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The reason for analogies
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An investigation on the reason for analogies between physical theories is
carried out. The reason is found in the fact that in every physical theory
there are basic physical quantities which are referred to geometrical and

chronometrical elements. The analysis is pursued further using the
rudiments of algebraic topology, i.e. the notions of ‘chain’ and that of
‘coboundary’. A rational classification scheme for the physical variables
and equations of whatever physical theory is then constructed. Some
examples of these schemes are given.

Introduction

It is a common experience that there are different physical
theories which exhibit formal similarities, i.e. well known
analogies. Analogies exist between physical theories even
though they may differ profoundly in physical content.

Essentially an analogy consists of a one-to-one
construction between the physical quantities and the
equations of a theory and those of another theory. This is
usually described giving a correspondence table (see
Table I).

It may happen that the physical variables which
correspond to one another are of the same mathematical
nature, i.e. both scalars, both vectors, both tensors, etc. In
this case the equations connecting two corresponding
physical variables are not only similar but are the same
equations.

This is the case for analogies between the stationary
thermal conduction, the electric conduction, the
electrostatic field and the hydrodynamics (stationary,
irrotational flow), which are all described by Laplace
equations. This leads to the use of harmonic functions and,
for plane problems, to the use of the functions of one
complex variable. These analogies are largely employed as a
device in obtaining the solution of a problem using the
known solution of the corresponding problem of another
theory.

But there are analogies between physical theories in
which the one-to-one construction is between two physical
variables that are not of the same mathematical nature.
Thus one may be a scalar the other a vector, one may be a
vector and the other a tensor, etc. The analogy between the
theory of dislocations in solid mechanics and magnetism is
of this kind. It happens that these analogies cannot be used
for solution purposes because the corresponding equations
are not the same. Nevertheless, they can be used, and are
used, as a means of transferring mathematical methods and

numerical techniques from one theory to another.

In the study of a physical theory we are consciously
inspired by the experience made in other physical theories.
This is typical of all sciences but is especially valid for
physics.

It is apparent that if we had a greater understanding of
the origin of analogies between different physical theories
we could make systematic use of them. This would permit
us to transfer information, mathematical techniques,
numerical experiences, etc. from one theory to another.
Moreover, one can construct a unique mathematical model
for many physical theories in which the common features
are exhibited once and for all, the main properties are
investigated with a great economy of mental labour, time
and money. This is apart from the intellectual pleasure of
the synthesis.

All these facts lead us to raise the question: what is the
origin of the analogies?

In this paper we attempt to answer this question.
Moreover, we show how one may construct a classification
scheme for the physical quantities and equations of every
physical theory. This classification scheme has led in a
natural way to the construction of a mathematical model
valid for a large class of physical theories'2.

Origin of the analogies

At the foundation of every physical theory we introduce
some measurable physical quantities from which, in
subsequent stages, other physical quantities are derived. It
is at this initial stage that one makes the important
observation contained in the following statement:

In every physical theory there are basic physical
quantities that are naturally referred to the most simple
geometrical and chronometrical elements such as points,
lines, surfaces, volumes, time instants and time intervals and
combinations of them (A).
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Table 1
Comparison among some physical theories

Physical theory Equations of structure

Constitutive equations Equations of structure

electrostatic field Ep = —3pyp p"= ethk ahDh =p
magnetostatic field gh ="M ya g" = u"*n, E'"lk JyHE =™
h
Ep =—0pp — 1A D =€thk a;.D" =p
electromagnetic field A il h hie ke
B =¢ A B =u Hp —3 0™ + ™ oHR ="
p = f(d)

a=—3atyp
perfect fluid motion
Vg = Ok

h
p +3pP =0
h

p" = p(@)a"*og

a" =k(T)a"py,

1
thermal field Pr =08p — ahqh =g
T g = pcvatT
irreversible thermodynamics S"M =Vifa 48 - LM?M Vi 4Bh _ ;B
) 4 D 4 pB =71BA7" D
analytical dynamics v o=—-q —pg=0Qp
be 0p = 0p(q) br
v =95 p=pv
longitudinal vibrations 9p —dxc =1
€= 9,8 o =Fe
- k :
elastostatics ‘ﬁ,‘ = thA pg =Ap Ah‘ﬁ:1 - Vkpg =fp
{small displacement)
A _ A k_ . kh_Ap
elastodynamics vh = Vhu PB=ABAY 3tPB — V,,pﬁ =fg
all displacement A A
sm P nt) v =3y PB = paggv®
2
Schrodinger field up = Ay Vh = 2h—ahkuk a;,v'l =g
m
a® = 126 %uq
meson field o = da¥ . 3l =0
=—(m,c) ¥
Symbols and names are explained in the corresponding Tables at the end of the paper. h, k, /,i,...=1,2,3.0,8,v....=0,1,2,3; x® =ct;
Vi = covariant derivative; D = absolute differential; Dt = dt; ap;, = metric tensor of the space; gog = metric tensor of space—time with
9
signature (+ ———); 3, =—, 3 = —; "™ is the Ricci tensor (a)2,0, — (a)'?),
2 Ay

Let us cite some examples: we consider mass or electric
charge contained in a volume at a given time instant, of the
probability of finding a particle in a volume at a given
time instant. We consider the electric potential at a point at
a given time instant, of the displacement of a point of a
material continuum during a time interval. We consider the
position vector of a particle at a given time instant, of the
impulse given to the particle during a fime interval. We
consider the electric flux through a surface, of the energy
and momentum flux through a surface during a time
interval, of the internal energy and entropy production in a
volume during a time interval.

We emphasize the fact that the physical quantities of
different physical theories which are associated with the
same geometrical entity may be different mathematically.
Hence with a surface one may associate respectively:
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magnetostatics: —s»——-- magnetic flux —— scalar

continuum mechanics: + contact force—»— vector

mechanics contact force motor
of ) and or
polar continua:—=—— |contact couple—| complex vector

As a natural consequence of the statement A there is the
following statement: )

In every physical theory there are basic physical laws
which state that a physical quantity referred to a
p-dimensional manifold > such as lines, surfaces, volumes,
time intervals, etc. is equal to a physical quantity referred
to its boundary 3w (B).

Typical laws of this kind are those expressed by balance
equations, in particular continuity equations, equilibrium
equations, equations of motion, circuital equations, and



compatibility equations; the cquations that give the general
solution of one of the preceding equations; the equations
defining the gradients; etc.

Examples of balance laws are: in magnetostatics the
statement that the sum of the magnetic fluxes through the
boundary of a volume vanishes; in continuum mechanics
the law of equilibrium that states that the sum of the forces
acting on the boundary of a volume and of the extcrnal
forces acting on that volume vanishes. The principle of
conservation of energy states that the outgoing energy flux
through the boundary of a volume during a time interval
plus the energy stored in the volume in the same time
interval is equal to the energy produced in the volume in
thestime interval considered. This law can be restated, with
reference to space—time, by saying that the outgoing
energy flux through the three-dimensional boundary of a
four-dimensional region is equal to the energy produced
inside it.

As an example of circuital law we mention the Ampére
circuital law: it states that the magnetomotive force along
the boundary of a surface is equal to the current flowing
through the surface. Often circuital equations arise as

_compatibility conditions of gradient-like equations. So in
fluid dynamics the condition that the circulation of the
velocity vector along a closed line vanishes implies that the
velocity vector is the gradient of a scalar function (velocity
potential). In the thermodynamic configuration space the
statement of the vanishing of the circuital of the vector
field, whose components are the ‘intensive’ variables, along
a closed line (Maxwell reciprocity relations) amounts to the
statement of the existence of entropy.

Perhaps this connection between physics and geometry
has been well known for a long time. But it seems that it
has not been realized how far one can go in the
understanding of the formal structure of physical theories
by exploring the consequence of this remarkable
connection.

One of the consequences of this connection is the
possibility of rationally investigating the analogies between
two physical theories according to the following criterion:
to every physical quantity of one theory there corresponds
that physical quantity of the other theory which is referred
to the same geometrical entity. Comparing the perfect fluid
motion with the magnetic field one may see that the
analogy of the vorticity vector.w is the magnetic induction

because both are associated with a surface. The velocity
vector v in fluid dynamics corresponds to the magnetic
vector potential A in magnetism because both are
referred to lines. Such analogies are easily detected by
comparing the classification schemes of the various physical
theories exhibited in the Tables at the end of this paper.

Preliminary classification of physical variables

Configuration-type variables

Since we propose to study the link between physical
variables and basic geometrical elements we need a
preliminary examination of the main physical variables and
equations of a physical theory. This is a difficult task
because of the great difference in terminology of different
physical theories: whatever name we choose to denote a
typical entity of a theory we are sure to be exposed to
criticism. Since we must start somewhere, we decided to
use as far as possible the terminology of mechanics, both
analytical mechanics and continuum mechanics. The reason

Reason for analogies between physical theories: E. Tonti

is that many physical theorics are modelled on mechanics,
among them field theorics.

One of the basic notions of mechanics is that of
‘configuration” of a mechanical systen. In discrete
mechanical systems the configuration is described by a set
of n generalized coordinates, universally denoted by q"': In
continuum statics the configuration is described giving the
displacement vector of every point of the continuum: this
is almost universally denoted by i . The coordinates ¢* and
the vector # will be called ‘configuration variables’ of the
respective mechanical systems. In field theories the
analogies of the mechanical configuration variables are the
field functions (also called field variables). The variables
that describe the configuration of a system or of a field will
be called configuration variables.

So the configuration variable of an electromagnetic field
is the vector potential A, ; the configuration variable of the
gravitational field in the relativistic description is the metric
tensor g,,,,. The configuration variables of a thermodynamical
system may be the intensive variables. In quantum mechanics
the configuration variable of a quantum—mechanical
system is the state vector  that gives the probability
amplitude.

In a physical theory, once we have chosen the
configuration variables and the independent variables, we
may consider those variables that are linked to the
configuration variables by means of operations of sum and
difference, of total or partial derivatives and total or partial
integrals with respect to the independent variables — without
the intervention of physical constants, material parameters,
coupling constants, phenomenological coefficients and
other parameters linked to the geometry or the physics of
the system. An exception is made for the speed of light in
vacuo. These variables, including the configuration variables
themselves, will be called configuration-type variables.

In continuum mechanics typical configuration-type
variables are the geometrical and kinematical variables such
as the displacement, strain, velocity, deformation gradient,
angular velocity, vorticity, rate of deformation, etc.

Source-type variables

Another basic entity of mechanics is the force concept.
In continuum statics the body force is considered as a
source of the change of the configuration of the system. In
particle mechanics the force is the source of the motion of
the particle. The notion of ‘force’ is replaced in other
physical theories by that of source of a ficld. So the electric
charges are the source of the electrostatic field and the
electric currents are the source of the magnetic field. The
variables that describe the source of a field or of a
phenomenon will be called source variables.

Let us consider those variables that are linked to the
source variables by means of operations of sum and
difference, of total or partial derivative and total or partial
integrals with respect to the independent variables —
without the intervention of physical constants, material
parameters, coupling coefficients, phenomenological
constants or any other parameter linked to the geometry or
the physics of the system, with the exception of the speed
of light in vacuo. All these variables, including the source
variables themselves, will be called source-type variables.

In continuum mechanics typical source-type variables
are static and dynamic variables such as body force, body
couple, momentum, angular momentum, stress, stress
functions, stream functions, etc.

App!. Math. Modelling, 1976, Vol 1, June 39
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The choice of a set of configuration variables and a set
of source variables in a physical theory is not unique:
reasons of convenience may lead to prefer one choice to
another.

Typical pairs of configuration and source variables are:
the Lagrangian coordinates g* and the generalized forces
Ok of analytical mechanics; the electrostatic potential and
the electric charge density in electrostatics; the displacement
vector and the body force vector in continuum mechanics;
the metric tensor g, and the stress energy—momentum
tensor T in the relativistic gravitational theory; and the
state vector ¥ and the interaction term ¢ in quantum
mechanics.

However, other choices are possible: thus in analytical
mechanics one may choose the momenta p;, and the
generalized velocities v* as configuration and source
variables respectively. In continuum mechanics one may
choose the stress potentials as configuration variables and
the dislocation tensor as a source variable. In magnetostatics
one may choose the pair vector potential (4,) — current
density (§*) or the pair scalar potential (x) — monopole
charge density () as configuration and source variables
respectively.

In the general field theory, a theory which essentially
rests upon formal properties common to many field
theories, the configuration variables are the field functions,
usually denoted by ¥,. Usually no explicit mention is made
of the source variables that, in the case of interacting fields
are implicitly included in the interaction Lagrangian.

In the mathematical nature of the configuration and
source variables we find the largest variety of types: they
may be real or complex numbers, vectors, tensors,
quaternions, motors, multivectors, Clifford numbers,
matrices, spinors, operators, etc.

Independent variables

In continuous systems and fields the configuration and
source variables depend on some independent variables such
as the time and space coordinates. When the physical
system under study exhibits some symmetry (plane
symmetry, spherical symmetry, etc.) one may use a lower
number of variables. In other cases one may treat one or
more variables as parameters, typically time. One may
consider those independent variables as coordinates of a
point of a space.

When we say that in every theory there are some
physical quantities that are naturally referred to the
geometrical elements of a space we refer to the space of
independent variables. Since the choice of independent
variables is not unique it follows that the same physical
quantity may be referred to different geometrical elements
in different spaces. Hence the electric potential ¢ will be
referred to points of the three-dimensional physical space
or to time lines of the four-dimensional space—time.

Other physical variables
In every physical theory one encounters other physical
variables that are defined as functions of the configuration-
type and source-type variables. So in particle mechanics one
defines the potential energy V and the Lagrangian of a free
particle respectively as:
7 v
V2 -[7@)-a7; L, & [ @@
0 [ (1
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They depend on the source-type variables 7, ;;’ and the
configuration-type variables ?, v . Once the constitutive
equations are given one may evaluate these physical
variables. So when:

e - - Vz_li—»
p =my orp=m01—z‘-2- v 2)

we obtain:

1, ) 2\
L,= —mv® and L, = —mec® |l ——
L) P 0 c? (3)
which are the typical expressions for the Lagrangian of a
free particle of classical and relativistic mechanics respect-
ively. In electrostatics and in magnetostatics one introduces

the variables: 7 -

B

we 2 [ E(D)-dB; e & [H(B)-aB

o 0 4)
which are defined as functions of the source and
configuration-type variables of the respective theories. Once
we specify the constitutive equations, we obtain these new
variables as a function of the configuration-type variables
only. Another example of physical variables of the electro-
static field is the Maxwell tensor giving the Maxwellian
stresses:

1
1" = D"E, —E(DsEs)Sl? )

This physical variable is a function of the two variables E
and D_.}Once we specify the phenomenological equation
D=D (E’ ) the stress tensor becomes a function of the
configuration-type variable only.

Equations of structure

The equations that link the various configuration-type
variables of a single physical theory do not contain physical
constants, nor material parameters, as we have said. These
equations contain algebraic sums, time or space derivatives,
time or space integrals, and their linear combinations.
Typical are the equations defining the gradients, those -
arising from circuital laws and compatibility equations. Of
this kind are the equations:

B = curd i v eh 2 Veu®  (6)

;ad

Codr’
Also the equations that link the various source-type
variables of a theory are of this kind. Typical are the
balance equations and the conservation laws, for example
the equations:

k >
“Vity® = fu; -— =71

fa[’g'ﬁ)ds=0 Q)

Equations of this kind do not have a general name in the
physical literature. Since in the following we shall deal
mainly with this kind of equation we use, tentatively, a
single name and call them equations of structure, or
structural equations.

We shall show that the equations of structure have a
geometrical origin, more properly described using the
elementary notions of algebraic topology. Such notions are
that of ‘chain’ and of ‘coboundary’ explained later. There
it will be shown that the ‘structural equations’ are



realizations of a single linear process, that of forming the
‘coboundary’ of a ‘chain’. This will give a reason for the
linearity of the structural equations.

Phenomenological equations

Configuration- and source-type variables of the same
physical theory are linked by constitutive equations, also
called material equations or equations of state. They
include physical constants, geometrical and material
parameters.

The interaction between two phenomena is described by
giving the link between the variables of one theory and the
variables of the other. These are the interaction equations
that contain coupling coefficients.

Both the constitutive equations and the interaction
equations are of the phenomenological kind and are usually
called phenomenological equations.

While the structural equations are always linear, the
phenomenological equations are generally non-linear.
Moreover, they can be differential or integrodifferential, as
in the theory of hereditary response (hereditary materials,
optical dispersion).

Other equations

The equations of structure and the phenomenological
equations do not exhaust, of course, the equations arising
in a physical theory. But they are the building blocks of all
equations of a physical theory. Hence the Poisson equation:

div[e(—grad p)] = o (8

arises as a mixing of two equations of structure with one
phenomenological equation, i.e.

divD = p; D= ef; EF = —grady 9

In general the wave equations and the field equations are
obtained by combining phenomenological and structural
equations.

All the foregoing can be summarized in the block
diagram of Table 2.

Chains and the coboundary process in physics

Cell complex

In order to give a rational classification of the basic
geometrical and chronometrical elements we shall consider
a region £ of a space R". This may be the three-
dimensional space (n = 3); the one-dimensional time axis
(n = 1); the four dimensional space—time (n = 4) or any
other space whose points are the n-ples of coordinates
formed by the independent variables used in a physical
theory. To fix our ideas we consider a region of R3. To
display the geometrical elements of R3 it is expedient to
subdivide the region £2 into three-dimensional cells whose

Table 2 Preliminary classification of physical variables of a physical
theory

Physical theory

Reason for analogies between physical theories: E. Tonti

faces are formed by the coordinate surfaces of a coordinate
system x', x? x®. Every cell is composed of vertices, edges
and faces that, in turn may be considered as zero, one,
two-dimensional cells respectively. Then we have four
geometrical elements that are called O-cells, 1-cells, 2-cells,
3-cells respectively.

In a time axis a cell complex is formed by O-cells (time
instants) and 1-cells (time intervals). In space—time the
O-cells are the events. Since spaces with n < 4 are the most
commonly used we shall use special symbols for the cells of
the various dimensions.

O-cell: point, time-instant, event: P

1-cell: line segment, time interval: L

2-cell: surface segment, line segment x time interval: §

3-cell: volume, surface segment x time interval: V

4-cell: hypervolume, volume x time interval: /

For every point of R? they pass:

()
8

as is shown in Figure Ic. This permits the p-cells to be
grouped into families: all p-cells that lie on a coordinate
manifold, e.g. x*x? belong to the same family. Then we
have 3 families of 1-cells and 3 families of 2-cells; these will
be denoted by the symbols 3L and 3S. In this way we
obtain a rational classification of the geometrical elements
of R" that is quoted in the left column of Table 3. The set
of all the cells of the various orders is called cell complex

and will be denoted by K.

Table 3 Classification scheme of the basic geometrical elements of a

celt complex K and its dual K in R”
¥ "=l F Kk ™2 g

Qo
COIRCD

3 coordinate lines;

I

3 coordinate surfaces

n=3

x " F

G B
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RI

1P~ }IZ
u{ -—1p

Figure 1 Cell complex for {a) R!, {b) R? and (c) R?

Dual cell complex

For physical theories it will be useful to consider the
centres of gravity of the 3-cells and to consider them as
vertices of another cell complex, as shown in Figure 1. This
will be called the dual cell complex and we denote it by K.
A characteristic of the dual cell complex is the fact that for
every p-cell of K there corresponds a (n — p) cell of K and
vice versa: this is shown in the right column of Table 3
which gives a classification scheme of the geometrical
elements of a space R", for n = 1,2,3,4. Cell complexes are
one of the typical subjects of algebraic topology, founded
by Poincaré in 1895.

Inner orientation of a p-cell

The triangle is the simplest polygon, the tetrahedron is
the simplest polyhedron; they are called the simplexes of
the spaces of two and three dimensions respectively (Figure
2). The number of vertices of a simplex is one more
dimension of the corresponding space. It is then customary
to denote the vertices of a simplex of R” with the notation:

(Py,Py,...P,) (10)

in which the index zero is included.

Let us consider a given arrangement of the vertices, say
for a tetrahedron, the arrangement (P, , P3, Py, P;). All
other arrangements can be grouped in two classes: those
that differ for an even or an odd number of permutations
from the initial one. We say that the given arrangement and
all those of the same class define an inner orientation of the
simplex. The arrangement of the other class defines the
opposite orientation. In this way one sees the combinatorial
character of the notion of orientation; it is easy to realize
that the inner orientation defined in this way reduces to the
intuitive notion of orientation (the way to go along the
perimeter of a triangle). This can be done using the notion
of induced orientation.
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A A
a b

Figure 2 Simplex of (a) R!, {b} R? and {c) R?

Ry P <Ry P, Py> KPP, Py Py
/ A &
o I
A
\
o

N\

Figure 3 Induced inner orientation

N4

Figure 4 Inner orientation of the p-cells in R*. (a) Oriented 3-cells;
(b) oriented 2-cells; (c) oriented 1-cell; (d) oriented O-cell

Induced inner orientation

The inner orientation of a simplex induces in a natural
way an inner orientation on its faces according to the rule?:

(— 1% (Py,Py,... Py, ... Py (1)

where the circumflex upon P, means that this vertex must
be omitted. When this rule is applied to a 1-simplex, 2-
simplex, 3-simplex respectively it gives the orientation
indicated in Figure 3.

Since the set of all faces of a simplex forms its boundary
we may say that the orientation of a simplex implies the
orientation of its boundary.

We now show that the converse is also true. Let us
observe that the orientation of two adjacent faces is such
that the orientations induced on their common element are
opposite. This property is known as the Mébius law of
edges* . If we orient one face of a simplex and then
propagate the orientation according to this law, one obtains
a compatible orientation of the whole boundary of the
simplex, and this is equivalent to the orientation of the
simplex itself, i.e. to the choice of an order of its vertices.
Then to orient a simplex we may give a compatible
orientation to its faces.

To give an inner orientation to a p-cell we may proceed
as follows: we divide the pcell into p-simplexes, then we



orient one simplex and propagate the orientation to the
adjacent simplexes using the Mobius law of edges. It is
easily seen that this process is equivalent to the choice of an
orientation of one face of the p-cell and to the propagation
of the orientation with the edge law. Then to orient all
p-cells of the same family, i.e. lying on the same coordinate
manifold, we need only fix an orientation of a simplex
lying on that coordinate manifold.

By definition the inner orientation of a point (O-cell)
means that incoming lines are considered positive (or
negative) (see Figure 4).

Outer orientation of a p-cell

If we consider the dual cell complex K we may use the
same criterion to give an inner orientation to all its cells of
the various dimensions. Since every p-cell of the primary
cell complex K is crossed by a (n — p) cell of K we may
consider the inner orientation of this (n — p) cell as
defining a new kind of orientation of the corresponding
p-cell (Figure 5).

Precisely we call the outer orientation of a p-cell the
orientation of its dual (n —p) cell®.

The outer orientation for a 3-cell amounts to the choice
of the outward or inward normals, while the outer

AT~ -
l'/ i ‘l/ 41 /,a

" 1 [ & |

= | S |
! 1 1 J !
| 25 s=xd 1 =)

WD 7 e -

i ~ -+

Figure 5 Outer orientation of the p-cells of R?

Figure 6 lllustration of screw to show link between inner and outer
orientation in three-dimensional spaces

Reason for analogies between physical theories: E. Tonti

27ty

Figure 7 Induced outer orientation

orientation of a point is defined fixing a sense of rotation
around the lines that arrive or leave the point.

The link between inner and outer orientation in three-
dimensional spaces may be established by means of a screw
(see Figure 6).

Induced outer orientation
The outer orientation of a p-cell induces in a natural way

an outer orientation on its faces. This is described in Figure
7.

Incidence numbers

Let us consider an oriented cell complex, i.e. a cell
complex in which all p-cells have been equipped with an
inner or outer orientation, and this forp =0,1,...n.

If we consider a p-cell we may induce an orientation on
all its faces; for some faces the induced orientation will
agree with the orientation previously assigned to the face,
for others it will not. If we number all pcells of the cell
complex according to whatever criterion and we number
also all (p — 1) cells, we may consider the incidence of the
rth pcell with the sth (p — 1) cell. If the sth (p — 1) cell is
not a face of the rth p-cell we assign to the pair (7, 5) the
number 0. If the sth (p — 1) cell is a face of the p-cell we
assign to the pair (7, s) the number + 1 or —1 according to
whether the induced orientation is compatible or not with
the orientation of the (p — 1) cell. Then we are led to
introduce the incidence numbers between the p-cells and
the (p — 1) cells denoted by:

+1
em(p-l.P) - 0
-1 12)

These incidence numbers may be considered as entries of a
matrix called the incidence matrix and denoted:

E(p.p-1)
So in R® we have three incidence matrices:
EQ .0) (13)

These matrices reflect the connectivity of the various cells
and then are of combinatorial nature.

EG2) E@

Chains on a cell complex

One of the basic notions of the homology theory is that
of ‘chain’. Let us number with an arbitrary criterion all
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p-cells of a cell complex and give an oricntation to every
p-cell. If we associate with every p-cell a mathematical
element like a number, a vector, a tensor, a matrix, etc. we
have defined a p-chain. A p-chain is then a mapping
between the oriented p-cell of a cell complex and the
elements of a set S. For later purposes we shall suppose that
this sct has at least the structure of an additive commu-
tative group, i.e. that an operation of sum is defined on
every pair of its elements w and v, and thatu +v=v + u.

Chains in physical theories

It happens that in physics we use p-chains without
having explicitly recognized it. So writing an equilibrium
equation we use a small volume element, usually a parallel-
epiped in a rectangular coordinate system. This volume
element is just a 3-cell of an underlying cell complex that
we usually do not explicitly mention. When we say that
every face of the parallelepiped is associated with the force
transmitted through it, we say that every 2-cell of the
underlying cell complex is associated with a vector, i.e. an
element of a space S = R3. To define the contact force
transmitted through a 2-cell it is necessary to define an
outer orientation of the 2-cell because we must select one
of the two opposite forces transmitted through it. Then
the distribution of the force on the 2-cell of a cell complex
is described by assigning with every oriented 2-cell of the
cell complex a vector. This amounts to saying that we
have constructed a 2-chain whose ‘coefficients’ are elements
of the same linear space $ = R®. Let us denote the force
transmitted through the sth 2-cell by f;; the corresponding
2-chain will be denoted by:

=l ) (14)

where a; is the number of 2-cells of the cell complex.

Let us consider as a second example a magnetic field in
a finite region §2 of the space. If we cover this region with
a cell complex K then with every oriented 2-cell of K is
associated the amount of magnetic flux transmitted through
it. If ¢, is the magnetic flux transmitted across the sth
oriented 2-cell the whole distribution of magnetic fluxes
is described by the 2-chain:

¢? = 41,02, - - - ba,) as)

In this case the coefficients of the 2-chain i.e. the amounts
¢, are numbers and thenitis S=R.

As a third example let us consider a Cosserat continuum:
with every oriented 2-cell is associated not only a force
but also a couple. If f; denotes the force transmitted
through the sth oriented 2-cell and ﬁ: the corresponding
couple we may consider the vector with complex
components:

-

'_';s =fst iﬁs (16)
where i denotes the imaginary unit. Then we can say that
in a polar continuum with every oriented 2-cell is
associated a complex vector. We then obtain a 2-chain:

m® = (i, m,,. . .Ma,) an

whose coefficients are elements of the space § = C>.

In these three examples we have 2-chains with different
space coefficients.

We now pass to consider examples of O-chains. Let us
consider the displacement vector of continuum mechanies:
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with every O-cell of a cell complex K we may associate the
displacement vector % . Then the displacement field is
described by a O-chain:

u® = (&y,iy,.. . Us,) U ER? 18)

where o is the number of O-cells of K.

Another example of O-chain is that of the velocity
potential in the fluid dynamics of an irrotational, perfect
stationary fluid motion. Let ¢(x, y, z) denote the velocity
potential, and ¢, its value at the sth O-cell. The field of the
velocity potential is then described by the O-chain:

0@ = (01,02, ---%a,) »ER (19)

Let us give now some examples of 3-chains. First let us
consider a continuum body that occupies a region  of
the space in which a cell complex has been build up. With
every 3-cell may be associated the mass contained inside it.
Then the mass distribution is described by the 3-chain:

m® = (m,ms, ... mq,) (20)

We may also consider the external force acting on every
3-cell. Let F; be the external force acting on the sth 3-cell.
The external force distribution is then described by the
3-chain:

FO® =(1?1,1?2,,“1?;3)

Up to now we have considered cell complexes in the
three-dimensional space because we have considered physical
quantities that depend on the three space coordinates. If
we consider physical quantities that depend on a set of n
independent variables we may consider the space R" and
build up a cell complex on it. If we consider a theory
whose physical quantities depend from the space and time
variables, x, y, z, ¢, the space is R*. But we may consider
the time 7 as a parameter and the three space coordinates as
independent variables and then the space is R’. On the
contrary we may consider the three space co-ordinates as
parameters and the time ¢ as an independent variable; in
this case the representative space is the real axis R.

To do some examples let us consider the motion of a
particle in space. The physical variables that are used in
particle dynamics depend on the time ¢. Then we may
consider a one-dimensional representative space, the time
axis. On it we may construct a cell complex dividing the

EER® 1)

t 1 t,

Figure 8 The continuum analogous of chains and coboundary
by time intervals

time axis in time intervals (Figure 8). The radius vector
r(z) is naturally referred to time instants (O-cells) and then
its variation with time is described by a O-chain:

-

r® = (%, .. . Te) ER @2)

where 7y, = 7 (tx ). The displacement vector 5 is relative to a
couple of time instants and then is naturally referred to the
time intervals (1-cells). Then its variation in time is
described by a 1-chain on the time axis:

sO = (8,5,...5,) ®ER (23)

where 5y is the displacement of the particle relative to the
kth 1-cell. The impulse # given to the particle is referred to



time intervals then its time distribution is expressed by a
1-chain:

WD = (. Fa) M ER (24)
on the time axis etc.

Lastly we consider a thermal field, and assume as
independent variables the three space coordinates x, y, z
and the time ¢. Let K be a cell complex in the region £ of
R?* that forms the domain of the independent variables. If
we consider the heat current density ¢ transmitted through
a surface during a time interval we see that this physical
quantity is referred to the 3-cells of K. Then its space-time

distribution is given by a 3-chain:
-
4 = @14, -4a,) @5

These few examples may be enough to state that those
physical quantities of a physical theory that are naturally
referred to the basic geometrical elements of some space
give rise to chains. The coefficients of these chains are the
amounts of the physical quantity associated with every cell.

As a matter of fact we can see that among the physical
quantities of a physical theory there are some that are
referred to the cells of a cell complex K and others that are
naturally referred to the cells of the dual cell complex K.
To work an example, if we consider the bending of a plate
subjected to a continuous load when we discretize the plate,
for example dividing it into rectangular elements, with
every such element associated with the corresponding load.
It is then natural to consider as unknown the vertical
displacement of the barycentric point of every finite
element. But these barycentric points are just the O-cells
of K while the rectangular elements are the 2-cells of K.
Then when the configuration variable (here the vertical
displacement) is referred to the cells of K the corresponding
source variable (here the load) is referred to the
corresponding cells of K.

As a general rule if the geometrical and kinematical
variables are referred to the p-cells of K the corresponding
statical and dynamical variables are referred to the p-cells of
K.

+9
.
o
*o
Q
X0
-
+0 -0
a b |
B
+(7|
a2
9
92
a

-
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The coboundary process

In the homology theory of cell complexes there is one
fundamental process that, starting with a p-chain leads to
the construction of a (p + 1) chain: this is called the
‘coboundary’ of the given p-chain. The process is the
following: let us consider a p-chain defined on a cell
complex K. Taking an arbitrary p-cell we consider all
(» + 1) cells of K that are incident on it: these are called
the cofaces on the p-cell. The mathematical entity a
associated with every p-cell is then transferred to every
coface with the same sign or with the opposite sign
depending whether the incidence number is +1 or —1.
Since every (p + 1) cell is a common coface of several
p-cells, to every (p + 1) cell there come as many values of
the mathematical entity a as are the faces of the (p + 1)
cell. We then sum up all the amounts 4, coming to every
(p + 1) cell: this sum is associated with the (p + 1) cell. In
this way, we have obtained a (p + 1) chain that is called
the coboundary of the given p chain. This two-stage process
is illustrated in Figure 9. If 5P* V) = (by, by, . . . ba,, ) 1
the coboundary of the p-chain a'P = (a,,a,, . . .aap) we
may write:

pP*Y = §4P (26)

& is called the coboundary operator, which is a linear
operator that maps the p-chains into the (p + 1) chains.

Since a p-chain is essentially a vector of R*? with
coefficients in S the coboundary operator from 2P to
b®*1) may be represented by a matrix E ®*1+P) that
operates from R*P and R*P+1_We may write:

b, = T,ePt1Ply, 27

When the coboundary operator § is applied in sequence
twice, it gives rise to the null chain:

5(aP) = 0¥+ (28)

where @ *? denotes the chain of rank (p + 2) whose
coefficients are all vanishing. This property is known as the
Poincaré lemma. A p-chain whose coboundary vanishes is

AR
<l

(o

-+ Gl - 03'0' 06- 05'0‘ 04-02

Figure 9 The process of forming the coboundary. A, Transferring the mathematical element to the
cofaces of a p-cell; B, summing the mathematical elements assigned to every {p + 1) cell
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Table 4 Classification scheme for the chains of K
and K in R*?

Dual celi complex £

v
&
AP . ggt? I £13.2)

Cell complex k¥

3S
&
az

Bl.§cl@ (3,2)
d c £

@,

.50 £U1,00
[7-5e0) r

v 18
o Bo

called a cocycle. The Poincaré lemma states that the
coboundary of a given p-chain is a cocycle.

One may also consider the p-chains on the dual cell
complex K. We denote 8, the number of p-cells of K;
F®*1-P) the incidence matrices of K. Table 4 gives a
classification scheme of the chains of a cell complex K and
its dual K in a region QCR3.

3

The coboundary process in physical theories

The physical interest of this process when applied to the
chains formed by physical quantities comes from the fact
that the equations of structure of every physical theory
states that one chain is the coboundary of another. Let us
give some examples.

Equilibrium equations. Let us consider a material
continuum and, in it, a three-dimensional region. The
equilibrium condition asserts that the sum of the contact
forces transmitted through the boundary of the region and
the external force acting on the matter contained in the
region vanishes. If we consider as usual a 3-cell and call F;
the exterior force acting on the sth cell, f;, the contact
force acting on the kth 2-cell we may consider the two
chains:

@ =G fan e T E.)(29)

With reference to Figure 10a the equilibrium equation can
be written:

R = (A DL (DA (A DR+ (= Dfm +

FO = (RE,..

(+ Dy + (= 1)fp (30)
AR N G1)
RO = 5@ (32)

Then an equilibrium equation states that a 3-chain is the
coboundary of a 2-chain.
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Figure 10

Circuital laws. Let us consider a small parallelogram as
indicated in Figure 10b and a physical quantity g
referred to the lines. A typical circuital law has the form:

G=HDg+(-Dgi+(FDge+(—1)gm  (33)

where G is the amount of a physical quantity associated
with the 2-cell. This law can be written:

G, = Zkeh(%e' ! )gk (34)

G(z) — 5g(l) (35)
where we have put

G? = (61,6...6G,) 8V =18, -8,) (36)
Then a circuital law is a statement that a 2-chain is the
coboundary of a 1-chain.

The gradients. Let us consider the process of forming the
gradient of a scalar, vector or tensor field. The first act is
that of forming the differences between the physical '
quantities ¢; and ¢; referred to two points P; and P; (see
Figure 10c). This difference:

¢s = (FDg + Dy 37
is associated with the line segment: we may write:

$s = Zrelh O on (38)
or ¢(1) = 5¢(0) 39)

Then we see that the construction of the gradients is
equivalent to the process of forming the coboundary of a
O-chain.

In an analogous way one can show that the compatibility
equations, the circuital equations, the balance equations,
the equations giving the general solution of another
equation, the conservation laws are all realizations of a
single statement: a (p + 1) chain is the coboundary of a
p-chain.

Classification scheme of physical variables

As shown in many physical theories there are physical
quantities that are associated with the basic geometrical
elements of the space of the independent variables chosen.
This association is completed by the fact that the sign of
the physical quantity depends on the orientation (inner or
outer) of the geometrical element. This permits the
distribution of the physical quantity to be described by a
chain. Now we have seen that there exists a typical linear
process, the coboundary process, that allows us to obtain a
chain from a chain of one dimension lower. In turn this
process reflects a typical process used in physics fo link
physical quantities: the corresponding equations identify
with the equations of structure (see above). If the
configuration-type variables are associated with the cells of



a cell complex K, the corresponding source-type variables
are naturally associated with the dual cell complex K.
These facts lead us towards a classification scheme for

physical quantities of a physical theory analogous to the
scheme of the chains of K and K of Table 4.

Extensive physical quantities

Let us consider those physical quantities that are
referred to extended geometrical manifolds of the space of
the independent variables, e.g. lines, surfaces, volumes,
hypervolumes, time intervals, etc.

By their definition they are additive to the parts of the
corresponding geometrical manifolds; hence there is a good
reason to call them extensive. The name ‘extensive’ is used
here in a more general sense than in thermodynamics where
it means additivity to the volume parts only.

These extensive physical quantities may be scalars,
vectors, matrices, operators, etc. When there are more than
scalars their components with respect to a base have one or
more indices. So the displacement of a particle during a
time interval is associated with an extensive chronometrical
element and is an extensive physical quantity (extensive in
time). Since it is a vector it can be represented by its
components s with 4 = 1, 2, 3. When the finite rotation
of a rigid body with a fixed point is associated with the
time intervals, it is an extensive physical quantity. It can
be described by an orthogonal matrix whose entries may
be denoted RE, i.e. with two indices.
~ Examples of extensive physical quentities are magnetic
flux, electromotive force, electric charge, energy, contact
force, etc.

Forming of densities

From the extensive physical quantities one is led to
introduce the corresponding specific quantities, e.g. the flux
for unit area, the contact force for unit area, the magneto-
motive force for unit length, the charge for unit volume etc.
These specific quantities are the common densities. So we
have the electric charge density, the mass density, the
velocity (time density of the displacement), etc.

When the physical quantity is associated to lines or
surfaces one must introduce a directional density or
equivalently a vectorial or tensorial variable. So

- -
magnetomotive force Fimy = JH - dL
L
o=[[5 dus
5
fa = j fpjnkds
§

The vectors H}, and B, and the stress tensor Pf are the
densities of the corresponding extensive physical quantities.
The index k refers to the geometrical element with which
the extensive physical quantity is associated, and will be
called geometrical index. On the contrary the index 4, as in
the contact force f4, is referred to the mathematical nature
of the extensive physical quantity and will be called intrinsic
or internal index. The distinction of these two kinds of
indices is of fundamental importance for the classification
we are doing. Table 5 shows some extensive physical
variables.

Since every extensive physical quantity is associated with
a corresponding density we may classify these densities. As
a classification criterion we choose the following: we refer
a density to the same geometrical object to which the

magnetic flux

contact force
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Table 5 Some extensive physical variables and their densities

Extensive physical

variable Defining relation Corresponding density
potential X
difference, V V= [ErdL electric field strength, Ep,

L

A a_ [ oA

displacement, s =1 Ade velocity, v

0

T
impulse, hy ha = Jfade force, fa
[}

magnetic induction, Bk

magnetic flux, ¢ o=/f Bknkds
S

stress tensor, aﬁ

contact force, ty  tg = Jf oinkds
S

mass density, p

mass, m m=fffpdV
v

energy

production, energy production

T
= odVdt
f‘f,fér density, o
T
Q= ffqundedt current density, qk
s °

fluid flow, Q

Table 6 The continuum analogous of chains and coboundary

chains: integral on the sth p_cell:
a® =@, a,.. -ag,) _— a;=a (P
bW =(b,,b,, ...by) ———  by=[ Br(P)AL®
. 1 Ls
@ =(,,ec,-. - Ca,) —— g=ff ck(P)nde
S
d® =(d,,d,,...dy) — 4= [[fD(P)V
2 V,
coboundary: gifferential operators:
b® =55 ——  BlPY=grada(P®)
£ = 5pW ——  Cip)=Tot B(P)
d® = 5@ ——  DP)=dwC(P)

when the coefficients of the chain are vectors:

-

D=, ... )

2

—

(ta)s = I "Z”kds
S
F(”:(ﬁuﬁy' .. ﬁa,) —_ (FA);=ﬂJfAdV

s

FO =5f@ —— —Fa= Vkai

differential identities:
rot (grad @) =0
div (rot 8) =0

Poincare lemma:
s6a®=0
(668N =0

—

—_

corresponding extensive physical quantity is referred.

The density field of a physical quantity is the continuum
analogy of the corresponding chain. To the coboundary
operator, that links two chains, it corresponds to a
differential operator that links the corresponding densities,
as is shown in Table 6. In this way one realizes that the
commonest differential operators ‘grad’, ‘rot’, ‘div’ are the
continuum analogous of the coboundary operator applied
respectively to O-chains, 1-chains and 2-chains.

Standard classification scheme

The content of Table 6 can be ordered as shown in
Table 7. This first column represents the chains of the
various orders, the second and third column give the
continuum analogous of the first one using an intrinsic
notation and a tensorial notation respectively. In both
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Table 7 Various forms of a standard column

Intrinsic notation Tensor notation Tensor notation
IP? Scalar Ipﬁj&mor lP@V«W
8-qgrad o IT,-O,,QJ F—‘,-V,uﬂ

k2 3¢
[FrePho,a, ] [0 e™ Ut
s ; s :
A
v,

03, C/ Y
v

i

Table 9 Classical particle dynamics

d dr
m 1t -

K " d -~ K
N
P - |"\
(] @
d : d
ve <, Primar de .
ar D) i
I 15
p=mv P lmer™

48 Appl. Math. Modelling, 1976, Vol 1, June

columns the physical quantity associated with the cells has
the nature of a scalar. This is reflected in the fact that the
mathematical entity that appears in the first box is a scalar.
When the physical quantity associated with the cells has
a vector nature, as is the case in continuum mechanics, we
have the fourth column. The symbol V,, denotes the
covariant derivative that is needed to take into account the
space variation of the components u, on account of the
space variation of the base vectors. The last three columns
will be called standard columns. A pair of standard columns,
one relative to a cell complex K and the other to its dual
will be called standard scheme K.
Table 8 gives the standard schemes for spaces of
n =1, 2,3, 4 dimensions. In the rectangular boxes that link

Table 10 Relativistic particle dynamics

X
I X
o K e d' Alembert ‘\g Fé
ES
fel s f=fls,$)
Elongotion>7j Constitutive eqn. Force per
unit length
v 3 . -
or primary dp_4dc0
- 0s cycle ar ax
ax
2L 2r
Velocity P=0Vv P, G Stress
o=£fe M "
. omentum
Strain Constitutive eqn. density
13
2w Dual ax
X cycle o=
at
Is 15
w=0 el
I I S
¢ P
AR
L L 1= 1-5-
Ll [
[l [
5 il :__
o R
57 x
-2 /“f"



Table 12 Thermal conduction for variables x', x> and x* (time t is
a parameter)

K ——{Heat equation}~_, ¥

(o™ 1P @ 14
Internal
Coldness Constitutive eqn. production gre\g;gt;
I .
-v{h Primar Ene
P b2 @ bolorr?cye
3¢

Coldness

gradient Constitutive eqn.

Dual
cycle

{me2r-3)

Table 13 Thermostatics of a monatomic ideal gas
14

Entropy @)

g’,fgrrg)?' ,—l =9,S Thermodynamic

Volume P temperature
79,5 Pressure

Number -L.a,s Chemical

of moles r potential

Entropic Equations of state Entropic
extensive (constitutive eqns)  intensive
parameters 3, parameters

3, -$1-3,5)=a
3,(3)-8, +¥1=p
8, D-3, (1) - v

3s
@ =0 Maxwell reciprocal
relations

0,a+3,840,y=Z

the configuration-type variables (K) with the source-type
variables (K) we must insert the constitutive relations.

With these rules we now construct the classification
scheme of the physical quantities of some physical theories.
Some of these schemes are shown in Tables 9-20. All
symbols and names are those recommended by the
International Union of Pure and Applied Physics, SUN
Commission, 1965. The dimensions are those of the
International System of Units (SI units). The schemes for
other physical theories are contained in a previous paper®.
In the same paper the analysis we have summarized here is
given in much more detail.
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Table 14 Irreversible thermodynamics (time ¢ is considered as a
parameter)

1~ x “7/.(.,

8 8
o8 -9
Generalized (time)= 9% %) a8

co-ordinates Sources

I Primar | ;

:}Ah. Vth @ GB=VIA:78/
33

)

Fluxes

Table 15 Perfect fluid motion of barotropic, unrotational, station-
ary flow for variables x!, x* and x*

I R Y
‘ 1P T~
“2’*'—?("5 HOW
. ass
Velocity uction
potential g;?gity

Primar ] Continui
v=V Y e p= tinuit
‘:zl @ E’ ¢ equcn:iony

3¢ 35
Constitutive eqn. Momentum
| density

wsVxy Dual
DRNEY
3s 37
gwp w=0
\‘\ /‘/
1 F
l X=V-w

Velocity

Vorticity

IV®

These classification schemes make evident the analogies
between different physical theories. So the analogy among
thermal conduction, fluid dynamics, electrostatics and
magnetostatics is evident by a comparison of the
corresponding schemes.

In order to utilize these schemes for solution purposes
one must investigate the mathematical properties exhibited
by the operators that appear in the structure equations and

(MT™]
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Table 16 Elastostatics

ke Novier }—, 7
14

{L)

Displacement Body force
vector
Primary x Equilibrium
@ Ve % /g eguotion

Displacement
gradient

Compatibility
equation
3s

Incompatibility

tensor
| HAx Vr’l Ar

Table 17 Fluid dynamics

n-4
Novier Stokes eqns . x T the kinetic -~ =
7= potentials | 7~}

in the constitutive equations. Such investigation has been
performed and the main mathematical properties have been
elucidated’. This has led to the construction of a
mathematical model.
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Table 19 Electromagnetic field with variables t, x, y and z

X
1P

(Mrr2r2/)

Primary
E=-Vy-0, 4 cycle
B8=VxA
6s

> ef=D
@B L geps
B

V-8=p ()
VXE+B48=/m

Probability
production

V-D=p
-6,D+VxH4j

6s

0-Vx¢
H=-Vy+ arql

density
Probabilit hd®
density— <Lt
Probat;:ility s
curren PV-Q !
density S-8;Q4VxR E
“@rn | ¥
i
i
Q=V-T i
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i
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i
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