definition of (left and right) immer products between multi-
vectors we have given can be restated for Grassmann numbers as

follows (Mal'cev, 1963, p. 279) - (Bourbaky, 1958, p. 105).
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x1a,c)¥ <a, cnse> C.2at)
Yyrady X (d.cryy x,¢de U
JaeAV

To make explicit this definition we perform the left inner pro-

duct of two Grassmann numbers of E 5

d—la=(§+ v+ 54' F)J $+V+b*&)=

=8I8 +8IV+ S b8k~

+ VAV +Vib+ Fab 4+

+b1b + Bt + ' (6.24.5)
+ Faét ,

_ - T T Lk
:[ai!SS"'(-.—f- V"V‘+z-,.; bhkb""-‘-z{;éh"‘[ ke -+
w[43vre LT b" o 2, By t<¥ @+
- [o-{!s_b“'-o-’-;. 17, l""“]e;,/le,.l-

s [L3t™]ere e,

The result is then Grassmann number whose p-vectors are obtained
summing all possible inner products that gives as result a p-vec

tor,
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Te EXTERIOR PORMS AND EXTERIOR DIPFERENTIALS IN PHYSICAL THES
RIES

7.1 The rise of exterior forms

To pass from the discrete to the continuum, one must con
sider a cell-complex K formed with infinitesimal cells.Bvery in
finitesimal oriented p~cell can be described by an infinitesimal
simple p-vectof. In this way the infinitesimal physical quanti-

ty P that is associated with an infinitesimal p-cell with o~
rigin at a point M bvecomes associated with the corresponding in
finitesimal p-vector dP with origin at //f/ . We may exspress

this dependence writing

f (M, dp) (7.1.1)
whereMé.Q, JPG/\PU/PG lf_ In we choose a ba
sis in the space /\PU we may write

=7 hk.. S
P Y % e, & A N8 (7.1.2)

Now a part from points in which the physical properties of
the medium are discontinuous we may suppose that P depends in

a continuous way from the components C//D hkos + Then we put

P, ap) =;5I,7 th-.-s{M) dp ks (7.1.3)

where the coefficients th..-s' (M) are elementa of the
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of the coefficient's space t’ . In the coefficient space is a
linear space, one may choose a basis E; in it to write

P (M dp) =)o"(/»/, dp) En (7.1.4)

where the index A may denote either a single index or a collec-~
tive index. Then every single component F” (a number) may

be written as follows
ALY = L Ry () dpPS

We have in this way evidentiated two sets of indices h, k,
vee8. that are pertinent to the p-~vectors and are dummy indices
in the eq.(#/.5) they will be called geometric indices,because

they are related to the geometrical element desc.ribed by the p-
vector dp. On the contrary the index A, that may stay for a col
lective indices, is pertinent to the mathematical nature of the
physical quantityP and will be called intermal index. (Ander
son, 1967, p. 37).

The form so obtained is called an exterior differential
forn. The physical quantity 0  is called the value of the ex
terior differential form (Lichnerowicz, 1972, p. 43). The forms
we use are in general vector valued differential forms, i.e.
their valued are elements of an arbitrary vector space. (Lichne
rowicz, 1972, p. 42).

The functions K qh,‘._,; have a mixed character: they are
skew-symmetric tensors with respect to the geometric indices (h,
kyees 8) and have an a priori unprecised tensor nature with re-
aspect to the internal index A:-such tensorial behaviour depends
from the mathematical nature of P « These functions describe a
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field and will be called field fumctions relative to the physi-
cal quantity p +« The field functions may be considered as
components of a "multivector-object",

The knoweledge of the field ﬁmctions permits to specify
the amount of the corresponding physical quantity ‘P for eve—
ry point M and for every infinitesimal p-vector .

‘We then see that the exterior differential p-form is the

continuous analogous of a p-chain, because it contains the amount

of informations of the latter, But it contain more, because it
permits us to know the amount ofP associated with an arbitra
ry infinitesimal p-vector that, may be or may be not a p-cell of
the given cell-complex.

Let us give some examples., Let us consider a magnetic field:
the magnetic flux ¢ through an infinitesimal oriented surface d5
described by the infinitesimal bivector dS will be:

/ hk
b (1.2 =27 Ba (1) dS (7.1.6)

The skew-symmetric tensor Bbk is the magnetic induction
tensor that describes the density of the magnetic flux. It has
no internal indices because 95 is a scalar, and has two geome
tric indices because of the two-dimensional character of dS .

In continuum statics let us consider the contact force ac
ting on an oriented surface: the infinitesimal amount f acting

on an infinitesimal oriented 2-dimensional surface will be:

£(11,98) = L P () dSH

5 (7.1.7)

or, in components:
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Frd8) < £ plutrr) dst (7.1.8)

The PA;,,‘ are components of a tensor of rank three that may
be called the dual stress tensor. It has one intermal index on
account of the vector nature of the contract force and two geo-
metric indices on account of the two dimensional nature of sur
faces element ds .

Let us consider as a third example the parallel displace-
ment of a vector along an infinitesimal closed line a manifold
v (fig. 7.1.1). The infinitesimal plane oriented area delimi-
ted by the line may be described by an infinitesimal bivector
49 « The vector ¥V that has

.é——- axis of the l'nf':'m'/m'l‘ma/ rvelation

biveetor d8 that

describes the cireviF

bivector £2
that~ describes
the rotatron [.-~

v-v=Jlr vy

Fig. #47

experienced the parallel ti‘ansport around the closed line may be
expressed as follows

4 8
R (A (7.1.9)

where the component v'A, VB are' relative to a basis at the ini-~
. . . . _{24

tial point M . Now the matrix 2. wnose entries are a

depend from the point /f end from the bivector &8 :then u-

sing a base in the space of bivectors we write: ,
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N m. "'5)=2-f, R o/ dS*™  (11.0)

If we use a base in space GL (n) of all square matiices of order
n, we may write:

.QHG/M/dSJ=£€R"ghk/M}d5M C(Ta411)

The field functions Q ”Bl)lc (M) are the components of the curva-
ture tensor of the manifold, If one take into account the fact
that the bivector ds is simple one may write

Jd8 = duadyv (Te1412)

and then the last equation may be written
(7. 1.13)

Q4 (1,dS =.é'_, A e (M) (duh dlvr din ol *)

(Cartan, 1951, pag. 182).

Tensorial symmetries in the density fields are possible on
ly for pairs formed by an internal and a geometrical indices, or
by two internal ones. For ex., the stress tensor linked to the
surface force f‘ by the relation

Floas)= ptim oL, (T.1010)

where ol = "'dsl may enjoy the symmetry P“': }7""‘ . So
the curvature tensor, may have the symmetry

Raghe = thna (7.1.15)
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7.2 Dual forms

Since an infiniteeimal p-dimensiopal manifold msy be descri
bed either by the infinitesimal p-vector dp or by its supple-
mentary dq = "'dP we may write

f 4 /M, dq) =/h-—-/-;)—.l- Sﬂmm (M) dqrs... (7.2.1)

This procedure is common in physical theories where we are accu
stomed to describe an infinitesimal oriented area dS in the
three-simensional space by the orthogonal vector ﬂds and an
oriented volume dy by the supplementary scalar dV « So to
make economy of indices in place of the formulae

¢ (11, dS)= £ Bum)dst™  Q(m,dV)= £ p,, )V

¢ (M, hJS) = B"(M) n» as QM. dV}:f(M) JV

In continuum mechanics the same process leads to the relation

f” (MRndS) = /D_“"[M) n,ds (7.2.4)

where PAr is the customary second rank stress tensor.

The set of functions S7™  are called dual field func-
tions, To find the link between the field functions and its
dual we observe that, on account of eq. (6.22.5 ) is dP: 0'7"
and then

A ,1' - !- A 14 ér_f... ‘l‘r.., e [=
b ( ”P) PY R hiv. [}IF)—’ d9 :(Z.Z.S)

/ / b 0O
ﬂ("'/’)![l;-_' ershxp ,,,,“__]a’9,_,m
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I+ follows that

Hrse. ¢ ViEoos Bbsee A
S = € A (7.2.6)

In particular

B"= # €™ By T (Te2.7)
1. € hne
f =3 Prne (7.2.8)
A rhx A
Pr= £ € Pl (7.2.9)

as is well: known. Inversely one finds

A =@{}1, S bn ST (7.2.10)
We emphasize the fact that the same physical quantity.P may be
written in two ways: or as the value of a p~form or ds a value
of an (n-p)-form called its dual.

From the present point of view a differential form or its
dual are expressions that give the same infinitesimal amount of
a physical quantity associated with an infinitesimal region of

a dimensional manifold.

Ars.. / rs.. hx.. p#
S =F-’ € Q hbm

A ] Ars..
R AK.. -(l:;_)'l Crs..hi .‘.45

f7A= };{; IQA[M.," (/\,’} d/) [T =6,T//'97 Sﬁrx/ﬂ) d?’l-
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7.3 Connexions ‘

In order to find the continuocus analogous of the cobounda-
ry process we must analige carefully the process of “{ransferring"
a mathematical object from one point in space to another. In § 3.6
we have supposed that the curvature and the torsion of the connec
tion vanish, i.e., space be flat. This is the case of euclidean and
pseudo-euclidean spaces. This means that the process of v${ransfer
ring" a mathematical object to a common space point is independent
from the line of parallel transport (zero curvature implies tele-
parallelism) and this permits us to consider all mathematical ob—
jects associated with the various p-cell as elements of a single
space Y . In this way the "transferring"” is given once and for
all: we need only to perform the algebraic sums of the mathemati-
cal objects of the space € referred to the boundary of a p~cell
aé indicated by the coboundary process.

We are now at position to remove this restriction on the
geometry of the space. Instead to consider a pingle linear space

¥ we consider a linear space for every point Me2 3 we
shall denote these spaces with La,,, +All spaces EM are supposed
to be of the same mathematical nature: in particular of the same
dimension when are finite dimensional spaces. This assures that
any pair of spaces EN and 8,1: be isomorphice

To give some examples one may consider the linear spaces
©p to be of the kind R” with.mzn (o= dimension of the spa-
ce of the independent variables). 8” may be the space of mxm ma=-
trices or that quatemions, of spinors, of linear operators on 89
me linear space, etc. '

The "transfer® of a mathematical object I '€ £, from the
point M’ to an infinitely near point // means that we must as-
gociate with every element r'e lf,\,, an element rl’ éfh. This
process is called the parallel transport of r' from &, to 2.71.
When the parallel transport has been prescribed we have fixed a
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connexion. (see fige Te3el)e

connexion

th. *.3.4

To define a parallel transport we choose a frame at all spa
ces fM . Now if XKy (M) is a base of 8’1 and &;m)is a ba
se of KM' /wﬁ/‘ng

r-rfEycM) (A-12.-m)
P & (1) (7.341)

r} = "'7) &, (M)

a connexion is defined giving a set of mzm functions
such that
piA R LA (M)r8 dLk
7 8%

(73.2)
(Willmora, 1959, pPage 218) (Pavard, 1957 ,pre8. 469).
The functions Lnek (M) are called connexion coefficients., They ha

ve two internal indices A and B and a geometrical index & and
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then can be considered as field functions of a mathematical object
¢V associated with the lines: the object &2 is a matrix whose

entries are w"a given by

One may write also

w /1, dbl) = L, (M) dL* (7.3.4)

This is a 1-form called the 1-form of the connexion. We remember

that A and B may be a collective of indices. So if J» is a bivec

tor on an S-dimensional space we may write

r==2/'7 reA e A eﬂ (7.3.5)
instead of writing
r< r*&s (7.3.6)
Then
rpl = rif *Ljfw« (r1) r A" ALk (7.3.7)

L
The functions L/f,k //‘7} are the components of a tensor commexion
(Bompiani, 1946). These funcions are linked to the connexion fun
ctions L;tk for vectors by the relation ’

o, &
L/u/ik = L/..,, gﬁ +L‘f’k 3} (7.3.8)
If we consider a mixed tensor r':‘s we have
r'e - rd . Z_‘(/“ e m (7.3.9)
’,*° Bt L fun (1) r L dL
where
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Lo = L334 - L0 s% (7.3.10)

In general if we consider a mixed tensor I‘/'qB where A and B a
re two set of indices we may write

‘A ) Ac o3.1
r//,=r”B+L3M /"’)"co‘//-k (7.3.11)
where
4c A ¢ ¢ 4 (7.3.12)
Leon = Lok 58 - LB):SP

Only after the introduction of a parallel transport we may per—
form the difference between an element Prle g, , and an element
re éﬁ, . Then while the difference (®'-P) bhas no meaning becau-
se p'e [fm the difference (®), - p) with I", é?,, is meaning-
full and is called the absolute differential or covariant diffe~
rential (Willmore, 1959, pag. 213) (Schouten, 194, pag. 125).
The difference between the mathematical objects (say two vectors)

located at /M and M’ respectively means that we must perform a
parallel transport of the mathematical object referred to M
from M' to M and then to make the difference with the mathemati
cal object referred to M . .

This way of doing emphasize the role of the parallel tran-
sport, i.e., the choice of a connexion, This permit us to depart
from the customary euclidean connexion when appear useful to de-
scribe physical facts.

So in continuum mechanics one may consider the displacement

~vector of every point M of the material continuum. The vdiffe—~

rence” between displacement & /7 and &/ M) is usually meant

as that obtained performing the eucli_dean parallel displacement
of the vector #//')to M and then deducing “'/,‘7) . The differen
ce so obtained does not give indication of the strain on the con

tinuum because also a simple rigid body rotation give rise a di-
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splacement difference., Heuce if one wont to depurate this displa
cement difference from the rigid rotation part one is lead to a
connexten different from the customary euclidean one, i.e. one
that take into account the rigid body rotation, This is what has
been done by Schaefer (1967, DPe 319), in the realm of oriented
continua,

In analogous way one may describe the interaction between
two field considering the perturbing field as changing the con-
nexion of the underlying space: this is the case of the electro-
magnetic field (Hehl-Heyde, 1973, p. 179) (Trautmann, 1973, p.3).

Te4 The exterior differential
We are now at position to perform on d@ifferential forms the

analogous of the coboundary process on chains,

To this end let us consider an infinitesimal p~vector: it descri
bea an infinitesimal p~cell that may be considered either as a
member of a cell-complex or a single cell., The coboundary process
amounts to transfer to the p—cell the mathematical entity associa
ted with every face of the p~cell with the same or opposite sign
as usual and then summing all these amounts, When this process is
performed starting with a p—form we obtain a (p+i)-form that is
called the exterior differential of the given p-form, We shall
consider in detail the process starting with a O-form, 1-form and

2=-form respectively.

Let us consider a physical quantity @ referred to the
points: it defines a O-form @ (M) . If we consider an infinite
gimal 1~cell described by an infinitesimal i{=-vector dL (see fig.
Te4e1)e In order to perform the
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mqmu‘t
) alcPlacemu_f

w

Fc‘g. t.4.1
coboundary process we must evaluate the difference between the
physical quantity @’ afM’ and the physical quantity q,an .This
means that we must consider the difference between the mathemati
cal object a,', alM and @ . So if @ is a vector, denoted by &,
we must transfer by parallel displacement &' from /' to M ana
then perform the difference a}/ —& (see fig., T.4.1 right),

Then putting
| a- a’ &, (7.441)
will be .
— ; A 7] A 13 gy K
/6"(M,a/l.)_—_a‘;,-a_-_a —@Q% Ly a

=. (Vk aﬂ)dl-k

~ (. af+L%, a8)dl* (T.442)

where we have put

A
v,a* ¥ O.a%. L's 0t (7.4.3)

The expression an4 is called the covariant derivative of a
a"m « Then the coboundary process performed on the O-form
a*(M| givesrise to a 1~form /-5”//‘/, a’y ,exactly as the coboun—
dary process on a O-chain give rise to a 1-chain,

109



Now let us consider a 1~form
B4 (v, db) = b% (M) dL* (7.4.4)

If we consider an infinitesimal 2-cell (fig. T.4.2)

Fig, 7.4.2

to construct the coboundary we must perform the difference
A # A4 A7 A
J’ ™, d.‘j:-. /8/‘) P 4./8 /8 —/6 1) (7.4.5)

This can be best visualized when lB is a vector, cafl it LU (see

figse T.4.2. right). Now

Piay= b (7) dur By = bl tn) dv
(7.4.6)
/‘(2)-—* b, (M") dux ﬂﬂf'ﬂz_ b’f‘ M) dyk

where we have used the property that the infinitesimal vectors
a'l&.—_-. M/ ' and MM have the same components with respect to
the natural basis because N"'a.nd M* 1ie on a same coordinate li-
ne as M'ena M do. Now
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/;‘)"=/g/;‘) + Ligu M) pPy dvke =

= [b% ") & LB, ()6 (1) v a/u("7 o

Al A
w = ,5'416) + Ligy (M) By dub

= [bh ) + 1%, (M) B M) TuH] oy

Then

72 (1,.d8) = -[ b5 )~ 67 111) + L% M) b tmdvn] ot
+ [68 (49— b2 (i) + L%, (M) b8 1m") ]l

= —[Dk,blz -f-Lnakbz]o(a"a'v“ +['l);,b,f+[g4 bf]du"o[yi_l_

= —’{-' [(D" bivLos bi)" (9" 6% +L%x bﬁ)]/da‘dv"-du"dvy

li

5[ Vi -T. 6% ] dst

where we have put
> A A a2
Vabnag 0 b, + L%, b5, (7.4.9)

This expression will be called the intermal covatiant derivative
of b':‘ because refers only to the intermal index A, In diffe-—

rential geometry it is usual to consider the covariant derivative.
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Vi 6% “ Da b*, "‘L:l. bé, - /:J/. b'j' (7e4410)

where /;J are the connexion coefficients of the tangent spa

oes, Using the covariant derivative the final expression of

(7.4.8) can be written

Vl, bﬂ”_ﬁ;éi = l?hén"‘ "Vhbz +Th‘i bg -‘(704011)
where we have put
J i
T of [:m - (7.4.12)

that is lmown as the torsion tensor of the connexion /.;i. (Will
more, 1959, page. 219) (Schouten, .1%4, pag. 126)., We emphasize
the fact that if one distinguish from the start between internal

indices and geometrical ones and introduce the "internal" cova-
riant detrivative one avoid to introduce the connexion on the tan
gent spaces and the torsion of this connexion,
Now let us consider a 2-form
A - A A
71 d8) = 5 S (M) dSHH (7.4.13)
If we consider an infinitesimal 3-cell (fig. 7.4.3)

the coboundary process performed on the 2-chain is

SA(mdV)=(yi] ”J?‘/)*/ﬁdj‘ﬁc//*/],},”—/,’i,
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Sinoe
V' = ¢ m L'ge / Ty dv?
J"'/,//" = J/‘/// + L;e /‘/4) dv’ (7419
P’ = Y+ Llse Jrg de

it follows =

g-»/M, dV/..z-‘-,/"D( e +L%, Cﬁ]dw‘/da‘dr"_da"dv‘jl
+ z-ﬁ,[;), f:, t L:, c‘,'i] dve (dw'du - dll'/"dl(j’f- /
"2-',[‘7( ot L, Cf,,] da’/du‘a’w*-dv*a’M/

With the position analogous to (7.4.9)

7 e A .a (74.16
Vec‘},,,—-;'aec’f,',,+L,,,c,,k )
and observing that the sum of the terms in round brackets is the developement

of the determinant that gives the components of the triveotor V= dunolvadw

mETE 5 AV = £(Pe ch) AV

Since the coefficient in round brackets is skew-symmetric in the indices h,k
only, in order to obtain the skew-pymmeiry also with respeot to 1,h and l,k

we write:
v 7 = klh
SamaY = L4 Gechdvitn T, el dV bt B ot dV .
7/ b4 o Chk
= 37[ Ve ch +VnCle +VucB ]V (7.4.17)

L4
on account of the relations G/V!“'—-& dV“ker—al‘/ ‘. Collecting the results
obtained by the coboundary procese on the 0,1,2-forms we may write

£ /,—’ 5, v.a)dL*

7 (£ 7 b)ds™
= h

5 (4 e T €50 )V

™
l\

(7-4.18)

SN w8
b
M=
M
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and in general if.

'PA = ,Z‘z’ th.., d,b bse...

(7.4.19)
> /
7 = (/’—-*'/.’ Ohk( Q;D"""-
is
sk —
Qhk(-.. = /,Z, th(,_' Vr Rss.. (7.4420)

Remembering the expression of the exterior product if we put

DA.. g(dx’ﬁ],‘... =/dx"9,j,1 wor (L p)A = o a (oL,
A +WA ~ Ab)

we may write

g=Dap (74.22)
(Cartan,. 1951, pag. 209) (Willmore, 1959, pag. 219).

We have the sequence

fige Te4.4
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The expression p,\ is called the absolute exterior differential
of the f'omP (Ccartan, 1951, pag. 209).

From now on we omit the bar over the form obtained by the abso
lute exterior differential, say'é_ , and use the same letter,
sayﬁ , to denote either a 1-form obtained by the absolute ex-~
terior differential of a O-form, say & , or an arbitrary 1-form.
This may be a source of misleading at the beginning has the great
inerit of simplifing all subsequent schemes.

When we pass from a flat space to a space with torsion different
from zero the Poincaré lemma cease to be valid (Guggenheimer,1963
p.358)t then ingeneral DA (DAP) # O.

Summarizing we can say that the continuum analogous of the
coboundary operator on chains in the exterior differential on

forms,

Since we can write (dq ='Lo|P , dy="* ds)

= A R d hr... rsb..
hi...
P = R P /"'P )/ STt (e
7 JDM)/ @pis.. dshne- (n-:'-j_f 3 T A,
the relation between 7~ and S will ve
Tr.sm: 7 e,:;...;,;.(,,_ -
i @ue..
/ ~ rs..
=m " ‘”-(-./_{7 Ime Vm R"’P ) =
(7.4.24) °
1 rs..mn
= f-;—’ (3 P V ((nﬂl b ... sab)
- 1 ab. -
7,,. [éo-,n),’ ab s ]
-, S
m
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then

Tr:... (M) - Vm S’s""”(/‘/)

following
All these relations are summarized in ¢éheVv tublesWe remark the im
portant fact that in all these relations no metrical properties

(7.4.25)

appear, l.e. they are valid for euclidean, pseudoeuclidean and
riemannian gpaces.

7.5 Basic and standard columms,

The passage from the discrete to the continuum :i.s summari
zed in table (7.5./) for ne3 and in table (7.5:2) for nad. In the
first colum we represent the p~chains and the coboundary opera

tor. In the second column we represent the corresponding exte—
rior differential forms with the exterior derivative. This co-
lum is then splitted into two new columns we call basic columns
where we represent the corresponding density fields and their
duals.alongside with their connecting equations. Once we decide
1o use ome tensor—objeét for every row, the primal or the dual,
according with the criterion to economize indices, we come %o a
single column that will be referred to as standard columm, The
result is that the first colum dealing with chains and coboun—
dary operator is tranaformed in the last colum dealing with
tensor objects and typical differential operators.
Since we have a standard colum for every one of the cell~complex
Kk and R" we may consider the pair formed by two standard columms
as the equivalent in the continuum of the classification scheme of
§ 5 . This scheme will be called the standard scheme. All schemes
contained in § 8 are standard schemes.
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* CLASSIFICATION SCHEMES

primal cell-complex

dual cell-complex

chains and
coboundary

DISCRETE

0<0~0-0 | O-0~0-0

D/\ exterior forms and
+ exterior differential

basic columns

baaic
scheme

CONTINUUM

basic columns

standard column

grad %
—+ ocurl v
»
div
. *

|
|
!
!
!
!
!
|
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
]
!
|
!
!
!
!
!
!
l
!
|

standard oolumn

.
div
®

2. o= (tensors, W-tensors,
tensor densities,
grad W~tensor densities)

standard scheme
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nIt is only through the progress of solence
in recent times that we have become soquain~
ted with so large a number of physioal quan—
tities that a olassification of them is desi-
derable” "...I think that the progress of
soience, both in the way of disoovery, and in
the way of diffusion, would be greatly alded
if more attention were paid in a direct way
to the olamsification of quantitien®

J. Clerk-Maxwell, 1871

8. A CLASSIFICATION SCHEME:
CONTINUOUS SYSTEMS AND FIELDS.

We have whown in § 7 that those physical quantities that
aré referred to the geometrical objects are described in the con-
tinuum by the corresponding field functions. It follows that a
classification scheme for the physical quantities of a continuous
system or of a field imply a classification of these field fun-
ction, The natural criterion for this classification is that of

referring a field function to the same geometrical object to which

the corresponding extensive physical quantity is_referred.

So since the magnetic flux ¢ is referred to the 2-cells of
K its density fields B, /Mjor its dual B'(Mj will be referred
also to the 2-cells of K . In analogous way since the displacement
8§ of a pa.rticle is referred to time intervals of the primal cell-
complex K then its time densits, the velocity VI will be referw
red also to the time intervals of K . In this way we may obtain
the classification scheme for the main physical theories: these
are shown in the tables that follow.
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8.1 How to read the schemes.

Notations. Symbols and names are those recommended be the
_ International Union of Pure and Applied Physics. In order to ma-
ke easier the comparison among different theories all schemes are

written in the same system of unities: the system chosen is the

MKSA razionalized gystem, The space-time variables are denoted

x%=ch, !, x:x® the signature of the metric is + = =~ ,
Stars. # The star on the right side of a frame denotes a dual den
gity field that is formed by a tensor-density object.

We remark that the pseudo-tensor nature for space-time is referw

red to the inversion of space-time axes (in relativistic quantum
mechanics it is customary to speak of pseudo-tensor referring to
space inversion only),

Space_end time inversions, The behaviour of the field functions un
der time or space inversions is indicated with a plus or minus
sign to the right ef every letter. The upper sign denotes the beha
viour of the functions under a time inversion: so ﬁ,* means that
fh {_[;'x)_.,.ﬂ [},x).The lower sign denotes the behaviour under spa
ce inversion: so T, _ means that Thoe (&, ~X) = ~Tanw (t. %) .

One of the interesting features exhibited by the schemes is the

regular alternation of the signs along the same vertical line.

Physical dimensions. The physical dimension of the physical quantity that
lies in the firat ellyptisc box of every standard oolusn gives the dimensions
of all the following ones dividing by L or T at every step according if
+here are space or time derivatives.

Elaborated schemes. From page 207 to page 212 there are some soheme obtai-
ned from the standard ones after some elaborations. So one may take the
symmstric part of the displacement gradient of page 143 to obtain the usual
strain tensor of p. 207. Many properties of the standard schemes are lost
in these elaborated schemes: so the number of distino functions contained
in a box is no longer the product of the number of the fanilies of cells

by the nusber m of distinct functions contained in the first box.The regu-
lar alternation of signs in space inversions is lost. There appear second
order derivatives between two successive boxee: see p. 207. Thie phenome—
non is explained in the tables of page 206 (compare also with p. 145). )
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the letter denotes

the field functions

derived by those
of the previous

ellyptio box ————\ L
geometrical olemeni\ Pn{'= e’f‘k-v-z m
/

to which the field
funotions are refe
red

number of fa-

milies of cells —\

the number of
distinct functions
contained in the
vox is8 3 m

thins same letter

here denotetarbitrary

field funotions

(not only those ob~
tained from the pre-
vious ellyptic box)

3L |
m?, -

A = //z/... m
k=12...n

myn

permutation symbol

{controvariant tensor density)
internal covariant derivative
Y (covariant derivative with
R respept to the internal
indices only)

N

¥

internal index
(4=1,2,...m)

behaviour under time reversal

the star denotes the
z dual field funotions

bahaviour under space inversion

(opposite to that of miy on
accomt of the space deriva-
tive)
geometrical index

(h=43.. n)

Remark on the symbol Vh «. The internal covariant derivative reduces to the
partial derivative in euclidean spaces, referred to cartesian coordinates

and when the connexion is the euclidean one. We emphasize that the space ma
be euclidean, the coordinates may be cartesians but the connexion ma:a be no.:
euclidean. The reason is that the connexion coefficients L%, of the coeffi-
clent spaces G, are not necessarily the same of the tange:# spaces, i.e. f}z

See for ex. the schemes of
polar continua p.145 and that of
beams p.137 and 206, of the bending of
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relativistic particle dynamics classical pa/'ficl e dynamics
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classical particle dynamics
Hamilton -Tocodl equation
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dynamics of a particle in a conservative fielo
trejectory equation
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statics of strings
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vibrations of a string
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torsional vibration of a& rod

(variables x,t)

w=908
o =-3. 8

2L

gyretion
rald/'w

‘l
L=pSkw

M=Cx

Dot +Dped =W

18

L torsional
constant

140

couple for vrit
lenght

DL+ M N

angular rmomentvm

ror vnit lenght

L-Z,.yz

M=, ¥

Soap films

K . K
T PoISSOr? f~—my
1P

5‘\
deflection (oa;i for
unit area
-
T | 9%, 9%
_ow U 7 FIR Pa
“" 9y

-2
Pay Duy _, m %
Yy 7""&"

' Y




tasle : classical gravitational field
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perfect flud motion
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thermostatics of a monoafornic ideal gas
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irreversible thermodynamics
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irreversible thermooyramics
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maynez‘osto lics
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behaviour under space reflection and time reversal
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magneltosialics

P

A=-grad X
L#

1

LA

olv8=p,,

—
skew- symmetry under tlime reversel

8 =cur
3S,

@

even parily—

odd pardy—-
evern parily ——

{

odd parity —-—

P

-

otvd =p
wcurl¥

¥ =-grac)s

@
—

electrostatics

—

:ymmn‘ric under time reversal

Ol T

£=-grady

3s




ooeds JpUCISUBLIP OM2 BY) L
vonosford buipuodseli0d sy pue
owip- do0dS PLOISUBUIP - 9.4f) B

-1 0SS0 -

{a-=H C “Jeg.n

*
m\vmﬂ! (6/H = H ll%&

%-HxA D VxA=¢

o ( % ) mv
Se€-{ wrjay ..A\\*Vm

9=%%.A V=XA-

)
S &

A
y -~

~

soneysoyeubew

Wingy pryrrs o gt VY

2 P

w, e
Ypedh m.m...a 2= 4-A- oy,

L= worpenbe e-a.
@ aAPA ) Pnp
7% S 4

wml?.t C sn.mw*.wé

hen=a “deg-A
(GI1H=H *

@Mw (3)@=a @G

159

L=Hrpeil-
ae 2é .
d-a-a 9 vo-%A-=F

20 VxA=¢

9= h.b)mm. XA-=Y mn&
@s @W&
Y - Y

~

P79y O1p8UbeWos1o9)3

| ]
d/ yy
help- 2=%.A
mwwwlymw
7€ SE

.%mlm’ (7)0 = |

*d=q-a D Ap-=7
&

gD,
€T

Ar<- vossio4 Y

N
W
R x
)
158

X

o~

£3128250.4708)8



3L

electric conouction
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F=6L | 7-
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UxH=T
3L
H=-Vy
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telegrapher’s egquation

(variables t,x)
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network theory
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geometrical oplics

e

Va2V ¥)=6

-5

/P v
e (De Broglie, 1950,p.18) e
eckonal or . energy production
optical path N— oensity

*
V-I=6

ray vector

( Pl.”i )
eckonsl eg.
w=Vxp
3s
»
(w0 Snellivs low)
Vw=7

7v
"

Ref: Born-Wolf, 1970 ; De Broglie, 1950
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relativistic gravitation theory

(first order approxirmation) gravitational theory

A the passage from the relativistic fo the classical theory
3 '9.«/4 *og3 /’“’ﬁ'yﬂfﬁ"zif’y.“ﬁ Pepa .f/"?"””‘) ¢“/’ ~Gea %78

= | £instein equation | | ;
B, V.: - r ordcr) ~~a K, -V"J;‘i

K . K X .
1P / X
@ 0 * ”’@ 7
-(y ’ .
¢4u('6°(}”4 Ka'ﬁ/ac'a % :

= 4V -
= (P %)

AV 1~ AV oty A 6$~
Gy =51 Xs" 4" Fup *

44

h
/," 414‘
)
H* =g 7P Uy F g Gy 4V = e 4RV, £,
:i: 47 +a
- V HAY EBa'éAca
Ref. (Tornti, 1974) 176 ~
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scalar
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(nteractions: motion of a particle
in & gravitationsl field
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(nteraction: motion of a chorged porticle magnetic field genersted
7 on electrostatic field from MOW'ﬂg c/;aryes

electric field
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interaction detween two phenomena:
the typical description of lrreversible thermo ayrermics

phenomenon 4 ' phenomenon 2

[OOSR

Leg
Loy

interactions 1 & 2

-interactions between two fields:
the typical description of theoretical physics

total action Lnfomctlc;n action
action == ( fundamental) 4 ( functionat ) 4 (functional
fynctionel Ly "1 Sa
626, )
G, = 6i(¥,¥%5)
FUNDANENTAL FUNDANENTAL
EQUATION EQuarroNn
¥ 6¢ A 62
uy vy Uy Y
freld 1 Field 2
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scalar wave equation

2
- D'Alembert -y

v =k

V> u=w p=V-y
% +%‘,i= v v=-%’5+v:‘v
65@ 6'3:
V-W’}’ Y'=V"2
9% _gxra v=Ve+IL
7¢ L4 7¢
"” “”

. N/
%{l--v'9=x ¢ It

z2=-Vp
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scalar wave

equalion

(D'Alembert)
the passage from DAlembert fo Helmholtz equation
DAlembert
1 Py
Ve Aye
Y Helmholtz
(
¥ VTP Ay =P 2
¥ ¥ P
w L
uo=-5-t- Zy=-lwp vk Do .
L2 u’wv"f,ﬁ—;=p 7% =6
uk = - % Zk ’B_,é; * .
Y Gz vo=-L5z,
- vk =2z,
F
‘ vo=-5u,
Uy, Uy e =‘2(k

+00
Fourier operator Fa= F;: / e Wt o
- 0o
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contrguration
variadle

detinition
eguation

dval balance
eguation

dval source
variatle

configuration
variable

oval balance
eguation

dval source
variadle

K 7>/ K
1 6 =N(pu)
w2p] (m)  [Ev-s
v =Gru,y)
v
u=-Py)
- el -
Ru=t m Sy-v
z DR ¥
p ) -
P r1=f i K
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//@
4 cycle
T -02750 ﬁyz =6
cycle -~
7’ 17
T w =8z, ) >
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source
variable

balarnce
egvation

oval defirntron
equation

vl configuration
verable

source
variable

balornce
eguation

ava! configuration
variable

furdamental eguatior

Some typical egquations

cononical system

[ 6 =N yu) 6

BE Dy, y)=6
" 6=My,u) 6
mnfigurstion) Source
variatle variable
1
- 7 / -
u=Dy @ By -6

v = Elu,y)

aval fundomental eguation

>

Bv <2(p,Dip)
w =Dy =6
(.Dy =Frv, p)
w u=P(v.y) v

dval canorical system

aval
z <oy
oval 2P dval p
souvrce - cornfiguration
variable ﬁ( ¥ W) d W/&%
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~ the canonical equations

b) when the constifutive eguations

the canonical equations

a) when the constitutive equations

are not mixed, ie. v=C(u) €=My sre mixed.i.e. v =C(up) 6=/M(pu)

be(Dyp,p)=11(y. Dy)
t 6 =/M(yp) | 6 v 6 =/7(p,u) 6
Dv =My M \7 Dv=M(p,Ctv,p)
«w =Dy Dve=6 u=Dyp Dv-¢
D,o-C-"V K y Dy=5(v", )
« w=Cy) | v u w=C(v,y) v
bv =My Dv =M(yp,E(vie)
Dy =Cv) Dy =C(v.y)
o D 7 oD
(D 0)(v)=K”’v) (D o)(?;) =Kp.v)
Ly =Ky Ly =K(y)
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analyticel mechanics

analytical mechanics:
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table 26:Dirac equation
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P=(u,v)
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Dirac field
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the potentials

the potential of an operator A)
(s defined as a functional Fi«]
such that

S & L] =(Alet),5)

50[90]=£[D‘/’]

7o (] TLlyl=E(Re]

the birth of a variational statement

u = Dfy)

ulyl
L

6 =My)

£fu]

V= Ciu)

Sole] = E[D(y)]

DCD(y)=6

uiy]

6=M(y)

Sle] = Sufe] - V]

Deory)- Mgy =0
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SU[p] = (Mryp),d9)

Stlu]={Ctu), Su)

350[?] = (500(7)r65">
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an extraphysical example:

the four main variational statements transportation economics

>

fundamentsl egq.

=Dy Dv=s
zero profit drop zeroo;c;zz:zla{wn

profit-flow f?o: of
relation g00ds

RCRBy =Ny
A duval funo. eg.

Zolyl-Z, 0yl
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elastostatics (small displacement theory)
variational statements and reciprocily theorems

PE Green
(16 )

Q— Navier
Belly -Maxwell

 reciprocily theorem
Re;issrjor :
19 {ibre
eguilibrivm
first 7
cononicel
N equation
Hooke
GM P
Hooke
Y first oval
canomical
— equealtion
compatibilily
Y owal reciprocity theorem A
Colonnetti
'(r‘ xhk

Ref Tonti £.,Variational ,orinci/.)/es & elastostatics, Meccanica Ve 1, vol
P-1.(1967)
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Belinfante
-Schwinger,

electromagnetism
variational statements and reciprocity theorems

classic
&ctiorn
(r900)

wave
equation

Lorentz

) reciprocity theorem

1948-53

\ First set of
Moxwell

first equations
canonical

" equation

vaCu |

u=C

first auval

FA

canonical

second set of
Maxwell
equations

equaltion

AL
Tm)

Ref Tonti £, Variational principles i electromagnetism. Ren

dval theorerm
reciprocity

aval wave
equation

Pratelli
(r953)
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properties that follow from the symmelry of the properties thatl follows from the strictly monoto-
constitvlive operafor nic character of the constitvtive operartor

@ (if in adlition D has not nveleus)
the solviion of the furoa-

@ reciprocily 6+rp mental equation is vmigue
@ etistence of a potential @Me potential is minimum
(variational statementof ‘b .,
the funcamental eguation) @ e potential is convex
@ symmetry of the @fbe Sondamental
Jundamental equation operafor is monotone
/ <
Y _ '
u =Dy ' Dv=6 w=Dyp Jva=o

@ ex/stence of a pofential T '
of the constilviive eq. @ the potential is strictly
Y @ reciprocdy uerv convex
(D symmetry : (D symmetry
u of the constitutive @ strict /y monotone
equation

the constitutive mapping
& invertidle

@ existence of the oval
potential

@ the oval potential (s
s{ricﬂy conver
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variables: ¥’ £2 &*

Navier

- 6',.: /,’f;-

1 (P,  hh) o o Bk

2

—

vorpmrxosdde yonsn

4

—

NN\\&-&

LXP T %P
&5 mmﬁ\ P

o/

~
3
2 X 3
© £ =
n Q ]
N NN
S g <X
x ® o
< JM M
x 5 X
& <
5 S
§
? W
L
n
2 S
o
x| @ «
HE
oI ﬂm
" >
N 3
N 3
x >
< ) N
v e |3 .
/m & 8 ﬁm. >
W g (N4
R
Er
0=
o= ™ 1
JuduOU aybue “o1 0204
L] bupusg ~Odys oIz
o™ ..RI -/
Yo ,
df {LF=wW /.
2p zp
bwm —- X-dl—— = ()
A RGN
xp ’
- [~ —— -
L e
pypbuo) yum Jybuey yxn
S0 B)dnod sof peO)

(' x)b=b
(4 )= ws

B

sweag Jo buipag

o19@7



thin plates theory -  plane elasticity
(small oeflections) variables &' x?
variadles x’x?

Lagrange -

. . Navier
EnY o,o/ue Germain
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plasticity

perfectly plastic material

ghk

= zi(vb/x » VAA)

6 - 1""/[,
(Z) =k gr.sg
cissapation | function
\

@D

7bk=ﬁ+/;—,;§hk
f""V?M?"*"K
Ew=0 o Jomg** €K

Von Mises
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viscous flvid molion
(incompressible, viscous, staltionary [low)

5
N
3k -3’-(1)""» vm) P
8= v, G P = Ih
A

(2,
@ Drrke = ’7—5%%}‘ P Pk

% =%rs 130
newtonian flow "=-uJy =  Gu=-24s

non newtonian flow /"= /(%) => 9,,‘=32_7£2§;,k
2

212

heat co_na’acﬁ on

FOURIER E£QUATION
‘\" o7
2 6, -pcg-r

T(x,0)=0

p=-9T
T=0 onS,

con/k'yurafion variable : temperature 7(x,t)

source veriable : heat production for unify volume and time 6(x.t)
variable of first kind : gradient of ternperatvre p(x,t)
variable of second kind: heat flux q(x.t)

bilinear forms: , :
<e, r>ﬁ=-’ﬂ/_/"s(x, T-t) T(x,t)dV ot
v~o

<q.p> ‘-I—:f‘/]“/v"/o‘rt;(x,T-t)-ﬁ(x,t)dVdf

A= thermsl conductivity, p =density, ¢=specific hreat

, v-{z[-vr(x.u]} s [pe —f;]r(x.n =6 (x,t)

W\W
& 6
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9 CLIFFORD ALGEBRA AND SPINORS

9.1 Prom Grassmann to Clifford algebra .
Pursving our exploration on the formal structure of physi-

cal thedries we now examine the various kind of mathematical ob-

jects ugsed in physics to describe physical quantities. We encoun-
ter real and complex numbers, vectors, skew-symmetric tenaors,qua
ternions, complex vectors, spinors, and so on, We shall show that
a large number of these mathematical objects are elements of an
glgebra, the Dirac algebra, that can be considered advnatural evg
lution of the Grassmenn algebra. This is sumarized in table(9. (0)

Given an n~dimensional linear space U we have explained how
to construct th§ exterior space AU i,e, the space of the aggre
gate of multivectors of different orders formed with the vectors
of U the reason of the space AU is that of making close the
space U with respect to the exterior product,

In this way the space AU becomes an algebra, the Gras-
smann or exterior algebra. Considering a dual space V and then
of the exterior space AV one may introduce the scalar product
of two multivectors of the same order and the inner products(left
and right) of multivectors of different orders. Such products are
defined between a multivector of AU  and a multivector of AV.

Thes;ffﬂl;‘t;ﬁe not meaning, up to now, for two multivectors of
the same space, say AU . It becomes possible to introduce the
scalar and inner products for two multivectors of the same space
when we introduce a metric tensor defined as a linear and inver-.
tible mapping between AU and AV . This is what we shall show
in the next sections, Once this will be done we have defined in AU
essentially two kinds of products, the exterior and the inner pro
ducts (the scalar product being a particular case of the inner one).

At this point Clifford has shown how it is possible to defi

ne an overall product between two elements of AU of which the
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exterior and inner products are particular cases. For those who
know the quaternion calculus this is the analogous of the qua-
) ternion product of which the cross and scalar products are par-
ticular cases (Brand, 1947, p. 411).

9.2 The metric tensor

The theory of linear spaces in duality leads to the concept
of scalar product between vectors of the two spaces, No scalar
product has been introduced up to now between the elements of the
same space. In order to do this it appears natural to define a o~
ne~to-one linear mapping ? of the linear space U on the dual
space V o In this way to every element U4 of U/ it corresponds
an element

V=g uey,vev (9.2.1)
Now to realize this correspondence it is sufficient to prescribe»
the vectors of V  that correspond to the base vectors €, of v,
i.e. to prescribe the numbers g, in the relation

G(€,) = Gni e”. (9.2.2)
The linear operator? is called the metric tensor and the numbers

Gre are its components pertinent to the base vectors €, and to

their dual €% ., Once we have prescribed the components g,z  We
may obtain the relation

between the components of the vectors 4 and V that correspond
h
one another by{"%elation

216

v-giu) - ,?(a"e,,) - utgre,) = o €% (9.2.3)

then

-
Vie = Wi (9.2.4)

th ;
In this proof we have used the linearity ojvgperator ,? . Since
the «” are controvariant and the v, are covariant it follows
that g, are covariant for a change of the basis.

The metric tensor,? is said symmetric if

(y(a’),u”) - (?/u.”),u‘) (9.2.5)
with & ,u’el . Remembering that <V,W)> =Vv*w, the
symmetry condition implies

Gk = Fuh (9.2.6)

We emphasize the fact that the metric tensor, that is here con-
ceived as a messenger between the two spaces '/ and V , does
not necessarily transform the base vectors €, into the dual base
vectors €% . This is a very particular case that correspond to

the metric tensor r? such that

Fl(ey) = e’ (9.2.7)

The corresponding geometry is called the euclidean geometry

evelicean geometry
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To deal with relativity one need a four-dimensional space with me

tric tensor

o
f(e") € (9.2.8)

7(ek)=-e" (k=1,2,3)

" minkowskian geornetry

the corresponding components are

+4 0 0 O

0-1,00 (9.2.9)
o O -1

0o o o -1

and the corresponding geometry is the minkowskian geometry. To de
fine the quaternions, as we shall see later, we may use a two di-
mensional space and a metric tensor

gﬂeh’=*eh (h=12)] . (9.2.10)
with components

218

(57)
(9.2.11)
7n =2 o -1
U V
v,u>

In a bidimensional space (or more in general in an even-—dimensio-

nal space) the metric tensor
f(e,) - @* ’y(ef) =-ef (9.2.12)

gives rise to the sympleclic geometry (Artin, 1957). The components

of the metric tensor are

( 0. /) (9.2.13)
7”=2 . -1 0

v v

v, u>

symplectic geomnetry

Symple‘ttic geometry is used in analytical dynamics (Abraham, 1967,
p. 87) and in the theory of spinors (Rastall, 1973). In the last
case the metric tensor is called the fundamental metric spinor
{Corson, 1955p. 15 ).
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The inverse mapping ,?" is described by the set of numbers

g're”) = g e, ‘ (9.2.14)
that, on account of the property g"g =/ gives

@' =g g ") ~gighte,) = ght.Gle,) = gH 9,07 (9.2.15)
and then

9”"9;,- =% 19.2.16)

One may easily show that the components g"* are controvariant

for a change of the basis of the (/ —space.
With the introduction of the metric tensor one need not to

distinguish the two spaces {/ and V because every operation made
on V can be transferred in a corresponding operation made on U .

The two vectors that are in one-to-one correspondence can
be denoted with the same letter, In particular one can define the
scalar product between two vectors of the same space U vy means
of the induced scalar product

w,w) ZE L gu,w = gy, uhu* (9.2.17)

The space (/ equipped with such scalar product is called a scalar

product space. In particular
(€m,€n) = Gmn . (9.2.18)
If the metric tensor ,? igs symmetric it follows
(W' u') =(u',uw) (9.2.19)
and moreover if it is positive definite it follows
(u,u) =<y(u),u> >0 : (9.2.20).
In sylnplgtic geometry the scalar product is skew—symmetric, i. e.

W uw=--(u,u) (9.2.21)
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that implies the usual property
w,u)=0 . (9.2.22)

(Corson, 1955 p. 15)
The scalar product of two vectors «,W €U can be extended
to two simple p-vectors of A®U as /ol/ows

(UAUIA - Alkp, Uy AULA ... AUY), =
- o'etl<5a,,,a‘k>l = (9.2.23)
=det /i, ,u'k)]

(Greub, 1967, p. 106). We now come to the space AU . The map
ping 42 between the vectors of U eand those of V induces a map
ping between the p-vectors of A" and the p-vectors of APV
In fact given a simple p-vector pe/\”U one can associate

with\‘}the simple p-vector W €A™V, whose vectors are those corre-
sponding to the vectors that form P . In this way we constrvct a
mapping between AFU  and APV and then between AU and
AV (witney, 1957, p. 46). Denoted % the mapping between
these two linear spaces one can introduce an inner product on AU

by means of the relation

AU AV -

¢

> Lo

(L, a>

@ a)~{Ga’lad> = (s',8) (V) + (B, b+ - ( )
(9.2.24
41 1 1 4
-@s's +Z,-'V,,V"+é‘_7'b“é“* cee
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In this way the space AU becomes a scalar product space. One
can define the left and right inner products: they are defined im

plicitly by the formulae
(xi1a,c)=-(@a,crx)

yra,cl =(a,cLy)

222

(9.2.25)

9.3

The Clifford product

Let us consider an exterior space /Al/ equipped with a sym-

metric scalar product. One may introduce a new product between two

elements &,D € AU, as giving an element C €AU . This is cal

led the Clifford product of @ and & and is denoted (Arlin, 1957)

It is
1957,
1)

2)

3)

4)

5)

c-a-b {9.3.1).

defined implicitly by means of the five axioms (Ra3evskii,
p. 8)
distributive property

(@a+b)ec =aec+boc co(x+b)=c-a+C-d {9.3.2)
associative property

@eb)c =as«bec) (9.3.3)
if A is a number (O-vector) considered as a particular ag—
gregate:

Aca=a-A =ia (9.3.4)
if U is a vector considered as a particular aggregate

U-u —(u,u) (9.3.5)
if W,,U,, ... Up are p vectors

U u:"""‘uP:ﬁ—{lél’;‘f::;uh'uk' cee Uy (9.3.6)

The linear space AU equipped with the Clifford product becomes

an algebra called the Clifford algebra

9.4

if W

and

Some properties

Prom these requirements some properties easily follows, So

and V are two arbitrary vectors it will be
uAv =2—’,(u-v-v-u) (9.4.1)
(U+V, UV) = (LU UV (VBRI (V,V) (9.4.2)
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Prom which, remembering the properties 4) and 1) and the symmetry

of the scalar product one obtains

(W) =~Fiaovrveu) (9.4.3)

In particular

(e,,,ek)”?l'(eh' €L €, °€,) =Gk

(9.4.4)

(€, %) = yle"-@'+e5-e") =g
Prom eqs. (9.4.1) and (9.4.3) one obtains (K,veU)

UV = (UV]+UAV (9.4.5)
Property 5) gives

{ 1 { ¢rs...

P_/Pﬁk...eh/\ek/\... "p__/Phk"'/E/_ka... € @40 ---) = (5.4.6)

7 ode
-;7 P"S--- €.° &5 -

then a Clifford number may be written

c=s *V"e/‘*é'/7 B e, e 3_5 tPgy el e (9.4.7)

The compulations with Clifford algebra bécome much more simple if
we have an orthogonal basis, i.e. one for which g,,k=0 for he k.

In this case eq. (9.4.4) gives
€n* ey =~-6,°8, thek) (9.4.8)

i.e. the Clifford product for orthogonal vectors is skew-symmetric,
The orthogonal basis makes simpler the performin‘g of the Clifford

product: so
(@,n@,)(e,ne;)=(6,°8;)(€,°8,)=— €,°(€,°€6,)- 8, =
==G,162°€3 =~ G5 €21 €, (9.4.9)

Thus in the four dimensional space—time with the Minkowsky metric

have
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€NE)) (€1 €,10,)=€,°€,°€,°€,°€,=€,°(-1)€,°8; =
=—@AE e (9.4.10)

We are now at position to carry out the Clifford product of two
Clifford numbers: we write the Clifford numbers as done in eq.
(9.4.7) and then we apply the axioms 1) 2) 3).

Another interesting consequence of the Clifford product is
the following: if W,,«,,...Upis a set of P orthogonal vectors,
from the condition 4) one find :

(a14a2+ cee *ap,a’}azf cen "'“p) - (a;*uz*"‘*“P)'{ay"'ug""‘+up)
and then
Uy)° +(Ug)’# =+ qg’,)' - (U Uyt *up)’ (9.4.12)

In words: when the square of a vector is understood as the Clif-
ford product of the vector by itself, then the sum of the square
of orthogonal vectors is equal to the square of the sum of the vec
tors.

This property characterizes the Clifford algebra from a pu-
rely algebraic point of view and is often used to define the Clif
ford algebra (Bourbaky, 1959, p. 139).

cw .
Let us conside:rlthose Clifford numbers that are formed by

‘multivectors of even order: these are called even Clifford numbers,

n=z c=s+b"e-e,
(9.4.13)
7 =3 c=s5+p?e e, +1e,-0,+5"%e, e,

The interesting fact about such even Clifford numbers is that
their product gives another even Clifford number, i.e. the even

Clifford numbers form a sub-algebra of the whole Clifford algebra.
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9.5 Clifford numbers of P1

Let us consider a one-dimensional space Pl with the scalar

product

e-e =(e, e)=-1 (9.5.1)
This will be called pseudo-euclidean one~dimensional space. The
Clifford numbers are of the form

c=s5+Vv'e (9.5.2)
The product of two Clifford numbers ¢ and € gives

C-E=(s+v'e,) < (5+V'e,) =(55-vU)+(v'S+V's) e, (9.5.3)

If we consider the complex number

g as+vii ' (9.5.4)
we see that the Clifford algebra of P is isomorphic to the alge
bra of complex numbers, The base vector €; behaves as the unit ¢ .
Alternatively we may define a complex number as a Clifford number
of P'.

9,6 Clifford numbers of P2

Let us consider a two-dimensional space P? with the pseu—

do~euclidean metric

(55)
0 -1 , _' . (9.6.1)

The Clifford numbers are‘);:he form
c=s5+v'e, »vie,»b”% e, e, : (9.6.2)

i.e, they depend from four parameters. The multiplication table of

the algebra is

1 e, e, €,° €

1 1 €, éz €-e
e, e, -/ e e, -e,
e, e, -€,* 6, -1/ e,
e-e e-e e, -e, -1

This is identical to the multiplication table of the quaternions

(Brand, 1947} where
e i e, €€,k (9.6.3)

Then the Clifford algebra of P? is isomorphic to the quaternion
algebra, Alternatively one may define a quaternion as the Clifford
number of P* .

Now if we consider .the even subalgebra of p* i.e. the num

bers

c=5+2"%¢- e, (9.6.4)

of
their multiplication table is the samevthat of complex numbers
(Clifford numbers of P’ ). Then we may say that the even subalge-
bra of P° is isomorphic with the algebra of P’ (see table 9./0 ),
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9.7 Clifford numbers of £°.

A Clifford number of £? can be written ir the form

c-s+v"ek+2§bb”ehoek+§f7t""ehee,,oe, (9.7.1)
The last term reduces to

t*g, 0,00, =2"% : (9.7.2)
The 3-vector € enjoys the property

€*=-1 (9.7.3)

as can easily be seen performing the products of the €.

Then € behaves a3 the complex number { . Then we have
€,e,=€-8€, €,°; =€-€ €3°€e,=€-€, (9.7.4)

It follows that a Clifford number of £’ can be written as follows
C=(s+te) +(vI+d*%€) €, * (v -1b7%€)o€, * (v +1€)°€;  (9.1.5)

On account of the property (9 7.3) the terms contained in the
round brackets are formally complex numbers, If we denote them

by ¢°, ¢!, P @3 we can write a Clifford number of £ in
the form (Hestenes, 1966, p. 37) (Kahan, 1960, p., 101)

c=9°+@loe,+P%e,+ P -, (9.7-6)

Then a Clifford number of £’ is characterized b‘y four formally
complex numbers, The Clifford algebra of E’ is also called Pauli
algebra (Hestenes, 1966, p. 20) (Corson, 1955, p. 177},

Let us consider an even Clifford number of £° if we intro
duce the following notations -

e~k  €c€=j & e,-¢ ©.7.7)

we can write it in the form
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C=5+28%2¢ + 87+ b7k (9.7.8)

The Clifford product of two base bivectors gives
L.G‘.-—/ jo.s—-/ k'k-—/
/ (9.7.9)
l:“/'-k"'“/“’l‘ /.ok-“-—ko./' Kol -/'-_ick
These are the miltiplication rules used to define quaternions.Then

we conclude that the quaterions may be identified with the even:
Clifford numbers of £? (Riesz, 1958) - (Hestenes, 1966).

A Clifford number of £° can also be written as follows
C=(5+t726)+(D"-Vi€)ee 00, + (P +v7 @)@, @, +(b™ +V'E)°€, o€,
If we use the three units i,j, k as indicated in eq. (9.7.7Z) we
may write
C=yl+ypll~ W’j*“(’"k (9.7.11)

This is a complex quaternion also called biquaternion, Then the
Clifford algebra of £? is isomorphic with the algebra of complex

quaternions.

9.8 Rotations in £,
We now show how simply Clifford algebra permits to describe

the composition of finite rotations in E’ .
Let us consider a finite rotation of an angle around an
axis, passing from the origin of the coordinates, described by the

unit vector W . We shall conceive the finite rotation  a ari
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ging from small rotations %0 around the same axis, An arbitrary

vec i i
ector V is rotated to a new vector V' given by the relation

e .
visvr by (9.8.1)

where H is the unit bivector that lies in the plane orthogonal
to the axis: b=-w®’.

This formula comes from

o’v=—n£uxv =(%Pu/\v)*=61. (;,—Pu/\v) =

(9.8.2)
a;’To(eL_u)Lv _-—-;?bl.v
Now one may show that
=L ive
bLv = 7 (VoD -bev) (9.8.3)
Then
vimv f}infv-b ~zi;’fbov -
(9.8.4)

~(1-7 2 blvelt+ £ B)
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. 2
where we have neglected the square (-;f;/} +« If we now perform a se-
cond rotation of the same amount % around the same axis we ob

tain

Via(r-2 L) vere 2 56)= (1-AL8)ve(1+ L £B)°  (9.8.5)
After n7 rotations we have

vra(1-LZb) o1+ 25 8)" | (9.8.6)
the limit for /7 —oco glves ‘

v -eFTboyoeth (9.8.7)
deseribecl
This shows that a finite rotation is properly\/by a bivector. The

composition of two rotations of amounts (¢ and ¢ around two

whose ) .
different axesvunit bivectors are b and ,8/ is given by

v v
v -e_?ﬂ.e-fbavoe{bvoegﬂ (9-8-8)
It can be shown that

e{b=cos(‘7’)+65en(g—’) (9.8.9)

This is an aggregate of a scalar and a bivector and then is a qua
ternion (with unit norm). Using eqs. (9.7.9) one may show that
the product of two exponentials is another exponential but that
the argument is not the sum of the two arguments according with

the noncommutative character of the composition of rotations,

9,9 Clifford numbers of space-time

A Clifford number of M?* may ve written in the form
1 1 -
c=5+v"e,*5 bP e e+ Tt e e eyt

1 ropd (9.9.1)
+ 7 Pecesere,
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the last sum reduces to the single term
e (9.9.2)

4
If we choose in M~ a minkowskian metric with signature +---re

ferring to an orthonormal base €,,€,,€,,€, we have

€°=(e,e,0e,00,)2=-1 (9.9.3)

as is readly verified performing the Clifford product of the €, .
Then the four-vector € of an orthonormal base in a Minko
wsky space behaves as the immaginary unit i
The four-vector € defined by eq. in an or-

thonormal basis becomes

e~e’-e’oe?eel=g,o(-)(-&,)°(-,)~-€ (9.9-4)
and then
e’=(-€%)=-1 : (9.9.59

Let us consider an even Clifford number of ﬂ4 : it can be writ—-

ten in the form
Custf b, €t b e, 0+t 00y (9.9.6)
It has eight components, as ma.ny' as a Clifford number of Ea.
vagerform the substitution
€,°8, — &)
(9.9.7)

€yeey—> €,°8%

€,°€,°e,08;,—>€,°€,°€;

one may see that the multiplication table of the base multivectors
of the even Clifford numbers of M is the same that the multipli
cation table of the base multivectors of the Clifford algebra of £-

Then the even subalgebra of the Clifford algebra of N‘is i
somorphic with the Clifford algebra of E’ « This isomorphism is
shown in tabvle (9.10).

9,10 Ideals

Clifford algebra has two salient features: the product of
two Clifford numbers is not commutative and among its elements the
re are some which do not admit inverse,

The noninvertible elements of an algebra play a great role
in the structure of the algebra, Firts of all if #* is an element
that has not right inverse then for every Ce€ C the elements

r'=rec (9.10.1)
have not right inverse, as can be easily shown. This mean that from

one noninvertible element one may obtain other noninvertible ele-
ments. The set A of elements /€ is called right invariant sub-

algebra, or, more briefly right ideal. The element / is called
the generator of the right ideal R,

Analogous considerations can be done starting with an element
that has not a left inverse: we obtain in this way a left ideal.

These concepts are not peculiar of the Clifford algebra but
are common to all associative algebras, In particular in matrix al
gebra they become transparent. So let us consider the 2 x 2 matri
ces with real or complex elements. A noninvertible matrix is, for

ex. < A
”‘(O O) (9.10.2)

and all the matrices

(o( /3)((1 b)_ (o(afﬂc o(b*/:‘d) (9.10.3)
0 0OJ\c ¢ 0 0
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910  Clifford algebras and their isomorphic algebras

Dirac algebra

(lifford algebra of m*
errr?) e,
metrics 13:

Clifford algedra of £ 3

Pavli algedra or algebra of complet

71/ar‘erm‘oﬂs

ey |8

+*
metrics g,

(" )
+f
~f

Clifford algebra of P* |
€(P?) s

- Quaternion algebra "

*
metrics &,

(")

algebra of compler

Clifford algebdra of P’ $ Fielols
nurrbers

¢/P) |8,

metrics g}

(-1)

Clifford algebra of £ algetra of reals
C(E") <
/
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are of the same nature. Then they form a right ideal.

9,11 Idempotents
A particular kind of elements is that of the elements g that
enjoy the property

9'=q (9.11.1)

these are called idempotents, In particular the unit 1 is an idem
potent, Excluding this particular case it is easily seen that an
idempotent is noninvertible. In the algebra of 3 x 3 matrices ex~

amples of idempotents are

100 00O 1 00
000 000 0 0o
if g is idempotent also (1-q) is idempotent:
(1 -q)’ -{-2g+q*=1-2g+q =1-¢q (9.11.3)
Pwo idempotents ¢, and ¢, such that
g, . =0 . 92°9, =0 (9.11.4)

are said indipendent. (Weyl, 1950, p. 292). The idempotents G and
1 -q eare indipendent: )

(1-9)-9 =0 .7';”;-_;7)"0. . . (9.11.5)

The main use of idempotentsl.j.l.s._.to__generate left or right ideals,
The right ideal R geheratgégby an idempotent G i.e, the

set of elements

regee (9.11.6)
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enjoys the property

(1-q)er=0 (9.11.7)
The equations can be considered as a kind of compatibility condi-
tion for eq.@.”.é).

The corresponding idempotent (1~ § ) generates another right
ideal

r=(1-g)+C (9.11.8)
from which

9.3_0 . v (9.11.9)
Since every Clifford number € can be written in the form

cmgec *(1-gj-C (9.11.10)
we see that

C=rrp (9.11.11)

i.e. a Clifford number can be decomposed in the sum of two elements
that belong to two right ideals. On account of the property

Gor=qe(q<c)=g*C ~gec =r . (9.11.12)

the i_dempotent behaves as the left unit element in the right ideal
generated by it. An idempotent is said primitive (Weyl, 1950,p.293)
or irreducible if it cannot be decomposed in the sum of two idem-
potents ¢, and @, i.e. if

q=9+q2 (9.11.13)
implies that 9, or @, vanishes, If ¢ 1is primitive the ideal ge
nerated by it is minimal, i.e. does not contain other proper ideals,

The subspace formed by the ideal is said irreducible.
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9,12 _Matrix representation of the Clifford algebra

In the order to find the re'.presentation of an algebra a ge-
netral procedure is the following. Let us choose a basis £,,£,,..£,
where p is the dimension of the algebra. The products ['k'C: are
again element of the algebra and therefore must be expressible
linearly in terms of the &£,

E,4a=0(”5,*0(,z£'2{---- f-o(’PEP

Lo =G Eptoty bpr 0 FOG, £
) 2 20 &y P X22 £, 20 Lp (5.12.1)
-ﬁ,"a:d},/f*()(’,zfz“""‘ +0(PP£P

As can (be/€asily) shown the matrix lo(4, | gives a representation of

the algebra that is called the regular representation.

To prove this},let us denote with a and b two elements of an
agsociative algebra, If we put
Eea =, £, £ b=p6,%E,
c=a-b Epec = 3% e
it will ve )
£yo€ =Ey(@cd)=(£,@)eb = (4 E )b =, B E,  (9:12.3)

(9.12.2)

then

& =0, %3¢ (9.12.4)
i.e. to the product of the two elements a and b there corresponds
a matrix that is the product of the matrices that represent a and
b respectively,

To give an example, we consider the matrix representation of
the algebra of complex numbers, .

A base is formed by £, =7 , E,=( .

Since
/-(:)cu'y) =1z riy (9.12.5)
(fztiy) =—y +ix
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the matrix

- _[% y) (9.12.6)

vy % .
gives the regular representation of the algebra of complex numbers.

7o find the matrix representation of the Clifford algebra of
P2 we choose as a bvasis £,=7, E,—€,, E,=e,, E,=€,08,.
Then

{ ola+be,+ceroee,) rQrHe,+Cey+ 0018,
e, -(@rbe+ce,+de,ce,) = -brae-ode,+cece,

-cf +Qe,*ae,- 06,76,

1 e, (@ rb€,+Ce,* € 8;)

| (er-€;)-(a*D8+ce, sole,-8,) = —d7 —Cl,»De,+ae e,

The matrix
va +hH+c +d

-bra-d=+c
(9.12.8)

-c rod +ra-b
-d-¢c +br*ta
gives the regular representation of the Clifford algebra of Pz

or, on account of the isomorphism, of the quaternion algebra.This

matrix representation was found for the first time by Caley.

Proceding in analogous way one find the regularrepresenta-
tion of every algebra as the Clifford algebra of’f3 and N‘.

since the Clifford algebras all contain the unit element
those representations are all faithful, The order of the matrices
so0 obtained is equal to that of the algebra.

There may exist other representations of the algebra that &

re of lower degree: these are obtainad considering a right ideal
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of the algebra., If we apply to a right ideal of an algebra the sa
me procedure indicated above using a base in the ideal we find a-
nother representation of the algebra that is of lower degree.

In the Clifford algebra of 53 to generate a right ideal we
take the idempotent

1+@,
2 (9.12.9)

The elements of the right ideal geﬁerated by it are (a,b,c,d, are
complex numbers)
1+@,
r=—a (a+be,+ce,+de,)=
: (9.12.10)

a+d b-ic Cc+(b o
==z Tz &* Tz > e,

e A[{;ii]+5[”+;’)'e] (9.12.11)

One may choose as base vectors of the right ideal
7+€, (1+€,)e
E =55 £, = 2, ! (9.12.12)
and then

/+e - -
[52]-(p +ae, Resses) - (p5)[ 1322 @-ir)[ 8]

,]-* ®-5) [ (/+e2,)=e/

or

(1+@3)-€,
[”‘% “(P+Qe,*Re,*Se;) = (Qﬂ‘;e)[’;e
The matrix

C=

[P+S Q-iR
) (9.12.14)

\q+ir P-s
gives a representation of the Clifford algebra of 53 . This re
presentation is of degree two on the complex number field while -
that obtained with the regular representation is of dégree eight

on the real fi_eld. In particular the base vectors are represented

by the matrices
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o1 0 - 10
6'=(1 O) 61-(L' 0) 6"(0 _/) (9.12.15)

respectively, that are the Pauli matrices used in the context of

the nonrelstivistic quantum mechanics of spinning particles.
If we put

6, = (2 C;) A (9.12.16)

the matrix C can be wiilten

C=6,¢% (9.12.17)

To obtain the reduced representation of the Clifford algebra of

apace—time we start observing that the element

-_-’_*9121_"££ (9.12.18)

is an idempotent., Then the elements (a,byc ++.p=complex numbers)

1+€,°€,]
r =[ ——?’—9] (@ 5@, * CC TR * 18y * /1€y € +1€" €, P €g° € 5)

form a right ideal. Performing the prohuct one may see that these

elements have the form
1+€,°8, *(€,* €: &7 1+84¢ €,
e o = ’}’*C( 282 o0 (Z55)-e,

where A,B,C,D are four complex numbers.A basis of the right ideal

is then
= 1+€;°€, E €,°(8,*€;)
1 =" 2= >
2 2 (9.12.21)
€,% €3 _{1+e5-€,)0€,
£= 5 By
whose m14hf‘luaﬁb‘” fable s«
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£, £, £, £,
£, £, £, £, £,
A 0 9, 0 0
£ 0 0 9, 0
£, E, -£, +E, -E,

with these base elements one findsthe representation of the Clif
the -
ford mlgebra ofyspace~time: in particular the matrix that repre-~

sents €, (S
£E,oe,= 0F,+0E,+1E;+0E,
Eyoe, = OF, 0L, +OE;+1E 4
£yoe, = 1E,+0E,+0E;+0E,
£,oe, = OF, + 16, +OE3+0E

(9.12.22)

in this way one discoversthe matrix

o010

3= | © 11_({0 6,
o\ 0 6, 0 . (9.12.23)
0 0

Q0
w ©QO0

In analogous way one finds

e —> g«= (_gk gk) (9.12.24)

where the 64  are the Pauli matrices, The matrices Ju that
represent the base vectors e,« are the well-knovm Dirac matrices

used in the relativistic quantum mechanics of spin 1/2 particles,
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The matrices associated with a simple multivector are the
following: if D = U, A U4 - - A"lU5p one account of the rela

tion [9.36) the corresponding matrix is (Cartan, 1966, p. 83).
4 hki...
p=,375:zs.., o e &ie (9.12.25)

In particular to the multivectors € and € there correspond the

matrices

€ — o‘;=30c}u7233

(9.12.26)

e —» 5,5= a,aa,/ 32 3,3

The right and left supplementary of a base vector €4 are repre

sented by the matrices

(eu) =€cey —> ¥ Ju
(9.12.27)

i}

1 5
(e,u) e, e > 3.‘3
Proceeding in this way one may recover many formulae used in the
relativistic theory of elementary particles, with gain in the geg

metrical insight (Hestenes, 1966).

9,13 Spinors
The matrices that give an irreducible representation of the

Clifford algebra have complex entries: they may be conceived as 0
perators on AQ complex vector space, called the spin space. The

elements of the spin space are called spinors.,
S0 the 2 x 2 complex Pauli matrices 64 may be conceived as

operators on a two—dimensional vector space: its vectors with two

complex components are called two-component spinors, The 4 x 4 com
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plex Dirac matrices 3',44 may be considered as operators on a
four-dimensional vector space whose elements are called four—com
ponent spinors.

Then spinor calculus appears as a natural consequence of the

Clifford algebra.

9.14 The immaginary unit
The unit pseudoscalar € for spaces of one, two, three and

four dimensions satisfiesthe following relations

P! (pseudoeuclicdlean metric) €?=-1
P? (p:eud;,euclldean metric) € =-1
E? (evctidearn metric) e€?=-1 (9.14.1)
E3 (euctidean metric) €*=-f

M? (psevdoeuclidean rmetric ) €' =-1

In particular we notice that this is true in space-time on account

of the signature +---; in an euclidean space~time would be

€= +1 (9.14.2)
Then for there spaces the n-vector € Dbehaves as the immaginary
unit ¢ . This fact may puggest that the apparence of the immagina
ry unit in physical theories arises to take into account directio
nal properties. So, as is well known, the immaginary anit ( in e
lectricity is linked to the rotation of é—T of the axes in £? .

Moreover the property of the Pauli matiices

sty=£63 (9.14.3)
states that the supplementary of the vector @, is the bivector

e A ey because relation (9 /4 3) is equivalent to

exne, = €L e; (9.14.4)



or that is the same

ez-x ey = eg

These are examples that show that the colourless symbol

hides the geometrical content of a rotation,

~.

-
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(9.14.5)
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