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Chapter 1

Introduction

1.1 Historical Perspective on Electromagnetic Mod-
elling

All electrodynamic phenomena at a macroscopic level are described by Maxwell’s set
of partial differential equations already established in the 19th century. Although this
set of equations in principle provides the whole field of electrical engineering with
a concise and complete mathematical foundation, their solution for most practical
problems has long remained elusive. Complete analytical solutions can in general only
be obtained for a limited number of standard problems with very simple geometry and
material composition. These can be studied to improve our physical understanding
but their applicability to solve realistic engineering problems remains very limited.

“Low Frequency” Circuit Theory

Important progress in the field of electrical engineering could however be made with-
out being able to solve the intricate boundary value problems associated with even the
simplest electrical circuits. The laws of circuit theory were largely established exper-
imentally, prior to the formulation of Maxwell’s equations, and succeed in describing
simple low frequency electronic circuits by considering them as an interconnection of
wires and discrete lumped elements as resistors, inductors and capacitors. With the
benefit of hindsight, it is now clear that circuit theory is an extreme simplification of
electromagnetic field theory valid when the dimensions of the circuit are very small
compared to the wavelength or equivalently when the retardation effects due to the
finite propagation speed of electromagnetic phenomena can be neglected.

3



4 Introduction

Antennas and Microwave Circuits

In two particular domains however, the simplifications underlying ordinary circuit
theory were not valid at all : the antenna and microwave circuit disciplines.

Hertz originally demonstrated generation of radio waves at microwave frequencies in
1890. However, wireless communications became based on lower frequencies after
Marconi demonstrated long distance communication with low frequency waves in
1901. The generation of radio waves by antennas and speculations on their subsequent
propagation mechanisms were generally studied throughout the 1920’s and 30’s with
approximate analytical solutions from electromagnetic wave theory [1], [2].

The real development of microwave circuits occurred during World War II, when the
wavelength of the signals involved diminished as a consequence of the need to improve
the resolution of radar systems. In such circuits, many of the functions are performed
in spatially distributed systems of which the operation is thus fundamentally based
on electromagnetic wave phenomena. These new circuits were successfully analysed
with microwave network theory [1], [2]. In this approach, the waveguiding structures
(initially metallic bulky waveguides) are represented as transmission lines, while pas-
sive components and discontinuities are modeled with equivalent lumped networks,
extracted from the field theoretical problem with highly ingenious analytical methods.
Microwave circuits continued to develop in the postwar period with the development
of printed planar wave guiding structures in the 1950’s and the integration of active
solid state devices in the 1960’s [3].

Up to this point however, the use of electromagnetic field theory to analyse and
design antennas and microwave circuits has remained a specialized backwater niche,
with a strong emphasis on heavy analytical work to obtain approximate solutions
which could be evaluated with a minimum of computational effort.

The Appearance of Computational Electromagnetics

Perhaps the most important development in electromagnetic modelling occurred with
the appearance of digital computers in the late 1960’s. The availability of ever in-
creasing amounts of computational power, speed and memory at ever decreasing cost
shifted the balance from analytical to primarily computational techniques. Further
analytical work became devoted to developing new numerical algorithms and render-
ing the computations easier, faster and more accurate. It became possible to obtain
numerical solutions for boundary value problems of such complexity that even the
attempt to solve them was deemed ludicrous and impossible before the era of the
computer. Initial development and use of these techniques were driven from a de-
fense point of view with applications in the design of antennas and sophisticated
microwave and millimeter wave integrated circuits for radar systems, and the compu-
tation of Radar scattering Cross Sections (RCS) of aerospace vehicles [4]. Real full
wave solutions were already possible for the simpler antenna and RCS boundary value
problems, with the more complicated full wave circuit analysis slowly coming within
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reach.

The Spread of EM Simulation

In the late 1980’s, computational power became available to the design engineer as
high end work stations and became even more accessible with the spread of cheaper
desktop Personal Computers (PC’s). Full wave analysis of sections of circuits was now
realised to such a degree that the first commercial electromagnetic field simulators
(Ansoft HFSS, Sonnet em) could successfully be brought to the market [5], [6], [7].

The effects of this evolution have been twofold. On the positive side, the availability of
numerical solutions for realistic problems and the visualisation of the resulting fields
and currents can improve our physical understanding of the phenomena involved. En-
gineers no longer need to base their designs on lumped circuit models but can directly
probe and manipulate the underlying electromagnetic nature of their products. In
principle, it becomes possible to achieve “first pass” design success, optimizing the
design in advance, and thus avoiding the iterative design cycle with costly experimen-
tal prototypes. On the negative side, the possibility now arises to consider the design
process simply as a black box process, where input and output parameters are simply
fed into and extracted from the numerical algorithm, with little physical understand-
ing of what goes on in between. Such an approach will lead to too large a dependence
on numerical techniques while the arcane design skills based on elementary physics
and engineering principles will fade away [8].

The New Arising Trends

Since the 1990’s, the new demands of the Information Age with its emphasis on high
speed and large bandwidth requirements have been pushing the entire field of EM
simulation towards the more commercial applications in communications, both wired
and wireless, digital signal processing and high speed computer circuitry with spinoff
into all consumer electronics devices.

Traditionally, high speed electronic circuits have been grouped into two classes : mi-
crowave circuits using analog waveforms typically at frequencies above 3 GHz and
digital circuits typically processing logic pulses at clock rates below 1GHz. Digital
logic circuits are composed of densely packed multiple metal planes, with metal signal
and ground return traces horizontally between these planes. Interconnect devices like
vias and pins connect the traces and regions between the metal planes in the verti-
cal direction. The relatively low operating frequency of digital circuits has allowed
designs still to be based on low frequency circuit approaches.

However, at present, a major evolution is going on which makes the distinction be-
tween the analog field-theoretical microwave circuits and the circuit-theoretical digital
logic circuits fade away. The demand for higher processing speeds have pushed the
clock rates of everyday digital circuits into the GHz range, which implies total band-
widths well into the microwave range. On the other hand, the pressure to achieve
mass production of reliable and high yield systems at an affordable cost have forced
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designers to integrate as many components and circuit functions on an as small an area
as possible, combining digital and analog signal processing circuits on the same sub-
strate, resulting in ever increasing component density, decreasing circuit size, higher
levels of integration and overall system complexity.

Under these circumstances, the point has been reached where the operation of high
speed digital circuits becomes limited by the electromagnetic coupling and wave ef-
fects in the digital interconnect circuits, creating a true on-chip interconnect bottle-
neck. Typical effects such as delay, distortion, cross talk, interference and integrity
of the signals as they propagate through the interconnects can no longer be studied
using classical circuit theory. The circumstances have been reached where the cir-
cuit theory approach simply breaks down. Circuit parameters are unknown and at
times not even meaningful. It becomes necessary to take into account the full three
dimensional environment with a complete solution of Maxwell’s equations. The un-
derstanding of microwave phenomena becomes essential for the design and packaging
of high speed digital circuits. Digital circuit designers with traditional VLSI (Very
Large Scale Integration) and solid-state background will now have to enter the world
of electromagnetic fields [4].

The design of contemporary circuits exhibits a degree of sophistication and complexity
that can no longer be met by traditional design methods, but needs to be supported
by powerful CAE-CAD (Computer Aided Engineering / Design) software. In such
packages, full wave 3D EM simulators are used directly in automated iterative loops
to optimise the design of the linear passive parts of the circuit [9] and are then coupled
with nonlinear semiconductor device models [10]. The future will see their further
interfacing with thermal, topological and mechanical modelling into complete global
yield- and performance driven man-machine design environments [7], [10].

1.2 Relevance of Analytical Techniques in an Age

of Simulation

An important feature of any numerical method is the amount of analytical work
performed in its implementation.

Purely numerically oriented methods in general require very little analytical prepro-
cessing. They generally consist of a mainly computational algorithm. They are very
versatile in the type of structures they can handle since they make very little assump-
tions on geometry and material composition. However, the drawback of this approach
is that they often suffer from low computational efficiency and consequently have to
rely heavily on computational power. These methods risk of degenerating into brute
force methods with low accuracy and robustness.

Analytical work on the other hand can only be done under some simplifying hypothe-
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ses on the nature of the structure. The knowledge of the geometry combined with
the physical knowledge and insight of the developer allows to extract relevant parts
of the solution analytically in advance. The amount of analytical and programming
expense on the side of the researcher is considerable. The result is a problem specific
but more efficient, more accurate and often more robust approach.

A significant portion of research today is numerically oriented to the extent that one
is led to believe that analytical techniques have become of secondary importance.
However, it is equally clear that the desire to simulate realistic and complex large
scale 3D problems such as complete circuit topologies will always be accompanied
with the everlasting ailments of insufficient computational power both in terms of
speed and memory and this demand will probably always be beyond the reach of
whatever computational barriers future progress in computer hardware may be able
to breach. Successful numerical work will therefore probably continue to consist of
optimally combining the advantages of numerical and analytical techniques in hybrid
wave structure interaction algorithms.

1.3 Fundamental Modelling at ESAT-TELEMIC

Fundamental full wave electromagnetic modelling at KU Leuven started with the
development of a Boundary Integral Equation (BIE) (See Chapter 3) model by Van-
denbosch [11]. This model was initially conceived to analyse microstrip patch antenna
configurations in stratified dielectric media. Such antennas arose together with printed
microwave transmission line structures such as microstrip. They typically consist of
printed flat planar conductors located at the interface between the layers of a stacked
dielectric medium. The effect of the background medium is incorporated rigorously in
the Green’s function kernel of the BIE (See Chapter 4). Vandenbosch also developed
a special technique to rigorously model the coaxial probe feed of these antennas [12],
[13].

Subsequent work remained concentrated on antenna configurations, as Demuynck
developed the “expansion wave” concept to simplify the analysis of large antenna
arrays [14], [15]. He also improved the computation of the Green’s functions for
multilayered media [16], [17]. In the mean time, magnetic currents were introduced
to model aperture or slot (openings in infinitely large conducting ground planes)
coupled antennas. A special de-embedding technique (See Chapter 2) was developed
to excite structures with traveling waves on single conductor transmission lines.

Among the antenna topics, Volski [18] combined diffraction theory with integral equa-
tion techniques to model the finiteness of the layer structure in the lateral direction,
while Svezhentsev [19] performed modelling work on conformal antennas.

Soliman [20] used the magnetic current modelling to design several planar antenna
elements and arrays of the slot and aperture type [21]. He introduced an improved
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de-embedding procedure for multimode combined multiconductor multislot transmis-
sion lines [22]. He also introduced the Discrete Complex Image Method (DCIM) to
accelerate the computation of the Green’s functions.

Although the emphasis has been put on antenna analysis, the nature of the solver
allows it to be applied equally well for the analysis of printed planar microwave cir-
cuits. This topic was taken up by Van Thielen [23]. He introduced the capability to
incorporate “black box” models of discrete circuit elements and active devices into the
full wave analysis. He further improved the de-embedding procedure and introduced
simplified models to compute the interaction between the transmission line structures,
discontinuities and active devices.

1.4 Objective of this Research

The electromagnetic full wave solver MAGMAS (Model for Analysis of General Mul-
tilayered Antenna Structures) available at the outset of this work can be categorized
in several manners. The electromagnetic boundary value problem is formulated and
solved with a Boundary Integral Equation (BIE) method (See Chapter 3). It can
analyse planar antennas and circuits embedded within a planar stratified medium
(See Chapter 5). The numerical solution relies heavily on analytical work, such that
it is a good example of the hybrid numerical analytical approach.

In the original field of application, planar antennas are evolving into more arbitrary
almost completely three dimensional structures. In the field of microwave circuits,
increasing complexity has equally well introduced geometries beyond the capabilities
of planar solvers. In a new opening field, full wave electromagnetic field simulation
will be increasingly engaged in the analysis and design of electronic circuits, where
mixed digital and analog signals and waves propagate and interact in a complicated
three dimensional environment.

The objective of this work is therefore to extend the modelling capabilities of the MAG-
MAS framework from planar to three dimensional structures, faithful to the underlying
hybrid analytical numerical approach, and taking into account the technical background
of the antenna, microwave and traditional circuit structures envisaged, many of which
can be considered as embedded within a planar stratified medium.

A secondary objective is to demonstrate that full wave electromagnetic simulation
is no longer the restricted playground of antenna design engineers, and thus make
electrical engineers aware of what electromagnetic field simulation technology might
be able to do in the field of traditional circuit design.
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1.5 Outline of the Dissertation

The dissertation consists of two major parts.

The first part consists of Chapters 2 and 3. These introductory chapters provide the
reader who might be less acquainted with the field of computational electromagnetics
with the necessary physical and numerical background.

Chapter 2 starts directly from Maxwell’s equations. These equations are the direct
basis for the Finite Element Method (FEM) and Finite Difference Time Domain
(FDTD) numerical techniques of Chapter 3. The solution of these equations in integral
form allows to introduce the concept of the Green’s function, and forms the basis for
the derivation of the Boundary Integral Equation (BIE) method in Chapters 3 and
worked out in the remainder of the text. The importance of the wave nature of
the field and the reduction of a complete field theoretical solution to macroscopic
measurable quantities is discussed.

Chapter 3 discusses the theoretical formulation, the basic algorithm, and limitations of
the FDTD, the FEM and the BIE numerical techniques, which are the most important
one used today.

The second and largest part comprises Chapters 4 through 8. This part covers the
actual work performed in this thesis.

Chapter 4 derives the full spectral electric and magnetic dyadic Green’s functions.
These give the electric and magnetic fields in the spectral domain, generated by
a three dimensional point like current source embedded within an arbitrary plane
stratified medium. From the transmission line formalism used, a new factorised form
for the Green’s functions is developed, which is used in the remainder of the text for
analytical as well as numerical purposes.

Chapter 5 considers the expressions for the electric field in the spatial domain. The
physical interpretation is usually facilitated by casting the expression in the space
domain in mixed potential form. Several distinct mixed potential formulations are
possible and it is shown for the first time in this work that they are related by the
standard theory of Gauge transformations, applied for the case of a multilayered
medium. The relation of the field formulation to the geometry of the problem is
discussed. Typical theoretical and numerical problems of “total” mixed potential
formulations can be avoided by the newly developed hybrid dyadic mixed potential
field formulation.

Chapter 6 discusses the evaluation of the reaction integrals to obtain the elements of
the discrete matrix representation of the BIE. Traditional spectral and space domain
approaches are further blended in a combined spectral space domain approach. In
this approach, all transverse integrations are performed in the space domain with the
mixed potential formalism, while all z, z′ integrations involve the dyadic part of the
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formulation and can be done fully analytically in the spectral domain.

Chapter 7 provides more details on the most important numerical and analytical tech-
niques used. It is shown how in the inverse Fourier transform and in the remaining
evaluation of the reaction integrals in the space domain, the use of physics based
analytical extraction techniques can reduce the computationally expensive purely nu-
merical work to a minimum.

Chapter 8 demonstrates the capabilities of the full wave BIE solver developed in this
work. The examples are taken from the traditional antenna and microwave fields, as
well as from the more traditional field of “low frequency” electronics. Accuracy and
correctness of the software is verified by comparison with known analytical results,
simulated and measured results from open literature, and by comparison with the
results obtained from commercially available full wave solvers.



Chapter 2

Physical Aspects of
Electromagnetic Theory

2.1 Introduction

All electrodynamic phenomena at a macroscopic scale are in principle described by
Maxwell’s equations. The solution of this set of equations under realistic and com-
plicated circumstances in general requires numerical solution techniques, which are
discussed in the next chapter. The underlying principles of these techniques, their
application and the correct interpretation of the results remain based on physical
principles some of which are highlighted in this chapter. The most important char-
acteristic of the electromagnetic field is its inherent “wave” nature. This manifests
itself not only in the radiation generated by antennas, but even affects the operation
of ordinary electronic circuits. An accurate prediction of the macroscopic behaviour
of these devices can be done by considering the complete underlying boundary value
problem. In this chapter, these topics are considered for the case of a homogeneous
medium, but the main derivations and principles remain valid for more complicated
media.

2.2 Historical Perspective

The development of a mathematical theory of electric and magnetic phenomena has
been brought about by the efforts of a large number of eminent men who now figure
in our mental pantheon of scientific heroes, such as Coulomb and Laplace, Ampère
and Biot, Weber and Faraday.

11
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Originally, electrodynamic phenomena were described with an action-at-a-distance
approach by finding mechanical force formulas for the instantaneous interaction be-
tween moving electric charges, such as the formulas of Ampère and Weber [24], [25],
[26]. A contrasting approach was developed by Faraday, who sought the origin of these
phenomena in real actions going on in an intervening “aether” medium. By means
of elastic solid analogies and mechanical aether models, these ideas were put on a
mathematical basis by James Clerk Maxwell into the Maxwell-Faraday field theory in
1864. Apart from unifying and describing all then known experimental and theoreti-
cal results [27], this theory also predicted the existence of electromagnetic waves [28],
which were later demonstrated experimentally by Heinrich Hertz [29], [30]. As the
atomic nature of electricity was gradually revealed, the original interpretation became
superseded and the theory was refined and purified by the work of Hertz, Heaviside,
Fitzgerald and Lorentz [31] into a framework in which the electromagnetic field is a
more abstract carrier of far-action between moving electric charges, now propagated
at the finite velocity of light.

This historical dichotomy has its counterpart in present day numerical techniques.
The Finite Element Method (FEM) and Finite Difference Time Domain (FDTD) ap-
proaches are really “field based” techniques using directly Maxwell’s Equations, which
of course remain the fundamental basis of all formulations. However, the Boundary
Integral Equation (BIE) derived from Maxwell’s equations in Section 2.5 does ex-
hibit all characteristics of an interaction at a distance formulation, although not a
mechanical one, but an electromagnetic “reaction” as defined in Section 2.9.1 .

2.3 Maxwell’s Equations

When a macroscopic scalar charge distribution ρ(x, y, z, t) depends on time, the move-
ment of its microscopic constituents produces a vector electric current distribution
~J(x, y, z, t) according to the charge conservation law

∇. ~J(~r, t) = −∂ρ(~r, t)
∂t

. (2.1)

The interaction between the resulting electric currents ~J(x, y, z, t) can be described

by the assumption of the existence of two coupled vector fields ~E(x, y, z, t) and
~H(x, y, z, t) in ordinary space-time x, y, x, t. The whole theory can now be condensed
into the two independent [32] Maxwell equations

∇× ~E(~r, t) = −∂µ
~H(~r, t)

∂t
(2.2)

∇× ~H(~r, t) = +
∂ε ~E(~r, t)

∂t
+ ~J(~r, t). (2.3)

In these equations, the dielectric permittivity ε and magnetic permeability µ charac-
terise the material properties of the medium in which the interaction takes places. In
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this work we consider them as constants in space and time and independent of the
field strengths, either over the whole medium as in this chapter or in each layer of the
planar stratified medium considered in the remainder of this work. For these cases,
they can be consider as statistical averages of the underlying processes at the atomic
level of the material which produce its electric and magnetic characteristics. This
coupled set of first order partial differential equations is the appropriate expression
of a theory of action exerted between contiguous parts of a “medium” or field, and
forms the basis of the FEM and FDTD techniques of Chapter 3.

Taking the divergence ∇. of Equations (2.2) and (2.3), using the property ∇.∇× ~F =
0, and inserting the law of charge conservation Equation (2.1), we obtain the two
remaining but dependent Maxwell equations

∇ . µ ~H(~r, t) = 0 (2.4)

∇ . ε ~E(~r, t) = ρ(~r, t). (2.5)

A lot of the subsequent computations are simplified by working in the frequency
domain, such that the time variable is transformed into a frequency parameter. When
the field has a sinusoidal time dependence, it can be represented by a complex vector
phasor ~E(x, y, z, ω) from which the time dependence is recovered as

~E(x, y, z, t) = Re
[
~E(x, y, z, ω)ejωt

]
. (2.6)

In this way, differentiation and integration in time are simply replaced by algebraic
multiplication and division with the factor jω. The law of charge conservation (2.1)
and the independent Maxwell equations (2.2), (2.3) thus become in the frequency
domain

∇. ~J(~r, ω) = −jω ρ(~r, ω) (2.7)

∇× ~E(~r, ω) = −jω µ ~H(~r, ω) (2.8)

∇× ~H(~r, ω) = +jω ε ~E(~r, t) + ~J(~r, ω). (2.9)

2.4 The Wave Equations

Upon eliminating ~H and ~E from Equations (2.8), (2.9) we immediately obtain the
vector Helmholtz wave equations

∇×∇× ~E − k2 ~E = −jωµ ~J (2.10)

∇×∇× ~H − k2 ~H = ∇× ~J (2.11)

where k = ω
√
µε is the wavenumber of the medium. Although we now have more

complicated second order differential equations, the equations are decoupled, each ex-
pressing one field type directly as a function of the current ~J . A solution can now be
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formulated with the help of Green’s theorem in Section 2.5. These equations clearly
describe the “waving” nature of the fields and their generation by the current dis-
tribution. The most prominent manifestation of this phenomenon is the “radiation”
field discussed in Section 2.6. However, even if no radiation is present, the electromag-
netic behaviour of practical antennas and electronic circuits is still determined by the
“wave” nature as discussed in Section 2.8. These more subtle wave interactions can
only be taken into account accurately by a complete solution of the underlying bound-
ary value problem (Section 2.7) and ultimately affect the measurements performed at
a macroscopic level (Section 2.9).

2.5 Solution in Integral Form

The above wave equations can now be solved formally with the Green’s function
technique. This method is a generalisation of the technique introduced in 1828 by
George Green [33] to solve the electrostatic scalar Poisson equation for the potential
generated by a given charge distribution. The result will be that the fields can be
written as integrals over the currents multiplied with a Green’s function. This Green’s
function is the solution of the simpler problem for a point source excitation of unit
strength. The Green’s function can be considered as the mathematical description of
the electromagnetic interaction at a distance between macroscopic current distribu-
tions, propagated at a finite speed. The expressions also allow to study the radiation
field ( Section 2.6 ) and are the basis for the derivation of the Boundary Integral
Equations of Chapter 3.

The geometry of our problem is depicted in Figure 2.1. We consider a certain region
V ′ of space with “running” coordinate ~r,. The source ~JS(~r,) is only present over a
smaller and limited volume VS of this region. The volume V ′ is delimited internally by
Sc and Sδ and on the outside by S∞. The inner surface Sc is introduced to facilitate
the derivation of the boundary integral equations of Chapter 3. We want to determine
the field at any position ~r outside of the source region. To do this, we will need to
exclude this “observation” point from the volume V ′ with a principal volume Vδ with
boundary Sδ of radius δ . Over the entire space V ′, Equations (2.10) and (2.11) are
valid.

The problem can now be solved by first considering the simpler problem of a point-like
current source of unit strength

~JS(~r,) = δ(~r, − ~rS)I (2.12)

located at a single position ~rS and unit dyadic I . . The field excited by this simple
source is the dyadic Green’s function G(~r,, ~rS) which is the solution of

[
∇′ ×∇′ ×−k2

]
G(~r,, ~rS) = 4πδ(~r, − ~rS)I. (2.13)

It can be shown [34] that the dyadic Green’s function can be obtained from an even
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Figure 2.1: Generic volume V ′ and limiting surface S′ = S∞ + Sδ + Sc to solve the wave
equations by application of Green’s theorem. The excitation is provided by an imposed
current distribution ~JS . On the outer limiting surface S∞ receding to infinity the fields
satisfy the radiation condition.

simpler scalar Green’s function g(~r,, ~rS) which satisfies the scalar wave equation

(
∇′2 + k2

)
g(~r,, ~rS) = −4πδ(~r, − ~rS). (2.14)

The solution to this problem has long been known to be

g(~r,, ~rS) =
e−jkR

R
(2.15)

with R the spatial distance
√

(x′ − xS)2 + (y′ − yS)2 + (z′ − zS)2. The dyadic Green’s
function G(~r,, ~rS) can now be written as

G(~r,, ~rS) =

[
I +

1

k2
∇′∇′

]
g(~r,, ~rS). (2.16)

Both the scalar and dyadic Green’s function are singular when the points ~r, and ~rS
coincide, but are valid solutions of Equations (2.13) and (2.14) even at these points.

The field at the observation point ~r generated by a current distribution ~JS(~r,) (notice
the switch of coordinates) which is distributed over a limited volume VS of the space
V ′ can now be obtained by using a generalisation of Green’s theorem originally given
in scalar form [33]. The fields can be expressed with the scalar Green’s function
g(~r, ~r,) if we use Green’s theorem in vector form [34], [35]

∫

V ′

∇′ ×∇′ × ~A . ~B − ~A . ∇′ ×∇′ × ~B dV ′ =

∫

S′

~n, .
(
~A×∇′ × ~B + ∇′ × ~A× ~B

)
dS′ (2.17)
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or using the dyadic Green’s function G(~r, ~r,) if we use Green’s theorem in vector-
dyadic form [34], [35]
∫

V ′

∇′ ×∇′ × ~A . C − ~A . ∇′ ×∇′ × C dV ′ =

∫

S′

~n, .
(
~A×∇′ × C + ∇′ × ~A× C

)
dS′. (2.18)

These theorems are only valid for smooth functions ~A(~r,), ~B(~r,) and C(~r,). We
therefore have to exclude the observation point from the integration domain with
the principal volume Vδ to avoid the singular point of the scalar and dyadic Green’s
functions when ~r = ~r,. Over the remaining integration domain, the right members of
Equations (2.13), (2.14) are always 0.

We can now apply Green’s theorem Equation (2.17) with ~A = ~E(~r,) and ~B = g(~r, ~r,)~i
with ~i an arbitrary constant vector. Inserting the Helmholtz equations (2.10) and
(2.14) and simplifying the resulting expressions with Maxwell’s equations we obtain
∫

V ′

jωµg(~r, ~r,) ~J dV ′−
∫

V ′

∇′. ~E ∇′g(~r, ~r,) dV ′ =

∫

S′

jωµg(~r, ~r,)~n, × ~H dS′−
∫

S′

~n,. ~E ∇′g(~r, ~r,) dS′−
∫

S′

~n, × ~E ×∇′g(~r, ~r,) dS′ (2.19)

where the limiting surface S ′is actually S∞ + Sδ + Sc

Two additional steps are required to obtain the field at the observation point ~r. The
first is to let the outer portion of the limiting surface S∞ recede to infinity. If the
Sommerfeld radiation conditions [36]

lim
R→∞

~ir ×∇× ~E = −jk ~E (2.20)

lim
R→∞

~ir ×∇× ~H = −jk ~H (2.21)

are satisfied, the fields decay fast enough for this contribution to the integral to vanish.
The second is to let the size δ of the principal volume Vδ around the observation point
~r shrink to 0. In this case, the singular parts of the field become dominant and the
field can then be integrated analytically over the shrinking surface Sδ. In [37], [38], it
is shown in detail that the result of the limiting procedure is just 4π times the field
value at the observation point. We thus obtain

4π ~E(~r) = −
∫

VS

jωµg(~r, ~r,) ~JS dV ′ +

∫

VS

∇′. ~JS

−jωε ∇′g(~r, ~r,) dV ′

−
∫

Sc

jωµg(~r, ~r,)~n, × ~H dS′+

∫

Sc

~n,. ~E ∇′g(~r, ~r,) dS′
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+

∫

Sc

~n, × ~E ×∇′g(~r, ~r,) dS′ . (2.22)

This is an important result. The first term on the right is the field generated by the
imposed current distribution ~JS and can be considered as an imposed incident field.
The remaining last three terms constitute the “scattered” field generated by the “in-
duced” or “equivalent” electric and magnetic currents and charges ~n, × ~H, −~n, × ~E,
~n,. ~E, −~n,. ~H , flowing on the surface Sc. This contribution will allow to derive the
boundary integral equations in Chapter 3. Notice that the field at the observation
point ~r is obtained by integrating the contributions of all currents ~JS at other distant
positions ~r, after being multiplied with the Green’s function g(~r, ~r,). This integral re-
lation relationship is therefore the appropriate mathematical expression for the action
or field at a distance of the generating current distribution, and the Green’s function
describes the propagation mechanism.

Similar results can be obtained for the magnetic field by combining Equations (2.17),
(2.11), (2.14) as

4π ~H(~r) = −
∫

VS

g(~r, ~r,) ∇′ × ~JS dV ′

−
∫

Sc

jωεg(~r, ~r,)~n, × ~E dS′−
∫

Sc

~n,. ~H ∇′g(~r, ~r,) dS′

+

∫

Sc

~n, × ~H ×∇′g(~r, ~r,) dS′ . (2.23)

In some cases, it is preferable to have expressions available using the dyadic Green’s
function. By starting from the vector-dyadic Green’s theorem Equation (2.18) and
inserting (2.10), (2.11), (2.13) we obtain

4π ~E(~r) = −
∫

VS

jωµ G(~r, ~r,) . ~JS dV ′

+

∫

Sc

~n, × ~E . ∇′ ×G(~r, ~r,) dS′ −
∫

Sc

jωµ ~n, × ~H . G(~r, ~r,) dS′ (2.24)

4π ~H(~r) = −
∫

VS

∇′ × ~JS . G(~r, ~r,) dV ′

+

∫

Sc

~n, × ~H . ∇′ ×G(~r, ~r,) dS′ +

∫

Sc

jωε ~n, × ~E . G(~r, ~r,) dS′. (2.25)

If the free space scalar and dyadic Green’s functions are replaced with their equivalents
that incorporate the multilayered medium as determined in Chapters 4 and 5, the
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above derivations remain valid. This is so because the radiation conditions remain
satisfied, and because the singular behaviour for ~r = ~r, in any medium is the same as
if the medium is a homogeneous one (see Chapter 5).

Retaining only the source term contributions from Equations (2.22) and (2.23), and

using the properties ∇g = −∇′g, ∇ × f ~F = ∇f × ~F + f∇ × ~F , we rewrite these
expressions as

~E(~r, ω) = −jωµ
∫

VS

~J(~r,, ω)
e−jkR

4πR
dV ′ −∇

∫

VS

(
∇′. ~J(~r,, ω)

−jω

)
e−jkR

4πεR
dV ′ (2.26)

~H(~r, ω) = ∇×
∫

VS

~J(~r,, ω)
e−jkR

4πR
dV ′. (2.27)

The corresponding expressions in the time domain can be obtained by performing the
inverse Fourier transform. From Equations (2.26), (2.27) we see that we will require
the time domain counterpart of the frequency domain scalar Green’s function

g(~r, ~r,, ω) =
e
−j
ω

c
R

R
(2.28)

which can be obtained analytically as

g(~r, ~r,, t, t′) =
δ(t− t′ −R/c)

R
. (2.29)

This time domain scalar Green’s function is the solution for the corresponding time
domain scalar wave equation

(
∇2 − 1

c2
∂2

∂t2

)
g(~r, ~r,, t, t′) = −4πδ(~r − ~r,)δ(t− t′). (2.30)

It describes a spherical wavefront generated by the source at ~r,, t′ and traversing the
distance R = |~r − ~r,| at a finite propagation speed c to be detected at ~r, t. This time
delay t− t′ = R/c was described in the frequency domain by the phase shift e−jkR.

By the properties of the Fourier transform, the fields in the time domain are convo-
lutions of the source distributions ~J(~r,, t′), ρ(~r,, t′) with the spherical wavefronts of
Equation (2.29) that can be evaluated in closed form as

~E(~r, t) = − ∂

∂τ

µ

4π

∫

VS

~J(~r,, τ)

R
dV ′ −∇ 1

4πε

∫

VS

ρ(~r,, τ)

R
dV ′ (2.31)

~H(~r, t) = ∇× 1

4π

∫

VS

~J(~r,, τ)

R
dV ′ (2.32)

where the retarded time τ is given by

τ = t− |~r − ~r,|/c. (2.33)
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Figure 2.2: Radiation and evanescent fields generated by a source distribution ~J(~r,).

2.6 Electromagnetic Radiation

One particularly important type of electromagnetic field is the radiation field. Its
main characteristics are that it is the dominant field component at large distances
from a localised source distribution, and that it is able to transfer energy generated
by the source to very large distances. This phenomenon is thus the physical basis of
all wireless communications devices.

2.6.1 The Macroscopic Point of View

From the frequency domain expressions Equations (2.26) and (2.27), the dominant
field components at large distance R can be determined as

~Erad(~r, ω) = jωµ

∫

V ′

(~r − ~r,) × (~r − ~r,) × ~J(~r, ω)

R3

e−jkR

4π
dV ′ (2.34)

~Hrad(~r, ω) = − jω
c

∫

V ′

(~r − ~r,) × ~J(~r, ω)

R2

e−jkR

4π
dV ′. (2.35)

From these formulas, we obtain the main characteristics of the radiation field. The
field decays only as 1/R. Real power is carried away radially from the localised source
distribution, while reactive energy is stored locally in the immediate surrounding of
the source distribution. The amount of radiation is proportional to ω2. Radiation
is thus typically generated at very high frequencies. The situation is depicted in
Figure 2.2. However, this macroscopic frequency domain point of view gives very
little information about the mechanism and exact location at the source responsible
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for the generation of the radiation field. A time domain approach can reveal more
details on these topics.

From the time domain expressions Equations (2.31) and (2.32), the radiation field
becomes

~Erad(~r, t) =
µ

4π

∫

V ′

(~r − ~r,) × (~r − ~r,) × ∂ ~J(~r,, τ)

∂τ
R3

dV ′ (2.36)

~Hrad(~r, t) = − 1

4πc

∫

V ′

(~r − ~r,) × ∂ ~J(~r,, τ)

∂τ
R2

dV ′. (2.37)

Radiation is thus generated by any current which varies sufficiently fast in time. The
location at the source where the radiation is generated can now be traced accurately
by relating the appearance of a radiation field to a strong variation of the current at
a position determined by the appropriate time delay τ .

2.6.2 The Microscopic Point of View

A more detailed study at the microscopic level can be done by considering the current
as the movement of elementary charge carriers q with a velocity ~v.

~J(~r, t) = q~v(~r, t) (2.38)

To obtain the generally valid expressions for the complete field of a point charge
moving in an arbitrary fashion, we need to trace the exact trajectory of the moving
charge, an analysis which was performed by Liénard and Wiechert [39], [40], [41], [42]
already in 1898. Their expressions are valid for all velocities. For small velocities v <<
c, the radiation field is correctly given by inserting Equation (2.38) into Equations
(2.36) and (2.37) such that one has to consider an integrated charge acceleration
product

∫

V ′

q~a(~r,, τ) dV ′. (2.39)

This shows that a charge moving in a straight line with constant velocity ~v produces no
radiation field. Only at the instant when the charge carrier undergoes acceleration a
wavefront is generated capable of transferring energy to very large distances. Although
completely rigorous, this microscopic point of view is exceedingly difficult to apply to
macroscopic engineering problems. This is so because in such problems, the movement
of the charges is almost impossible to trace and generally occurs at very small velocities
(v << c). The radiation phenomenon is more generated by a wave traveling close
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the speed of light c in a charge-sea of which the individual charges move hardly at all
(similar to a sound wave in a material medium) . Due to the large number of charges
involved, all fields have to be added together.

Detailed studies [43], [44], [45], [46], [47], [48] reveal that radiation is typically gen-
erated at the excitation points of the structure, open ends where reflection occurs
and sharp corners where current flow is strongly curved. On long straight pieces of
antennas or transmission lines in circuits, almost no radiation is generated.

2.7 The Boundary Value Problem

Numerical techniques in electromagnetics have typically been developed to deal with
antenna and radiation problems. However, they are increasily being applied to rigor-
ously analyse phenomena in electronic circuits which are not only radiation but also
even more complicated near field interaction problems. The mathematical formula-
tion of Section 2.5 is a rigorous description of all phenomena in both the antenna and
circuit domain.

2.7.1 The Antenna Problem

Figure 2.3 depicts the boundary value problem for a generic antenna problem. The
imposed current distribution ~JS supplies energy to the metallic scatterer delimited
by the surface Sc. As a consequence of the fields generated by the source, charges
on the metallic surface will move and produce a current and this process generates
an additional “scattered” electromagnetic field. Energy supplied by the source can
be thought of as divided in two parts. One part can be thought of as being stored
in the “potential” energy due to spatial separation and “kinetic” energy due to the
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movement of the charges on the scatterer surface Sc. An equivalent point of view
is that this energy is stored in the reactive electric and magnetic non-radiating near
fields. The metallic surface thus acts as a guiding structure for near field energy
propagation. The other part of the energy is “lost” by driving the acceleration of the
charges on the surface. Equivalently, this energy is found in the radiation far field.
The metallic surface thus also reflects real energy into the far field [43].

Generally, the geometry of the antenna is optimised to convert the energy of the source
as efficiently as possible into radiation. This requires the dimensions of the antenna
to be of the same size as the wavelength of the radiation. The antenna problem is
typically a “high” frequency problem.

2.7.2 The Circuit Problem

On the other hand, typical electrical circuits operate at low enough frequencies such
that one can (up to now) assume an almost static situation. The size of electrical
circuits is typically much less than the wavelength. Such a problem is depicted in
Figure 2.4

In this case, the field generated by the source induces an almost static electric charge
distribution on the surface of the conducting wires of the circuit. This induced charge
distribution produces a second “scattered” field. The total electrostatic field set up as
a result drives the current on the wire surface, which is a magnetostatic DC current
[49]. The DC power supplied by the source can be thought of as being carried by
the current and converted into heat in the load resistor [50], [51]. Equivalently, the
energy can be thought of as being carried by the electrostatic and magnetostatic fields
outside of the wires which guide the energy through the surrounding space to enter
the load resistor sideways [41], [42], [52] where it is dissipated.

As the frequency at which the source drives the circuit increases however, the charge
distribution is no longer static, but has to be altered continuously to support the
current. The current is no longer magnetostatic but changes in time also. The energy
associated with these slow charge build up and movement is reactive and can also
be thought of as being stored in the electric and magnetic near fields of the circuit.
It is accounted for in a first order approximation by adding discrete capacitors and
inductors to the circuit (or equivalently, these phenomena will manifest themself first
in the parts of the circuits designed specifically for this purpose, the capacitors and
inductors.)

As the frequency continues to increase however, this first order approximation will
falter, as the operation of the circuit will be determined by the full details of the
geometry of the circuit and its surrounding. Apart from energy transfer to the load,
some energy is also converted into radiation. In such a case, a rigorous description
can only be obtained by accurately determining the complete charge and current
distribution everywhere.
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Figure 2.5: Whether or not the “wave” nature of the field has to be taken into account
depends on the frequency applied by the source and the physical size of the problem domain.

Generally, an electric circuit is designed to transfer the energy generated by the source
as efficiently as possible to the load, or to perform a desired operation on it by
manipulating the electric and magnetic effects of the circuit. The production of
radiation is considered to be an undesirable side effect.

2.8 The “Wave” Nature of the Field

The wave Equations (2.10),(2.11) explicitly demonstrate that the electromagnetic field
is always a “waving” field. For real life applications, the question arises when this
wave nature has to be taken into account [53].

Consider a geometrical structure, whether an antenna or a circuit, with a fixed char-
acteristic dimension D as depicted in Figure 2.5. A source ~JS generates a field with
sinusoidal time dependence sinωt at a frequency f = ω/2π which spreads out over
the object. The field observed at the edge of the object varies as sinω(t−D/c). The
deviation of the field at the edge of the object with that at the source position is
measured by the phase difference which can be written as

D/c

1/f
=

Ttravel

∆Tsource
=

D

c/f
=
D

λ
(2.40)

with Ttravel the travel time over the object, ∆Tsource the characteristic time interval
over which the source changes, and λ the wavelength. To judge whether the wave
nature of the field has to be taken into account, all time intervals have to be compared
to ∆Tsource, and all dimensions normalized to the wavelength λ.

If the excitation occurs at a very low frequency as in Figure 2.5(a), then Ttravel <<
∆Tsource, which means that the field at the edge assumes a value determined almost
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instantaneously by the value imposed by the source, without any time delay. Alter-
natively, the size of the object becomes very small D << λ, such that the spatial
variation of the field over the object due to wave effects can be neglected. The spa-
tial resolution with which the field can detect geometrical and material details is very
small. The structure can often be characterised by a single number, typically obtained
from a “no wave” quasi-static analysis.

With a very high frequency excitation, we have Ttravel >> ∆Tsource, such that when
the field reaches the edge of the structure, the source has already changed considerably
and this time delay has to be taken into account. Alternatively, the object becomes
large D >> λ compared to the wavelength. The field shows a strong spatial variation
and its spatial resolution is now so high that all geometrical and material details affect
the total solution. Only a “full wave” solution involving a large number of unknowns
can accurately describe this situation.

2.9 Macroscopic Measurable Quantities

The complete solution of a boundary value problem provides three dimensional vector
field and current distributions. However, from the point of view of an experimenter
or an everyday electrical engineer, it is very difficult to measure such vector fields
directly and to correlate them to his problem at hand. It is therefore required to
reduce the complete solution to observable quantities which can be measured simpler
and directly. This is achieved with the “reaction” concept [54], [55], [56] which links
the complete vector field solutions to simple quantities familiar from classical circuit
and network theory.

2.9.1 Impedance Z-parameters

In order to extract a measurable quantity from a complicated boundary value problem,
an excitation current source ~JS has to be imposed over small volume VS as depicted
in Figure 2.6. From the solution of the boundary value problem, the resulting field
at the source distribution ~E( ~JS) is then measured by integrating it with the source
distribution and this quantity characterises the “reaction” of the whole structure to
the impressed source. The generalised impedance

Z = − 1

I2
S

∫

S′

~E( ~JS). ~JS dS′ (2.41)

is just this “reaction” normalized by a factor IS = |
∫

S′

~JS dS′| to make it independent

of the amplitude of the chosen excitation. It is a single complex number determined
by the frequency, the complete geometry of the structure and its surrounding. If the
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volume VS is small compared to the wavelength, the generalised impedance is just the
familiar impedance Z = V/IS as the ratio of the voltage V resulting from applying
an imposed lumped current source IS . The power generated by the source current
becomes

P = −
∫

S′

~E. ~J∗
S dS′ = V I∗S . (2.42)

The concept can be generalised for N ports [55] or volumes Vj as depicted in Figure
2.7. In this case the mutual impedance Zij measures the reaction at port i from the
excitation at port j

Zij = − 1

IiIj

∫

Si

~Ei( ~Jj). ~Ji dSi (2.43)

which by proper normalization is independent of the amplitude of the observation
and source distributions ~Ji, ~Jj .

2.9.2 Scattering S-parameters

The impedance Zij is mostly used to characterise low frequency circuits and sim-
ple antennas. For more complicated microwave network problems, scattering or S-
parameters are used. They are especially useful when the actual excitation for the
experimental situation is done with a transmission line. A transmission line can be
any structure specifically designed to transport electromagnetic energy from one point
to another as depicted in Figure 2.8. Its longitudinal dimensions are typically much
larger than its transverse dimensions. In a transverse cross section of the line, mul-
tiple conductors and/or material discontinuities are used to capture and confine the
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energy and to force it to propagate along the length of the structure. The propa-
gating field can be decomposed into a forward (incident) and backward (reflected)

wave as depicted in Figure 2.8. The ~E, ~H field patterns of the traveling waves can
be translated into circuit theoretical voltage and current waves [57], [58] in terms of
which the S-parameters can be defined as

Sij =
V −

i

V +
j

(2.44)

the ratio of the outgoing wave on port i to the incident wave on port j.

These S-parameters can be obtained from a full-wave electromagnetic simulation by
inserting a physical piece of the transmission line as part of the boundary value
problem. The excitation at the fundamental level remains a “small” current source
located at the beginning of the line. The length of the transmission line between the
excitation point and the central part of the scatterer or circuit has to be sufficiently
long to allow the eigenmode field distribution to be built up naturally. It then becomes
possible to relate the fields and currents at the actual excitation points to the traveling
waves on the transmission line and thus convert the originally computed Z-parameters
into the desired S-parameters. This is called a “de-embedding” procedure. The
S-parameters can be measured directly as complex numbers by a vector network
analyser.

2.10 Conclusions

In this chapter, we have repeated Maxwell’s equations as the mathematical founda-
tion to describe all electromagnetic phenomena at a macroscopic level. They directly
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constitute the basis for the Finite Element Method (FEM) and FDTD (Finite Differ-
ence Time Domain) numerical methods discussed in the next chapter. The solution
of the wave equations in integral form allowed to introduce the concept of the Green’s
function, which describes how the electromagnetic interaction is carried over larger
distances with the finite velocity of light. This formulation will lead to the Boundary
Integral Equation (BIE) approach derived further in Chapter 3. The integral solutions
allowed to discuss the radiation field, typically occurring in high frequency antenna
problems, but this is not the only important wave phenomenon. Whenever the size of
the problem domain is large compared to the wavelength, or when the field varies so
rapidly that the occurring time delay can no longer be neglected, a complete solution
of the boundary value becomes necessary. This problems emerges at the moment in
electronic circuits. Finally, it was shown how the total field solution for a given prob-
lem is reduced into quantities like impedance Z and scattering S parameters which
can be measured directly at a macroscopic level.
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Chapter 3

Numerical Methods for
Electromagnetics

3.1 Introduction

In this chapter, we present a short overview of the most commonly used computational
techniques that are based on Maxwell’s equations to simulate circuit and antenna
behaviour at the most fundamental electromagnetic level. These are the so called
“full wave” techniques. This means that no fundamental approximations are made in
the formulation stage of the problem although the subsequent numerical solution on
a computer may require more subtle approximations.

A reason for exploring the underlying principles of numerical techniques is to provide
a more general background which will enable one to fit the specific approach presented
in this work into the overall scheme of computational electromagnetics. The present
discussion gives a short overview of the theoretical basis, the solution algorithm used
and some problems and limitations of the most common numerical techniques. Some
of the validation presented in Chapter 8 will also include results obtained with com-
mercial full wave solvers which are based on the numerical techniques presented here.

The available full wave numerical techniques can be classified at the highest level
according to whether the problem is formulated in the time domain or frequency
domain (Section 3.2) and whether the mathematical description of the electromagnetic
problem is differential equation or integral equation based (Section 3.3).

A list of some available commercially full wave solvers is given in Section 3.6.

29
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3.2 Frequency versus Time Domain

Historically, almost all theoretical work has been performed in the frequency domain
[59]. This is because closed-form time domain solutions are almost impossible to ob-
tain [43]. By assuming a sinusoidal time dependence, the time dimension can be elim-
inated as independent variable while its Fourier transformed counterpart frequency
is just a parameter in the computation. The physical time delay is transformed into
a phase shift. Only the spatial variation of the problem has to be sampled. Disper-
sive material characteristics are easily included in the frequency domain. The further
analytical analysis often requires further simplifying assumptions on problem geome-
try, boundary conditions and material properties. Growing computational resources
have transformed the evaluation of analytical formulas into problem specific and con-
sequently highly efficient frequency domain field solvers [59]. Initially, time domain
or transient data was generated by using frequency domain solvers to compute a
pre-established range of frequencies and perform an inverse Fourier transform.

However, increasing speed and memory of computers made it possible to model the
behaviour of 3D electromagnetic fields directly in the time domain. The independent
time variable now also has to be sampled. The solution is formulated from the out-
set in algorithmic form, with a minimum of analytical preprocessing. The algorithm
mimics the space-time behaviour of the field with a Marching on in Time (MoT) ap-
proach, making it very suited for parallel and vector computers. No matrix inversion
is thus required. Less geometrical and material restrictions are imposed at the cost
of larger computational requirements. A single computation with a smooth pulse
excitation can provide wide-band frequency data, although the computation has to
be redone for each new excitation. Non-linear effects are more easily modeled in the
time domain. Perhaps the most attractive feature of direct time domain modelling is
the opportunity for improving our insight into the physical behaviour of electromag-
netic fields by studying them directly in space-time, the natural dimensions in which
dynamic physical events take place.

3.3 Differential versus Integral Equation Methods

Differential equation methods are derived directly from Maxwell’s curl equations or
the Helmholtz wave equations with little analytical preprocessing. Consequently,
arbitrary geometries and material inhomogeneities can be handled. The field has to
be sampled and stored over a 3D space. Due to finite computer memory resources,
the computational domain has to be truncated. These methods are thus inherently
better suited for closed shielded problems. For open radiating structures, special
absorbing or radiation boundary conditions have to be formulated. The differential
equation describes local interactions between contiguous field samples, resulting in
sparse matrix representations. However, for a given problem, the number of samples
is considerably larger than for an integral equation description.
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The formulation of an integral equation demands extensive analytical preprocessing.
First, a Green’s function that incorporates the geometry and material characteristics
of the surrounding medium has to be determined, preferably in closed form. This
makes the formulation problem specific but computationally more efficient and phys-
ically more robust. Secondly, application of Green’s theorem as in Chapter 2 allows
to express the field as an integral of the surface currents. Automatic inclusion of
the radiation condition makes the method ideally suited for open radiation problems.
The current has to be sampled over a 2D surface, reducing the number of unknowns.
However, the Green’s function makes all current samples interact with each other
giving full matrix representations.

3.4 Differential Equation Based Methods

The most popular differential equation based methods are the Finite Element Method
(FEM) described in Section 3.4.1, which is used almost exclusively in the frequency
domain, and the Finite-Difference Time Domain (FDTD) technique described in Sec-
tion 3.4.2.

3.4.1 Finite Element Method (FEM)

The finite element method is widely used in all branches of engineering [60]. It was
first introduced into electrical engineering for solving waveguide problems [61]. The
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defining feature of the finite element method lies in the choice of special expansion
functions, defined over small triangular (2D) or tetrahedral (3D) regions of the com-
putational domain as in Figure 3.1. These allow a practically unlimited capability
to conform to complex geometries and material inhomogeneities. The discretisation
of the problem typically gives very large but sparse matrix equations which can be
solved efficiently with iterative techniques.

Basic Formulation

In literature, the FEM is often derived from a variational point of view where we
seak minima and maxima of (energy) functionals. Since the energy interpretation is
not readily available in electromagnetics and to stress the similarity of FEM with the
solution of integral equations, a method of moments based formulation will be given.
The Helmholtz wave equation for the electric field

∇×∇× ~E − k2 ~E = −jωµ ~J (3.1)

is enforced in an average sense by integrating it with certain weighting functions ~Wm

over the entire domain
∫

V

~Wm.
(
∇×∇× ~E − k2 ~E + jωµ ~J

)
dV = 0. (3.2)

This equation is cast into a ’weak’ form by using ∇.( ~A× ~B) = ~B.(∇× ~A)− ~A.(∇× ~B)
to shift one derivative to the testing functions
∫

V

∇× ~Wm.∇× ~E dV − k2

∫

V

~Wm. ~E dV

+

∫

S

~Wm.~n×∇× ~E dS = −jωµ
∫

V

~Wm. ~J dV. (3.3)

With ∇× ~E = −jωµ ~H, the third term in the above equations now incorporates the
boundary conditions on the tangential magnetic field over the limiting surface S into
the basic equations and this is an essential aspect of a FEM formulation. Since these
are not known a priori at the boundary radiation or absorbing boundary conditions
must be applied. The last term is the forcing function with the known excitation ~J .

Node and Edge Based elements, Spurious Solutions

To discretise Equation (3.3), the field is expanded using subdomain functions defined
on the rectangular (or tetrahedral) domains of Figure 3.1 which are called elements.

f =

Ne∑

e=1

nodes∑

n=1

F e
nf

e
n,

~E =

Ne∑

e=1

edges∑

n

Ee
n
~Ee

n (3.4)

For a scalar function f , the edge based elements f e
n of Figure 3.2 are used, while the

vector field ~E is expanded with vectorial functions. The expansion function f e
n is a
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typical hat function with unity value at node i of element e and F e
n is its unknown

amplitude as depicted in Figure 3.2. A scalar representation naturally enforces a
continuous field representation. The use of node based elements to expand each
component of a vector field has long hampered the breakthrough of FEM for vectorial
field problems. Not only does it make the imposition of vector boundary conditions
cumbersome, the solution is also corrupted by the appearance of non-physical spurious
modes [62], [63]. These spurious modes are not just an accuracy problem (they do
not go away by decreasing cell size) [64], but are a fundamental problem of the scalar
continuous field representation. The physical vector field only requires continuity of
the tangential field components, but allows for discontinuous normal components. It
was found that the vector nature of the field is best incorporated already into the
basis functions [65] by using an expansion such as the one depicted in Figure 3.3. The
vectorial expansion function is now associated with an edge n (opposite to node n).
Its tangential component along edge n is constant and unity while it is zero along
the other edges. The normal component varies linearly along edge n. Its amplitude
is given by Ee

n. These expansion functions are called “Whitney” elements [66], “curl
conforming” elements [67], or “edge based” elements [68].

Element Equations

Equation (3.3) is now discretised into a matrix equation by inserting the expansion
(3.4). The Galerkin method is obtained when the weight functions equal the expansion

functions ~Wm = ~Ee
m. Instead of directly working this out, it is computationally more

advantageous to compute all combinations for the elements separately, which amounts
to leaving out the sum over the elements at this stage. This gives the element matrix
equations for each rectangle/tetrahedron

{
[Ae] − k2 [Be]

}
[Ee] = [Ce] (3.5)

where

Ae
mn =

∫

Ve

∇× ~Em.∇× ~En dV
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Be
mn =

∫

Ve

~Em. ~En dV

Ce
m = −jωµ

∫

Ve

~Em. ~J dV. (3.6)

These integrals can usually be evaluated in closed form since the basis functions are
polynomials over triangular domains. This is done conveniently by expressing the
basis functions with simplex coordinates [64]. The surface integral in Equation (3.3)
only gives a contribution when the element e is located at the boundary of the domain.
In this cases it gives extra contributions to Ae and Be when a radiation or absorbing
boundary condition is used, and a contribution to Ce when it represents an incident
field at the boundary.

Assembly of the Matrix Equation

Reintroducing the sum over the elements corresponds to consolidating the equations
for adjacent elements into a single equation for each node or edge, such that it corre-
sponds to the overlap of the actual basis functions. A global matrix equation

{
[A] − k2 [B]

}
[E] = [C] (3.7)

which is very sparse is obtained.

Excitation and Boundary Conditions

The excitation of the field can be a volumetric source distribution represented by ~J
in Equation (3.3). It can also be an incident field ~Ei at the boundary of the domain
which can be incorporated through the surface integral of (3.3). In such a case, the
total field formulation has to be converted into a scattered field problem by inserting
~E = ~Ein + ~Escat and rearranging terms [63].

Perfect electric conductors in the computational domain or at the boundary are easily
modeled when vector tangential elements are used to expand the electric field. Since
this tangential component has to be zero on the conducting surface, the corresponding
coefficients are simply put equal to zero and disappear from the matrix equation.

Radiation (RBC) and Absorbing (ABC) Boundary Conditions

For open radiation and scattering problems, the size of the computational domain has
to be constrained. Special conditions have to be imposed on the boundaries of the
domain to simulate an infinite domain without causing unphysical reflection of the
field at the truncation.

Radiation Boundary Conditions (RBC’s) can be expressed in the form of surface
integral equations that relate tangential electric and magnetic fields over the boundary
surface. This leads to hybrid finite element - boundary integral equations [69], [70].
Such a formulation is exact and can be enforced even very close in the “near field” of
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the scatterer but unfortunately they express a global radiation condition that couples
information around the entire boundary. The extra fill-in requires extra computation
time and strongly reduces the sparse nature of the FEM matrix.

The sparse character of the FEM matrix can be conserved by using local Radiation
Boundary Conditions (RBC’s). They are only approximate in nature and this also
requires that they be employed at a certain distance of the wave-structure interaction
region thus enlarging the computational domain. They are incorporated in the FEM
formulation through the surface integral of Equation (3.3)

∫

S

~E.~n×∇× ~E dS = −jωµ
∫

S

~E.~n× ~H dS ≈
∫

S

~E.P ( ~E) dS. (3.8)

We have to find an expression P ( ~E) that expresses the tangential magnetic field

or the tangential component of ∇ × ~E as a function of the tangential ~E-field and
its higher order derivatives on the boundary, and simultaneously simulates the local
outgoing wave nature of the field. The order of the derivatives in the expression P ( ~E)
determines the order of the RBC. The higher the order, the better the accuracy of
the RBC, allowing a nearer placement to the scatterer at the expense of increased
complexity for its evaluation. The simplest 0th order radiation boundary condition in
cylindrical coordinates amounts to no more than the Sommerfeld radiation condition

lim
ρ→∞

∂E

∂ρ
= −jkE. (3.9)

Higher N th order scalar RBC’s for a 2D circular boundary were given by Bayliss-
Turkel [71]

N∏

n=1

(
jk +

∂

∂ρ
+

4n− 3

2ρ

)
E = 0. (3.10)

These conditions were extended to be applied with the vector Helmholtz equation on
a 3D spherical surface [72], [73]. Vector absorbing boundary conditions for arbitrarily
shaped boundary’s can be worked out [74], [75], but still are only valid for near normal
incidence far away from the scatterer.

The energy of a field incident on the boundary can also be dissipated by wrapping
the computational domain with a layer of lossy absorbing material (ABC’s), thus
creating a numerical anechoic chamber. These absorbers usually consist of artificial
non-physical materials of which the material parameters are tuned to obtain low re-
flection coefficients [76], [77]. An important artificial absorber with very low reflection
and high absorption was developed by Bérenger [78] within the context of FDTD tech-
niques and will be discussed there. Its application for FEM mesh truncation is still
under investigation.
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Accuracy : Higher Order and Parametric Elements, Numerical Dispersion

The discretisation error is the difference between the solution of the continuous prob-
lem and its discrete representation. While it is true that it is determined by the
electrical size of the elements, more considerations have to be taken into account.

A great reduction of error and faster convergence can be obtained by using higher
order polynomials within an element to give a smoother representation of the field
on the cell [79]. The modelling flexibility of FEM can be improved further with the
use of basis functions defined on cells with curved edges themselves, the so called
“parametric” elements [80].

For a fixed spatial discretisation, overall accuracy tends to degrade with increasing size
of the computational domain [81]. For these cases, numerical dispersion dominates
the overall error. The speed of a wave in free space does not depend on frequency.
The spatial discretisation procedure alone makes speed depend on frequency. Waves
therefore propagate at the wrong velocity, yielding a progressive and cumulative phase
error the farther the waves propagate [82]. The error also depends on the direction of
propagation (grid anisotropy) [83]. For large domains, the use of highly complicated
RBC’s may therefore be of little effect. It also compromises the generally claimed su-
perior scaling properties of FEM with problem size since to maintain a fixed accuracy
we need to decrease element size on top of the already present increase of the number
of cells with the extension of the domain.

3.4.2 Finite-Difference Time Domain (FDTD)

The Basic Algorithm

The FDTD method starts straight from Maxwell’s source-free curl equations

−µ∂
~H

∂t
= ∇× ~E (3.11)

ε
∂ ~E

∂t
= ∇× ~H. (3.12)

From a numerical point of view, this is a set of coupled hyperbolic advection equations
[84]. These are discretised by approximating the continuous differential operators
by centered difference approximations in both space and time. For a full 3D field
distribution on a rectangular Cartesian grid this can be achieved by using a spatial
staggered grid for the electric and magnetic field as proposed by [85]. Figure 3.4,
depicts an elementary “Yee cell”. The main grid lines coincide with the position of the
electric field variable and are tangential with them. The size of the cell is ∆x,∆y,∆z,
and the coordinates are indicated by indices i, j, k. The central difference for the time
derivatives with time step ∆t requires that ~E is computed at integer time steps n,
while ~H is determined at half integer time points. This allows a “leap-frog” time
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integration [84] as depicted in Figure 3.5, where a field is advanced in time by using
information of the complementary field type at an intermediate time point. Using the
simplified notation

F (i∆x, j∆y, k∆z, n∆t) = F n
i,j,k (3.13)

the resulting finite-difference approximations for theX component of Maxwell’s Equa-
tions (3.11) and (3.12) are

H
n+ 1

2

x i,j+ 1
2
,k+ 1

2

= H
n− 1

2

x i,j+ 1
2
,k+ 1

2

+
∆t

µ∆z

(
En

y i,j+ 1
2
,k+1 −En

y i,j+ 1
2
,k

)

− ∆t

µ∆y

(
En

z i,j+1,k+ 1
2

−En
z i,j,k+ 1

2

)
(3.14)

En+1
x i+ 1

2
,j,k+ 1

2

= En
x i+ 1

2
,j,k+ 1

2

+
∆t

ε∆y

(
H

n+ 1
2

z i+ 1
2
,j+ 1

2
,k
−H

n+ 1
2

z i+ 1
2
,j− 1

2
,k

)

− ∆t

ε∆z

(
E

n+ 1
2

y i+ 1
2
,j,k+ 1

2

−E
n+ 1

2

y i+ 1
2

,j,k− 1
2

)
. (3.15)

Similar expressions for the Y and Z components can be derived by inspection from
Figures 3.4 and 3.5.

Excitation and Perfect Conducting Surfaces

The excitation of the problem can be an internal source or an incident field. An
internal current source can be incorporated by including the source term into the
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Maxwell Equation (3.12) also in discretised form and imposing its value [64]. In case
of an incident field from a remote source, a plane wave field can be imposed at the
boundaries of the computational domain [64]. Other excitation methods like imposing
guided wave field patterns in a transmission line are also possible [86]. The excitation
is usually a Gaussian pulse of which the pulse width is adjusted to cover the desired
frequency spectrum.

Perfect conducting surfaces are fairly easily incorporated if the boundary coincides
with the main grid lines of the Yee lattice. In this case the tangential electric field at
the boundary is simply put to zero throughout the computation.

Stability, Explicit and Implicit Methods

A solution is called stable when it does not grow unbounded as time progresses. The
“leap-frog” time integration of the basic algorithm is an explicit method : the field
value at a certain moment only depend on results at earlier times. When using explicit
methods, the size of the time step ∆t is limited by the CFL (Courant, Friedrich, Lewy)
stability condition [87], [88]

∆t ≤ 1

cmax

(
1

∆x2
+

1

∆y2
+

1

∆z2

)−1/2

(3.16)

where cmax is the maximum velocity of light occurring in the computational domain.
This is easily interpreted physically : the speed with which a certain field value is
computed from the previous ones is limited by the physical speed of light as indicated
in Figure 3.6 for a simple scalar problem without a spatial staggered grid. It is also
possible to construct finite difference schemes that are not subject to this limitation
and remain stable for any size of the time step. Such implicit methods [89] use finite
differences for the time derivative similar as the one depicted in Figure 3.7. However,
in such a case, field values depend on other field values at the same moment such that
a matrix equation now has to be solved at each time step.

Numerical Accuracy and Dispersion
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If the solution remains bounded, one still must consider the accuracy of the discrete
approximation to the original continuous problem. Where FEM and BIE formulations
are usually too involved to determine expressions for the discretisation error, this is
more easily achieved for the simpler FDTD formulation. Due to the use of the centered
differences, the discretisation error for the basic “Yee” algorithm is second order

∂F

∂x
=
F (x+ ∆x) − F (x)

∆x
+O(∆x2) (3.17)

and similarly for ∆y,∆z,∆t. Similarly to the FEM method, the finite difference
approximations again result in numerical dispersion (see Chapter 5 in [90]). The
different frequencies propagate at different speeds in the time domain, such that
pulses will be distorted as they propagate through the FDTD mesh. The required
accuracy may therefore require a lot finer mesh and smaller time step than calculated
by the CFL condition to simply obtain a stable solution.

Radiation (RBC) and Absorbing (ABC) Boundary Conditions

As in the FEM, we need to constrain the size of the computational domain for open
radiation problems. Again, radiation and absorbing boundary conditions have to be
imposed on the boundaries of the domain.

Radiation Boundary Conditions (RBC’s) are expressed globally and exactly with
integral equations that relate the field values on the surface of the domain [91], [92].
They now have to formulated in the time domain and incorporated in the FDTD time
stepping algorithm, which may reduce the efficiency of the computation.

Local approximations are again possible to simulate the outgoing wave nature at the
boundary. Contrary to the FEM method were we seek vectorial expressions that can
be used on an arbitrarily curved boundary surface, in FDTD we try to translate the
radiation condition into finite difference expressions (usually on a straight boundary
section) that can be used together with the basic finite difference Equations (3.14).
As in FEM methods, the order of the derivative of the field at the boundary which
is now expressed in discrete form determines the order of the RBC and its accuracy.
The standard difference Equations (3.14) cannot be used at the boundary since field
values from outside the boundary would be required. Therefore, new formulas are
derived to find the boundary values that take into account the outgoing nature of
the field as depicted in Figure 3.8. Waves propagating in the -Y direction satisfy a
“one-way” wave equation (Sommerfeld radiation condition for y → −∞)

(
∂

∂y
− 1

c

∂

∂t

)
E = 0 (3.18)

which can be discretised into Mur’s first order RBC [93]

En
0 = En−1

1 +
c∆t− ∆y

c∆t+ ∆y

(
En+1

1 − En
0

)
. (3.19)

The boundary still needs to be set sufficiently far from the structure under consid-
eration, since the method only works for plane waves that are normally incident to
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the edge. The absorption of non normally incident waves can be improved by taking
into account more derivatives of the field at the boundary into the “one-way” wave
equation (

∂

∂y
−
√

1

c2
∂2

∂t2
− ∂2

∂x2

)
E = 0 (3.20)

such that slightly obliquely incident waves, for which we assume ∂
∂y ≈ (1/c) ∂

∂t � ∂
∂x

can also be absorbed. By expanded Equation (3.20) in a Taylor series, we get a second
order derivative in the expression

(
1

c

∂

∂t

∂

∂y
− 1

c2
∂2

∂t2
+

1

2

∂2

∂x2

)
E = 0. (3.21)

Subsequent discretisation gives the Engquist-Majda [94] and Mur’s second order RBC
[94], [95]. Again, the performance of absorbing boundary conditions improves as the
grid resolution increases.

The energy of a field incident on the boundary can also be dissipated by wrapping
the computational domain with a layer of lossy material, thus creating a numerical
anechoic chamber as depicted in Figure 3.9. Important progress was achieved with
the introduction of the “Perfectly Matched Layer” (PML) concept by Bérenger [78],
which provides orders of magnitude improvement in performance over earlier tech-
niques [64], [90], [96]. The progress was achieved by splitting each field component
into two separate components and assigning separate electric σx, σy, σz and magnetic
conductivities σ∗

x, σ
∗
y , σ

∗
z to each. In this way, a highly absorptive but non-physical

medium is created, of which the reflection is theoretically null at any frequency and
angle of incidence. The practical numerical implementation uses an absorbing layer of
finite thickness backed by another simple (absorbing) boundary condition such that
some energy is still reflected back. The remaining amount of reflection can be con-
trolled by adjusting the thickness, number of cells and the conductivity profile of the
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discrete PML layer [97]. Still, the behavior of a PML medium is not well understood
[98] and research is still going on on how to include the PML in frequency domain
problems [63].

Non Cartesian Grids

Another significant drawback of the FDTD method is the difficulty it has in modelling
curved geometries and fine geometrical features.

A straightforward approach is to use a staircased approximation of the physical bound-
ary. This can lead to formulations that cannot converge to the correct answer, no
matter how fine the mesh is made to better resolve the boundary contour [99]. With-
out special measures, the fine mesh has to be extended over the whole computational
domain, thus leading to an unneccesary increase of the computational effort and mem-
ory resources. A solution this problem consists of “subgridding” [100], [101] where
a finer discretisation can be used in a specific region of space. Research in this area
concentrates on maintaining overall second order accuracy, avoiding the use of the
smallest time step to keep the solution stable and reducing numerical reflection at the
transition between coarse and fine meshes [102].

Another approach is to reformulates the basic Yee-algorithm for grids that conform
with the boundary. For simpler cases this can be done in curvilinear coordinates
[103], [104]. For a general unstructured grid a generalised Yee-algorithm has been
developed. This method is based on Maxwell’s equations in integral form applied
for an irregular finite volume of the mesh [105]. Several techniques are required to
maintain the divergenceless nature of the field [106] and maintaining second order
accuracy and stability [107].

3.5 Boundary Integral Equation Methods

Boundary Integral Equation (BIE) formulations are used both in the frequency do-
main (Section 3.5.1) and in the time domain (Section 3.5.2). The frequency domain
discussion is somewhat more elaborate since much of its principles also apply to more
complicated cases and can hence serve as the basis for the BIE formulation in a planar
stratified medium which will be developed in the next few chapters.

In a differential equation approach, we attempt to solve a volumetric 3D problem
using Maxwell equations or the vector Helmholtz wave equation directly under very
complicated boundary conditions. The BIE formulation uses Green’s theorem [33],
[34] to reformulate the problem in terms of unknown surface functions. The main
simplifications achieved are

• the reduction of the number of independent variables from 3 to 2,

• the automatic inclusion of the radiation condition,
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Figure 3.10: Generic volume V ′ and surface S′ for the derivation of Boundary Integral Equa-
tions. On the outer limiting surface S∞ receding to infinity the fields satisfy the radiation
condition. The observation point approaches the scatterer surface S ′ with an appropriate
limiting procedure.

• the imposition of the boundary conditions on the scatterer surface has become
the formulation of the problem itself.

The main drawback is that the approach leads to integro-differential equations which
are in principle more difficult to solve. The BIE solution is only practical when a
Green’s function for the specific problem is available in closed form (free space Green’s
function) or when it can be constructed efficiently numerically, as for a frequency
domain integral equation in a planar stratified medium.

3.5.1 Boundary Integral Equations in Frequency Domain

Derivation of Boundary Integral Equations

In Section 2.5 of Chapter 2, we already used Green’s theorem to obtain the field at
a certain point in space as a function of source distributions in the volume of space
V ′ and the tangential field values on the boundary surface S ′. The observation point
had to be excluded using a small sphere of vanishing radius δ to avoid ~r = ~r,. The
factor 4π that this procedure produces is so common that it is usually incorporated
in the Green’s functions as

g(~r, ~r,) =
e−jkR

4πR
, G(~r, ~r,) = −jωµ

[
I +

1

k2
∇∇

]
e−jkR

4πR
(3.22)

which we will also assume in the remainder of this chapter. The field generated by
the imposed current source ~JS can then be written as the incident field ~Einc, ~Hinc.
To formulate the BIE, we now let the observation point approach the surface S ′ as
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depicted in Figure 3.10 to express the boundary condition. The limiting procedure is
now slightly altered. The contributions over half the surface Sδ are canceled by the
contributions over the “indented” part of S ′. As compared to Equations (2.22), (2.24),
(2.23), (2.25) we now only obtain 2π times the field value at the observation point,
which introduces an additional factor 2 in the equations below. Also, the surface
integrals over S′ now have to be evaluated in a principal value sense, excluding a
small portion of the surface S ′ with radius δ. Using the dyadic and scalar Green’s
functions, the Electric Field Integral Equation (EFIE) is written as

~n× ~E = 2~n×


 ~Einc + −

∫

S′

(
~n, × ~E . ∇′ ×G− jωµ ~n, × ~H . G

)
dS′


 (3.23)

= 2~n×


 ~Einc + −

∫

S′

(
−jωµ ~n, × ~H g + ~n,. ~E ∇′g + ~n, × ~E ×∇′g

)
dS′


 (3.24)

and the Magnetic Field Integral Equation (MFIE) is

~n× ~H = 2~n×


 ~Hinc + −

∫

S′

(
~n, × ~H . ∇′ ×G+ jωε ~n, × ~E . G

)
dS′


 (3.25)

= 2~n×


 ~Hinc + −

∫

S′

(
jωε ~n, × ~E g + ~n,. ~H ∇′g − ~n, × ~H ×∇′g

)
dS′


 . (3.26)

In these equations ~E, ~H are the total fields, ~Einc, ~H inc the incident fields imposed
by the current source ~JS in Figure 3.10, and the scattered field is generated by the
equivalent induced electric and magnetic currents and charges ~n,× ~H , −~n,× ~E, ~n,. ~E,
−~n,. ~H, on the surface S′. For a perfectly conducting surface, the main boundary
conditions are

~n× ~E = 0 (3.27)

~n× ~H = ~J (3.28)

and when Maxwell’s equations are satisfied, these imply

~n. ~E = −∇. ~J/jωε (3.29)

~n. ~H = 0. (3.30)

Using these boundary conditions the EFIE for a perfectly conducting surface becomes

−~n× ~Einc = −~n× jωµ−
∫

S′

~J. G dS′ (3.31)

−~n× ~Einc = ~n×−
∫

S′

(
−jωµ ~J g +

(
∇′. ~J

−jωε

)
∇′g

)
dS′ (3.32)
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while the MFIE is

~J = 2~n×


 ~Hinc + −

∫

S′

~J . ∇′ ×G dS′


 (3.33)

~J = 2~n×


 ~Hinc −−

∫

S′

~J ×∇′g dS′


 . (3.34)

The first set of EFIE’s are Fredholm integral equation of the first kind, where the
current ~J only appears behind the integral sign, while the second set of MFIE’s are of
the second kind, because the unknown current ~J also appears outside of the integral
operator.

Discretisation of the BIE

The use of the method of moments to solve integral equations has been described in
[108], [56], [109], [110]. Formally, we have to solve an equation

~L
[
~A(~r,)

]
= ~B(~r) (3.35)

where the unknown function ~A(~r,) at the source point ~r, has to be determined, while

the forcing function ~B(~r) at the observation point ~r is assumed as excitation. The
operator L is actually a vector integro-differential operator written symbolically as

~L
[
~A(~r,)

]
=

∫

S′

{1,∇,∇′}K(~r, ~r,) ~A(~r,) dS′. (3.36)

The kernel K(~r, ~r,) of the integro-differential equation is the Green’s function relating

the field at the observation point ~r to its source ~A at ~r,. The unknown function ~A is
represented with an expansion of vector basis functions

~A =

N∑

n=1

an
~An (3.37)

where the constants an now have to be determined. When inserting this into Equation
(3.35) and using the linearity of the integro-differential operator, we get

N∑

n=1

an
~L
[
~An

]
= ~B. (3.38)

This equation can be enforced in an average sense by multiplying it with a weight
function Wm and integrating it over an observation surface S

∫

S

~Wm.~L
[
~A
]

dS =
N∑

n=1

an

∫

S

~Wm.~L
[
~An

]
dS =

∫

S

~Wm. ~B dS, m = 1, . . . ,M,

(3.39)
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which can be written in matrix form as

[Zmn] [An] = [Bm] . (3.40)

The matrix elements Zmn are more complicated than for the FEM case and involve a
double surface integral of derivatives of two vector functions and the kernel function
K(~r, ~r,),

Zmn =

∫

S

~Wm(~r).

∫

S′

{1,∇,∇′}K(~r, ~r,) ~An(~r,) dS dS′ (3.41)

which in general cannot be performed analytically. The evaluation of the matrix
elements will be one of the time-consuming steps in the numerical solution of the
BIE.

Choice of Basis and Test Functions

The basis or expansion functions should be able to accurately represent the unknown
function [64], [111]. Mathematically speaking, they should be within the domain of
the integro-differential operator [112]. On the other hand, they should minimize the
computational effort to evaluate the matrix elements Zmn of Equation (3.41). They
should conform to the geometry of the problem and satisfy the boundary conditions
on the edge of the domain [112]. Subdomain basis functions are defined over a small
subsection of the domain. They are more flexible in modelling irregular shapes and
appropriate for a broad class of solutions. Entire domain expansion functions are
defined over the entire domain of the problem and are usually selected with a priori
knowledge of the solution for a specific problem, such as the desired edge behaviour
[113]. Their use gives a faster convergence as compared to subdomain expansion.

The weighting or test functions should be able to approximate the excitation or forc-
ing function [111], [112]. Mathematically speaking, they should be in the range of
the integro-differential operator [112]. It is also best that they stress the boundary
conditions everywhere in the same measure [114].

The choice of expansion and weighting functions affects accuracy and rate of con-
vergence of the numerical solution [115]. Generally speaking, both basis and test
functions should be chosen with a particular integro-differential operator in mind.
They have to satisfy certain minimum differentiability constraints [64], [111]. A dis-
continuous representation of the current gives rise to fictitious line charges at the
discontinuous points. These produce singular potentials at the edges of the basis func-
tions, and the situation is exacerbated if additional derivatives have to be computed
to obtain the field. A crude numerical solution can obtained with a point matching
procedure, since the field is finite at the sampling points in the middle of the subdo-
mains. However, accuracy may actually decrease as the cell size is reduced [64], as
the match points come closer to the singular field behaviour. Generally speaking, a
smoother field is obtained by increasing the differentiability of the expansion and test
functions and additional integrations to counterbalance the effect of the destabilizing
differentiations.
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Rooftop Expansion Functions

The BIE equations are usually solved using the by now standard “rooftop” or RWG
(Rao,Wilton,Glisson) basis functions introduced in [116], [117] for solving the EFIE,
although they are now also used in MFIE formulations [118], [119]. These vector
basis functions are depicted in Figure 3.11 and 3.12 for a rectangular and triangular
support and are well suited for describing the surface current on an abritrary curved
surface. The vector basis functions are associated with a common edge ln of two
segments and is directed from S+

n to S−
n . The current varies linearly which will

satisfy the differentiability requirements of the EFIE formulation. The current is
tangential or zero on the outer edges of the segments, while the normal component
across the common edge ln is continuous. They can therefore also be considered as
the lowest order members of a class of divergence conforming basisfunctions described
by Nedelec [67]. The divergence within each segment is constant creating a charge
pulse doublet as depicted in Figure 3.11 and 3.12 associated with each basis function.
The line charges annihiliate each other if the Green’s function is continuous across the
common edge ln. The continuous current expansion thus avoids non-physical charge
accumulation. The current is written as

~J =
N∑

n=1

In ~Jn (3.42)

where In is the amplitude of the normal current component across edge ln. These
functions are now used to present a model evaluation of the matrix elements Zmn of
the EFIE.

Model Evaluation of Matrix Elements for the EFIE

The matrix elements Zmn of Equation (3.41) are evaluated using the EFIE integro-
differential operator working on rooftop basis functions. The approach shows that the



3.5. BOUNDARY INTEGRAL EQUATION METHODS 47

procedure mixes characteristics of point matching, pulse testing and Galerkin meth-
ods. The evaluation is given completely to be compared with the more complicated
evaluation of the matrix elements for the 3D structures in a planar stratified medium
given in Chapter 5. We start from the EFIE in dyadic form. As a first step, we
evaluate the field ~E at an observation point ~r caused by the current ~J±

n flowing on
one of the segments S±

n .

~E( ~J±
n ) = −jωµ

∫

S±
n

[
I +

1

k2
∇∇

]
g(~r, ~r,) ~J±

n dS′ (3.43)

= −jωµ
∫

S±
n

g ~J±
n dS′ +

1

jωε
∇
∫

S±
n

−∇′g . ~J±
n dS′ (3.44)

where we used ∇g = −∇′g. One derivative of the free space scalar Green’s functions
is now transferred to the source expansion function by using the vector relation

∇′(g ~J) = ∇′g . ~J + g∇′. ~J (3.45)

of which the first term can be further evaluated using Gauss’ theorem for surface
integrals

∫

S′

∇′. ~J dS′ =

∫

l′

~n,. ~J dl′ (3.46)

where ~n, is the normal to the outer curve l′ limiting the surface S′. This gives

~E( ~J±
n ) = −jωµ

∫

S±
n

g ~J±
n dS′ −∇

∫

S±
n

g

ε

(
∇′. ~J±

n

−jω

)
dS′ −∇

∫

ln

g

ε

(
−~n,. ~J±

n

−jω

)
dl′.(3.47)

The last term is the field of the line charge on the edge ln, which is the only edge
where the current has a non-zero normal component. A similar approach is used
when the field is integrated with the weighting function ~J±

m in a Galerkin approach
to obtain the part Zm±n± of the total matrix element Zmn

Zm±n± =

∫

S±
m

~J±
m . ~E( ~J±

n ) dS (3.48)

= −jωµ
∫

S±
m

~J±
m .

∫

S±
n

g ~J±
n dS′dS − jω

∫

S±
m

(
∇′. ~J±

m

−jω

) ∫

S±
n

g

ε

(
∇′. ~J±

m

−jω

)
dS′dS

− jω

∫

lm

(
−~n. ~J±

m

−jω

) ∫

S±
n

g

ε

(
∇′. ~J±

n

−jω

)
dS′dl

− jω

∫

lm

(
−~n. ~J±

m

−jω

)∫

ln

g

ε

(
−~n,. ~J±

n

−jω

)
dl′dl



48 CHAPTER 3. NUMERICAL METHODSPSfrag replacements

S+
m

S−
m

S+
n

S−
n

~Jm

~Jn

g(~r, ~r,)

~r,+
c

~r,−
c

~r+c

~r−c

O

Figure 3.13: Computation of a matrix element Zmn. The vector functions ~Jn and ~Jm are
coupled through a Green’s function g(~r, ~r,).

− jω

∫

S±
m

(
∇. ~J±

m

−jω

)∫

ln

g

ε

(
−~n,. ~J±

n

−jω

)
dl′dS (3.49)

where the first term represents current to current coupling and the second charge to
charge coupling. The last tree terms are contributions caused by the line charges
accumulating on the edges lm, ln of the observation and source segments S±

m, S±
n

as depicted in Figure 3.11 and 3.12. The total matrix element Zmn is obtained by
adding the contributions of all combinations of segments ± together as

Zmn = Zm+n+ + Zm−n+ + Zm+n− + Zm−n−

= −jωµ
∫

Sm

~Jm.

∫

Sn

g(~r, ~r,) ~Jn dS′ − jωε

∫

Sm

Qm

∫

Sn

g(~r, ~r,) Qn dS′dS

−jω
∫

lm

λm

∫

Sn

1

ε

(
g(l+m, ~r

,) − g(l−m, ~r
,)
)
Qn dS′dl

−jω
∫

lm

λm

∫

ln

1

ε

(
g(l+m, l

+
n ) − g(l−m, l

+
n ) − g(l+m, l

−
n ) + g(l−m, l

−
n )
)
λn dldl′

−jω
∫

Sm

Qm

∫

ln

1

ε

(
g(~r, l+n ) − g(~r, l−n )

)
λn dl′dS (3.50)

where Qm, Qn are the surface charges over Sm, Sn and λm, λn the line charges
over the common edges lm, ln. In the above Equation (3.50), the third and fourth
term contain line integrals which vanish if the Green’s function is continuous over
the observation edge lm. Similarly, the fourth and fifth term vanish if the Green’s
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function is continuous over the common source edge ln. We will only concentrate on
the evaluation of the regular surface integral contributions. Like in the FEM case, the
separate computation of the contribution of different segments of the basisfunctions
is useful since a lot of the double surface integrals can be reused for the basisfunctions
associated with the other edges of the segments as depicted in Figure 3.13. Also
notice that, contrary to the FEM case, all matrix element are non-vanishing even if
they do not overlap spatially, thanks to the presence of the Green’s function. The
regular surface integrals of Zm±n± can be evaluated as

∫

S±
m

~J±
m.

∫

S±
n

g(~r, ~r,) ~J±
n dS′dS ≈ S±

m
~J±
m(~r±c ).

∫

S±
n

g(~r±c , ~r
,) ~J±

n (~r,) dS′ (3.51)

∫

S±
m

Q±
m

∫

S±
n

g(~r, ~r,)Q±
n dS′dS ≈ S±

mQ
±
m

∫

S±
n

g(~r±c , ~r
,)Q±

n dS′ (3.52)

were the value at the observation point is taken at the center ~r±c of the segment S±
m.

The last evaluation of Equation (3.52) can also be interpreted as the use of a pulse
testing function (razor blade testing), having unit value along the line connecting the
centers of the segments over the middle of the common edge ln since

~r−
c∫

~r+
c

∇φ. d~l = φ(~r−c ) − φ(~r+c ). (3.53)

Extraction of the Green’s Function Singular Behaviour

The numerical evaluation of integrals of the type
∫

S′

~r, e
−jkR

R
dS′ (3.54)

with R = |~r − ~r,| can be done numerically, except when observation and source
coordinates coincide [120], [121]. In this case, the singular behaviour for ~r = ~r,

corresponds to the near field or static field behaviour for ω = k = 0 which can be
extracted ∫

S′

~r,

(
e−jkR

R
− 1

R

)
dS′ +

∫

S′

~r,

(
1

R

)
dS′ (3.55)

such that the first part remains finite and smooth for numerical evaluation, while the
second part can be readded after analytical evaluation [122]. This procedure formally
corresponds to the evaluation of the surface integrals in a principal value sense.

Deficiencies of BIE Formulations

Integral equations have theoretical problems for a number of practical situations.
Since the matrix description is but a discrete approximation of the IE, these problems
carry over and produce inaccurate solutions or even singular matrices.
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Internal Resonances

The EFIE and MFIE fail to give a unique solution whenever the surface on which
they are applied forms a conducting closed cavity capable of sustaining a resonating
field distribution [123], [124]. The problem can be alleviated with a Combined Field
Integral Equation (CFIE) [125] or a combined source formulation [126].

The EFIE was derived for the“outside” scattering problem by letting the observation
point approach the surface from outside (superscript +). Applying the same procedure

for the inside of the surface S ′ (superscript -), where there is no source ~JS generating
an incident field, but retaining the original direction of the normal vector ~n we obtain
the “outside” and “inside” EFIE formulations

−~n× jωµ−
∫

S′

~J+.G dS′ = −~n× ~E+
inc (3.56)

−~n× jωµ−
∫

S′

~J−.G dS′ = ~0 (3.57)

where ~J+ = ~n × ~H+ and ~J− = −~n × ~H−. The left half of these equations has the
same form. We know that a closed electric conducting cavity can sustain a resonating
field distribution with −~n× ~E = ~0 on the inner surface. It is therefore possible that
there exist non trivial solutions to the homogeneous second problem (3.57) for certain
values of the frequency called resonant frequencies. The matrix representation of this
problem thus has zero determinant at a resonant frequency. At such frequencies the
solution of the outside problem (3.56) thus also becomes problematic with the same
singular matrix.

The “outside” and “inside” MFIE equations are

~J+ − 2~n×


 −
∫

S′

~J+.∇×G dS′


 = 2~n× ~H+

inc (3.58)

~J− + 2~n×


 −
∫

S′

~J−.∇×G dS′


 = ~0. (3.59)

The second “inside” MFIE (3.59) becomes unsolvable at the resonance frequency of
the electric conducting cavity. The left hand side of the “outside” MFIE (3.58) is not
exactly the same as the “inside” MFIE, but using reciprocity, one can show that both
matrix descriptions have the same determinant [34]. This is true because it can be
shown that the homogeneous form of the “outside” MFIE corresponds to the “inside”
formulation for a perfect magnetic conducting cavity for which ~n × ~H = ~0 at the
boundary [125]. Since this is the dual of the electric cavity problem, they have the
same resonant frequencies. It is thus demonstrated that the “outside” MFIE has the
same problematic behaviour as the “outside’ ’EFIE.
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Geometry of Scattering Problem

The EFIE can be used without modification for infinitely thin scatterers, while the
MFIE formulation is fraught with numerical instabilities in the zero-thickness limit
[127]. This behaviour can be inferred by letting the two sides of the surface S+ and
S− approach each other as depicted in Figure 3.14. Using the same approach as
before, the EFIE’s become

−~n× ~E+
inc = −jωµ~n×−

∫

S+

~J+. G
+

dS′ (3.60)

−~n× ~E−
inc = −jωµ~n×−

∫

S−

~J−. G
−

dS′ (3.61)

while the MFIE’s (now expressed with the scalar Green’s function) become

~J+ = +2~n× [ ~H+
inc −−

∫

S+

~J+ ×∇′g dS′ ] (3.62)

~J− = −2~n× [ ~H−
inc −−

∫

S−

~J− ×∇′g dS′ ]. (3.63)

Adding each set together for a vanishing thickness ∆ → 0 gives the integral equations
for the surface current ~J++~J− as

−~n×
(
~E+

inc + ~E−
inc

)
= −jωµ−

∫

S

(
~J+ + ~J−

)
.G

+
dS′ (3.64)

~J++ ~J−= 2~n×


( ~H+

inc− ~H−
inc) − lim

∆→0


 −
∫

S+

~J+×∇′g dS′ −−
∫

S−

~J−×∇′g dS′




 . (3.65)

The EFIE presents no further problems since G
+

= G
−

. For the second MFIE we

appear to obtain ~J+− ~J− behind the integral sign, but we also have ∇′g− = −∇′g+,
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such that after a series expansion of ∇′g in the direction along the normal ~n,, we
obtain

~J++ ~J−= 2~n× ( ~H+
inc− ~H−

inc) − ~n× lim
∆→0

∆−
∫

S+

( ~J++ ~J−)(~n,.∇′)∇′g+ dS′ (3.66)

The excitation ~H+
inc−~H−

inc disappears for very thin plates. The remaining integral
gives a finite value expressing the identity with the left side, but is very unstable
to evaluate. It thus becomes impossible to solve the unknown surface current from
the incident field. As a consequence, thin wire problems can only be solved with
an EFIE, while the MFIE is better suited for closed surfaces [38]. The Numerical
Electromagnetics Code (NEC) [128] uses the EFIE for wires and thin surfaces and
the MFIE for closed surfaces.

Low Frequency Ill Conditioning of the EFIE

The numerical solution of the EFIE becomes problematic at low frequencies. This is
a problem when the size of the whole object becomes small in terms of the wavelength
[129], but also for a resonant structure for which very fine geometrical details have to
be modeled [130]. The basic problem is the decoupling of the electromagnetic field at
low frequencies into separate magnetostatic and electrostatic fields. This decoupling
manifests itself in the current which undergoes a natural Helmholtz decomposition

~J = ~Jsol + ~J irr (3.67)

into a solenoidal current ~Jsol which tends to flow in closed loops and produces only
a magnetostatic field

∇′. ~Jsol = 0 (3.68)

and an irrotational current ~J irr of which the divergence is proportional to frequency
and thus transforms itself into the electrostatic charge producing only an electrostatic
field

lim
ω→0

∇′. ~J irr

−jω = Q. (3.69)

The standard EFIE formulation using

~E = −jωµ
∫

S′

g ~J dS′ −∇
∫

S′

g

ε

(
∇′. ~J

−jω

)
dS′ (3.70)

does not automatically take this decomposition into account. At low frequencies the
contribution from the vector potential vanishes while inserting Equation (3.67) into
the scalar potential and taking into account the properties (3.68),(3.69) shows that it
produces an electrostatic field in which the solenoidal current has no part. The EFIE
matrix description now becomes singular. First, the integration of an electrostatic
field along any closed loop is zero, which means that the rows of the matrix, of



3.5. BOUNDARY INTEGRAL EQUATION METHODS 53

which the testing paths constitute a closed loop, become linearly dependent. Second,
the solenoidal current is a nontrivial solution of the homogeneous form of the EFIE,
making the matrix singular. If the Helmholtz decomposition of the current is taken
explicitly into account with the proper frequency dependence of its components, the
EFIE naturally separates into separate integral equations for the electrostatic and
magnetostatic problems [131], which were already solved separately in [132]. Such a
decomposition is achieved by using “loop” and “star” basis functions introduced in
[133]. The new basis functions can be derived from the standard rooftop expansion
functions by a number of matrix operations on the original EFIE matrix description
[134].

3.5.2 Boundary Integral Equations in Time Domain

The time domain counterparts of the electric and magnetic field integral equations
for perfectly conducting surfaces (3.32), (3.34) are usually solved starting from

−~n× ∂ ~Einc(~r, t)

∂t
= ~n×


 ∂

2

∂t2
µ

4π
−
∫

S′

~J(~r,, τ)

R
dS′ −∇ 1

4πε
−
∫

S′

∇′. ~J(~r,, τ)

R
dS′


 (3.71)

~J(~r, t) = 2~n×


 ~Hinc(~r, t) +

1

4π
−
∫

S′

(
1

R2
+

1

cR

∂

∂τ

)
~J(~r,, τ) × ~r − ~r,

R
dS′


 (3.72)

where the retarded time τ is given by

τ = t− |~r − ~r,|/c. (3.73)

The fact that the field at an observation point ~r at time t is determined by the incident
field at that point and time and the current at the other positions ~r, at earlier times
τ (which has already been calculated) allows a solution of the integral equation by
a Marching on in Time (MoT) algorithm. Expanding both the spatial and temporal
variation of the current

~J(~r, t) =

Ns∑

n=1

Nt∑

j=0

Inj
~Jn(~r)Tj(t) (3.74)

and testing the integral equation in both space and time coordinates generally gives
a matrix equation of the form

[Zmn]0[In]j = [Finc,m]j +

j−1∑

k=0

[Zmn]j−k [In]k. (3.75)

where the matrix elements Zmn,j−k depend on the geometrical position of the spatial

expansion functions ~Jm, ~Jn and a time shift j−k because of the retarded time τ . The
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matrix Z0 has to be inverted only once, at the start of the MoT algorithm. When the
temporal testing functions are delta functions (point matching), the method becomes
explicit with a diagonal matrix Z0 [135], but other types of time testing functions give
implicit algorithms with a very sparse Z0 [136]. Two principle obstacles have impeded
the widespread use of time domain integral equations. The first is the computational
cost which scales unfavorably with problem size. This can be partially remedied with
a time domain version of the Fast Multipole Method (FMM) also called a Plane Wave
Time Domain (PWTD) algorithm [137], [138]. The second is that the solution often
exhibits late-time spurious fluctuations of growing amplitude that eventually diverge.
These late-time instabilities seem to be caused by the approximations made in the
space-time discretisation [139], [140] and occur even when the CFL stability condition
is satisfied [141]. Instabilities in explicit schemes can be postponed by more accurate
approximations, but for very demanding geometries with sharp corners, only implicit
schemes seem to provide stability [136], [142]. Nevertheless, even accurate implicit
algorithms are still capable of developing instabilities when the spectrum of the ex-
citation contains the resonant frequencies of the closed surface, a problem similar to
the frequency domain EFIE’s and MFIE’s. In this case the problem occurs at the
formulation stage such that only very accurate implicit algorithms based on a Com-
bined Field Integral Equation (CFIE) formulation are unconditionally stable [143].
Unfortunately, time domain integral equations are not suited to analyse scattering
problems in stratified media because the Green’s function is not available in closed
form in the space-time domain.

3.6 Commercially Available Full Wave Software

This section gives a list of some commercially available software packages for the anal-
ysis of high frequency electromagnetic problems with complicated three dimensional
geometries.

Finite Element Method

• HFSS, High Frequency Structure Simulator, Ansoft Corporation,
http://www.ansoft.com

• AI*EMAX, Ansys Inc., http://www.ansys.com

Finite Difference Time Domain

• Microwave Studio, Finite Volume Time Domain, CST Computer Simulation
Technology, http://www.cst.de

• Micro-stripes, TLM (Transmission Line Matrix) method, which is strongly
related to the FDTD method, Flomerics Ltd., hhtp://www.micro-stripes.com
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• Fidelity, Zeland Software Inc., http://www.zeland.com

• XFDTD, Remcom Inc., http://www.remcom.com

• SEMCAD, Schmid & Partner Engineering AG, http://www.semcad.com

• Concerto, Vector Fields Ltd., http://www.vectorfields.com

Frequency Domain Integral Equation

Integral Equations in free space, capable of dealing with metallic surfaces and attached
wires by combining EFIE and MFIE formulations

• SuperNEC2.0, Numerical Electromagnetics Code, Poynting Antennas and
Electromagnetics, http://www.poynting.co.za

• EMC2000, Aerospatiale Matra, http://www.emc2000.org

Integral Equation for planar stratified media, using an EFIE formulation, capable of
analysing planar thin metallic surfaces, and short small vertical currents. These are
the so-called 2.5D or 3D planar simulators.

• Sonnet em, Sonnet Software Inc., http://www.sonnetusa.com

• EMSight, AWR Applied Wave Research Inc., http://www.mwoffice.com

• Momentum, Agilent Technologies, EEsof EDA, http://www.agilent.com/eesof-
eda

• Ensemble, Ansoft Corporation, http://www.ansoft.com

• MAGMAS, ESAT-TELEMIC, Katholieke Universiteit Leuven

Integral Equation for planar stratified media, using an EFIE formulation and capable
of dealing with arbitrary 3D metallic surfaces.

• IE3D Integral Equation 3 Dimensional, Zeland Software Inc.,
http://www.zeland.com

• FEKO FEldberechnung bei Körpern mit beliebiger Oberfläche, EMSS Electro-
Magnetic Software and Systems, http://www.feko.co.za
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3.7 Conclusions

This chapter has reviewed some of the most successful numerical techniques used
in practice for electromagnetic field analysis. The techniques can be classified as
differential or integral equation based and whether they are formulated in the time
or frequency domain. The theoretical approach, the basic algorithm and main lim-
itations of the Finite Element Method (FEM), the Finite Difference Time Domain
(FDTD) algorithm, and frequency and time domain Boundary Integral Equations
(BIE’s) have been discussed. A basic overview and understanding of these methods
is deemed necessary for a sound judgement of the more specific theoretical and nu-
merical methods presented in this work. The more elaborate discussion on frequency
domain BIE’s has also provided the setting for the formulation and application of this
technique to the analysis of 3D structures in planar stratified media, which will be
developed in full detail in the next two chapters.



Chapter 4

The Spectral Electromagnetic
Field of a 3D Current Source
in a Planar Stratified Medium

4.1 Introduction

A lot of real-life problems in ElectroMagnetic radiation, coupling, Interference (EMI)
and Compatibility (EMC) involve metallic structures which are located in a medium
consisting of a number of planar stacked layers with different electromagnetic prop-
erties : planar and 3D antennas [144], Microwave and Millimeterwave Integrated
Circuits (MMIC’s) [3], Micro-Electromechanical Systems (MEMS) [145], [146], tradi-
tional and Radio Frequency (RF) Printed Circuit Boards (PCB’s) [147], [148], high
speed digital circuits [149], [150], traditional interconnects [151], [152], and electronics
packaging [153], [154], [155], [156], and state of the art Multi-Chip Modules (MCM’s)
and Ball Grid Array (BGA) interconnection and packaging technology [150], [157].
Such devices can only be modeled accurately by taking into account the influence
of the surrounding medium. In differential equation based methods like the FEM of
Section 3.4.1, and the FDTD technique of Section 3.4.2, any material composition can
be incorporated by changing the properties ε, µ of the medium locally, such that the
basic algorithms presented in Section 3.4 can be implemented almost without change.
With such an approach however, one has to rely purely on computational power to re-
solve the relevant physical phenomena in a numerical manner. The integral equation
methods of Section 3.5 hinge upon Green’s theorem [33], which can only be applied if
an appropriate Green’s function is available. For the homogeneous surround assumed
in Sections 3.5.1 and 3.5.2, the dyadic and scalar Green’s functions are available in
closed form. If the integral equation approach is to be applied efficiently for a planar

57



58 CHAPTER 4. EM FIELD IN STRATIFIED MEDIUM

layered surround, the presence of this medium has to be incorporated into the Green’s
function(s) itself. However, the determination of these functions is considerably more
involved than for a homogeneous medium. First, instead of a single Green’s function,
several distinct functions arise. Secondly, the Green’s functions are not completely
available in closed form in the spatial domain, but have to be constructed partially
numerically. Nevertheless, their determination still incorporates a lot of analytical
processing, which makes the integral equation approach more robust and efficient
than the differential equation formulations.

This chapter concentrates on the determination of the electric and magnetic dyadic
Green’s functions that express the total electric and magnetic field in the spectral do-
main generated by a 3D electric current source embedded within an arbitrary stratified
medium.

The determination of the field in a stratified medium was originally pioneered by Som-
merfeld himself, as early as 1909 [158]. He studied the generation of radio waves by
horizontal and vertical dipole antennas and their resulting propagation above a lossy
half space [36]. Subsequent interest continued to be within the domain of radiowave
propagation and geophysical probing [159], [160], [161], extending the analysis from
a halfspace to stratified media with multiple layers. Kong [162] avoided the Hertz
potential approach and solved for the electric and magnetic fields directly, using a
TM/TE decomposition of the field to obtain the spectral Green’s dyad. The formal
equivalence of these two approaches has been shown [163]. Interest in the problem
was revived when the quasi-static analyses of microwave transmission media [164],
[165] was found insatisfactory. The frequency dependent propagation characteristics
could be determined accurately numerically by formulating the problem as an inte-
gral equation in which the dyadic Green’s function appeared as the kernel [166], [167],
[168], [169]. The important transmission line analog of Section 4.8 was established
within this context [170]. The method acquired the name Spectral Domain Approach
(SDA) [171]. The planar nature of these transmission media made that only the trans-
verse part of the dyadic spectral Green’s function was needed and that the location
of the currents was restricted to the interfaces of the layers [170], [172], [173], [11],
[14]. Complete spectral dyadic Green’s functions for 3D source currents with arbi-
trary position within the layer structure were re-established in [174], [163], [175], [176],
[177], [178], [179], [180], [181], [182]. However, the derivations often continued to use
Hertz and vector potential approaches [173], [177], [179], or still used a formulation
separating direct and scattered Green’s functions instead of using the advantageous
transmission line analogy [175], [177], [179], [180]. The resulting expressions are often
given for a limited number of layers only [177], [178], [179] and no general notation
was established.

Our derivation is based on earlier work by Vandenbosch [11] and Demuynck [14],
who already established the field of transverse electric current sources located at the
interfaces of the layers of an arbitrarily layered medium. This work has not found full
recognition due to a somewhat unconventional notation. We expand the derivation
to a full 3D electric current source located at any arbitrary position. We follow
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Figure 4.1: a 3D current source embedded within a planar multilayered medium.

the TM/TE decomposition of the field and use the transmission line formalism in its
most general form as in [173], [182]. We introduce an improved notation similar to the
ones which has appeared recently in [182], [183], [184]. We present a completely new
factorisation for an arbitrary Green’s function in Section 4.9 which explicitly separates
the z and z′ dependence in simple and symmetric form. The factorised form leads
to a number of important derivative relations (Section 4.11). The factorisation and
derivative relations together allow easier analytical manipulations. This facilitates
the physical interpretation in Chapter 5 and allows to evaluate part of the reaction
integrals analytically in Chapter 6.

4.2 The Problem Statement

Figure 4.1 shows a generic planar stratified medium consisting of an arbitrary number
of flat stacked layers. We take the X,Y plane to be parallel to the stratification of
the medium, while the Z axis is normal to the layers. Each layer extends infinitely
far in the transverse X,Y direction, is assumed to be homogeneous and characterised
by a dielectric permittivity εk, a magnetic permeability µk and thickness dk. The
outermost top and bottom layers also extend to infinity in the normal Z direction
and can be used to model either open half spaces or electrically conducting limiting
planes. A current source ~J with X,Y and Z components is located at any arbitrary
source position x′, y′, z′

~J(x′, y′, z′) = ~Jδ(x− x′)δ(y − y′)δ(z − z′). (4.1)
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Our task consists of determining the electromagnetic field at any other arbitrary
observation position x, y, z.

4.3 The Spectral Domain Approach

The field in this complicated environment can be determined by an approach origi-
nally pioneered by Sommerfeld himself [36], and recently called the Spectral Domain
Approach (SDA) when applied for the analysis of microwave problems in layered
media [171].

4.3.1 Definition of the Fourier Transform

A Fourier transform of the spatial transverse x, y coordinates maps any quantity
F (x, y, z) onto its spectral counterpart F̃ (kx, ky, z) defined in the corresponding trans-
verse wavenumber kx, ky domain. The Fourier transform and its inverse transforma-
tion used in this work are defined as

F{F (x, y, z)} = F̃ (kx, ky, z) =

∫

−∞

+∞∫
F (x, y, z)e+jkxxe+jkyy dxdy (4.2)

F
−1{F̃ (kx, ky, z)} = F (x, y, z) =

1

(2π)
2

∫

−∞

+∞∫
F̃ (kx, ky, z)e

−jkxxe−jkyy dkxdky. (4.3)

Notice that the z coordinate along the stratification of the medium remains unaffected.

4.3.2 Problem Statement in the Spectral Domain

Applying the Fourier transform for the excitation in the layer structure of Figure 4.1
transforms the point source into a planar sheet of dipoles,

F{ ~Jδ(x− x′)δ(y − y′)δ(z − z′)} = ~Je+jkxx′

e+jkyy′

δ(z − z′) (4.4)

parallel to stratification of the medium. It will be most helpful to interpret this
mathematical operation as a reduction of the three dimensional geometry of Figure
4.1 to the one-dimensional problem pictured in Figure 4.2. The planar current sheet
will cause plane waves to travel back and forth along the Z direction within each
layer. It is only this variation that we need to concentrate on at this point. Any
spatial variation of the field as a function of ρ, φ in Figure 4.1 will be contained in the
amplitude of the plane waves which will depend on the spectral wavenumbers kx, ky.
Figure 4.2 also introduces conventions for numbering the layers and the interfaces in
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between. The first top layer gets the number 0, the last bottom layer is the (N +1)th

layer. An arbitrary layer k is delimited above by the interface k−1 at zk−1 and stops
on the bottom side at interface k with coordinate zk. It has a thickness dk = zk−1−zk.
The source is located at z′ in layer j, and the observation point is located at z in
layer i.

4.4 Maxwell’s Equations and Boundary Conditions

The set of independent Maxwell equations (4.5), (4.6), together with the excitation
and boundary conditions depicted in Figure 4.1 (boundary conditions on the interfaces
between dielectric layers and radiation conditions at infinity) constitute a well-posed
boundary value problem with a unique solution. However, since the SDA approach
has transformed the excitation into a current sheet parallel to the interfaces between
the layers, we know that the solution consists of plane waves traveling along z. These
are best described by the homogeneous set of Maxwell equations

∇× ~E = −jωµk
~H (4.5)



62 CHAPTER 4. EM FIELD IN STRATIFIED MEDIUM

∇× ~H = +jωεk ~E. (4.6)

The excitation of the problem is treated on an equal footing with the other boundary
conditions by incorporating the excitation into them,

~iz × ( ~E> − ~E<) =
1

jωεk
∇× ( ~J.~iz)~iz (4.7)

~iz × ( ~H> − ~H<) = ~J − ( ~J.~iz)~iz (4.8)

which are the generalised boundary conditions [185] at a planar interface with an
arbitrary oriented but uniform current sheet. The superscripts > and < indicate the
field values just above and below the plane where the boundary conditions are applied.
These boundary conditions express continuity of the tangential fields at the material
interfaces when no current is present, in which case the right hand side members
vanish. They give the step change in tangential field values for transverse currents
that are located at the interface of two layers (in which case the right hand side of
Equation (4.5) disappears) and for 3D current distributions located completely within
a certain layer (this gives the εk for the Z component of the current in Equation (4.7)).
We now need to transpose the spatial derivative operations of the above equations
into the spectral domain. Using

F

{
∂

∂x
F (x, y, z)

}
= −jkx F̃ (kx, ky , z) (4.9)

F

{
∂

∂y
F (x, y, z)

}
= −jky F̃ (kx, ky , z) (4.10)

F

{
∂

∂z
F (x, y, z)

}
= +

∂

∂z
F̃ (kx, ky , z) (4.11)

we obtain the spectral form of the homogeneous Maxwell equations in any layer k

−jkyẼz − ∂

∂z
Ẽy = −jωµkH̃x (4.12)

+
∂

∂z
Ẽx − jxẼz = −jωµkH̃y (4.13)

−jkxẼy + jkyẼx = −jωµkH̃z (4.14)

−jkyH̃z − ∂

∂z
H̃y = jωεkẼx (4.15)

+
∂

∂z
H̃x − jxH̃z = jωεkẼy (4.16)

−jkxH̃y + jkyH̃x = jωεkẼz (4.17)

and the spectral generalised boundary conditions as

−Ẽ>
y + Ẽ<

y =
−jky

jωεk
J̃z (4.18)

+Ẽ>
x − Ẽ<

x =
+jkx

jωεk
J̃z (4.19)

−H̃>
y + H̃<

y = J̃x.
−jky

jωεj
(4.20)

+H̃>
x − H̃<

x = J̃y.
+jkx

jωεj
(4.21)
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4.5 TM/TE Decomposition of the Field

The field described by the set of Equations (4.12), (4.13), (4.14), (4.15), (4.16), (4.17),

can be rearranged to express the transverse field components as a function of only Ẽz

and H̃z which can thus be selected as the primary unknowns. With k2
ρ = k2

x + k2
y we

obtain

Ẽx = −jkx

k2
ρ

∂Ẽz

∂z
− ωµkky

k2
ρ

H̃z (4.22)

Ẽy = −jky

k2
ρ

∂Ẽz

∂z
+
ωµkkx

k2
ρ

H̃z (4.23)

H̃x = +
ωεkky

k2
ρ

Ẽz − jkx

k2
ρ

∂H̃z

∂z
(4.24)

H̃y = −ωεkkx

k2
ρ

Ẽz − jky

k2
ρ

∂H̃z

∂z
. (4.25)

The TM part of the field is obtained from the above set by putting H̃z = 0 and
retaining Ẽz as independent variable. The TE part requires Ẽz = 0 and retains H̃z .

ẼTM
x = −jkx

k2
ρ

∂Ẽz

∂z
(4.26)

ẼTM
y = −jky

k2
ρ

∂Ẽz

∂z
(4.27)

H̃TM
x = +

ωεkky

k2
ρ

Ẽz (4.28)

H̃TM
y = −ωεkkx

k2
ρ

Ẽz (4.29)

ẼTE
x = −ωµkky

k2
ρ

H̃z (4.30)

ẼTE
y = +

ωµkkx

k2
ρ

H̃z (4.31)

H̃TE
x = −jkx

k2
ρ

∂H̃z

∂z
(4.32)

H̃TE
y = −jky

k2
ρ

∂H̃z

∂z
(4.33)

The wave equations in the spectral domain for the chosen independent field compo-
nents Ẽz, H̃z can be obtained by inserting Equations (4.23), (4.24) into (4.12) and
(4.22), (4.25) into (4.15)

∂2Ẽz

∂z2
− γ2

kẼz = 0 (4.34)

∂2H̃z

∂z2
− γ2

kH̃z = 0. (4.35)

These equations demonstrate that each field component within a certain layer k indeed
consists of upward and downward traveling waves as depicted in Figure 4.2, with a
propagation constant γk defined as

γ2
k = k2

ρ − ω2µkεk. (4.36)
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4.6 TM/TE Decomposition of the Current

The TM/TE decomposition of the field enforces a similar separation on the current

J̃x = J̃TM
x + J̃TE

x (4.37)

J̃y = J̃TM
y + J̃TE

y (4.38)

J̃z = J̃TM
z + J̃TE

z . (4.39)

The TM components of the currents are determined by expressing the boundary
conditions (4.18), (4.19), (4.20), (4.21) as a function of the independent variable Ẽz,
giving a set of 4 equations which can only be satisfied simultaneously if

J̃TM
z = J̃z (4.40) kyJ̃

TM
x = kxJ̃

TE
y . (4.41)

The remaining 2 independent boundary conditions that couple the TM part of the
field to the TM part of the current are

j

(
∂Ẽ>

z

∂z
− ∂Ẽ<

z

∂z

)
= −

k2
ρ

jωεj
J̃z (4.42)

ω
(
ε>Ẽ>

z − ε<Ẽ<
z

)
=

k2
ρ

kx
J̃TM

x . (4.43)

Similarly, when inserting the transverse TE field expressions as a function of H̃z, we
can only satisfy the 4 boundary conditions simultaneously when

J̃TE
z = 0 (4.44) kxJ̃

TE
x = −kyJ̃

TE
y . (4.45)

The remaining 2 independent boundary conditions that relate the TE part of the
current to the TE field are

ω
(
µ>H̃>

z − µ<H̃<
z

)
= 0 (4.46)

j

(
∂H̃>

z

∂z
− ∂H̃<

z

∂z

)
=

k2
ρ

ky
J̃TE

x . (4.47)

By inserting Equations (4.40), (4.41), and (4.44), (4.45) into the decomposition (4.37),
(4.38), (4.39), we can solve for the currents that excite the TM and TE parts of the
field independently,
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electric and magnetic fields in a planar stratified medium.

J̃TM
x = kx

kxJ̃x + kyJ̃y

k2
ρ

(4.48)

J̃TM
y = ky

kxJ̃x + kyJ̃y

k2
ρ

(4.49)

J̃TM
z = J̃z (4.50)

J̃TE
x = ky

kyJ̃x − kxJ̃y

k2
ρ

(4.51)

J̃TE
y = −kx

ky J̃x − kxJ̃y

k2
ρ

(4.52)

J̃TE
z = 0 (4.53)

and this has been interpreted before as a simple rotation of the transverse kx, ky

wavenumber coordinate system [170], [181].

4.7 Identification with a Transmission Line

The above boundary conditions for the fields and currents at the point of excitation
can be identified with the excitation of a transmission line with a series voltage VS

and a shunt current source IS as depicted in Figure 4.3. At the excitation point, we
have for the chosen reference directions of voltage and current

V > − V < = +VS (4.54)

I> − I< = −IS . (4.55)

The voltages and currents on the left and right sides satisfy the transmission line
equations

∂V (z)

∂z
= − γ

Y
I(z) (4.56)

∂I(z)

∂z
= −γY V (z) (4.57)
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where γ is the propagation constant and Y the characteristic admittance of the trans-
mission line.

We thus see the defining equations for the TM part of field and current Equations
(4.42), (4.43) can be mapped onto Equations (4.54), (4.55) by choosing

j
∂Ẽz

∂z
= V (4.58)

ωεẼz = I (4.59)

VS = −
k2

ρ

jωεj
J̃z (4.60)

IS = −
k2

ρ

kx
J̃TM

x . (4.61)

The TE part of field and current described by Equations (4.46), (4.47) are similarly
mapped onto (4.54), (4.55) by now choosing

ωµH̃z = V (4.62)

j
∂H̃z

∂z
= I (4.63)

VS = 0 (4.64)

IS = −
k2

ρ

ky
J̃TE

x . (4.65)

We see that the TM and TE systems each give rise to an equivalent transmission line
problem with characteristic admittances

Y TM
k =

jωεk
γk

(4.66) Y TE
k =

γk

jωµk
. (4.67)

The determination of the electromagnetic field of a 3D current source is thus re-
duced to solving two equivalent transmission line problems [170]. The following sec-
tion therefore concentrates on the general solution for the excitation of a cascaded
transmission line problem. These expressions are then simply transposed to the field
problem to obtain the Green’s functions for the electromagnetic field in Section 4.12.

4.8 The Transmission Line Formalism

Although “basic” transmission line theory is well established, we repeat the basic
definitions to establish the notation for the following sections, and to acquire the
basic tools to derive the factorised form of the Green’s functions.

Figure 4.4 depicts a cascade connection of transmission line sections k located be-
tween zk and zk−1, each defined by a propagation constant γk and a characteristic
admittance Yk. The first and last sections are numbered 0 and N + 1 respectively.
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Figure 4.4: Transmission line network analog for the field problem in the spectral domain in
a plane stratified medium.

The excitation of the problem is assumed to consist of a series voltage source VS and
shunt current source IS (superscript S = I, V ) located at z′ in the source section j
(denoted in subscript). The problem is to obtain the voltages and currents (F = I, V )
at the observation coordinate z in a certain observation section i (also in subscript).
The notation for these quantities is decided upon as

F
S,≶
ij (z, z′) (4.68)

where the slight differences for z > z′ or z < z′ necessitate the additional superscript.
The complete expressions are constructed in this section and subsequently simplified
in Section 4.9.

4.8.1 ”Basic” Transmission Line Theory

Within a certain section k, the voltage and current consists of a superposition of left
and right traveling waves with a fixed complex amplitude. We choose the reference
position for these amplitudes at the left most position zk

Vk(z) = V +
k (zk)e−γk(z−zk) + V −

k (zk)e+γk(z−zk) (4.69)

Ik(z) = Yk

[
V +

k (zk)e−γk(z−zk) − V −
k (zk)e+γk(z−zk)

]
. (4.70)

The reflection coefficient Γ(z) at any position z is the ratio of forward and backward
traveling waves at that position

Γk(z) =
V −

k (zk)e+γk(z−zk)

V +
k (zk)e−γk(z−zk)

= Γk(zk)e+2γk(z−zk) =
Yk − Yk(z)

Yk + Yk(z)
. (4.71)

In the last expression, Yk(z) is the admittance at any position z, defined as the ratio
of the total current to voltage at that position

Yk(z) =
Ik(z)

Vk(z)
= Yk

1 − Γk(z)

1 + Γk(z)
. (4.72)
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The total voltage, total current and thus the admittance are continuous upon crossing
to another section, but the reflection coefficient is not. The above notions are in
principle sufficient to solve the cascaded transmission line problem of Figure 4.4.

4.8.2 Standard Solution for the Cascaded Transmission Line
Problem for Arbitrary z, z′ Positions

The material presented below is similar to the description in [173], [11], [14]. We first
need to determine the equivalent input admittance at the immediate left and right
side of the source position z′. These are determined by a set of two inward recurrence
computations. Two sets of reflection coefficients and admittances denoted as Γ>

k (z),
Y >

k (z) and Γ<
k (z), Y <

k (z) are thus determined. Since their values at the outermost
left side zk of section k will occur frequently, and to avoid the formulas from becoming
petrifying, we introduce a simplified notation

Γ>
k ≡ Γ>

k (zk) (4.73)

Y >
k ≡ Y >

k (zk) (4.74)

Γ<
k ≡ Γ>

k (zk) (4.75)

Y <
k ≡ Y <

k (zk) (4.76)

while their values at other z-positions will be explicitly indicated. Note that Yk

(without the superscripts ≶) just remains the characteristic impedance of section k.

The Inward Recurrence Procedures

The first recurrence procedure determines the set Γ>
k (z), Y >

k (z) which will be valid
in any computation for which z > z′. The computation starts at the outermost right
side and proceeds inwards in a recursive manner. The value of Γ1(z0), Y1(z0) are
known because of the unbounded medium or metallic ground plane. In the top right
side of Figure 4.5, assuming the value of Y >

k to be known, we can then determine the
next Y >

k+1 with

Γ>
k+1 = e−2γk(zk−zk+1)

Yk+1 − Y >
k

Yk+1 + Y >
k

(4.77)

Y >
k+1 = Yk+1

1 − Γ>
k+1

1 + Γ>
k+1

. (4.78)

The last step to obtain Y >
j (z′) depends on the exact source position z′ and is obtained

from

Γ>
j (z′) = e−2γj(zj−1−z′)

Yj − Y >
j−1

Yj + Y >
j−1

(4.79)

Y >
j (z′) = Yj

1 − Γ>
j (z′)

1 + Γ>
j (z′)

. (4.80)
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The second recurrence procedure determines the set Γ<
k (z), Y <

k (z) which will be valid
in any computation for which z < z′. The computation starts at the outermost left
side. The value of ΓN+1(zN ), YN+1(zN ) are known because of the unbounded medium
or metallic ground plane. In the top left side of Figure 4.5, assuming the value of Y <

k

to be known, we can then determine the next values Y <
k−1 with

Γ<
k =

Yk − Y <
k

Yk + Y <
k

(4.81)

Y <
k−1 = Yk

1 − Γ<
k e

+2γk(zk−1−zk)

1 + Γ<
k e

−2γk(zk−1−zk)
. (4.82)

The last step to obtain Y <
j (z′) depends on the exact source position z′ and is obtained

from

Γ<
j (z′) = e+2γj(z

′−zj)
Yj − Y <

j (zj)

Yj + Y <
j (zj)

(4.83)

Y <
j (z′) = Yj

1 − Γ<
j (z′)

1 + Γ<
j (z′)

. (4.84)

The Excitation at the Source Position

With the equivalent admittances Y <
j (z′), Y >

j (z′) available, all voltages and currents
excited by VS , IS can now be determined at the immediate left and right side of the
source position z′ as

V
V,≶
jj (z′, z′) =

Y
≷
j (z′)

Y <
j (z′) − Y >

j (z′)
VS (4.85)

I
V,≶
jj (z′, z′) =

Y <
j (z′)Y >

j (z′)

Y <
j (z′) − Y >

j (z′)
VS (4.86)

V
I,≶
jj (z′, z′) =

1

Y <
j (z′) − Y >

j (z′)
IS (4.87)

I
I,≶
jj (z′, z′) =

Y
≶
j (z′)

Y <
j (z′) − Y >

j (z′)
IS . (4.88)

In the above is it assumed that we everywhere select either the upper or either the
lower symbols throughout an expression. In the remaining, we shall assume the
excitation to consist of unit voltage VS = 1V and current IS = 1A sources.

The Outward Recurrence Procedures

Now that the the voltages and currents at z′ have been determined, they can easily
be constructed for an arbitrary observation position z. This is done with a set of
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Figure 4.5: The recurrence procedures on the equivalent transmission line network analog for determining the spectral electromagnetic
field in a planar multilayered medium. The inward recurrence procedure determine the admittances Y <

j (z′), Y >
j (z′) at the source

position. The outward procedures then compute the voltages and currents for z < z′ and z > z′.



4.8. THE TRANSMISSION LINE FORMALISM 71

two outward recurrence procedures. Two sets of voltages and currents denoted as
V >

k (z), I>
k (z) and V <

k (z), I<
k (z) are thus determined. Again, their values at zk are

abbreviated to

V >
k ≡ V >

k (zk) (4.89)

I>
k ≡ I>

k (zk) (4.90)

V <
k ≡ V <

k (zk) (4.91)

I<
k ≡ I<

k (zk) (4.92)

while their values at other z-positions will be explicitly indicated.

The first outward procedure computes the voltages and currents for z > z ′. Looking
at the bottom right side of Figure 4.5, and assuming V >

k+1, I
>
k+1 to be known, the

next V >
k , I>

k are obtained from

V >
k = V >

k+1

e−γk+1(zk−zk+1) + Γ>
k+1e

+γk+1(zk−zk+1)

1 + Γ>
k+1

(4.93)

I>
k = I>

k+1

e−γk+1(zk−zk+1)1 − Γ>
k+1e

+γk+1(zk−zk+1)

1 − Γ>
k+1

. (4.94)

The first step in this procedure depends on the source position z ′

V >
j−1 = V >

j (z′)
e−γj(zj−1−z′) + Γ>

j (z′)e+γj(zj−1−z′)

1 + Γ>
j (z′)

(4.95)

and the last step on the observation coordinate z

V >
i (z) = V >

i

e−γi(z−zi) + Γ>
i e

+γi(z−zi)

1 + Γ>
i

. (4.96)

The second outward procedure computes the voltages and currents for z < z ′. Looking
at the bottom left side of Figure 4.5, and assuming V <

k−1, I
<
k−1 to be known, the next

V <
k , I<

k are obtained from

V <
k = V <

k−1

1 + Γ<
k

e−γk(zk−1−zk) + Γ<
k e

+γk(zk−1−zk)
(4.97)

I<
k = I<

k−1

1 − Γ<
k

e−γk(zk−1−zk) − Γ<
k e

+γk(zk−1−zk)
. (4.98)

The first step in this procedure depends on the source position z ′

V <
j = V <

j (z′)
1 + Γ<

j (z′)

e−γj(z′−zj) + Γ<
j (z′)e+γj(z′−zj)

(4.99)

and the last step on the observation coordinate z

V <
i (z) = V <

i (zi−1)
e−γi(zi−1−z) + Γ<

i e
+γi(zi−1−z)

1 + Γ<
i

. (4.100)
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4.8.3 An Example Expression

The complete expression for a quantity like V I,>
ij (z, z′) obtained with the standard

solution method using Equations (4.87), (4.93), (4.95), (4.96) is

V I,>
ij (z, z′) =

e−γi(z−zi) + Γ>
i e

+γi(z−zi)

1 + Γ>
i

i+1∏

k=j−1

e−γk(zk−1−zk) + Γ>
k e

+γk(zk−1−zk)

1 + Γ>
k

e−γj(zj−1−z′) + Γ>
j (z′)e−γj(zj−1−z′)

1 + Γ>
j (z′)

1

Y <
j (z′) − Y >

j (z′)
. (4.101)

An arbitrary Green’s function such as the one above thus depends on the spectral
wavenumber kρ and the source and observation z, z′ coordinates. A major problem
with this standard approach is the rather complicated dependence on the source z ′

coordinate through Y >
j (z′), Y <

j (z′), Γ>
j (z′) and Γ<

j (z′) which has to be traced even
further with Equations (4.79), (4.80), (4.83), (4.84). This standard approach thus
impedes easy analytical manipulation and an efficient computation of the Green’s
functions. However, this problem was solved by using a specially developed factorised
form for an arbitrary Green’s function valid for an arbitrary number of layers.

4.9 Factorised Form for Arbitrary Green’s Function

In this section, the standard expressions for the Green’s functions are rewritten in a
form which explicitly separates the observation z and source z ′ coordinate dependence
in simple and symmetrical form.

This factorisation has in itself two major consequences :

• it greatly facilitates the analytical manipulation of the resulting expressions.
The factorisation allows to write down compact, powerful and easy to use ex-
pressions for derivatives with respect to z and z′. These allow to derive the
mixed potential field expressions of the next Chapter 5 from the full spectral
electric Green’s dyad derived in this chapter. The factorisation with the deriva-
tive relations allows to obtain relatively simple closed form expressions for the
z, z′ dependent part of the reaction integrals as demonstrated in Chapter 6.

• the factorisation is the cornerstone for the efficient numerical computation of
Green’s functions which have to be constructed in far larger numbers for 3D
structures than for simple planar or 2D structures.
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ij (z, z′) into a transfer func-

tion F>
iref ,jref

, an observation shift function F>
i,iref

(z) and source shift functions F S,>
jref ,j(z

′)

by choosing “reference planes” iref = i and jref = j, j − 1.

To achieve such a factorisation, we use the concept of “reference planes”.

4.9.1 General Approach : Choice of “Reference Planes”

The general idea is given in Figure 4.6, which depicts a situation in which z > z ′.

Instead of computing a Green’s function F
S,≶
ij (z, z′) in the old-fashioned manner, we

introduce “reference planes” iref , jref for the observation and source sections of the
transmission line. These reference planes are positioned at the outermost left jref = j
or right side jref = j − 1 of the section at zj or zj−1 as depicted in Figure 4.6 for the
source section. The Green’s function can now always be factorised as

F
S,≶
ij (z, z′) = F

≶
i,iref

(z) F
≶
iref ,jref

F
S,≶
jref ,j(z

′) (4.102)

into

• a source shift function F
S,≶
jref ,j(z

′) to obtain the value at the reference interface

jref , starting from the correct source position z′ in section j,

• a transfer function F
≶
iref ,jref

from the source reference plane jref to the obser-
vation reference plane iref ,
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• and an observation shift function F
≶
i,iref

(z) to obtain the correct observation
position in section i starting from the reference interface iref .

All possible formulas are given for completeness in Appendix A. It may seem super-
fluous to be able to choose two reference interfaces, but it may occur that some of
the quantities are 0 at a reference interface, (for example the voltage is zero if the
reference interface coincides with a perfectly conducting ground plane.) while they
are not in the other reference plane. If both reference planes in a certain layer are
perfectly conducting, the medium in between is necessarily a homogeneous one and
all expression become self evident. We now indicate the main steps of the derivation
to arrive at these expressions for the particular case V I,>

ij (z, z′) with reference planes
iref = i, jref = j.

4.9.2 The Transfer Functions

By the choice of the reference planes iref = i, jref = j the transfer function only
transmits the voltage or current from zj to zi and does not depend on z or z′, but
only on the thicknesses dk of the intervening sections. For the case z > z′, the voltage
transfer function is given simply by

V >
i,j =

i+1∏

k=j

e−γkdk + Γ>
k e

+γkdk

1 + Γ>
k

. (4.103)

An overview of the other possible transfer functions is given in Appendix A.1.

4.9.3 The Observation Shift Functions

In principle, the dependence on the observation position z is already present in fac-
torised form. For iref = i, we merely rewrite the expression

V >
i,i(z) =

e−γi(z−zi) + Γ>
i e

+γi(z−zi)

1 + Γ>
i

(4.104)

by inserting the explicit expression for the reflection coefficient

Γ>
i =

Yi − Y >
i

Yi + Y >
i

(4.105)

to obtain an expression

V >
i,i(z) =

1

2Yi

(
(Yi + Y >

i )e−γi(z−zi) + (Yi − Y >
i )e+γi(z−zi)

)
(4.106)

which will be symmetrical with the expressions for the source shift functions. An
overview of the other required observation shift functions is given in Appendix A.2.
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V
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j−1,j(z
′).

4.9.4 The Source Shift Functions

The derivation of the source shift functions is more involved, although the final result
will be surprisingly simple and recognizable. The line of reasoning is supported visu-
ally by Figure 4.7. We compute the voltage generated by the current source located
at z′ at its immediate right side as given by Equation (4.87). Since the reference plane
was chosen at zj , we now need to transfer this voltage to zj . Although the voltage
that we computed is only physically useful for z > z′, we can still shift it to the left
side of the source provided we use the reflection coefficient Γ>

j such that we start from

V I,>
j,j (z′) =

1 + Γ>
j

e−γj(z′−zj) + Γ>
j e

+γj(z′−zj)

1

Y <
j (z′) − Y >

j (z′)
. (4.107)

Our goal is to extract the apparently extremely complicated z ′- dependence of this
formula in closed form. To achieve this, we insert the expressions Equations (4.80)
and (4.83) for Y >

j (z′) and Y <
j (z′) with the help of Equation (4.71) as a function of

quantities defined at zj

Y <
j (z′) = Yj

1 − Γ<
j e

+2γj(z
′−zj)

1 + Γ<
j e

+2γj(z′−zj)
(4.108)

Y >
j (z′) = Yj

1 − Γ>
j e

+2γj(z
′−zj)

1 + Γ>
j e

+2γj(z′−zj)
(4.109)
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such that the second part of Equation (4.107) can be simplified as
(
e−γj(z

′−zj) + Γ<
j e

+γj(z
′−zj)

)(
e−γj(z

′−zj) + Γ>
j e

+γj(z
′−zj)

)

2Yj

(
Γ>

j − Γ<
j

) . (4.110)

By working out the denominator further as a function of the admittances using

Γ
≶
j =

Yj − Y
≶
j

Yj + Y
≶
j

(4.111)

we obtain

1

Γ>
j − Γ<

j

=

(
Yj + Y >

j

) (
Yj + Y <

j

)

2Yj

1

Y <
j − Y >

j

(4.112)

of which the second factor is the same as the second factor of our starting point
Equation (4.107), and is now the voltage generated by the same source as before, but
now located at zj instead of z′. Inserting Equations (4.110), (4.112) into Equation
(4.107), and replacing the remaining reflection coefficients by their definitions Equa-
tion (4.111), one finally succeeds by further analytical manipulation at reducing our
point of departure Equation (4.107) to simply

V I,>
j,j (z′)=

1

2Yj

(
(Yj + Y <

j )e−γj(z
′−zj) + (Yj − Y <

j )e+γj(z
′−zj)

) 1

Y <
j −Y >

j

. (4.113)

This formula needs to be interpreted as depicted in the lower part of Figure 4.7. The
second part of this expression is indeed the voltage generated by the same source at
its immediate right side, but when it is located at zj . Multiplication with a function
that depends on z′ gives the voltage at the same position zj if the source would be
located at z′. The first part of the expression thus effectively shifts the source into the
source section to the position z′. A similar derivation can be made when the reference
interface is located zj−1, a case which is also depicted in Figure 4.7. Notice that the
first part is completely symmetrical with the observation shift function of Equation
(4.106). The formula thus basically expresses reciprocity and could have been derived
as such, provided that our intuitive capacities are sufficient for correctly distinguishing
the use of Γ<

j and Γ>
j , as can be seen from the collected formulas of Appendix A.3,

which gives an overview of all possible expressions for the source shift functions. The
above derivation on the other hand provides an adequate mathematical compass for
the correct derivation of these formulas.

4.9.5 The Example Revisited

The apparently complicated example expression of Equation (4.101) can thus be writ-
ten much simpler with Equations (4.103), (4.106) and (4.113) as

V I,>
ij (z, z′) =

1

2Yi

(
(Yi + Y >

i )e−γi(z−zi) + (Yi − Y >
i )e+γi(z−zi)

)
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i+1∏

k=j

e−γkdk + Γ>
k e

+γkdk

1 + Γ>
k

1

2Yj

(
(Yj + Y <

j )e−γj(z
′−zj) + (Yj − Y <

j )e+γj(z
′−zj)

)

1

Y <
j − Y >

j

(4.114)

in which the z and z′ dependence are explicitly separated in a simple and symmetrical
form. No further z, z′ dependence than the one already explicitly indicated above
needs to be traced any further.

4.10 Reciprocity Relations

Apart from the factorisation, reciprocity relations can also be used to limit the number
of functions that has to be computed. Starting from the general electromagnetic
reciprocity theorems, we can easily derive [182], [186], [183]

ĨV
i,j(z, z

′) = ĨV
j,i(z

′, z) (4.115)

Ṽ I
i,j(z, z

′) = Ṽ I
j,i(z

′, z) (4.116)

ĨI
i,j(z, z

′) = Ṽ V
j,i(z

′, z). (4.117)

These relations are also required to verify reciprocity in the analytical formulas of
Chapter 6.

4.11 The Missing Derivative Relations

In Chapters 2 and 3, we often used the property of the free space Green’s function

∇ = −∇′. (4.118)

This relation is valid because of the total translational invariance in a homogeneous
medium. However, in a multilayered medium there is only translational invariance in
the transverse x, y coordinates, so we can only use

∇t = −∇′
t (4.119)

while for the z, z′ variables, this operation cannot be performed since the layers of
the medium are “in the way”. More general formulas for this case can be determined
by inspection from the expressions for the factorised form of the Green’s functions in
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Appendix A. For derivatives involving the observation z coordinate, we see from the
equations of Appendix A.2 that

∂

∂z
Ĩ

T,≶
i,iref

(z) = −γiY
T
i Ṽ

T,≶
i,iref

(z) (4.120)

∂

∂z
Ṽ

T,≶
i,iref

(z) = − γi

Y T
i

Ĩ
T,≶
i,iref

(z) (4.121)

which are actually the well known transmission line relations. Note that the prop-
agation constant and characteristic admittance of the observation layer i appear by
taking derivatives with respect to z. For derivatives with respect to the source z ′

coordinate, we see from the explicit expression of Appendix A.3 that

∂

∂z′
F̃

V T ,≶
jref ,j (z′) = −γjY

T
j F̃

IT ,≶
jref ,j(z

′) (4.122)

∂

∂z′
F̃

IT ,≶
jref ,j(z

′) = − γj

Y T
j

F̃
V T ,≶
jref ,j (z′) (4.123)

where instead of the voltage or current itself, the source type now changes. Also,
the propagation constant and characteristic admittance of the source section j are
involved. Similar relations were apparently established in [182], [186] using reciprocity,
but no special significance or application as we will give in Chapters 5 and 6 was given
there.

4.12 The Electromagnetic Field in Dyadic Form

All components of the electric and magnetic field can now be determined as a function
of the components of the electric current source. These relations constitute the electric

G̃e and magnetic G̃h dyadic Green’s functions in the spectral domain


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Ẽz


=




G̃e
xx G̃e

xy G̃e
xz

G̃e
yx G̃e

yy G̃e
yz

G̃e
zx G̃e

zy G̃e
zz
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J̃z
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 (4.124)
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zx G̃h

zy G̃h
zz
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




J̃x

J̃y

J̃z


 .(4.125)

These relations are unique. The components of G̃e and G̃h always have the same
(numerical) value, although the symbols in which they are written can differ consid-
erably. We now derive these expressions and immediately arrange them in a form
which links them with the form they take in a homogeneous medium. At this point,
we neglect delta-function contributions (see [182], [187], [186]) which arise when the
source and observation points coincide. They will be taken up again when we deal
with the evaluation of the reaction integrals in Chapter 6.
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From the mapping of the TM and TE parts of the field with an equivalent trans-
mission line of Section 4.7, we can now express the independent Ẽz and H̃z field
components in a layer i as a function of the current and voltage sources in layer j
with the Green’s function notation of Section 4.9.1 as

Ẽiz =
1

ωεi

[
−
k2

ρ

kx
ĨIT M

ij J̃ TM
jx − k2

ρ

ĨV TM

ij

jωεj
J̃ TM

jz

]
(4.126)

H̃iz =
1

ωµi

[
−
k2

ρ

ky
Ṽ ITE

ij J̃ TE
jx

]
(4.127)

All other field components can be derived from Ẽiz and H̃iz using Equations (4.22),
(4.23), (4.24), (4.25).

4.12.1 The Electric Field

Introducing the independent field components (4.126), (4.127) into the equations for
the transverse electric field (4.22), (4.23), we collect together

Ẽix = +
kx

ky
Ṽ IT M

ij J̃ TM
jx +

kx

ky
Ṽ IT E

ij J̃ TE
jx − jkx

∂

∂z

(
IV T M

ij

jωεijωεj

)
J̃ TM

jz (4.130)

Ẽiy = +
kx

ky
Ṽ IT M

ij J̃ TM
jx − kx

ky
Ṽ IT E

ij J̃ TE
jx − jky

∂

∂z

(
IV T M

ij

jωεijωεj

)
J̃ TM

jz (4.131)

Ẽiz = −
jk2

ρ

kx

∂

∂z

(
Ṽ IT M

ij

−γ2
i

)
J̃ TM

jx +

(
∂2

∂z2
+ k2

i

)(
IV T M

ij

jωεijωεj

)
J̃ TM

jz (4.132)

where the first terms in Equations (4.130), (4.131), (4.132) were obtained using the
TM transmission line relations (4.120), (4.121) and in the last term of Equation
(4.132), we realize that k2

ρ operates on the Green’s function and could thus be replaced
using

k2
ρ =

∂2

∂z2
+ k2

i . (4.133)

Finally, introducing the expression (4.48), (4.51), (4.50) for J̃TM
x , J̃TE

x , J̃TM
z , and

rearranging some terms, we obtain the full spectral electric dyadic Green’s function
valid in an arbitrary plane-stratified environment and given in Equation (4.128).



8
0

C
H

A
P

T
E

R
4
.

E
M

F
IE

L
D

IN
S
T

R
A
T

IF
IE

D
M

E
D

IU
M



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(4.128)
The full spectral electric dyadic Green’s function G̃

e

for an arbitrary plane-stratified medium.
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(4.129)
The full spectral magnetic dyadic Green’s function G̃

h

for an arbitrary plane-stratified medium.
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4.12.2 The Magnetic Field

Introducing the independent field components (4.126), (4.127) into the equations for
the transverse magnetic field (4.24), (4.25), we obtain similarly

H̃ix = − ky

kx
ĨITM

ij J̃ TM
jx +

kx

ky
ĨIT E

ij J̃ TE
jx − jky

∂

∂z

(
ĨV T M

jωεj

)
J̃ TM

jz (4.134)

H̃iy = +
ky

kx
ĨITM

ij J̃ TM
jx +

kx

ky
ĨITE

ij J̃ TE
jx + jkx

∂

∂z

(
ĨV T M

jωεj

)
J̃ TM

jz (4.135)

H̃iz = − 1

ωµi

k2
ρ

ky
Ṽ ITE

ij J̃ TE
ix (4.136)

where the second term in Equations (4.134), (4.135) were obtained with the trans-

mission line Equations (4.120), (4.121) for the TE system. Finally, we replace J̃TM
x ,

J̃TE
x , J̃TM

z with (4.48), (4.51), (4.50) and rearrange terms to obtain the full spectral
magnetic dyadic Green’s function, given in Equation (4.129).

4.12.3 The Homogeneous Medium

The explicit expressions for the full spectral electric and magnetic dyadic Green’s
functions for a planar multilayered surround given in Equations (4.128) and (4.129)
seem fairly complicated. We therefore take a look at how these expressions reduce to
the corresponding free space formulations when the medium is a homogeneous one.
This will establish the necessary intuitive physical link with the widely used free space
electric and magnetic field formulations. It will also indicate how to expand any the-
oretical development or numerical method originally developed for the homogeneous
case to the more complicated stratified medium. Finally, the static near field of a
current source in a certain layer j is the same as the field in a homogeneous medium
with parameters εj , µj .

For a homogeneous medium characterised by ε, µ, the admittances Y >(z′) and Y <(z′)
at the source position z′ reduce to simply the free space wave impedance of the medium

Y >(z′) = +Y (4.137)

Y <(z′) = −Y (4.138)

which can be used Equations (4.85), (4.86), (4.87), (4.88) for the currents and voltages
generated at the source position. The waves traveling outward from the source are
then simply propagated by e−γ|z−z′|.

For the spectral electric Green’s dyad in Equation (4.128), we see that in G̃e
xx, G̃e

yy,
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G̃e
zx, G̃e

zy and G̃e
xz, G̃

e
yz, G̃

e
zz we can immediately simplify

Ṽ IT E

= − 1

2Y TE
e−γ|z−z′| = −1

2

jωµ

γ
e−γ|z−z′| (4.139)

Ṽ IT M

= − 1

2Y TM
e−γ|z−z′| = −1

2

γ

jωε
e−γ|z−z′| (4.140)

ĨV TM

= +
Y TM

2
e−γ|z−z′| = +

1

2

jωε

γ
e−γ|z−z′| (4.141)

and this allows to work out the remaining expressions in G̃e
xx, G̃e

xy, G̃e
yx, G̃e

yy as

Ṽ ITE − Ṽ IT M

k2
ρ

= +
1

2

(
γ

jωε
− jωµ

γ

)
e−γ|z−z′|

k2
ρ

= +
1

2

1

jωε

e−γ|z−z′|

γ
(4.142)

where we made use of γ2 + k2 = k2
ρ. All expressions in the spectral electric dyadic

Green’s function now have a common factor e−γ|z−z′|/γ.

For the magnetic field, we already determined Ṽ IT E

for use in G̃h
zx, G̃h

zy and ĨV T M

that

appears in G̃e
xz , G̃

e
xz. The remaining expressions need slightly more interpretation.

First, we verify that

ĨIT M

= ±1

2
eγ|z−z′| (4.143)

ĨIT E

= ±1

2
eγ|z−z′| (4.144)

such that the expression

ĨIT M − ĨIT E

k2
ρ

= 0 (4.145)

vanishes completely from G̃h
xx, G̃h

xy, G̃h
yx, G̃h

yy. The remaining term in G̃h
xy, G̃h

yx, is
best rewritten using Equation 4.120 as

ĨITM

= jωε
∂

∂z

(
− Ṽ

IT M

γ2

)
(4.146)

such that the common factor e−γ|z−z′|/γ of the electric field expression also appears
in the magnetic field formulation.

In a homogeneous medium, the full spectral electric and magnetic dyadic Green’s
functions from Equation (4.128) and (4.129) can thus be written with a single free
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space scalar Green’s function as
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(4.147)
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. (4.148)

These expressions become even more familiar when we perform the inverse Fourier
transform back to the spatial domain. In case of a homogeneous medium, the inverse
Fourier transform Equation (4.3) of the free space scalar Green’s function can by way
of exception be performed in closed form by the Sommerfeld identity Equation (B.1)
of Appendix B.1

F
−1

{
e−γ|z − z′|

2γ

}
= F

−1





e
−
√
k2

ρ − k2|z − z′|

2
√
k2

ρ − k2





=
e−jkR
4πR

(4.149)

where R =
√

(x− x′)2 + (y − y′)2 + (z − z′)2 is the distance between source and
observation point in the spatial domain. Taking into account the Fourier transform
relations (4.9), (4.10), (4.11) the electric and magnetic dyadic Green’s function in the
spatial domain are written as

~E = −jωµ
[
I +

1

k2
∇∇

]
e−jkR
4πR

. ~J (4.150)

~H =
[
∇× I

] e−jkR
4πR

. ~J = ∇× e−jkR
4πR

~J. (4.151)

These results thus testify as to the validity of the spectral domain approach, since
the same expressions for the electric and magnetic field were previously derived by
application of Green’s theorem in Chapter 2.

4.13 Conclusions

In this chapter, we have determined the expressions for the electric and magnetic fields
in the spectral domain, generated by a three dimensional point-like current source
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embedded within a general stratified medium. These expressions constitute the full
spectral electric and magnetic dyadic Green’s functions. To achieve this, we solved
Maxwell’s equations under the appropriate boundary conditions by a Spectral Domain
Approach. The set of vector equations can be simplified into two scalar transmission
line problems, which can be identified with the TM and TE decomposition of fields
and currents. The further solution was initially treated with basic transmission line
theory to solve the cascaded transmission line network analog of the stratified medium.
However, the standard expressions obtained in this way were felt to be too complicated
to manipulate in a straightforward manner and they impede an efficient numerical
analysis of three dimensional structures. A new and simple factorised form for an
arbitrary Green’s function explicitly separating the z and z ′ coordinate dependence
in simple and symmetric form was thus developed. This factorisation facilitates the
analytical manipulation of all Green’s function expressions in the remainder of the
text and is the cornerstone of the computation of the Green’s functions to analyse
three dimensional structures in planar stratified media.



Chapter 5

The Electric Field in Dyadic,
Mixed Potential and Hybrid
Form.

5.1 Introduction

In the previous chapter, we obtained the full spectral electric dyadic Green’s function
for a 3D point-like current source in an arbitrary plane stratified medium. This
Green’s function appears as the kernel of the BIE that we will solve. However, instead
of using these expressions directly with a brute-force purely numerical approach, the
expressions can be re-arranged into other forms which allow better to keep in touch
with the physical reality of the problem.

Historically, full wave electromagnetic BIE formulations have been applied first to
analyse thin wire antennas [188], [189] which can only be handled with the EFIE.
Later on, the main application was in the prediction of the Radar Cross Section
(RCS) of aerospace vehicles. For these larger closed smooth surfaces the MFIE was
found to be better suited [38]. Initial solution of the EFIE thus took place in free
space and in the spatial domain. It was found that instead of using the dyadic
field formulation directly, rearranging the expression to a so called Mixed Potential
Integral Equation (MPIE) offers considerable advantages for the numerical solution
as well as for preserving physical insight. The analysis of planar antennas and circuits
in stratified media mostly involves thin open structures, thus using the EFIE. Initial
simple geometries like planar transmission line cross sections were analysed using the
dyadic Green’s function in the spectral domain [166]. The advantages of the more
physical MPIE approach in the space domain resurfaced when more complicated

85
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arbitrarily shaped planar antennas and circuits had to be analysed [190]. These space
domain MPIE approaches were gradually extended to deal with fully 3D structures
in layered media [191].

We introduce the dyadic and mixed potential electric field formulations for a homo-
geneous medium in Section 5.2. We derive the mixed potential form from the dyadic
expression in the space domain in Section 5.2.1 with a derivation which focuses on the
physical meaning of the frequency dependence and the presence of spatial derivatives
in the components of the dyad. The same operations for a homogeneous medium are
then transposed to the spectral domain in Section 5.2.2. We then apply the same
physics based derivation to the full spectral Green’s dyad for a stratified medium
in Section 5.3. We obtain the “basic” mixed potential form of Section 5.3.1 which
has a simple vector potential but multiple scalar potential kernels. From the “basic”
form, we derive the more familiar single scalar potential kernel formulations in Section
5.3.2, but these exhibit a dyadic vector potential. It is thus demonstrated that MPIE
representations can be obtained without an a priori choice of scalar potential kernel,
suitable components of the dyadic vector potential kernel, or any gauge condition. It
is believed that in this way the problems of the non-uniqueness of the scalar potential
kernel and/or the dyadic nature of the vector potential kernel surface more clearly.
The return to more familiar space domain via the inverse Fourier transform (Sec-
tion 5.4) leads to the Sommerfeld integral representation. The physical interpretation
takes place in the space domain and is given in Section 5.5. In Section 5.6, we relate
the mixed potential formulations with the Sommerfeld problem and demonstrate for
the first time that the transition between them strictly satisfies the mathematical
gauge transformation formalism, applied for the case of a planar stratified medium.
Finally, after studying the relation of the field formulation with the geometry of the
problem in Section 5.7, we formulate a new hybrid dyadic mixed potential formulation
for the electric field in Section 5.8.

This new hybrid field formulation is matched to “quasi 3D” structures, which are not
fully three dimensional in a strict sense, but still allows to analyse most problems
in planar stratified media that one first thinks of as fully three dimensional. By
focusing on this specific geometry, the typical theoretical and numerical problems
of standard total dyadic or total mixed potential formulations are avoided and all
analytical possibilities can be exploited to the utmost, as demonstrated further in the
evaluation of the reaction integrals in Chapter 6.

5.2 Dyadic and Mixed Potential Form in Free Space

We first introduce the dyadic and mixed potential forms for the case of a homogeneous
medium in the spatial domain in Section 5.2.1, where the essential features are clearly
displayed. Preparing the derivation of the field formulations in a general stratified
medium we take a look at the form they take in the spectral domain in Section 5.2.2.
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5.2.1 The Spatial Domain

In a homogeneous medium characterised by µ, ε, a surface current ~J(~r,) located at

~r, on a perfectly conducting surface S ′ generates an electric field ~E(~r) at ~r given in
dyadic form as

~E(~r) = −jωµ
∫

S′

[
I +

1

k2
∇∇

]
G. ~J(~r,) dS′ (5.1)

where I is the unit dyadic, k = ω
√
µε and G = e−jkR/4πR the free space Green’s

function. In the above equation, the operators between brackets are assumed to
operate on G to obtain the components of the dyadic Green’s function. Due to the
double spatial derivative, these components have a hypersingular 1/R3 behaviour,
which is undesirable from a numerical point of view. No special attention is given
to the frequency dependence of the expressions, which makes physical interpretation
difficult.

Equation (5.1) can be transformed into a mixed potential form by performing the
following transformations on the part containing the double derivatives. In the first
step, the outer derivatives are brought out of the surface integral

∫

S′

[ ∇∇ ]G. ~J dS′ = ∇
∫

S′

∇G. ~J dS′ (5.2)

were we neglect for the moment the additional contributions that occur for the sin-
gular case ~r = ~r, [192], [193], [194]. In the second and third step, we transfer the
inner derivatives from the Green’s function to the current. The second step uses the
property

∇G(~r, ~r ′) = −∇′G(~r, ~r ′) (5.3)

which is only valid for a homogeneous medium. In the third step these derivatives
are then transferred to the current with a partial integration

∫

S′

−∇G′. ~J dS′ =

∫

S′

{
G ∇′. ~J −∇′.( G~J )

}
dS′ (5.4)

where the second term on the right hand side can give an additional line integral
contributions to the field if the current crosses an interface between different layers
of the medium and the function G is discontinuous [191]. For the moment, we will
neglect the special contributions from the first and third step, but we will generalise
the second step as this will be sufficient to derive the main expressions. We thus
obtain

~E(~r) = −jω
∫

S′

µe−jkR

4πR
~J(~r,) dS′ −∇

∫

S′

e−jkR

4πεR

(
∇′. ~J(~r,)

−jω

)
dS′. (5.5)
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The first part of this expression is the vector potential contribution generated by the
current. In the quasi-static limit, this contribution is proportional to frequency and
then describes magnetostatic and low frequency electric induction phenomena. The
second part is the scalar potential generated by the charge. It is inversely proportional
to frequency, such that in the static limit, this describes all familiar electrostatic
phenomena. This way of writing thus conveys a lot of physical information. Also,
only a basic 1/R spatial singular behaviour is present in both the scalar and vector
potential kernels, which is numerically convenient.

5.2.2 The Spectral Domain

In the spectral domain, we shall omit the integration over the surface S ′ not to
overburden the matrix notation. The spectral domain counterpart of the dyadic
expression Equation (5.1) was already determined in Section 4.12.3 of Chapter 4, and
is written as
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Ẽy

Ẽz
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(5.6)

where G̃ = e−γ|z−z′|/2γ is the free space Green’s function in the spectral domain.
The first step of Equation (5.2) translates into the spectral domain as




+jkxjkx +jkxjky −jkx
∂

∂z

+jkyjkx +jkyjky −jky
∂

∂z

− ∂

∂z
jkx − ∂

∂z
jkx +

∂

∂z

∂

∂z




G̃




J̃x

J̃y

J̃z




=




−jkx

−jky

∂

∂z




[
−jkx −jky − ∂

∂z′

]
G̃




J̃x

J̃y

J̃z




(5.7)

while the equivalent of the second step of Equation (5.3) becomes




−jkx

−jky

+
∂

∂z



G̃(kρ, z, z

′) = −




+jkx

+jky

+
∂

∂z′



G̃(kρ, z, z

′). (5.8)

In the third step, the inner derivatives are transferred to the current with a sign
change in a partial integration process as in Equation (5.4), but as we suppress the
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surface integrals, we abbreviate this transition in the spectral domain as

[
−jkx −jky − ∂

∂z′

]
G̃




J̃x

J̃x

J̃z



→ G̃

(
+jkxJ̃x+ jkyJ̃y+

∂J̃z

∂z′

)
. (5.9)

The mixed potential form of Equation (5.5) thus transforms into the spectral domain
as




Ẽx

Ẽy

Ẽz




= −jωµG̃




J̃x

J̃y

J̃z



−




−jkx

−jky

+
∂

∂z




G̃

ε




+jkxJx + jkyJy +
∂Jz

∂z′

−jω


 . (5.10)

5.3 Dyadic and Mixed Potential Form in a Stratified
Medium

In determining electric field formulations for a general multilayered medium, sev-
eral complications arise. First, the expressions are only available in closed form in
the spectral domain, while the expressions in the spatial domain have to be deter-
mined (partially) in a numerical manner via an inverse Fourier transform. Analytical
manipulation is thus generally easier in the spectral domain. Second, instead of a
single scalar Green’s function, the field is determined by several different Green’s
functions. Although a dyadic formulation is unique, mixed potential forms are not.
In the following section, we will derive mixed potential forms from the unique dyadic
representation in the spectral domain.

5.3.1 The “Basic” Mixed Potential Form

The derivation starts from the unique full spectral electric Green’s dyad of Equation
(4.128) of Chapter 4. This expression is similar to the free space electric Green’s dyad
of Equation (5.6), except that instead of a single scalar Green’s function, 5 different
functions appear. We abbreviate it symbolically as

G̃e = −jω




G̃xx 0 0

0 G̃xx 0

0 0 G̃zz


+

1

jω







+jkxjkx +jkxjky

+jkyjkx +jkyjky


 φ̃t



−jkx

−jky


 ∂
∂z

φ̃z
′

+
∂

∂z

[
−jkx −jky

]
φ̃zt +

∂

∂z

∂

∂z
φ̃z

′



.
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(5.11)

which foreshadows the meaning of the components as scalar and vector potential
components. Identification with Equation (4.128) reveals

G̃xx =
Ṽ IT E

ij

−jω (5.12) G̃zz =
µi

εj

ĨV T M

ij

jω
(5.13)

φ̃t = jω
Ṽ IT E

ij − Ṽ ITM

ij

k2
ρ

(5.14) φ̃z
′ =

ĨV T M

ij

jωεiεj
(5.15) φ̃zt = −jω

Ṽ IT M

ij

γ2
i

(5.16)

To derive mixed potential forms, we need to transfer the inner derivatives in Equation

(5.11) to the current in a partial integration process. The Green’s functions G̃ST

ij

show translational invariance only in the transverse x, y coordinates, such that we
can continue using



−jkx

−jky


 G̃ST

ij (kρ, z, z
′) = −




+jkx

+jky


 G̃ST

ij (kρ, z, z
′) (5.17)

in the same manner as in Equation (5.8). However, for the z, z ′ derivatives, we have
to rely on the generalisations established in Equations (4.120), (4.121), (4.122) and
(4.123). We can neglect the factorisation and the distinction between z > z ′ and
z < z′ at this points and use

∂

∂z
ĨST

ij = −γiY
T
i Ṽ ST

ij (5.18)

∂

∂z
Ṽ ST

ij = − γi

Y T
i

ĨST

i,j (5.19)

∂

∂z′
F̃ V T

ij = −γjY
T
j F̃ IT

ij (5.20)

∂

∂z′
F̃ IT

ij = − γj

Y T
j

F̃ V T

ij . (5.21)

We now attempt to perform the three step process on the part of Equation (5.11)
containing the double derivatives. In the first step, the outer derivatives are again
separated as in Equation (5.7), but taking into account the multiple scalar potential
functions as







+jkxjkx +jkxjky

+jkyjkx +jkyjky


 φ̃t



−jkx

−jky


 ∂
∂z

φ̃z
′

+
∂

∂z

[
−jkx −jky

]
φ̃zt +

∂

∂z

∂

∂z
φ̃z

′









J̃xj

J̃yj




J̃zj




=
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


Ẽix

Ẽiy

Ẽiz



= −jω




Ṽ IT E

ij

−jω 0 0

0
Ṽ IT E

ij

−jω 0

0 0
µi

εj

ĨV T M

ij

jω







J̃xj

J̃yj

J̃zj



−






−jkx

−jky




jω

Ṽ ITE

ij − Ṽ IT M

ij

k2
ρ

−jω
Ṽ IT M

ij

γ2
j




+
∂

∂z


 −jω

Ṽ ITM

ij

γ2
i

−jω
Ṽ IT M

ij

γ2
j










+jkxJ̃xj + jkyJ̃yj

−jω

∂J̃zj

∂z′

−jω




(5.22)The “basic” mixed potential form for the electric field in an arbitrary plane-stratified medium with multiple
scalar potential kernels but a simple vector potential kernel.
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




−jkx

−jky



[[
−jkx −jky

]
φ̃t

∂

∂z
φ̃z

′

]

+
∂

∂z

[[
−jkx −jky

]
φ̃zt

∂

∂z
φ̃z

′

]









J̃xj

J̃yj




J̃zj




(5.23)

which is interpreted according to the rules of block matrix multiplication. To apply
the second and third step, we have to distinguish between transverse and z derivatives.
For the inner transverse derivatives in Equation (5.23), we use Equation (5.17) such
that their transfer to the current in the second and third step can again be abbreviated
as

[
−jkx −jky

]
φ̃



J̃xj

J̃yj


→ φ̃

(
+jkxJ̃xj + jkyJ̃yj

)
(5.24)

valid for φ̃ = φ̃t, φ̃zt. We now perform the second and third step for transferring the
z derivatives to the current. The inner z derivatives of φ̃z

′ of Equation (5.11) are
converted into a z′ derivative in the second step using Equations (4.66), (5.18), (5.21)

∂

∂z

(
− ĨV TM

jωεiεj

)
J̃jz = − 1

jωεiεj

(
−γiY

TM
i Ṽ V TM

ij

)
J̃jz

= − 1

jωεiεj

(
−γi

jωεi
γi

Ṽ V T M

ij

)
J̃jz

= +
1

εj

(
−
Y TM

j

γj

∂

∂z′
Ṽ ITM

ij

)
J̃jz

= +
1

εj

(
−jωεj

γ2
j

∂

∂z′
Ṽ ITM

ij

)
J̃jz (5.25)

and we then transfer the z′ derivative to the current in the third step with a partial
integration to obtain

− 1

jω

∂

∂z

∫

z′

∂

∂z′

(
− ĨV T M

jωεiεj

)
J̃jz dz′ = − ∂

∂z

∫

z′

(
−jωṼ IT M

ij

γ2
j

) ∂J̃jz

∂z′

−jω dz′ (5.26)

were we see that the transfer of derivatives also involves a change of the Green’s
function φ̃z

′ to a function φ̃z which is thus the scalar potential of charges associated
with vertical current components

φ̃z = −jω
Ṽ IT M

ij

γ2
j

. (5.27)
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If we neglect the special contributions that can arise in the first and third step, we
obtain the “basic” mixed potential form given fully in Equation (5.22). This can be
written symbolically as




Ẽix

Ẽiy

Ẽiz




=−jω




G̃xx 0 0

0 G̃xx 0

0 0 G̃zz







J̃jx

J̃jy

J̃jz



−






−jkx

−jky



[
φ̃t φ̃z

]

+
∂

∂z

[
φ̃zt φ̃z

]






Q̃jt

Q̃jz


 (5.28)

where Q̃jz and Q̃jt are the charges associated with the vertical and horizontal com-
ponents of the current

Q̃jz =
∂J̃jz

∂z′
/(−jω) (5.29) Q̃jt =

+jkxJ̃jx + jkyJ̃jy

−jω . (5.30)

The field remains determined by 5 different functions, 2 vector potential components
G̃xx, G̃zz and 3 scalar potential functions φ̃t, φ̃z and φ̃zt. The occurrence of several
distinct scalar potential functions is not a problem if currents are horizontal or vertical
and even for an inclined current it can in principle be used as such [13], [195], [196]
although the physical interpretation is problematic. However, one may prefer to
work with a single scalar potential if one estimates that this compensates the other
complications that such a formulation inevitably entrains. We will now derive such
single scalar potential formulations below.

5.3.2 Classical Mixed Potential Formulations

Single scalar potential formulations can be derived from the “basic” mixed potential
form by assuming that one of the 3 scalar potential functions is valid for the total
charge and absorbing the correction terms into the vector potential. We follow the
same classification as in [191].

Formulation A

A possible choice for the single scalar potential is φ̃zt. we replace φ̃z in Equation
(5.28) with φ̃zt and absorb the correction terms into the vector potential kernel. The
extra vector potential components can thus be computed from

−jω




G̃A
xz

G̃A
yz

G̃A
zz



J̃jz = −




−jkx

−jky

∂

∂z




(
φ̃z − φ̃zt

)



∂J̃jz

∂z′

−jω


 . (5.31)
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Similarly, we replace φ̃t in Equation (5.28) with φ̃zt and compute the other modifica-
tions of the vector potential kernel from

−jω



G̃A

xx G̃A
xy

G̃A
yx G̃A

yy






J̃jx

J̃jy


 = −




−jkx

−jky

∂

∂z




(
φ̃t − φ̃zt

)(+jkxJ̃jx + jkyJ̃jy

−jω

)
. (5.32)

In the above expressions, the partial derivatives of the current in the right hand
sides have to be transferred back to the Green’s functions in order to obtain the
vector potential components. An example of such a computation will be given for
Formulation C below. This gives the single scalar potential formulation written fully
in Equation (5.34), and symbolically as




Ẽix

Ẽiy

Ẽiz




= −jω




G̃xx + G̃A
xx G̃A

xy G̃A
xz

G̃A
yx G̃xx + G̃A

yy G̃A
yz

0 0 G̃A
zz







J̃jx

J̃jy

J̃jz



−




−jkx

−jky

∂

∂z


 φ̃ztQ̃j (5.33)

where the total charge Q̃j = Q̃jz +Q̃jt now appears. The field remains determined by

5 functions, namely φ̃zt, G̃xx, G̃zz , G̃
A
xx and G̃A

xy while G̃A
yy, G̃A

yx are easily determined
from the previous two (see Section 5.4). This mixed potential form has been used for
example in [197], [198].

Formulation B

Another choice for the single scalar potential is φ̃z. In Equation (5.11), we replace

φ̃zt with φ̃z and absorb the correction terms into the vector potential kernel

−jω
[
G̃B

zx G̃B
zy

]


J̃jx

J̃jy


 = − ∂

∂z

(
φ̃zt − φ̃z

)(+jkxJ̃jx + jkyJ̃jy

−jω

)
. (5.36)

Similarly, we replace φ̃t in Equation (5.28) with φ̃z and absorb these corrections in
the vector potential kernel

−jω



G̃B

xx G̃B
xy

G̃B
yx G̃B

yy






J̃jx

J̃jy


 = −



−jkx

−jky



(
φ̃t − φ̃z

)(+jkxJ̃jx + jkyJ̃jy

−jω

)
. (5.37)

The result is the single scalar potential formulation written fully in Equation (5.35),
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5




Ẽix

Ẽiy

Ẽiz



= −jω




Ṽ IT E

ij

−jω − jkxjkx

jωk2
ρ

(
Ṽ IT E

ij +
k2

i

γ2
i

Ṽ ITM

ij

)
Ṽ IT E

ij

−jω − jkxjky

jωk2
ρ

(
Ṽ IT E

ij +
k2

i

γ2
i

Ṽ ITM

ij

)
−jkx

µiεi−µjεj
εjγ2

i

Ṽ V TM

ij

Ṽ IT E

ij

−jω − jkyjkx

jωk2
ρ

(
Ṽ IT E

ij +
k2

i

γ2
i

Ṽ ITM

ij

)
Ṽ IT E

ij

−jω − jkyjky

jωk2
ρ

(
Ṽ IT E

ij +
k2

i

γ2
i

Ṽ ITM

ij

)
−jky

µiεi−µjεj
εjγ2

i

Ṽ V T M

ij

0 0
µi

εj

ĨV T M

ij

jω
+
∂

∂z

µiεi−µjεj
εjγ2

i

Ṽ V T M

ij







J̃jx

J̃jy

J̃jz




−




−jkx

−jky

+
∂

∂z




(
−jω

Ṽ ITM

ij

γ2
i

)



+jkxJ̃jx + jkyJ̃jy +
∂J̃jz

∂z
−jω




(5.34)Formulation A for the mixed potential form of the electric field in the spectral domain for an arbitrary
plane-stratified medium with a single scalar potential kernel φ̃zt and a dyadic vector potential kernel.
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


Ẽix

Ẽiy

Ẽiz



= −jω




Ṽ IT E

ij

−jω − jkxjkx

jωk2
ρ

(
Ṽ ITE

ij +
k2

j

γ2
j

Ṽ IT M

ij

)
Ṽ IT E

ij

−jω − jkxjky

jωk2
ρ

(
Ṽ ITE

ij +
k2

j

γ2
j

Ṽ IT M

ij

)
0

Ṽ IT E

ij

−jω − jkyjkx

jωk2
ρ

(
Ṽ ITE

ij +
k2

j

γ2
j

Ṽ IT M

ij

)
Ṽ IT E

ij

−jω − jkyjky

jωk2
ρ

(
Ṽ ITE

ij +
k2

j

γ2
j

Ṽ IT M

ij

)
0

−jkx
µiεi−µjεj

εiγ2
j

ĨIT M

ij −jky
µiεi−µjεj

εiγ2
j

ĨIT M

ij

µi

εj

ĨV T M

ij

jω







J̃jx

J̃jy

J̃jz




−




−jkx

−jky

+
∂

∂z




(
−jω

Ṽ ITM

ij

γ2
j

)



+jkxJ̃jx + jkyJ̃jy +
∂J̃jz

∂z
−jω




(5.35)Formulation B for the mixed potential form of the electric field in the spectral domain for an arbitrary
plane-stratified medium with a single scalar potential kernel φ̃z and a dyadic vector potential kernel.
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and written symbolically as




Ẽix

Ẽiy

Ẽiz




= −jω




G̃xx + G̃B
xx G̃B

yz 0

G̃B
yx G̃xx + G̃B

yy 0

G̃B
zx G̃B

zy G̃B
zz







J̃jx

J̃jy

J̃jz



−




−jkx

−jky

∂

∂z


 φ̃zQ̃j . (5.38)

For his case, the 5 functions determining the electric field are φ̃z , G̃xx, G̃zz , G̃
B
xx, G̃B

zx

while the other components G̃B
yy, G̃B

zy can be easily determined from the previous two
with the relations of Section 5.4. This formulations has been used in [199].

Formulation C

If we choose the scalar potential φ̃t to be valid for the total charge, we obtain a
formulation which has certain advantages over the other choices [191]. We replace

φ̃z in Equation (5.28) with φ̃t and compute the modification of the vector potential
kernel from

−jω




G̃C
xz

G̃C
yz

G̃C
zz



J̃jz = −




−jkx

−jky

∂

∂z




(
φ̃z − φ̃t

)



∂J̃jz

∂z′

−jω


 . (5.40)

The explicit expressions for G̃C
zx, G̃zy, G̃C

zz are obtained by transferring the derivatives
from the current back to the Green’s functions as demonstrated below. The inverse
operation of the third step again involves the partial integration

∫

z′

(
−
Ṽ ITM

ij

γ2
j

−
Ṽ ITE

ij − Ṽ IT M

ij

k2
ρ

)
∂J̃jz

∂z′
dz′ =

∫

z′

∂

∂z′

(
Ṽ IT M

ij

γ2
j

+
Ṽ IT E − Ṽ IT M

k2
ρ

)
J̃jz (5.41)

and we then use Equations (4.66), (5.21) to simplify the factor appearing in front of
the current as

(
−
Ṽ V TM

ij

jωεj
− jωµj

k2
ρ

Ṽ V T E

ij +
γ2

j

k2
ρjωεj

Ṽ V T M

ij

)
J̃jz =

(
−jωµj

k2
ρ

Ṽ V T E

ij +
1

jωεj

(
γ2

j − k2
ρ

k2
ρ

)
Ṽ V T M

ij

)
J̃jz =

−jωµj

Ṽ V T E

ij − Ṽ V TM

ij

k2
ρ

J̃jz (5.42)
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


Ẽix

Ẽiy

Ẽiz




= −jω




Ṽ ITE

ij

−jω 0 −jkxµj

Ṽ V TE

ij − Ṽ V T M

ij

k2
ρ

0
Ṽ IT E

ij

−jω −jkyµj

Ṽ V TE

ij − Ṽ V TM

ij

k2
ρ

−jkyµi

ĨITM

ij − ĨIT E

ij

k2
ρ

−jkyµi

ĨIT M

ij − ĨIT E

ij

k2
ρ

µi

εj

ĨV T M

ij

jω
+

∂

∂z
µj

Ṽ V T E

ij − Ṽ V T M

ij

k2
ρ







J̃jx

J̃jy

J̃jz




−




−jkx

−jky

+
∂

∂z




(
jω
Ṽ IT E

ij − Ṽ IT M

ij

k2
ρ

)



+jkxJ̃jx + jkyJ̃jy +
∂J̃jz

∂z
−jω




(5.39)Formulation C for the mixed potential form of the electric field in the spectral domain for an arbitrary
plane-stratified medium with a single scalar potential kernel φ̃t and a dyadic vector potential kernel.
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where we used k2
j = γ2

j − k2
ρ in the last step. From Equation (5.40) we obtain the last

column in the vector potential kernel of Equation (5.39). Similarly, we replace φ̃zt

in Equation (5.28) with φ̃t and compute the remaining vector potential components
from

−jω
[
G̃C

zx G̃C
zy

]


J̃jx

J̃jy


 = − ∂

∂z

(
φ̃zt − φ̃t

)(+jkxJ̃jx + jkyJ̃jy

−jω

)
(5.43)

where the transverse derivatives operating on the current are transferred back to the
Green’s function using the shorthand Equation (5.24) and the z derivatives worked out
with Equations (4.66) and (5.19). We obtain the single scalar potential formulation
written fully in Equation (5.39), and symbolically as




Ẽix

Ẽiy

Ẽiz




= −jω




G̃xx 0 G̃C
xz

0 G̃xx G̃C
yz

G̃C
zx G̃C

zy G̃zz + G̃C
zz







J̃jx

J̃jy

J̃jz



−




−jkx

−jky

∂

∂z


 φ̃tQ̃j . (5.44)

The field remains determined by 5 functions, namely φ̃t, G̃xx, G̃zz + G̃C
zz , G̃

C
xz, G̃

C
zx

while G̃C
yz, G̃

C
zy are easily determined from the previous two as discussed in Section 5.4.

This formulation has found extensive use as in [200], [201], [202] and is implemented
in the commercial software Package EMSS FEKO.

5.4 The Inverse Fourier Transform

The above field formulations now have to be transformed back to the spatial domain,
where their physical significance can be better examined. From the definition of the
inverse Fourier transform and the current in the spectral domain Equations (4.3)
and (4.4) of Chapter 4, we see that the spatial domain quantities typically require
evaluation of expressions of the form

1

(2π)
2

∫

−∞

+∞∫
F̃ (kx, ky, z, z

′)e−jkx(x−x′)e−jky(y−y′) dkxdky. (5.45)

The resulting space domain quantity F (x − x′, y − y′, z, z′) shows translational in-
variance in the transverse coordinates which is a consequence of the assumption of a
stratified and transversely unbounded medium. The z, z′ dependence can be disre-
garded at this point since it is not affected by the Fourier transform. By inspecting
the dyadic expression of Equation (4.128) of Chapter 4 and the MPIE formulations

Equations (5.22), (5.34), (5.35), (5.39) we see that the function F̃ (kx, ky) typically is

composed of transmission line quantities F̃ST

ij (kρ, z, z
′) which are even functions of kρ,



100 CHAPTER 5. FIELD FORMULATIONS

possibly divided by k2
ρ, γ2

k and in some cases multiplied with the spectral wavenum-
bers jkx, jky. To obtain the spatial domain equivalents of such expressions, we must
avail ourselves of the labours of professed mathematicians.

Sommerfeld Integral Representation

If F̃ (kx, ky) does not depend on kx, ky separately, but is an even function of only kρ,
then the corresponding spatial domain expression depends on the radial distance ρ
only. This can be seen by introducing polar coordinates in the spatial and spectral
domain as

x− x′ = ρ cosφ (5.46)

y − y′ = ρ sinφ (5.47)

ρ =
√

(x − x′)2 + (y − y′)2 (5.48)

φ = arctan

(
y − y′

x− x′

)
(5.49)

kx = kρ cos ξ (5.50)

ky = kρ sin ξ (5.51)

kρ =
√
k2

x + k2
y (5.52)

ξ = arctan

(
ky

kx

)
(5.53)

such that Equation (5.45) reduces to

F (ρ, φ) =
1

2π

+∞∫

0

F̃ (kρ)
1

2π

2π∫

0

e−jρkρ cos(φ−ξ) dξ kρdkρ. (5.54)

With the help of ([203], p.902, formula 8.511.4)

e−jz cos θ =
+∞∑

n=−∞

(−j)nJn(z)e−jnθ (5.55)

we obtain the integral representation of the Bessel functions of the 1th kind and integer
order n as

Jn(z) =
(−j)n

2π

2π∫

0

cosnθ e−jz cos θ dθ (5.56)

such that the angular dependence disappears from Equation (5.54) to give the one-
dimensional Fourier-Bessel integral

F (ρ) =
1

2π

+∞∫

0

F̃ (kρ)J0(ρkρ) kρdkρ = S0

{
F̃ (kρ)

}
. (5.57)

where S0 is the lowest order representative of a more general class of Sommerfeld
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integrals [36] defined as

Sn

{
F̃ (kρ)

}
=

1

2π

2π∫

0

F̃ (kρ)Jn(ρkρ)k
n
ρ kρdkρ (5.58)

These resulting one-dimensional integrals are the only ones that have to be evalu-
ated numerically as discussed in Chapter 7, instead of the double numerical integrals
originally present in Equation (5.45).

If the wavenumbers kx, ky appear as separate factors F̃ (kx, ky) = jkxF̃ (kρ), jkyF̃ (kρ),

jkxjkxF̃ (kρ), jkyjkyF̃ (kρ), jkxjkyF̃ (kρ), the dependence on the azimuth angle φ
can be separated analytically from the dependence on ρ, and the inverse Fourier
transform can still be computed with the one-dimensional Sommerfeld integrals Sn

defined above. From Equation (4.9), we obtain

F−1
{
jkxjkxF̃ (kρ)

}
=

∂

∂x
F−1

{
F̃ (kρ)

}
(5.59)

=

[
− cosφ

∂

∂ρ

]
1

2π

+∞∫

0

F̃ (kρ)J0(ρkρ) kρdkρ (5.60)

F−1
{
jkxjkxF̃ (kρ)

}
=

∂

∂x

∂

∂x
F−1

{
F̃ (kρ)

}
(5.61)

=

[
sin2 φ

ρ

∂

∂ρ
+ cos2 φ

∂2

∂ρ2

]
1

2π

+∞∫

0

F̃ (kρ)J0(ρkρ) kρdkρ (5.62)

where the expressions for the spatial derivatives in cylindrical coordinates are valid if
they operate on a function F (ρ). These first and second order spatial derivatives of
the Bessel functions can be computed from ([203], p. 916, formula 8.473.4, 8.472.2,
8.473.1)

∂J0(ρkρ)

∂ρ
= −kρJ1(ρkρ) (5.63)

∂J1(ρkρ)

∂ρ
= −kρJ2(ρkρ) +

1

ρ
J1(ρkρ) (5.64)

J2(ρkρ) =
2

ρkρ
J1(ρkρ) − J0(ρkρ) (5.65)

such that higher order Sommerfeld integrals make their appearance. Using standard
trigonometric identities, all expressions can be simplified to obtain the results sum-
marized below

F−1{F̃ (kρ)} = So{F̃ (kρ)} (5.66)

F−1{−jkxF̃ (kρ)} = − cosφ S1{F̃ (kρ)} (5.67)
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F−1{−jkyF̃ (kρ)} = − sinφ S1{F̃ (kρ)} (5.68)

F
−1{jkxjkxF̃ (kρ)} = +

1

2
[cos 2φ S2{F̃ (kρ)} − So{k2

ρF̃ (kρ)}] (5.69)

F
−1{jkyjkyF̃ (kρ)} = −1

2
[cos 2φ S2{F̃ (kρ)} + So{k2

ρF̃ (kρ)}] (5.70)

F−1{jkxjkyF̃ (kρ)} = +
1

2
sin 2φ S2{F̃ (kρ)} (5.71)

In principle, we are now in a position to write down the dyadic and mixed potential
field formulations in the spatial domain.

The Expressions in the Spatial Domain

By straightforward application of the above formulas we obtain the full electric dyadic
Green’s function in the space domain as given in Equation (5.72). The dyadic can
be used as such in the space domain as was done in [204], [205], [206], [207] and
this is also done in the commercial software package Zeland Software IE3D. The
spectral domain dyadic Green’s function was rearranged into the spectral domain
mixed potential formulations A,B,C of Equations (5.34), (5.35), (5.39). The space
domain equivalent of the popular formulation C which is used in the commercial
software package EMSS FEKO is given fully in Equation (5.73), while the space
domain equivalents of formulations A,B can be found easily.

5.5 Physical Interpretation

We investigate the physical significance of the above expressions by comparison with
the simpler expressions for a homogeneous medium in the spatial domain. However,
for a stratified medium, the field cannot be written in closed form in the spatial
domain and the space domain behaviour has to be deferred from the spectral domain
closed form expressions. From the spectral asymptotic behaviour, we extract the
corresponding spatial singular and low frequency quasi-static behaviour. This will be
shown to correspond also to the assumption of a homogeneous medium in Section
5.5.2. We first trace the appearance of the azimuth angle φ in Section 5.5.1.

5.5.1 The φ Azimuth Angular Dependence

The azimuth angle φ as it appears in Equations (5.72), (5.73) makes the expressions
depend on the relative position of source and observation point x−x′, y− y′ and not
only on the lateral distance ρ. It appears by application of the Sommerfeld integral
relations Equations (5.67), (5.68), (5.69), (5.70), (5.71). From the derivation of these
expressions in Section 5.4, it is clear that this angle is actually the result of a spatial
derivative in the transverse X,Y plane performed in cylindrical coordinates. The
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


S0

{
Ṽ ITE

ij + Ṽ IT M

ij

2

}
+ cos 2φ S2

{
Ṽ IT E

ij − Ṽ ITM

ij

2k2
ρ

}
S0

{
Ṽ IT E

ij + Ṽ IT M

ij

2

}
+ sin 2φ S2

{
Ṽ IT E

ij − Ṽ IT M

ij

2k2
ρ

}
+ cosφ S1

{
Ṽ V TM

ij

jωεj

}

S0

{
Ṽ IT E

ij + Ṽ IT M

ij

2

}
+ sin 2φ S2

{
Ṽ IT E

ij − Ṽ IT M

ij

2k2
ρ

}
S0

{
Ṽ ITE

ij + Ṽ IT M

ij

2

}
+ cos 2φ S2

{
Ṽ IT E

ij − Ṽ ITM

ij

2k2
ρ

}
+ sinφ S1

{
Ṽ V T M

ij

jωεj

}

− cosφ S1

{
ĨIT M

ij

jωεi

}
− sinφ S1

{
ĨIT M

ij

jωεi

}
S0

{
k2

ρ

ĨV T M

ij

jωεijωεj

}




(5.72)The spatial domain full electric dyadic Green’s functions G
e

in an arbitrary plane-stratified medium.
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~Ei = −jω




S0

{
Ṽ ITE

ij

−jω

}
0 − cosφ S1

{
µj

Ṽ V TE

ij − Ṽ V T M

ij

k2
ρ

}

0 S0

{
Ṽ IT E

ij

−jω

}
− sinφ S1

{
µj

Ṽ V T E

ij − Ṽ V TM

ij

k2
ρ

}

− cosφ S1

{
ĨITM

ij − ĨIT E

ij

k2
ρ

}
− sinφ S1

{
ĨITM

ij − ĨIT E

ij

k2
ρ

}
µi

jωεj
S0

{
ĨV T M

ij +
k2

j

k2
ρ

(
ĨV TE

ij +
γ2

i

k2
i

ĨV T M

ij

)}




. ~Jj

−∇ S0

{
jω
Ṽ IT E

ij − Ṽ ITM

ij

k2
ρ

}(
∇′. ~Jj

−jω

)

(5.73)Formulation C for the mixed potential form of the electric field in the spatial domain for an arbitrary plane-
stratified medium with a single scalar potential kernel φ̃t and a dyadic vector potential kernel.
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Figure 5.1: The value of the spectral Green’s function for large spectral wavenumbers kρ

is most easily obtained via the multiple reflection interpretation.

φ dependence is in this way extracted in closed form from the numerical ρ depen-
dence. Nevertheless, the evaluation of reaction integrals now has to be done in two
ρ, φ variables, which requires extra computation time for numerical evaluation and
more complicated formulas if closed form evaluation is possible [207]. The space do-
main mixed potential formalism avoids such complications by exploiting the physical
significance of the spatial derivatives, such that only the distance between source and
observation point appears in the Green’s functions.

5.5.2 Spatial Singular Behaviour and Frequency Dependence

This section discusses the spectral asymptotic, the spatial singular, the low frequency
or (quasi)-static of the Green’s functions, and this is also equivalent with assuming a
homogeneous medium.

The spectral domain transmission line expressions for the Green’s of Section 4.8 of
Chapter (4) can also be obtained by making a multiple reflection construction as
depicted in Figure 5.1. At the source position z′, waves are generated as if the
source layer was a homogeneous medium, and then travel through the layer structure
undergoing multiple reflections and transmissions at the layer interfaces, using the
reflection and transmission coefficient as if there was a single interface, to arrive
at the observation position z in layer i. Working out the summation of all these
contributions would reproduce the exact expressions of Section 4.8.

The value of the spectral Green’s function F̃ (kρ) for kρ → ∞ is called the asymptotic
spectral behaviour. It determines the value of the spatial Green’s function F (ρ) for
ρ→ 0, the spatial singular behaviour at the origin of the spatial domain. This can be
seen from the definition Equation (5.58), where the period of the Bessel function in
the spectral domain becomes infinitely large, such that the dominant contribution in
the integral comes from the slowly decaying value of F̃ (kρ) at infinity. The asymptotic

spectral behaviour of F̃ (kρ) can be obtained from the transmission line expressions of
Section 4.8 of Chapter (4) by expanding all expressions in series for large kρ. If only
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the dominant terms are required, the central simplification consists of

lim
kρ→∞

γk = lim
kρ→∞

√
k2

ρ − ω2µkεk ≈ kρ. (5.74)

This assumption is equivalent to assuming ω → 0, which is the static case. The
waves on the equivalent transmission line now decay very fast, such that the field at a
certain point is determined by the direct field only. The field components that undergo
a reflection somewhere have to travel a larger distance and are damped more severely
as depicted in Figure 5.1. If the observation point is in the same layer as the source
point, neglecting the reflected waves amounts to the assumption of a homogeneous
medium.

The dominant frequency dependence and asymptotic spectral behaviour for the TM
Green’s functions is given by

lim
kρ,1/ω→∞

Ṽ V TM,≶

ij ≈ ∓ ε≷

ε< + ε>

∏

k

(1 + ΓTM
k )

∓1 jω

kρ
e−kρ|z−z′| (5.75)

lim
kρ,1/ω→∞

ĨV TM,≶

ij ≈ +
ε<ε>

ε< + ε>

∏

k

(1 − ΓTM
k )

∓1 jω

kρ
e−kρ|z−z′| (5.76)

lim
kρ,1/ω→∞

Ṽ ITM,≶

ij ≈ − 1

ε< + ε>

∏

k

(1 + ΓTM
k )

∓1 kρ

jω
e−kρ|z−z′| (5.77)

lim
kρ,1/ω→∞

ĨITM,≶

ij ≈ ± ε≶

ε< + ε>

∏

k

(1 − ΓTM
k )

∓1 kρ

jω
e−kρ|z−z′| (5.78)

while for the TE set we obtain

lim
kρ,1/ω→∞

Ṽ V TE,≶

ij ≈ ∓ µ≶

µ< + µ>

∏

k

(1 + ΓTE
k )

∓1 kρ

jω
e−kρ|z−z′| (5.79)

lim
kρ,1/ω→∞

ĨV TE,≶

ij ≈ +
1

µ< + µ>

∏

k

(1 − ΓTE
k )

∓1 kρ

jω
e−kρ|z−z′| (5.80)

lim
kρ,1/ω→∞

Ṽ ITE,≶

ij ≈ − µ<µ>

µ< + µ>

∏

k

(1 + ΓTE
k )

∓1 jω

kρ
e−kρ|z−z′| (5.81)

lim
kρ,1/ω→∞

ĨITE,≶

ij ≈ ± µ≷

µ< + µ>

∏

k

(1 − ΓTE
k )

∓1 kρ

jω
e−kρ|z−z′| (5.82)

where ε≶, µ≶ are the properties of the medium at the immediate left and right of the
excitation point z′. The products just represent the transmission across the inter-
vening interfaces k between z′ and z as a function of the local asymptotic reflection
coefficients

ΓTM
k =

εk − εk−1

εk + εk−1
(5.83)

ΓTE
k =

µk−1 − µk

µk−1 + µk
. (5.84)



5.5. PHYSICAL INTERPRETATION 107

Spectral Asymptotic
behaviour

Singular Spatial
Behaviour

e−kρ∆/k3
ρ

R lnR−R

e−kρ∆/k2
ρ lnR

e−kρ∆/kρ 1/R2

e−kρ∆ 1/R2

kρe
−kρ∆

1/R3

Table 5.1: Summary of the correspondence between spectral asymptotic and spatial singular
behaviour.

These expressions can be used to extract the asymptotic behaviour as described in
Section 7.2 of Chapter (7).

To obtain the corresponding spatial singular behaviour, we insert these asymptotic
expressions into the spectral domain formulations, and perform the inverse Fourier
transform using the Sommerfeld integral relations (5.66), (5.67), (5.68), (5.69), (5.70),
(5.71) which now be evaluated analytically using the relations of Appendix B.4. As a
useful mnemonic device, the relations given in Tables B.1 and B.2 are simplified as in
Table 5.1. Notice that performing a spatial derivative aggravates the spatial singular
behaviour as we move down in the above table.

5.5.3 Discussion of the Field Formulations

The Full Spectral Electric Dyadic Green’s Function

For the full spectral electric dyadic Green’s function of Equation (4.128), the dominant
low frequency and spectral asymptotic behaviour separates the components into a first
group which is proportional with frequency

lim
kρ,1/ω→∞

Ṽ ITE

ij ,
µi

εj
ĨV TM

ij ∼ jω
e−kρ|z−z′|

kρ
(5.85)

and which will give a basic 1/R spatial singular behaviour. The second group is
inversely proportional with frequency

lim
kρ,1/ω→∞

Ṽ IT M

ij

−γ2
i

,
ĨV T M

ij

jωεijωεj
,
Ṽ IT E

ij − Ṽ IT M

ij

k2
ρ

∼ 1

jω

e−kρ|z−z′|

kρ
(5.86)
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and are accompanied by double spatial derivatives. In the corresponding space domain
expressions of Equation (5.72), the frequency dependence is neglected while the spatial
derivatives give rise to a dependence on the azimuth angle φ and a hypersingular 1/R3

behaviour.

The “Basic” Mixed Potential Form

The observations made above provide a guideline to obtain the “basic” mixed potential
form of Equation (5.35). The vector potential components are obtained by extracting
the frequency dependence jω from the first group

lim
kρ,1/ω→∞

Ṽ ITE

−jω ,
µi

εj

ĨV T M

ij

jω
∼ e−kρ|z−z′|

kρ
(5.87)

and isolating the 1/jω dependence from the second group of scalar potential candi-
dates

lim
kρ,1/ω→∞

−jω
Ṽ ITM

ij

γ2
i

,+jω
Ṽ ITE

ij − Ṽ ITM

ij

k2
ρ

,−jω
Ṽ IT M

ij

γ2
j

∼ e−kρ|z−z′|

kρ
. (5.88)

These functions asymptotic equivalent functions are independent of frequency and
all show the basic 1/R spatial singular behaviour. Since all spatial derivatives have
been given a physical interpretation, the azimuth angle φ does not appear. However,
the multiple scalar potentials make the formulation distinct from the familiar single
scalar potential free space case, such that the evaluation of reaction integrals has to be
reformulated. Another possible disadvantage of this formulation is the discontinuous
behaviour of G̃A

zz, φ̃zt and φ̃z as we move from one layer to another. This is easily
investigated as all voltages and currents are continuous across the interfaces, and the
discontinuous behaviour is caused by the presence of εk, µk, γk in the expressions.

Formulations A,B

In formulations A,B of Equations (5.34), (5.35), we choose φzt and φz as single scalar
potential kernels. Apart from being discontinuous themselves, they also introduce
modifications into the vector potential kernels which are also discontinuous and have
a dominant behaviour

lim
kρ,1/ω→∞

1

jωk2
ρ

(
Ṽ ITE

ij +
k2

i

γ2
i

Ṽ IT M

ij

)
∼ e−kρ|z−z′|

k3
ρ

(5.89)

lim
kρ,1/ω→∞

µiεi − µjεj
εiγ2

j

Ṽ V T M

ij ∼ e−kρ|z−z′|

k2
ρ

(5.90)

with similar expressions for formulation B. From the corresponding spatial domain
singular behaviour and taking into account the double and single spatial derivatives
that have to be performed (because of the −jkx, −jky), we see that they have a
basic 1/R spatial singular behaviour and are independent of frequency. On the other
hand, they still show a dependence on the azimuth angle φ. It is thus seen that
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the enforcement of a single scalar potential introduces contributions into the vector
potential kernel containing unexpected derivatives, which are difficult to interpret
physically. The numerical evaluation of the single scalar potential contribution can
be done easily but the vector potential contribution now becomes more complicated.

Formulation C

With the choice of the continuous scalar potential kernel φ̃t, we obtain modifications
of the vector potential kernel that behave as

lim
kρ,1/ω→∞

Ṽ V T E

ij − Ṽ V T M

ij

k2
ρ

∼ e−kρ

k2
ρ

. (5.91)

They are again valid vector potential contributions in the sense that the are inde-
pendent of frequency and have a basic 1/R spatial singular behaviour, but the φ
dependence on the azimuth angle is a valid counterargument. The advantage of this
formulation is that in most practical cases all layers have µk = µo such that all
contributions become continuous.

5.5.4 The Multiple Scalar Potential Problem

From the physical point of view, the fact that the scalar potential in a multilayered
medium is not unique [13], [201], [195], [196], [208], [209], [210] has astonished many
a reader, impregnated as we are with the mental picture of a dimensionless and
directionless point charge. However, strictly speaking, a single scalar potential V
that gives the electric field from ~E = −∇V is only defined at zero frequency.

A related physical question concerns the interpretation of the charges Qjt and Qjz

defined in Equations (5.29) and (5.30) as true charges. In the case of a single scalar
potential, the electrostatic charge follows from the total charge by expanding the
current in series as a function of frequency

Qelectrostatic = lim
ω→0

∇′.
(
~J0 + jω ~J1 + (jω)2 ~J2 + (jω)3 ~J3 + . . .

)

−jω = ∇′. ~J1 (5.92)

where the magnetostatic current is electrically neutral since it always flows in closed
loops such that ∇′. ~J0 = 0. This line of reasoning fails however for a 3D current dis-
tribution if the scalar potentials are different since ∇′. ~J0 = 0 does not automatically
imply that ∇′

t. ~J
0
t = 0 and ∂J0

z /∂z
′ = 0 separately.

We can somewhat ease our psychological discomfort about the multiple scalar poten-
tial problem and solve the above apparent problems by examining more closely the
low frequency and static limit behaviour of the mixed potential formulations. In the
static limit we have ∇× ~E = ~0, so there must exist a single scalar potential such that
~E = −∇V . This remains valid of course for a layered medium. The different scalar



110 CHAPTER 5. FIELD FORMULATIONS

0
0

PSfrag replacements

ω

|Ez |

|Estatic
z |

|Etotal
z |

−jω (Gzz) Jjz

−jω
(
Gzz +GC

zz

)
Jjz

− ∂

∂z
φzQjz

− ∂

∂z
φtQjz

Figure 5.2: The contributions of different scalar potentials to the unique electric field are
compensated by the vector potential contributions. The scalar potentials converge to the
unique static scalar potential when the frequency tends to zero. The vector potentials remain
different but vanish with zero frequency.

potentials φ̃z, φ̃zt, φ̃t of Equations (5.22), (5.34) , (5.35) and (5.39) converge to “the”
single static scalar potential when the frequency tends to zero

lim
ω→0

(
−jω

Ṽ ITM

ij

γ2
i

)

lim
ω→0

(
−jω

Ṽ ITM

ij

γ2
j

)

lim
ω→0

(
+jω

Ṽ ITE

ij − Ṽ IT M

ij

k2
ρ

)





∼ −jω
Ṽ IT M

ij

k2
ρ

. (5.93)

Since the total electric field is unique, the different behaviour of the scalar poten-
tial contributions as a function of frequency is compensated by the different vector
potential contributions. The vector potentials remain different, but their contribu-
tions to the electric field vanishes with frequency. This is illustrated in Figure 5.2,
where we sketch a possible behaviour of the contributions to the Z component of the
electric field by the scalar and vector potential contributions of the mixed potential
formulation B with that of formulation C. In the following Section 5.6 we will prove
mathematically that the different scalar and vector potentials always give identical
electric and magnetic fields at all frequencies.
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5.6 The Mathematical Interpretation

In this section, we will link our results with a number of well established facts in
electromagnetic theory. In Section 5.6.2, we will identify the mixed potential for-
mulations with the original solutions derived by Sommerfeld himself. To avoid the
somewhat outdated Hertz potential approach, we first discuss the more modern scalar
and vector potential approach in Section 5.6.1. Although we have not followed this
approach in this work, it does allow to place the different Sommerfeld solutions and
the multiple possible MPIE formulations in a broader perspective. In Section 5.6.3,
we prove that these phenomena can be classified as gauge transformations, applied to
the case of a planar multilayered medium.

5.6.1 Vector and Scalar Potential, Gauge Condition

From the form of Maxwell’s field equations it follows [42] that it is always possible to

write the fields as a function of a scalar potential V and a vector potential ~A as

~E = −jω ~A−∇V (5.94)

~H = ∇× ~A. (5.95)

The solution of the boundary value problem is in many, but not all cases simplified by
introduction of the new independent variables Ax, Ay, Az and V . A gauge condition

linking ~A with V has to be chosen to completely determine ~A. These conditions take
the form

∇. ~A = 0 (5.96) ∇. ~A = −jωµεV (5.97)

where the Coulomb gauge (5.96) is suited to deal with static problems, and the Lorentz
gauge (5.97) is better suited to analyse electrodynamic phenomena. The solution of

the boundary value problem for the vector and scalar potentials ~A, V can be obtained
as a function of the current

~A =

∫

S′

G
A
. ~J dS′ (5.98) V =

∫

S′

φ

(
∇′. ~J

−jω

)
(5.99)

where φ is the scalar potential kernel, and G
A

the vector potential kernel, which for
complicated boundary value problems, such as the 3D current source in a multilayered
medium, has to be allowed a dyadic nature. Following this approach as in [191],
[210], [195], [196], [208], [209], [201] one is thus confronted with the choice of the
gauge condition, and with an often suspicious a priori choice of the in principle 9

components of G
A
. These problems were avoided in our more physical derivation

starting from the dyadic Green’s function.



112 CHAPTER 5. FIELD FORMULATIONS

PSfrag replacements

X

Y

Z

~Aφ

~J

Figure 5.3: The scalar and vector potential
for a homogeneous medium. The vector po-
tential is everywhere parallel to the gener-
ating current element.

PSfrag replacements

X

Y

Z

Az

Ax=Ay=0

~A
φz

~J

Figure 5.4: The field of a vertical current el-
ement in a layered medium can be described
with a single vector potential component
Az, and a scalar potential φz.

5.6.2 The Sommerfeld Problem

The dyadic nature of the vector potential kernel with the higher order Sommerfeld
integrals was already established by Sommerfeld [36] in studying wave generation
and propagation by dipole antennas above a lossy half space. Using a Hertz vector
potential approach [211], he noticed that this vectorial potential acquired components
which were not parallel to the generating current element [36].

In a homogeneous medium, we have Equation (5.10)

~E = −jωµ
∫

S′



G 0 0

0 G 0

0 0 G


 . ~J dS′ −∇

∫

S′

G

(
∇′. ~J

−jωε

)
dS′ (5.100)

such that the vector potential is everywhere parallel to the current source. This is
depicted in Figure 5.3.

From the “basic” mixed potential form and formulation B, we derive that for a Z
oriented current element in a layered medium

~E = −jω
∫

S′




0

0

Gzz


 Jz dS′ −∇

∫

S′

φz



∂Jz

∂z′

−jω


 dS′ (5.101)

the field can be described with one vector potential component Az ([36], Section 32,
The vertical antenna over an arbitrary earth), such that the vector potential remains
parallel to the current. It’s evaluation involves only the lowest order Sommerfeld
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integral and no angular dependence in the azimuth plane, which is natural because
of the cylindrical symmetry of the field. This situation is depicted in Figure 5.4.

From formulation C, we derive the “traditional” Sommerfeld choice for the compo-
nents of the vector potential Ax = Ay, and Az to obtain the field of a horizontal
current element ([36], Section 33, The horizontal antenna over an arbitrary earth),
[212],

~E = −jω
∫

S′



Gxx 0

0 Gxx

GC
zx GC

zy


 . ~Jt dS′ −∇

∫

S′

φt

(
∇′

t.
~Jt

−jω

)
dS′. (5.102)

Higher order Sommerfeld integrals and an azimuth angular dependence are now incor-
porated to describe the azimuth variation of the field. Notice that the vector potential
is no longer parallel to the generating current element as depicted in Figure 5.5. The
scalar potential is now different from the one in the previous case [209].

Although widely used, the above choice is not the only one possible to obtain the field
for a horizontal current element. From Formulation A we obtain

~E = −jω
∫

S′



Gxx GA

xy

GA
yx Gxx

0 0


 . ~Jt dS′ −∇

∫

S′

φzt

(
∇′. ~Jt

−jω

)
dS′ (5.103)

that the components Ax, Ay can also be used [208]. The third scalar potential φzt is
now required. This situation is depicted in Figure 5.6.
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5.6.3 The Gauge Transformation

The fields expressed as a function of the vector and scalar potential remain unal-
tered under a so called gauge transformation with a function ψ ( a particularly clear
exposition can be found in [42] )

~A′ = ~A+ ∇ψ (5.104)

V ′ = V − jωψ (5.105)

This can be seen easily by deriving the field from these new potentials

~E = −jω ( ~A′+∇ψ ) −∇ ( V ′−jωψ ) (5.106)

= −jω ( ~A′+∇ψ ) −∇ ( V ′−jωψ ) (5.107)

= −jω ( ~A′+∇ψ ) −∇ ( V ′−jωψ ) (5.108)

~H = ∇× ( ~A′ (5.109)

= ∇× ( ~A+ ∇ψ ) (5.110)

= ∇× ( ~A (5.111)

For the electric field, this has to be interpreted physically by saying that if we change
the contribution to the field by the charge, this has to be compensated by a corre-
sponding change in the vector potential field contribution. For the magnetic field,
this change has no effect since the change in vector potential can always be written
as ∇ψ, for which ∇×∇ψ = ~0.

The Gauge Transformation in the Multilayered Medium

We now prove that the transition between the proposed mixed potential forms A, B,
C are gauge transformations. For the electric field we transform the operations on
the scalar and vector potentials

~E = −jω ( ~AB+∇ψCB ) −∇ ( V B−jωψCB ) (5.112)

= −jω ( ~AB+∇ψCB ) −∇ ( V B−jωψCB ) (5.113)

= −jω ( ~AC+∇ψCV ) −∇ ( V C−jωψCB) (5.114)

into the operations on the scalar and dyadic vector potential kernels themselves

~E = −jω
∫

S′

G
B
. ~J dS′ −∇

∫

S′

φB ∇′. ~J

−jω dS′. (5.115)

~E = −jω
∫

S′

[
G

B
+ (G

C −G
B

)
]
. ~J dS′ −∇

∫

S′

[
φB + (φC − φB)

] ∇′. ~J

−jω dS′ (5.116)

~E = −jω
∫

S′

G
C
. ~J dS′ −∇

∫

S′

φC ∇′. ~J

−jω dS′. (5.117)
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The gauge function to transform mixed potential form B into formulation C is thus
obtained from

ψCB = − 1

jω

∫

S′

(
φC − φB

) ∇′. ~J

−jω dS′ (5.118)

and the change in the dyadic vector potential kernel is obtained from

∫

S′

[
G

C −G
B
]
. ~J dS′ = − 1

jω
∇
∫

S′

(
φC − φB

) ∇′. ~J

−jω dS′ (5.119)

To obtain the explicit expressions for the change of the dyadic vector potential kernel,
we need to transfer the derivatives from the current to the Green’s functions. This is
done in a partial integration process, which behaves differently for the transverse and
z derivatives. We thus write
∫

S′

[
G

C −G
B
]
. ~J dS′ =

− 1

jω




∇t

∫

S′

(φt − φz)
∇′. ~Jt

−jω dS′ + ∇t

∫

S′

(φt − φz)

∂Jz

∂z′

−jω dS′

+
∂

∂z

∫

S′

(φt − φzt + φzt − φz)
∇′. ~Jt

−jω dS′ +
∂

∂z

∫

S′

(φt − φz)

∂Jz

∂z′

−jω dS′




(5.120)

were we replaced φC , φB by φt, φzt. The transfer of derivatives to the Green’s
functions was already done in Section 5.3.2, and we need not even work this out
completely again. Using immediately Equations (5.36), (5.37), (5.40), (5.43) and
dropping the now superfluous integral over the current we obtain the corresponding
change of the dyadic vector potential kernel as

[
G

C −G
B
]

=




−GB
xx −GB

xy +GC
xz

−GB
yx −GB

yy +GC
yz

−GB
zx +GC

zx −GB
zy +GC

zy +GC
zz




(5.121)

which are indeed the modifications required to transform the dyadic vector potential
kernel of formulation B (5.35) into the one of formulation C (5.39). The same line of
reasoning allows to transform formulation C to A and back to B by gauge functions
ψAC and ψBA.

The magnetic field remains unaltered and can be obtained from all vector potentials
~AA, ~AB , ~AC . This is true because the transitions between them have the form of
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Figure 5.7: The gauge transformation in the multilayered medium. The electric and magnetic
fields are unique while the scalar and vector potentials are not. The potentials can be
transformed into one another by gauge transformations with gauge functions ψ.

a gradient of a scalar gauge function as in Equation (5.119). By Equation (4.5),
the magnetic dyadic Green’s function of Equation (4.129) is related to the dyadic
electric Green’s function of Equation (4.128) and the dyadic vector potential kernels
of Equations (5.34), (5.35) and (5.39) as

G
h

= − 1

jωµi
∇×Ge =

1

µi
∇×G

A
(5.122)

=
1

µi
∇×G

B
(5.123)

=
1

µi
∇×G

C
. (5.124)

The general situation is depicted in Figure 5.7. The electric field and magnetic fields
are unique. The scalar and dyadic vector potential kernels are not. They are related
by gauge transformations. In the static limit, the electric field is determined by the
scalar potential which becomes unique, while the vector potential contributions to the
electric field, which remain essentially different, vanish with frequency. The magnetic
field can always be derived from the different dyadic vector potential kernels at all
frequencies.

We have thus demonstrated that the Sommerfeld problem and the multiple possible
MPIE formulations are phenomena to be classified under the more general theory of
gauge transformations in electromagnetic theory, applied to the multilayered medium.
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Figure 5.8: The familiar planar or 2D structure in a multilayered medium.

Although this interpretation must have lingered in the back of the mind of many a
mathematical electrician in the field of integral equations and wave propagation in
multilayered media, we have now confirmed this suspicion for the first time.

5.7 Field Formulations for 2D to 3D Geometries

Now that we have acquired a basic knowledge of several possible formulations for
the electric field, we can investigate how they can be used for the integral equation
analysis of geometrically complex structures located in a multilayered medium.

The Planar or 2D Structure

Figure 5.8 shows the well known planar structure. The metal surfaces of the passive
microwave circuit or antenna can be assumed to have zero thickness and are usually
deposited at the interface of two dielectric media. The conductors are planar which
means that they are parallel to the layers constituting the background medium. The
surrounding medium is embedded within the Green’s function operators and for a
single conducting surface or several conducting surfaces at the same interface such
as the simplest single layer microstrip circuits and antennas [164], [213], [190] the
remaining problem is essentially reduced to a 2D problem involving only the transverse
x, y coordinates. When the conductors are located at different interfaces, such as in
multiconductor transmission lines [169], [170], [214], [215] and stacked patch antennas
[216], the problem actually becomes 3D, but when the surfaces remain planar, their
z-separation is just a parameter in the construction of the Green’s functions, and the
analysis remains essentially 2D.

Initially, the dispersion characteristics of microstrip transmission lines were deter-
mined with an integral equation analysis of the cross section only. Although reduced
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Figure 5.9: A “3D planar” or 2.5D structure. Vertical currents are confined to a single ”thin”
dielectric layer. They can be assumed constant and the horizontal current components can
be neglected.

to a 1D problem, all transverse field and current components need to be modeled.
These simple problems often used an EFIE formulation [164], [167], [169], [170], [166]
were only the transverse part of the dyadic Green’s function of Equation (4.128) is
required. The analysis of planar problems such as microstrip discontinuities initially
continued to use an EFIE formulation [213], [217], [204], [205], [206], [207], [218] but
when more complicated and arbitrarily shaped configurations had to be analysed the
advantages of the more physical MPIE formulation appeared again [200], [219] [220],
[221], [216], [222], [190], [223], [224], [225], [214], [215]. Theoretically, when only the
transverse or horizontal fields and currents are involved the field can be cast into
MPIE form using only the transverse parts of the formulations (5.34), (5.35), (5.39).

The “3D Planar” or 2.5D Structures

The analysis of real life problems such as probe feeds for patch antennas [226], [227],
[228], [229], [230], [210], [231], [232], [13] via’s and through holes, [233], [234], [235],
[236] bond-wires, air-bridges [235], [236], [237], [238], [239], [240], [241] and intercon-
nections [151], [152] in planar circuits and printed circuit boards all require a limited
capability to model strictly vertical currents. Because of the small dimensions, trans-
verse current components on the vertical conductors can be neglected. When the
substrate is thin, the Z component can be assumed constant as in [235], [237], [240],
[241]. This is however no longer valid for thicker substrates where the variation of the
current in the Z direction has to be taken into account [228], [229], [230], [210], [232],
[13], [240] Usually, the current cannot cross the interface between adjacent dielectric
layers. Such a situation is depicted in Figure 5.9.

Such problems were analysed with EFIE formulations in [226], [227], [237], [235],
[241] and with MPIE formulations in [239], [240], [13]. Since the currents flow either
horizontal or either vertical, no problems are experienced with the different scalar
potential kernels, and [210] even switches between the mixed potential formulations B
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Figure 5.10: A full 3D structure. An arbitrary curved surface is modeled using currents with
arbitrary orientation.

and C depending on the orientation of source and observation currents. A combination
of EFIE and MPIE was used in [235], where the MPIE was used to model mutual
coupling between planar currents and the EFIE for vertical fields and currents, but
this hybrid formulation was only implemented for a single layer medium.

Several commercial software packages that use the BIE can analyse 2.5D geometries
such as Sonnet em, AWR EMSight, Agilent Momentum and Ansoft Ensemble.

The Full 3D Structure

Figure 5.10 depicts a full 3D problem [183], [191], [242], [243]. The defining char-
acteristic of a really 3D problem is that the current can have arbitrary orientation
at all positions in the layer structure. This is usually combined with large vertical
dimensions and the current can cross the interfaces between adjacent layers. Such
problems can in principle still be analysed with an EFIE formulation [244]. When
using an MPIE formulation, we cannot avoid the multiple scalar potential problem
[208], [209]. On at least one occasion, an inclined plane was analysed with the “basic”
mixed potential form [196], using the distinct scalar potential kernels, but mostly the
single scalar potential formulation C of [191] is used, for inclined wire antennas [199],
[201] and inclined planes [245] crossing the interface between two unbounded media,
which is a very simple stratified medium (no surface waves can occur). For these
formulations, the problems are shifted to the dyadic vector potential kernel.

Some commercial software packages that offer full 3D capability for arbitrarily shaped
surfaces in arbitrarily multilayered environments are EMSS FEKO and Zeland Soft-
ware IE3D.

The “Quasi 3D” Structure

Figure 5.11 depicts the “quasi 3D” geometry we will concentrate on. Vertical surfaces
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Figure 5.11: A “quasi 3D” structure composed of horizontal and strictly vertical surfaces.
These can cross interfaces between dielectric layers and all current components are modeled.

can be arbitrarily large and can cross dielectric interfaces. The current flowing on
the surface is decomposed into vertical and horizontal components. These will be
expanded with rectangular rooftop functions, while triangular functions can only be
used on the horizontal conductors. In this way, the theoretical problems of a fully 3D
formulation, the multiple scalar potentials or the appearance of a dyadic vector poten-
tial kernel, are altogether avoided. The field formulation can be specifically adapted to
the geometry as a hybridisation of dyadic and mixed potential formulations, derived
in the following section.

This geometry was already treated in [246], [247], [248] [249], [184], [250] but using
a the total MPIE formulation, and the implementations were limited to single and
double layered structures.

The formulation is not fully 3D in the sense that at the basic level, the expansion
functions for the current cannot have arbitrary orientation, although it is possible
to treat fully 3D structures by making a staircase approximation for an arbitrarily
shaped surface.

5.8 The Hybrid Dyadic-Mixed Potential Form

In this section we establish a hybrid formulation for the electric field. The formulation
is derived keeping in mind the geometry it is intended to be used for. We can thus
match the theoretical formulation to the structure under consideration.

5.8.1 The Spectral Domain

The Transverse Field-Current Relations
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We will continue to express the horizontal components of the electric field as a func-
tion of the transverse current components with a mixed potential formulation. Since
the reaction integrals involving the horizontal components will have to be done in a
numerical fashion anyhow the space domain MPIE formalism remains the mechanism
to deal with the Green’s function singularity for this part of the formulation. From
Equation (5.39), we thus retain the transverse part


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Ẽix

Ẽiy
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 = −jω




Ṽ IT E
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(
jω
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ij
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)(
+jkxJ̃jx + jky J̃jy

−jω

)
. (5.125)

From Section 5.5, we recall that both the scalar and vector potential Green’s function
exhibit a spectral asymptotic e−kρ∆/kρ and a spatial 1/R singular behaviour.

The Vertical Field Generated by the Vertical Current

The Z components of field and current were expressed in dyadic form in Equation
(4.128) as

Ẽiz = −jωµi

[
1 +

1

k2
i

∂2

∂z2

](
ĨV TM

ij

jωεj

)
J̃jz . (5.126)

A mixed potential form can in principle be established by using the derivative relations
of Section 4.11 of Chapter 4 to obtain

Ẽiz = −jω
(
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ij
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)
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−jω


 (5.127)

as in the “basic” mixed potential form of Equation (5.22). However, using the same
derivative relations, it becomes possible to integrate arbitrary Green’s functions with
the current expansion functions for the z, z′ coordinates, and there is no further need
to use an MPIE formulation. It is then more economical to integrate the dyadic
expression immediately with the expansion currents for the current. We simplify
Equation (5.126) with the help of γ2

i = k2
ρ − k2

i as

[
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k2
i

ĨV T M

ij (5.128)

such that we finally obtain

Ẽiz = k2
ρ

ĨV T M

ij

jωεijωεj
J̃jz . (5.129)



122 CHAPTER 5. FIELD FORMULATIONS

The well known problems with this dyadic Green’s functions is that it shows a kρe
−kρ∆

spectral asymptotic and a 1/R3 spatial singular behaviour. The analytical integration
of the z, z′ dependence will be done with rooftop functions. This will lead to a
R lnR−R spatial singular behaviour, as demonstrated in Chapter 7.

The Transverse Field of a Vertical Current Element

For the horizontal field of a Z oriented current, we select from the full spectral electric
Green’s dyad Equation (4.128) the subset


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Ẽix

Ẽiy
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 =


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−jky


 ∂
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(
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ij

jωεijωεj

)
J̃jz (5.130)

for which we will combine the above two techniques. The horizontal derivatives are
retained as in an MPIE formulation, but the z derivatives are absorbed in the Green’s
function to give



Ẽix
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
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−jky


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(
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εj

)
J̃jz . (5.131)

The spectral asymptotic behaviour is

lim
kρ,1/ω→∞

Ṽ V T M

ij = e−kρ∆ (5.132)

giving a corresponding 1/R2 spatial singular behaviour. This singularity is trans-
formed by integrating the Green’s function with the z′ dependent part of the Jjz

rooftop function. The result will be a lnR singularity only.

The Vertical Electric Field of a Transverse Current

Similarly, the vertical field generated by a transverse current is selected from Equation
(4.128) as
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∂

∂z
(−jkx − jky)

(
Ṽ IT M

ij

−γ2
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)
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
 . (5.135)

By transferring the inner derivatives to the current in a partial integration and ab-
sorbing the z-derivative in the Green’s function this is transformed into

Ẽiz =

(
ĨIT M

ij

εi

)(
+jkxJ̃jx + jkyJ̃jy

−jω

)
. (5.136)

The spectral asymptotic behaviour of the occurring Green’s function

lim
kρ,1/ω→∞

ĨIT M

ij = e−kρ∆ (5.137)
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(5.133)The spectral domain hybrid dyad - mixed potential form for the electric field in an arbitrary plane-stratified
medium. The transverse field current relations use an MPIE formalism, while the vertical relations are written
in dyadic form.
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Ṽ ITE

ij − Ṽ IT M
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(5.134)The spatial domain hybrid dyad - mixed potential form for the electric field in an arbitrary plane-stratified
medium. The transverse field current relations use an MPIE formalism, while the vertical relations are written
in dyadic form.
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again gives a 1/R2 spatial singularity. By integrating this with the rooftop expansion
function of the observation current Jiz , this is abated to a lnR behaviour.

The results for the spectral domain expressions are collected in Equation (5.133).

5.8.2 The Spatial Domain

The remaining derivatives in the transverse coordinates are all retained in the space
domain. The hybrid field formulation in the spatial domain is given in Equation
(5.134). Notice the simplicity of this expression as compared to the total MPIE
formulation of Equation (5.73). No azimuth angular dependence and no higher order
Sommerfeld integrals are present.

5.9 Conclusions

In this chapter, a physics based derivation of several mixed potential formulations for
the electric field in a planar stratified medium was given, starting from the unique
full spectral electric dyadic Green’s function established in the previous chapter. The
Sommerfeld integral representation was introduced to obtain the corresponding ex-
pressions in the space domain. Considerable attention was spent on the physical in-
terpretation and meaning. On the mathematical side, we have proven that the single
scalar potential kernel mixed potential formulations are related by the gauge trans-
formation formalism, applied for the case of a multilayered medium. We classified
practical occurring problems in planar stratified media according to their geometry
as 2D, 2.5D, fully 3D and “quasi 3D” and examined the field formulations that can
be applied for their BIE analysis. The “quasi 3D” geometry is not fully 3D since we
assume that the current always flows on horizontal or strictly vertical surfaces, but
most practical problems are seen to fall within this assumption. Furthermore, for this
particular geometry, one can exploit the analytical possibilities of the SDA approach
to the utmost. The field formulation was adapted to this geometry as a hybrid dyadic
- mixed potential formulation, that avoids typical theoretical and numerical problems
of standard available “total” mixed potential formulations. The geometry also allows
to perform all z, z′ dependent parts of the reaction integrals in closed form as worked
out in Chapter 6.
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Chapter 6

Combined Spectral-Space
Domain Solution of the
Integral Equation

6.1 Introduction

The solution of the Boundary Integral Equation for realistic engineering problems has
to be done numerically. Discretising the current with appropriate expansion functions
and applying the method of moments as described in Section 3.5.1 of Chapter 3
discretises the whole integral equation into a matrix equation which can be solved
using standard linear algebra technology. Apart from the time spent in solving this
system of equations, a considerable amount of “matrix fill” time is required to compute
the matrix elements. They are obtained by evaluating “reaction integrals”. In the
first Section 6.2, we discuss how the evaluation of these integrals is determined by the
nature of the field in the planar stratified medium and the geometry of the metallic
structure to be analysed. Building on this experience, and using the new hybrid field
formulation developed in the previous chapter 5, we also propose a new combined
spectral-space domain approach in Section 6.3. In this approach, all integrations
in the transverse x, y coordinates are done numerically with the space domain mixed
potential formalism, while all z integrations involve the dyadic part of the formulation
and are done completely in closed form in the spectral domain. This newly developed
analytical part of the evaluation is worked out completely in Section 6.4. Further
details on how the inverse Fourier transform and any remaining space domain integrals
are actually performed are postponed to the next Chapter 7.

127
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6.2 Evaluation of Reaction Integrals

Application of the method of moments as described in Section 3.5.1 of Chapter 3
transforms the integral equation into a matrix equation of which the matrix elements
are “reaction integrals” as in Section 2.9.1 of the type

Zmn = −

∫

Sm

~Jm. ~Em( ~Jn) dS

ImIn
(6.1)

which is the mathematical description of the electromagnetic coupling from a source
current ~Jn to an observation current ~Jm. The efficiency and accuracy of this compu-
tation is roughly determined by three factors

• The field formulation,

• Spectral or space domain evaluation of the integrals,

• The geometry of the problem.

The Field Formulation. The expressions for the field ~Em( ~Jn) for a planar stratified
medium were discussed in Chapter 5, and can be written in a dyadic form as in
Equation 5.72, in mixed potential form as in Equation (5.73), or in the hybrid form of

Equation (5.134). For an extended “source” current distribution ~Jn, all formulations
lead to integrals of the type

∫

Sm

~Jm(~r).

∫

Sn

G(~r, ~r,). ~Jn(~r,) dS′ dS (6.2)

such that the double surface integration over Sm and Sn requires to evaluate a four-
fold integral.

Spectral and Space Domain Evaluation. In the layered medium, the components
of the Green’s functions are obtained via the Spectral Domain Approach (SDA). The
scalar expressions that have to be evaluated in the above Equation (6.2) are integrals
of the type

∫

Sm

fm(x, y, z)

∫

Sn

∫+∞∫

−∞

G̃(kx, ky, z, z
′)e−jkx(x−x′)e−jky(y−y′) dkxdky fn(x′, y′, z′) dS′dS.

(6.3)

The double spectral integration over kx, ky makes the total integral a six-fold one. The
sequence of evaluation as given in Equation (6.3) is called a space domain evaluation
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of the reaction integral. If the coordinate dependence of the test and basis functions
is separable as

f(x, y, z) = h(x, y) v(z) (6.4)

the integrations in the transverse x, y plane can brought inside of the spectral integral
to obtain

∫

z

vm(z)

∫

z′

∫+∞∫

−∞

h̃m(kx, ky)G̃(kx, ky, z, z
′)h̃∗n(kx, ky) dkxdky vn(z′) dz′dz (6.5)

where h̃m(kx, ky) and h̃n(kx, ky) are the Fourier transforms of the transverse parts of
the test and expansion functions. This part of the reaction integral is now evaluated
in the spectral domain.

The Geometry is perhaps the strongest factor influencing the method of evaluation
for Zmn.

For the simple 2D or planar geometry of Figure 5.8, the coordinate dependence of
the test and expansion functions is separable because they are located at fixed zm,
zn positions such that vm(z) = δ(z − zm), vn(z′) = δ(z′ − zn). In this case, the
remaining spatial integrations have to be performed only for a limited number of
combinations zm, zn which are treated as parameters in the computations, and the
remaining surface integrations are essentially two-dimensional in x, y or ρ, φ. In a
spectral domain EFIE approach, the integrals reduce to

∫+∞∫

−∞

h̃m(kx, ky)G̃(kx, ky, zm, zn)h̃∗n(kx, ky) dkxdky . (6.6)

This approach has been applied to analyse simple essentially 1D problems like trans-
mission line cross sections [166], [164], [167], [168], [165], [169], [170], [218] and linear
printed dipole antennas [251]. Extension to 2D structures was carried out to analyse
microstrip antennas [252] and printed circuits [213], [253]. The Fourier transforms
of simple linear basis functions on rectangular or triangular domains can be done in
closed form [254], [255]. The integrals are evaluated by a double numerical proce-
dure in the kx, ky domain [256] or can be transformed into a kρ, φ coordinate system
[257], [258]. The 1/R3 hypersingularity problem translates into a slow decay of the
spectral dyadic Green’s function as a function of kx, ky or kρ. In the spectral domain
approach, this slow decay is accelerated by multiplication with the Fourier transforms
of the basis functions [259]. The convergence can be accelerated further by a special
analytical treatment of the spectral asymptotes [258], [238], [260], [261]. In a space
domain EFIE approach, the integrals typically reduce to

∫

Sm

hm(x, y)

∫

Sn





1
cosφ
sinφ





+∞∫

0

G̃(kρ, zm, zn)




J0(ρkρ)
J1(ρkρ)
J2(ρkρ)



 kρdkρ hn(x′, y′) dS′dS. (6.7)
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as it has been used for 1D problems in [262], [263], [217],[204] and more complicated
2D problems in [205], [206], [207]. The angular φ dependence is separated analyti-
cally by Equations (5.66), (5.67), (5.68), (5.69) and (5.70) of Chapter 5, while the
remaining one-dimensional higher order Sommerfeld integrals have to be done numer-
ically. Care has to be exercised with the correct treatment of the 1/R3 singularity in
the integrations for which the necessary more complicated formulas have to be devel-
oped [207], [264]. In a space domain MPIE approach, the angular φ dependence and
the hypersingular behaviour can be avoided by a physical interpretation of spatial
derivatives. In this case, the integrals simplify to

∫

Sm

hm(x, y)

∫

Sn

+∞∫

0

G̃(kρ, zm, zn)J0(ρkρ) kρdkρ hn(x′, y′) dS′dS (6.8)

were only lowest order Sommerfeld integrals are required. This approach has found
widespread use especially to model arbitrarily shaped printed 2D planar microstrip
structures [190], [225], [214], [215] for which it is superior to the Spectral Domain
Approach [265]. The remaining basic 1/R singularity is still treated with asymptotic
analytical techniques. In all of these cases, the slow asymptotic spectral decay or
the corresponding spatial singular behaviour is extracted in closed form and treated
further analytically, such that the distinction between a spectral or a space domain
approach is primarily situated in the remaining numerical evaluation of the reaction
integrals [259], [257].

For a general 3D structure as the one of Figure 5.10, where the current test and ex-
pansion functions can have arbitrary orientation, the z coordinate dependence is in
general not separable, and a spectral domain approach is then not possible. A space
domain evaluation of the form (6.3) has to be performed. The complete 3D dyadic
formulation has been used in [244], [266], and implemented in Zeland Sofware IE3D,
while the MPIE formulation C is very popular [267], [268], and used in EMSS FEKO.
However, from the explicit expressions Equations (5.72) and (5.73) of Chapter 5, we
see that for a completely 3D case, both formulations contain an angular φ dependence
and higher order Sommerfeld integrals. Apart from this, the currents are now also
distributed in a continuous manner over all z, z′ positions. In this case, the spatial
domain expressions for all Green’s function components have to be tabulated not only
as a function of ρ, but also as a function of z and z′, The surface integrations are
performed completely numerically by interpolation from this precalculated data base.
Special care has to be exercised in the numerical integration, as some Green’s func-
tion components can be discontinuous across the interface between different dielectric
layers [191], [249]. This approach is computationally very expensive.

For the 2.5D and “quasi 3D” structures of Figures 5.9 and 5.11 of Chapter 5, the z
coordinate is separable from the transverse x, y dependence provided that the current
on the vertical surfaces is decomposed into horizontal and vertical components and
expanded with only rectangular rooftop functions. In many cases, the separability is
not really used and the z, z′ integrals continue to be evaluated in a purely numerical
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manner combined with a spectral domain approach as in Equation (6.5) for the trans-
verse integrations as in [236], [237], [269], or with a space domain approach as in [239],
[247], [248], [249], [246] which is thus actually the same method as for a completely
3D structure as given in Equation (6.3). However, it becomes possible to perform
the z, z′ integrations analytically by moving them also inside of the integration in the
spectral domain, which can be an inverse Fourier transform in case of a horizontal
space domain approach as in Equation (6.3)

∫

Sm

hm(x, y)

∫

Sn

F−1





∫

z

vm(z)

∫

z′

G̃(kρ, z, z
′) vn(z′) dz′dz



hn(x′, y′) dS′ dS (6.9)

as in [240], [250], [184], or a spectral domain evaluation of the transverse integrals as
in Equation (6.5)

∫+∞∫

−∞

h̃m(kx, ky)

∫

z

vm(z)

∫

z′

G̃(kx, ky, z, z
′)vn(z′) dz′dz h̃∗n(kx, ky) dkxdky (6.10)

as in [235], [241]. These approaches are however limited to only a constant vertical
current in a single layered medium as in [235], [241], [240] or both current components
but only in a two layered medium [250], [184], where the expressions for the Green’s
functions are still relatively simple.

6.3 Combined Spectral-Space Domain Approach

In this work, we perform all z, z′ dependent integrals in closed form in the spectral do-
main, while all transverse integrations use the space domain formalism. The approach
is combined with newly developed hybrid dyadic-mixed potential field formulation of
Chapter 5. The analytical integrations are based on the derivative relations ( Section
4.11) and factorisation (Section 4.9) of the Green’s functions, valid for an arbitrary
number of layers in the medium. The analytical integrations will reduce the spectral
asymptotic and spatial singular behaviour of the dyadic part of the formulation, while
in the space domain part of the solution, the transfer of derivatives to the test and
expansion functions reduces the spatial singularity to be integrated. In this newly de-
veloped combined spectral-space domain, the spectral domain closed form evaluation
of the dyadic parts, numerical inverse Fourier transform and space domain mixed po-
tential evaluation are interleaved depending on the type of electromagnetic coupling,
determined by the direction of fields and currents as worked out completely below.
In this way, not only the field formulation, but also the evaluation of the reaction
integrals is matched to the “quasi 3D” geometry in a planar stratified medium.
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Figure 6.1: Expansion of the surface current on a “quasi 3D” structure with rooftop ex-
pansion functions. The current on a vertical surface is decomposed into its horizontal and
vertical components.

6.3.1 Discretisation of the Current

The different types of expansion functions that can occur in a “quasi 3D” structure
are depicted in Figure 6.1. The electric current on a horizontal conductor ~J H(~r,) is
expanded using standard rooftop or RWG basis functions defined over a rectangular
or triangular support as defined already in Chapter 3 and denoted as

~J H(~r,) = ~∆(x′, y′)δ(z′ − zn) (6.11)

∇′. ~J H(~r,) = Π(x′, y′)δ(z′ − zn) (6.12)

where in our mind’s eye, the notation ∆ recalls the linear behaviour, and Π the
constant behaviour of these functions as a function of the transverse coordinates
x′, y′ over the supporting domain S ′, while the zn coordinate remains fixed. The line
charge at the edge where the rooftop function reaches unity will be taken up further in
the process of evaluating the reaction integrals. The current distribution on a vertical
conductor ~J V (~r,) is decomposed into its horizontal and vertical components

~J V (~r,) = ~J Vv(~r,) + ~J Vh(~r,) (6.13)

which will both be expanded using only rectangular rooftop functions, such that the
x′, y′ and z′ coordinate dependence become separable

~J Vv (~r,) = Π(x′, y′)~∆(z′) (6.14)



6.3. COMBINED SPECTRAL-SPACE DOMAIN APPROACH 133

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

PSfrag replacements

Z

H

Vh

Vv

C

01i jNN + 1

∆+
m(z) ∆−

m(z)

Πm(z)

∆+
n (z′) ∆−

n (z′)

Πn(z′)

Figure 6.2: Discretisation of the current along the Z axis for analytical evaluation of the
z, z′ dependent part of the reaction integrals.

~J Vh(~r,) = ~∆(x′, y′)Π(z′) (6.15)

where x′, y′ now runs over the line segment l′ as depicted in Figure 6.1. To let
horizontal and vertical surfaces connect or intersect each other, we also introduce
“connections” ~J C(~r,) which are rooftops functions defined partly over a horizontal
and partly over a vertical segment. These connecting currents need not be considered
separately, since the formulas can be obtained by combining those of the horizontal
and vertical currents in the appropriate manner.

The subdomains S′, l′ in the X,Y plane can in principle have arbitrary location.
The analytical and numerical techniques to evaluate the transverse x, y parts of the
reaction integrals as will be given in Chapter 7 can handle such a configuration.
However, the discretisation along the Z axis is more restricted, because the z, z ′

dependent part of the reaction integrals will be done completely analytically. Figure
6.2 shows the conventions. The interfaces between the different layers of the medium
automatically create borders for the segmentation along the Z axis. Each layer has an
integer number of segments. In this way it is ensured that the test and basis functions
either overlap perfectly along the Z axis or do not overlap at all, which facilitates the
analytical evaluation. In this way also, contributions to the field when a basisfunction
crosses an interface are also incorporated automatically when the Zm±n± are added
together.

6.3.2 Overview of Types of Reaction Integrals

The resulting Method of Moments (MoM) “impedance” or “coupling” matrix Z can
now be partitioned into several blocks as depicted in Figure 6.3, according to whether
the test and expansion functions are located on a horizontal conductor ( indicated
with H symbol ), on a vertical surface (V ), or partly on both for the “cornered”
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Figure 6.3: Partitioning of the Method of Moments (MoM) “impedance” or “coupling”
matrix according to location on the surface and orientation of test or “observation” functions
and expansion or “source” functions.

(C) expansion functions. The currents on the vertical surface are further cataloged
depending on their orientation which can still be horizontal (Vh) or vertical (Vv). The
test or “observation” functions are traced through the rows of Z, and the expansion or
“source” functions can be found in the columns of Z. All elements of a particular block
are evaluated using the same fixed formula. All possible formulas to fill the blocks
ZHH , ZV V , ZHV and ZV H are now discussed in full detail. The formulas to evaluate
the elements of the block matrices involving “cornered” expansion functions ZCC ,
ZHC , ZV C and their reciprocal counterparts ZCH , ZCV are obtained by combinations
of the formulas presented below.

Each matrix elements Zmn is composed of four contributions Zm±n± as already de-
fined in Chapter 3. Each contribution refers to the coupling between the half rooftop
functions ~J±

m, ~J±
n flowing on the parts S±

m, S±
n of the total surfaces Sm, Sn as defined

in Figures (3.11), (3.12) and (3.13) of Chapter 3. For a horizontal rooftop on a hor-

izontal surface ~JH
n , ln is the common edge of S+

n and S−
n as depicted in Figure 6.4.

For a horizontal rooftop on a vertical surface ~JVh
n , the projections of S±

n in the X,Y
plane are denoted as l±n as depicted in Figure 6.6. For a vertical oriented current on

a vertical surface ~JVv
n , these projections coincide and the edge is again referenced as

ln and depicted in Figure 6.5.
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6.3.3 Space Domain Evaluation of ZHH
mn

The space domain MPIE formulation that relates the transverse field ~Eit in a layer
i to the transverse current ~J±

n located in layer j was already obtained in Equation
(5.134) of Chapter 5, but here we also need to take into account the field generated
by the line charges at the the edge ln of the surface S±

n

~Eit = −jω
∫

S±
n

S0

{
Ṽ IT E

ij

−jω

}
~∆±

n dS′ −∇t

∫
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n
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{
jω
Ṽ ITE

ij − Ṽ IT M

ij

k2
ρ

}(±Πn

−jω

)
dS′

−∇t

∫

ln

S0

{
jω
Ṽ IT E

ij − Ṽ IT M

ij

k2
ρ

}(
−~n,.~∆±

n

−jω

)
dl′ (6.16)

as in Equation (3.47). Upon inserting this into Equation (6.1), we obtain

ZHH
m±n± = − jω

∫

S±
m

~∆±
m(x, y).

∫

S±
n

S0

{
Ṽ ITE

ij

−jω

}
~∆±

n (x′, y′) dS′dS

−jω
∫

S±
m

(±Πm(x, y)

−jω

) ∫

S±
n

S0

{
jω
Ṽ IT E

ij − Ṽ ITM

ij

k2
ρ

}(±Πn(x′, y′)

−jω

)
dS′dS
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ij − Ṽ IT M

ij
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ρ

}(
−~n,.~∆±

n (x′, y′)

−jω
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dl′dS (6.17)

similar to Equation (3.48) of Chapter 3. The first term is electromagnetic coupling
between the currents. The second term couples the electric charges. The third and
fourth term normally vanish when two observation horizontal half rooftops are com-
bined together, while the the last two terms vanish when two source horizontal half
rooftops are combined together. However, when the half rooftop functions are part of
“cornered” connection rooftop functions as depicted in Figure 6.8 of Section 6.3.6, the
contribution of the line charges has to be taken into account. It will be explained there
how because of the nature of the arising integrals, the third term is then evaluated
together with Equation (6.24) for ZVvH

mn of Section 6.3.5, the fourth term is brought
over to Equation (6.19) for ZVvVv

mn of Section 6.3.4, while the last term is transferred
to Equation (6.22) for ZHVv

mn of Section 6.3.5. The space domain approach is evident
from the sequence of operations in Equation (6.17). The Green’s functions are first
computed in the spectral domain in which the z, z′-separation ∆ = |z − z′| enters
the computation as a parameter. After the inverse Fourier transform to the space
domain, the evaluation of the surface integrals is essentially two-dimensional in the
transverse x, y coordinates and takes place as described in Section 7.3 of the next
Chapter. Using the results of Section 5.8.1 of Chapter 5, we see that a worst case
e−kρ∆/kρ spectral asymptotic and a basic 1/R spatial singular behaviour has to be
integrated. The block matrix ZHH of the total MoM Z matrix of Figure 6.3 can now
be filled.

6.3.4 Combined Spectral-Space Domain Evaluation of ZVvVv
mn ,

ZVhVh
mn

The evaluation of Equation (6.1) for two vertical currents ~Jm, ~Jn could be done with
a space domain approach as

ZVvVv

m±n± =

∫

S±
m

Πm(x, y)~∆±
m(z).

∫

S±
n

S0

{
k2

ρ

Ṽ IT M

ij

jωεijωεj

}
Πn(x′, y′)~∆±

n (z′) dS′dS (6.18)

but the numerical inverse Fourier transform would be difficult, since we know from
Section 5.8.1 of Chapter 5 that a kρe

−kρ∆ spectral asymptotic behaviour has to be
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Figure 6.5: Combined spectral-space domain evaluation of ZVvVv
mn for two vertical currents

flowing on a vertical surface. The z, z′ dependent parts of the reaction integrals are evaluated
in closed form in the spectral domain, and the remaining ρ integration is performed in the
space domain after the inverse Fourier transform.

extracted, and a 1/R3 spatial singularity has to be integrated. We therefore bring the
z, z′ dependent part of the surface integrals “inside” of the inverse Fourier transform

ZVvVv

m±n± =

∫

lm

Πm(x, y)

∫

ln

S0





z+
m∫

z−
m

∆±
m(z)

z+
n∫

z−
n

k2
ρ

Ṽ IT E

ij

jωεijωεj
∆±

n (z′) dz′dz





Πn(x′, y′) dl′dl

(6.19)

where lm, ln are the projections of the surfaces S±
m, S±

n on the X,Y plane. The z, z′

integration of the Green’s function with the linear functions ∆±
m(z), ∆±

n (z′) can be
done analytically as worked out in Section 6.4.7. By evaluating these formulas in the
spectral domain, the spectral asymptotic behaviour is abated to a worst case e−kρ/k2

ρ,
such that only a remaining lnR has to dealt with when evaluating the line integrals in
the space domain. The sequence of operations is depicted in Figure 6.5. The approach
is called a combined spectral-space domain approach, since the reaction integrals are
evaluated partly in the spectral domain, and partly in the space domain.

The previous technique is applied for all z, z′ dependent integrals. When two horizon-
tal currents flow on a vertical surface as depicted in Figure 6.6, the z, z ′ integrations
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VhVh
mn describing coupling between two horizontal currents

flowing on a vertical surface.

of Equation (6.17) can again be shifted ”inside” of the inverse Fourier transform as

ZVhVh

m±n± = −jω
∫

l±m

~∆±
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(±Πn

−jω

)
dl′dl. (6.20)

The line charges now never give a contribution, since no half rooftops are ever associ-
ated with a horizontal current on a vertical surface. The analytical integrations can
be done with the formulas of Section 6.4.5.

6.3.5 The Cross-Coupling Terms ZHVv
mn , ZVvH

mn

When Equation (6.1) has to be evaluated for the case of a horizontal observation

current ~Jm and a vertical source current ~Jn as depicted in Figure 6.7, we insert
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from a vertical current on a vertical surface to a horizontal current on a horizontal surface.

Equation (5.134) of Chapter 5 into Equation (6.1)

ZHVv
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n (z′) dS′dS (6.21)

and combine the techniques from the previous cases. The singular behaviour of the
Green’s function is circumvented by transferring the transverse derivative ∇t to the
observation current ∆±

m in a partial integration, and an additional closed form inte-
gration in the spectral domain to obtain
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The second term normally vanishes when two horizontal observation half rooftop
functions are combined, but it does have to be taken into account in case the half
rooftop functions is part of a “cornered” connection rooftop which serves as testing
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function. For such a case, the second term is added to Equation (6.19) for ZVvVv
mn

of Section 6.3.4, since there, we already evaluate a double line integral in the space
domain.

For the reciprocal coupling from a horizontal source current ~Jn to a vertical observa-
tion current ~Jn, we start from Equation (5.134) of Chapter 5

Eiz =

∫

S±
m
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ĨITM
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−jω

)
dl′ (6.23)

where we now have to take into account the field from the line charge at the edge
lm of S±

m which occurs because of the partial integration in the x′, y′ source coordi-
nates. Inserting this into Equation (6.1) and performing all possible z, z ′-integrations
analytically as before, we obtain

ZVvH
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dl′dl. (6.24)

As before, the second term vanishes when two horizontal source half rooftop functions
are combined, but it gives a contribution when the half rooftop is part of a “cornered”
connection rooftop function which serves as the source function. In that case, the
second term is also added to Equation (6.19) for ZVvVv

mn of Section 6.3.4, where the
same type of double line integral is already evaluated.

The z and z′ integrals in Equations (6.22), (6.24) are performed analytically in Section
6.4.3.

6.3.6 Treatment of the Line Charge Contributions

Now that the necessary formulas are available, we focus on the treatment of the field
contributions from the line charges as they first appeared in Section 6.3.3. We will
give a detailed explanation of the treatment only for the line charge terms of Equation
(6.17), as the essential features can be most easily derived from this case. A similar
line of reasoning can be applied for all other cases.

In Equation (6.17) we had to consider the case that half a rooftop function is not
always combined with its companion to constitute a “complete” expansion function
for a horizontal current as in Figure 6.4, but can also appear by itself when it is a
part of a “cornered” connection rooftop which describes the flow of current from the
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horizontal surface over the connecting edge to a vertical surface as depicted in Figure
6.8. The third term of Equation (6.17) for ZHH

m±n± is the field of the source surface

charge Πn/(−jω) which couples with the observation line charge −~n.~∆±
m/(−jω) and

has to be taken into account. This observation line charge only occurs when the
horizontal observation half rooftop is “connected” with half a vertical rooftop function,
and it is in the evaluation of the first term of Equation (6.24) for ZVvH

m±n± from the
source charge to this vertical half rooftop that the same type of integral is already
evaluated. We therefore don’t evaluate the third term of Equation (6.17) for ZHH

m∓n±

separately there, but include it in Equation (6.24) for ZVvH
m±n± to give

Z
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142 Combined Spectral-Space Domain Approach

where ∓1m is just the sign of the line charge −~n.~∆±
m. The addition in the spectral

domain is not just a useful shift, but is strictly required. The closed form formulas
of Section 6.4.2 for the integral in the spectral domain, will give a non integrable
singularity for the line integral over lm in the space domain. In Section 6.4.8, it will
be shown that this field contribution from the line charge of half the vertical rooftop
will be compensated by the line charge of half the horizontal rooftop. A similar line
of reasoning leads to the inclusion of the line-line charge interaction fourth term of
Equation (6.17) for ZHH

m∓n∓ into Equation (6.19) for ZV vV v
m±n±

Z
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where ∓1m, ∓1n are the signs of the line charges −~n.~∆±
m and −~n′.~∆±

n . Finally,
incorporating the line charge to surface charge last term of Equation (6.17) for ZHH

m±n∓

into Equation (6.22) for ZHVv

m±n± gives

Z
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with ∓1n the sign of the line charge −~n′.~∆±
n . The systematic and consistent shifting

of line charge contributions to the appropriate formula results in overall symmetri-
cal formulas and therefore the resulting “impedance” Z-matrix will remain totally
symmetric.

6.3.7 Remaining Terms for the Vertical Surface ZVhVv
mn , ZVvVh

mn

From Equations (6.22), (6.24) for ZHVv

m±n± , ZVvH
m±n± which are valid for horizontal cur-

rents on horizontal surfaces, we immediately obtain the further refinements in case
the horizontal currents flow on a vertical surface. For the case depicted in Figure 6.9,
we can start from Equation (6.22). The second line charge contribution now never
gives a contribution since a horizontal current on a vertical surface will always be part
of a ”complete” rooftop expansion function. Exploiting the opportunity to perform
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Figure 6.9: Combined spectral-space domain evaluation of the cross-coupling term Z
VhVv
mn

from a vertical current to a horizontal current both flowing on a vertical surface.

additional z, z′ integrations analytically in the first term gives

ZVhVv

m±n± =

∫
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(±Πm(x, y)

−jω

)∫
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ij

εj
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
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Πn(x′, y′) dl′dl.

(6.28)

The reciprocal coupling is derived in a similar manner from Equation (6.24) as

Z VvVh

m±n± =

∫

lm

Πm(x, y)

∫
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S0


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
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(±Πn(x′, y′)

−jω

)
dl′dl.

(6.29)

The analytical formulas for the z, z′ integrals in Equations (6.28), (6.29) are derived
in Section 6.4.6. We now have all the tools to fill the block matrix Z V V of the total
MoM matrix Z of Figure 6.3.
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Figure 6.10: Combined spectral-space domain approach for the cross-coupling term Z
HVh
mn

between two horizontal currents, one of which flows on a vertical and the other on a horizontal
surface.

6.3.8 The Remaining Cross-Coupling Formulas for ZHVh, ZVhH

The first remaining case is depicted in Figure 6.10, where we consider two horizontal
currents, of which the observation current flows on a horizontal surface and can be
part of a “cornered” connecting rooftop while the source current flows on a vertical
surface and thus always consists of two half rooftops. This means that the the last
two terms of Equation (6.17) for ZHH

m±n± do not appear, while in the remaining terms,
we shift the z, z′ integrations “inside” of the inverse Fourier transform as
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dl′dl. (6.30)
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The third term of the above equation involves a double line integral in the spatial
domain which is already performed to evaluate Z VvVh

mn Equation (6.29) of Section 6.3.7
and is thus incorporated there.

For the reciprocal coupling depicted from a horizontal current on a horizontal sur-
face or as part of a “cornered” connection to a complete horizontal current on a
vertical surface one derives in a similar manner from Equation (6.17) for ZHH

m±n± the
specialisation

ZVhH
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∫
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~∆±
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−jω

)
dl′dl (6.31)

The third line charge term of the above equations is transferred to Z VhVv

ij Equation
(6.28) of Section 6.3.7. The analytical formulas required to evaluate Equations (6.30),
(6.31) are given in Section 6.4.2. All formulas to fill the remaining blocks ZHV and
ZV H of the total MoM Z matrix are now available.

6.4 Spectral Domain Analytical Evaluation

In this section, after stating the notation to be used (Section 6.4.1), all z, z ′ integra-
tions are performed in closed form. We don’t give the formulas in the same sequence
as they appeared in the previous section, but slowly build up the formulas from
the simplest to the most complicated ones. In each case we verify that closed form
spectral integration results in an improvement of the spectral asymptotic and corre-
sponding spatial singular behaviour such that only convergent integrals can arise in
the evaluation of the reaction integrals in the space domain as worked out in Section
7.3 of Chapter 7. Special sections are devoted to the correct treatment of the singu-
larity occurring for z = z′ (Section 6.4.4), and the canceling of singular line charge
contributions in the spectral domain (Section 6.4.8).
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n (z) as test and expansion
functions for charge and current.

6.4.1 Definitions

The functions used as test and expansion functions for the z, z ′ dependent behaviour
are depicted in Figure 6.11. The pulse function Πn(z) of Figure 6.11(a) is defined as

Πn(z) = 1 , z−n < z < z+
n

= 0 , z < z−n , z > z+
n (6.32)

and can be used for the constant charge pulses as well as the constant part of hori-
zontal currents on a vertical surface. The functions Π+

n (z), Π−
n (z) depicted in Figures

6.11(b), 6.11(c) are linear functions with a positive or negative slope indicated in
superscript and defined as

∆+
n (z) =

z − z−n
∆n

, z−n < z < z+
n

= 0 , z < z−n , z > z+
n (6.33)

∆−
n (z) =

z+
n − z

∆n
, z−n < z < z+

n

= 0 , z < z−n , z > z+
n (6.34)

varying between 0 and 1 on the domain z−n , z
+
n of length ∆n = z+

n − z−n .

6.4.2 Analytical Integration of Π(z)

The simplest analytical integrations are those that only use a single pulse test or ex-
pansion function Π(z). With the help of the derivative relations for Green’s functions
of Section 4.11 of Chapter 4, the integrals can be worked out by simple partial inte-
gration. We also use the factorisation of Section 4.9 of Chapter 4, since the integrals
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only involve the z or z′ dependent parts of the Green’s function. In Equation (6.30)
for ZHVh

m±n± a pulse expansion or “source” function Πn(z′) has to be integrated for
both the charge and current expansion

z+
n∫

z−
n

Ṽ IT E

ij (zm, z
′)Πn(z′) dz′ =

jωµj

γ2
j

Ṽ TE
i,iref

(zm)Ṽ TE
iref ,jref

[
Ṽ V T E

jref ,j(z
−
n ) − Ṽ V T E

jref ,j(z
+
n )
]
(6.35)

z+
n∫

z−
n

Ṽ IT M

ij (zm, z
′)Πn(z′) dz′ =

1

jωεj
Ṽ TM

i,iref
(zm)Ṽ TM

iref ,jref

[
Ṽ V T M

jref ,j (z
−
n ) − Ṽ V T M

jref ,j (z
+
n )
]
(6.36)

while for the reciprocal formula Equation (6.31) for ZVhH
m±n± ,

z+
m∫

z−
m

Πm(z)Ṽ IT E

ij (z, zn) dz =
jωµi

γ2
i

[
ĨTE
i,iref

(z−m) − ĨTE
i,iref

(z+
m)
]
ĨTE
iref ,jref

Ĩ
ITE
jref ,j(zn) (6.37)

z+
m∫

z−
m

Πm(z)Ṽ IT M

ij (z, zn) dz′ =
1

jωεi

[
ĨTM
i,iref

(z−m) − ĨTM
i,iref

(z+
m)
]
ĨTM
iref ,jref

ĨIT M

jref ,j(zn) (6.38)

the pulse function Πm(z) is used as test or “observation” function. Notice that by the
choice of the discretisation along the Z axis as discussed in Section 6.3.1, the obser-
vation point never falls within the integration interval. These formulas are evaluated
in the spectral domain. We verify with the asymptotic expansions of Section 5.5.2
of Chapter 5 that in the above formulas, all expressions have a e−kρ∆/k2

ρ spectral

asymptotic and a corresponding ln(
√
ρ2 + ∆2 + ∆) spatial singular behaviour. The

analytical line integration of this function can always be done, since it converges even
for ∆ = 0.

6.4.3 Analytical Integration of ∆±(z)

When linear expansion or testing functions occur, the integrations are only slightly
more complicated. Inserting ∆±

n (z′), ∆±
m(z) for the vertical currents in ZHVv

m±n± ,

ZVvH
m±n± of Equations (6.22), (6.24) gives

z+
n∫

z−
n

Ṽ V TM

ij (zm, z
′)

jωεj
∆±

n (z′) dz′ = ∓1nṼ
TM
i,iref

(zm)Ṽ TM
iref ,jref

Ṽ IT M

jref ,j(z
±
n )

γ2
j

+Ṽ TM
iref ,i(zm)Ṽ TM

iref ,jref

[
Ṽ V T M

jref ,j (z
−
n ) − Ṽ V TM

jref ,j (z
+
n )

jωεjγ2
j ∆n

]
(6.39)
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z+
m∫
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m
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m(z)

ĨITM

ij (z, zn)

jωεi
dz = ∓1m

Ṽ TM
i,iref

(z±m)

γ2
i

Ṽ TM
iref ,jref

Ṽ IT M
jref ,j(zn)

+

[
ĨTM
i,iref

(z−m) − ĨTM
i,iref

(z+
m)

jωεiγ2
i ∆m

]
ĨTM
iref ,jref

ĨITM

jref ,j(zn). (6.40)

We here recall the convention that for all double signed quantities ∆±
n , z±n , ±1n

with subscript n we choose everywhere either the upper or either the lower sign,
corresponding with the choice of the function ∆±

n with positive or negative slope,
and independently for all double signed quantities ∆±

m, z±m, ±1m, with subscript m,
we take everywhere the upper or lower sign now corresponding with the function
∆±

m with positive or negative slope. In the above formulas, the first terms on the
right sides have a e−kρ∆/kρ and the remaining terms at most a e−kρ∆/k2

ρ spectral

asymptotic behaviour. In the spatial domain, the line integrals of 1/
√
ρ2 + ∆2 diverge

for ∆ = 0. This non-integrable singular field behaviour is caused by the accumulated
line charge at the edge of the half rooftop function ∆±(z) at the position z±. This
contribution for ∆ = 0 is however always canceled by the line charge at the edge of
another vertical or horizontal half rooftop. These last line charge contributions can
be seen in the modified Equations (6.25), (6.27).

6.4.4 Evaluation in Principal Value Sense

Until now, the observation point z has always been located outside of the source
distribution at z′. Special care has to be exercised when the observation point is
moved inside of the source distribution as depicted in Figure 6.12. In this case,
the z, z′ integrals have to be evaluated in a principal value sense [192], [193], [194] as
already indicated in Chapter 2. The observation point is excluded from the integration
domain with a principal “volume” ]z−δ, z+δ[ with “radius” δ. Upon taking the limit
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δ → 0, the values of the Green’s function expressions at the edges are obtained
from the voltages and currents at the immediate left and right sides of the source
as given in Equations (4.85), (4.86), (4.87) and (4.88) of Chapter 4. Together with
the extraction of the asymptotes in the spectral domain (see Section 7.2 of Chapter
7) and the analytical integration of their spatial domain singular counterparts as a
function of x, y or ρ, φ (see Section 7.3.4 of Chapter 7), all total x, y, z integrals are
evaluated in a principal value sense.

6.4.5 Analytical Integration of Combinations Π(z)

For the formulas in Equation (6.20) for ZVhVh

m±n± , the pulse functions appear together
as expansion and test function and have to be integrated over z as well as over z ′. A
complication now arises since the observation point can now coincide with the source
point z = z′. In this case, the integral has to be evaluated in a principal sense as
explained above. The results are
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Πm(z)

z+
n∫
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∆nδmn

+
jωµi

γ2
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i,iref

(z−m) − ĨTE
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(6.41)
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(6.42)

where the first terms on the right hand sides appear as a result from the principal
value procedure and only occur when the “source” and “observation” function overlap
(case δmn = 1). Inserting these formulas into Equation (6.20) for the current and

charge expansions, these give a worst case e−kρ∆/k2
ρ spectral and ln(

√
ρ2 + ∆2 + ∆)

behaviour, which can be safely integrated. The remaining expressions give even less
spatial singular contributions with worst case e−kρ∆/k3

ρ spectral asymptotes.

6.4.6 Analytical Integration of Combinations Π(z), ∆±(z)

Formulas become more complicated as we need to combine pulse and linear functions
in Equations (6.28), (6.29) for ZVhVv

m±n± , ZVvVh

m±n± . Evaluating the integrals with sufficient
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care for the case z = z′ gives
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ĨTM
i,iref

(z−m) − ĨTM
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(6.44)

with the same convention for the double signed quantities as before. The terms that
occur for the case of overlapping test and expansion functions (δmn = 1) give the
most singular ln ρ contributions with ∆ = 0. The first terms between brackets give
ln(
√
ρ2 + ∆2 +∆) quasi-singularities in the space domain, since the contributions for

∆ = 0 are canceled as they are again line-charge contributions that will be canceled
by other line-charge terms. The remaining terms give even less singular contributions.

6.4.7 Analytical Integration of Combinations ∆±(z)

The most complicated formulas result when linear test and expansion functions have
to be integrated together as in in the central part of Equation (6.19) for ZVvVv

m±n± . Being
especially careful with the principal value evaluation of the integral as discussed in
Section 6.4.4, the result is
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(6.45)

where the first term between brackets is only present when the “source” function n
and “observation” function m overlap (case δmn = 1). The factor 2 has to be included
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when the functions have the same slope (case δ± = 1).

The slowest decay in the spectral domain again comes from the first two “self-
coupling” terms between brackets for overlapping test and expansion functions (and
thus located within the same layer εi = εj), since

lim
kρ→∞

[
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ρ

γ2
j
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]
∼ 1

k2
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(6.46)

such that the worst case spatial singularity is again ln ρ, which can be integrated
without diverging. The next problematic behaviour comes from the third term

lim
kρ→∞

k2
ρ

Ṽ ITM

ij (z±m, z
±
n )

γ2
i γ

2
j

∼ 1

kρ
(6.47)

that gives non-integrable 1/
√
ρ2 + ∆2 singularities in the space domain when ∆ = 0.

In the next section, it will be demonstrated that these problematic terms always
disappear when the above formula is combined for two vertical half rooftop functions,
or when the appropriate line charge contributions of half a horizontal rooftop are
added. The remaining terms all give ln(

√
ρ2 + ∆2 +∆) or less singular contributions.

6.4.8 Canceling of Singular Line Charge Fields

In this section, we verify explicitly that singular contributions arising from line charges
cancel when all contributions to obtain the total matrix element Zmn are added
together. This is verified for two cases : the coupling between two vertical rooftops
as depicted in Figure 6.13, and for the coupling between two “cornered” rooftop
functions as depicted in Figure 6.14. Similar verifications can be made for all other
cases.

In Figure 6.13 we consider the coupling between two complete vertical rooftop func-
tions. The four terms in ZV vV v

mn = ZVvVv

m+n+ +ZVvVv

m−n+ +ZVvVv

m+n−+ZVvVv

m−n− are all evaluated
using Equation (6.45). The singular field contributions in the spatial domain due to
the line charges will cancel eachother since we find for the corresponding spectral
asymptotic behaviour

lim
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+
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l γ

2
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2
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−
n )
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l γ

2
j

+
Ṽ IT M

ij (z−m, z
−
n )

γ2
i γ

2
j

]
= 0 (6.48)

even when the source current and/or observation currents cross the interface between
different layers, in which case k = j+1 and/or l = i+1. Notice that there are no special
contributions from the line charge in case the rooftop is located completely within a
single layer, similar to the canceling when the rooftop is located in a homogeneous
medium, since then k = j and/or l = i, such that Equation (6.48) holds for all kρ.
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For two “cornered” rooftop functions as depicted in Figure 6.14, the total matrix

element consists of ZCC
mn = ZHH

m∓n∓ + Z
V ∗

vV ∗
v

m±n± + Z
V ∗

vH

m±n∓ + Z
HV ∗

v

m∓n± . The second term

Z
V ∗

vV ∗
v

m±n± Equation (6.26) is evaluated by inserting Equation (6.45) such that the singu-
lar contribution resulting from the line charge line charge interaction from the vertical
rooftop is compensated by the line charge line charge interaction from the horizontal
rooftop of ZHH

m∓n∓ Equation (6.17) which was added in Equation (6.26)

lim
kρ→∞

[
(∓1m)(∓1n)k2

ρ

Ṽ IT M

lk (z+
m, z

+
n )

γ2
l γ

2
k

− (∓1m)(∓1n)
Ṽ IT M

ij (zm, zn)

k2
ρ

]
= 0. (6.49)

The third term Z
V ∗

v H

m±n∓ Equation (6.25) is evaluated by inserting Equation (6.40) such
that the singular contribution resulting from the interaction of the surface charge of
the horizontal rooftop to the line charge of the vertical rooftop is compensated by
the surface charge to line charge interaction charge interaction from ZHH

m∓n± Equation
(6.17) which was added in Equation (6.25)

lim
kρ→∞

[
∓1m

Ṽ IT M

lk (z±m, zn)

γ2
l

− (∓1m)
Ṽ IT M

lk (z±m, zn)

k2
ρ

]
= 0. (6.50)

Finally, the fourth term Z
HV ∗

v

m∓n± Equation (6.27) is evaluated by inserting Equation
(6.39) such that the singular contribution resulting from the interaction of the line
charge of the vertical rooftop to the surface charge of the horizontal rooftop is compen-
sated by the line charge to surface charge interaction charge interaction from ZHH

m±n∓

Equation (6.17) which was added in Equation (6.27)

lim
kρ→∞

[
∓1n

Ṽ ITM

lk (zm, z
±
n )

γ2
k

− (∓1n)
Ṽ IT M

lk (zm, z
±
n )

k2
ρ

]
= 0. (6.51)
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6.5 Conclusions

This chapter has reviewed the evaluation of the reaction integrals to obtain the el-
ements of the discrete matrix version of the BIE. In this work, the evaluation has
been completely reformulated to take into account the planar nature of the stratified
surround and the geometry of the structures to be analysed. Traditional space and
spectral domain techniques are blended in a new combined spectral space domain
evaluation. All transverse x, y and x′, y′ integrations use the space domain mixed
potential formalism, while all z, z′ integrations involve the dyadic parts of the formu-
lation and are done completely analytically in the spectral domain . The transition
from spectral to space domain with the inverse Fourier transform is done at an optimal
intermediate stage of the evaluation, depending on the type of electromagnetic cou-
pling considered. The closed form formulas for the Galerkin evaluation of all possible
combinations of pulse and rooftop expansion functions were given in a compact form,
and valid for an arbitrarily stratified medium. These results could only be obtained
thanks to the derivative relations and factorised form of the Green’s functions also
developed earlier in this work.
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Chapter 7

Numerical and Analytical
Techniques

7.1 Introduction

Although the Boundary Integral Equation for the electric field in a general planar
stratified medium needs to be solved numerically, the transformation of the theoreti-
cal formulation to a numerical result for a practical problem involves many analytical
steps, producing an overall hybrid analytical-numerical technique. In this chapter,
we shall therefore not fully descend into the rubble strewn territory of the purely nu-
merical details, but concentrate on the analytical aspects of the numerical treatment.
Section 7.2 describes how the physically important behaviour of the electromagnetic
field in the spatial domain can be extracted analytically from the numerical inverse
Fourier transform. With the electric field available partially in numerical form and
partially analytically, one can then complete the remaining evaluation of the reaction
integrals in the spatial domain also in a numerico- analytical manner as described in
Section 7.3. We have now reached the point were the only remaining task is to solve
the linear systems of equations to obtain the main result of the BIE, the (approx-
imate) vector current distribution over the entire metallic “scatterer”. Additional
postprocessing transforms this underlying fundamental solution of the problem to di-
rectly observable and measurable quantities more of interest to the practical engineer
like impedance matrix, scattering matrix description, examples of which will be given
in the next Chapter 8.
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Figure 7.1: Typical behaviour of the factors in the integrand of the Fourier-Bessel Integral
of Equation (7.1).

7.2 The Numerical Inverse Fourier Transformation

In Chapter 4, we introduced the Fourier transform of the transverse spatial x, y coor-
dinates to the spectral kx, ky wavenumber domain (Equations (4.2), (4.3)) to obtain
the electromagnetic field in a planar stratified medium in closed form. In Chapter 6,
we exploited the analytical field expressions in the spectral domain to perform the
z, z′ dependent parts of the reaction integrals also in closed form. The analytical
possibilities in the spectral domain have now been exhausted, and we need to return
to the space domain by evaluating the inverse Fourier transform of Equation (4.3).

7.2.1 The Mathematical Point of View

By the investigation of Section 5.4 of Chapter 5 and thanks to the hybrid field for-
mulation of Chapter 6, the inverse Fourier transform only consists of evaluating the
one-dimensional Fourier-Bessel integrals

G(ρ, z, z′) = F
−1
{
G̃(kρ, z, z

′)
}

= S0

{
G̃(kρ, z, z

′)
}

=
1

2π

+∞∫

0

G̃(kρ, z, z
′)J0(ρkρ) kρdkρ (7.1)

which in general has to be evaluated at least partially numerically. The function
G̃(kρ, z, z

′) is not necessarily the Green’s function excited by a “point” source exci-
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tation, but can also be integrated over extended “observation” and “source” distri-
butions as in Section 6.4 of Chapter 6. In this case, G̃(kρ, z, z

′) stands for any of the
closed form formulas Equations (6.35), (6.36), (6.37), (6.38), (6.39), (6.40), (6.41),
(6.42), (6.43), (6.44) of Section 6.4 and the z, z′ notation used above stands for all
combinations of z, z′ coordinates zn , zm, z±n , z±m occurring in these formulas. A
typical behaviour of the factors in the integrand is sketched in Figure 7.1. From a
mathematical point of view, the remaining task is still a formidable one, since the
computation of the integral is difficult. The integration interval in principle extends
to infinity which creates numerical problems if the function G̃(kρ, z, z

′) decays very

slowly for large kρ. The function G̃(kρ, z, z
′) can also exhibit singularities k0, kP on

or close to the integration path. The Bessel function J0(ρkρ) becomes highly oscil-
latory for large ρ (small period in spectral domain), which may create convergence
problems. Extensive literature on the evaluation of these integrals for electromag-
netic problems can be traced through [219], [270], [271], [272], [273]. Many of the
techniques developed in these works are based on the physical background of the
problem, by interpreting Equation (7.1) as a cylindrical and plane wave spectrum
discussed generally in the next Section 7.2.2. In this work, we use and expand the
techniques originally developed by Vandenbosch [11] and Demuynck [14] to handle

the more complicated expressions G̃(kρ, z, z
′) appearing in this work as discussed in

Section 7.2.3.

7.2.2 The Cylindrical Wave Spectrum

The above difficulties with the inverse Fourier transform can to a large extent be
alleviated by introducing analytical techniques based on the physical background. To
achieve this, the above formula has to be interpreted as a decomposition of the field
into a continuous spectrum of cylindrical and plane waves as depicted in Figure 7.4.

Cylindrical and Plane Waves

The cylindrical waves described by the Bessel function J0(ρkρ) travel parallel to the
layers of the medium with wavenumber kρ which is also the independent variable of
integration. When the integration in Equation 7.1 is performed over the real axis, it
remains strictly real. Along the Z axis, the field is described by plane waves. Their
propagation constant along the Z axis γi depends on the main kρ variable and the
properties of the medium. It becomes the wavenumber kzi

γi = jkzi = j
√
k2

i − k2
ρ (7.2)

when kρ < ki for propagating waves along Z as depicted Figure 7.4(a), or it becomes
a damping constant αzi for evanescent waves with

γi = αzi =
√
k2

ρ − k2
i (7.3)
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Figure 7.2: Topology of eG(kρ, z, z
′) in the complex kρ-plane for a single layered medium backed with a conducting ground plane.
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along the integration path.
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Figure 7.4: Decomposition of the field into a spectrum of cylindrical and plane waves.

when kρ > ki as depicted in Figure 7.4(b). The wavenumber kρ can become complex
if the integration path is deformed into the complex plane kρ-plane as depicted in
Figure 7.2. However, the techniques from [11], [14] and worked out further in this
work assume only a real axis integration [274].

Topology of G̃(kρ, z, z
′) in the complex kρ-plane

The behaviour of G̃(kρ, z, z
′) along the real axis can be better understood by studying

its topology in the complex kρ-plane as depicted in Figure 7.2 for the case of a single
layered medium above a perfectly conducting ground plane.

In the interval [0, k0[ the spectral wavenumber kρ is smaller than the wavenumbers
of both media k1, k0, such that kz1, kz0 are both real. This case is depicted in Figure
7.3(a). Energy is transported in all directions, and this region is thus important
to describe the far field radiation pattern. The transition to the next region passes
through the branch point singularity k0. For a more general case, it can be examined
that G̃(kρ, z, z

′) is an even function of all kzi of layers of limited extend but an odd
function of the wavenumber associated with unlimited open regions i = 0, N + 1.
The points kρ = ki with i = 1, . . . , N are ordinary regular points, while a branch
point singularity occurs for kρ = k0 and/or kρ = kN+1. From the branch point, a
“branch cut” extends to infinity. It joins the two sheets of the Riemann surface which

are associated with the double-valued function kz0 =
√
k2
0 − k2

ρ. In the next region

]k0, k1[ the spectral wavenumber kρ is still smaller than k1, but already larger than
k0. The wave field thus decays in the open half space with damping constant αz0.
This situation is depicted in Figure 7.3(b). The energy can now only be transported
in the transverse direction. This is thus the region where surface waves can occur.
The surface waves are the eigenmodes of the layer structure and manifest themselves
as pole singularities kP . The exact number and location of the poles depends on
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the frequency and the properties of the layers. By extending the reasoning of Figure
7.3(b) to a multilayered medium, we see that the poles can only occur in the interval
max(k0, kN+1) < kρ < max(ki) = ki,max. If the media are lossy, the branch point
and pole singularities move off the real axis slightly into the fourth quadrant of the
complex plane. Finally, in the last region ]k1,+∞[ the spectral wavenumber has
become larger than the wavenumbers in both media, such that the field decays along
Z everywhere as indicated in Figure 7.3(c). This region is important to describe very
rapid field variations in the transverse direction for example in the near field of an
imposed current source.

7.2.3 Analytical Extraction for Inverse Fourier Transform

Operations in the Spectral Domain

A purely numerical inverse Fourier transform of a typical function G̃(kρ, z, z
′) as

depicted in Figure 7.1 is possible only at the cost of excessive computation time. To
obtain an accurate value of the spatial function G(ρ) from the unaltered G̃(kρ, z, z

′),
a very large number of sampling points in the spectral domain has to be taken. The
number of sampling points is determined by the upper truncation limit kρ,max of the
numerical integration domain [0, kρ,max] and the sampling rate within this interval.

The slow decay of G̃(kρ, z, z
′) neccesitates a very high limit kρ,max. Rapid variations of

G̃(kρ, z, z
′) require a high sampling rate. Rapid variations of G̃(kρ, z, z

′) are typically
present at a branch point k0 and a pole kP . To avoid such costly purely numerical
work, the original function G̃(kρ, z, z

′) is transformed into a well behaved smooth and

rapidly decaying function G̃nu(kρ, z, z
′). To achieve this, each problematic behaviour

is extracted in closed form as described below.

Extraction of the Spectral Asymptotes

The behaviour of G̃(kρ, z, z
′) in the spectral domain for kρ → +∞ is called the

spectral asymptotic behaviour. In Section 5.5.2 of Chapter 5, it was shown that this
asymptotic part can be obtained from a multiple reflection computation of the Green’s
functions in the layer structure under the assumption that kρ is much larger then any
of the wavenumbers of the layers ki. By performing the whole computation of the
expression for G̃(kρ, z, z

′) in series expansion for kρ → ∞, we can write write for the
asymptotic part

lim
kρ→∞

G̃(kρ, z, z
′) ≈ G̃as(kρ, z, z

′) =

3∑

m=1

Nm∑

i=1

Cmi
as G̃

m
as(kρ,∆i). (7.4)

The outer summation runs over the order of the asymptotic equivalent functions

G̃1
as(kρ,∆) =

(
1− e−kρt

)1

kρ
e−kρ∆ (7.5)
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G̃2
as(kρ,∆) =

(
1− e−kρt

)2

k2
ρ

e−kρ∆ (7.6)

G̃3
as(kρ,∆) =

(
1− e−kρt

)3

k3
ρ

e−kρ∆ (7.7)

and for each order m, Nm multiple z, z′ distances ∆i can be taken into account.
The factors

(
1 − e−kρt

)m
are convergence factors with t = 1/ki,max and ki,max the

maximum wavenumber occurring in the layer structure. These factors do not affect the
behaviour for large kρ, but force the functions to 0 at the origin of the spectral domain
kρ = 0 such that the inverse Fourier transform converges and can be done analytically
(See also Appendix B.4). Compared to the extraction already developed in [14],
several improvements have been introduced. First, due to the more complicated
nature of the formulas of Section 6.4, the extra order m = 3 has been introduced.
Second, the computation of the coefficients Cmi

as is now based on the factorised form
of the Green’s functions. Thirdly, higher order reflections are now taken into account,
which is required when the source and/or observation points are located close to an
interface between different layers and the local reflection coefficients Equations (5.83),
(5.84) have a considerable amplitude.

Pole Extraction

The presence of a pole in G̃(kρ, z, z
′) indicates the propagation of a surface wave in

the layer structure. The pole kP is the propagation constant of the surface wave in
the lateral direction. The field pattern of the surface wave is an eigenmode of the
entire layer structure [275], [276] and is thus determined by the properties εi, µi and
thicknesses di of all the layers i and the frequency. The pole occurs at the same value
of kρ for all possible Green’s functions. The extraction procedure first locates all poles
close to the real axis. For each pole, a numerical residue computation is performed

for one of the current or voltage functions F̃ST

ij (kρ, z, z
′). The residues of all current

and voltage Green’s functions are obtained from reciprocity and the factorised form
of these expressions. The evaluation of the Green’s functions G̃(kρ, z, z

′) in the closed
form formulas of Section 6.4 is done by inserting the residues for the current and

voltage Green’s functions F̃ST

ij (kρ, z, z
′) and evaluating all other expressions with

kρ = kP . Any function can thus be approximated in the neighbourhood of the pole
as

lim
kρ→kP

G̃(kρ, z, z
′) ≈ G̃po(kρ, z, z

′) = Cpo(z, z
′)

(
2kP

(kρ − kP )(kρ + kP )
− 2kP

k2
ρ + k2

P

)
(7.8)

The coefficient Cpo(z, z
′) describes the field pattern of the eigenmode in the Z di-

rection or depends on the fixed integration limits if an analytical integration is per-
formed in the spectral domain. The first term between brackets mimics the singular
behaviour of the function G̃(kρ, z, z

′) around the pole, while the second term makes

the function G̃po(kρ, z, z
′) decay fast enough to avoid the introduction of additional

spectral asymptotes. In this way, only the behaviour of G̃(kρ, z, z
′) around the pole
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kP is seriously affected while the effect on the remainder of the integration domain is
minimized.

Branch Point Extraction

The singular behaviour of an arbitrary Green’s function around the branch point can
generally be written as

lim
kρ→k0

G̃(kρ, z, z
′) ≈ C−1

bp (z, z′)(γ0)
−1 + C0

bp(z, z
′)(γ0)

0

+C+1
bp (z, z′)(γ0)

+1 + C+2
bp (z, z′)(γ0)

+2 + . . . (7.9)

Since γ0 =
√
k2

ρ − k2
0 , the first term introduces a real singularity at kρ = k0, while the

third term generates only an infinite derivative at the same spectral value. The first
term only occurs for a homogeneous medium, in which case the branch point actually
becomes the “pole” of the “layer” structure. The third term is present for all layer
structures with at least one open half space. The coefficients C i

bp(z, z
′) in the above

expressions are obtained by a computation “in series expansion”. This means that
all computations have to be done with the coefficients C i

bp(z, z
′) for all expressions.

As compared to the extraction developed in [14], the computations are again based
on the factorised form of the Green’s functions, while the more complicated form of
the closed form expressions of Section 6.4 require to extend the series expansion in
Equation (7.9) from power 5 up to power 7. When the coefficients are determined,
the problematic behaviour can be isolated as

G̃bp(kρ, z, z
′) = +C−1

bp (z, z′)


 1√

k2
ρ − k2

0

− 1√
k2

ρ + k2
0




+C+1
bp (z, z′)



√
k2

ρ − k2
0 − kρ +

k2
0

2

1√
k2

ρ + k2
0


 (7.10)

As before, the first terms between brackets mimic the behaviour around kρ = k0,
while the other terms minimize the effect in the remainder of the integration domain.
A special extraction as developed in [14] is required in case the pole is located very
close to the branch point.

The Numerical and Analytical Part

The problematic behaviour of G̃(kρ, z, z
′) can now be extracted such that we obtain

a function

G̃nu(kρ, z, z
′) = G̃(kρ, z, z

′) −
(
G̃as(kρ, z, z

′) + G̃po(kρ, z, z
′) + G̃bp(kρ, z, z

′)
)

= G̃(kρ, z, z
′) − G̃an(kρ, z, z

′) (7.11)

of which the inverse Fourier transform can be performed numerically with a mini-
mum of effort. The inverse Fourier transform of the extracted part G̃an(kρ, z, z

′) =
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G̃as(kρ, z, z
′) + G̃po(kρ, z, z

′) + G̃bp(kρ, z, z
′) can be done analytically and each part

of it can be identified with a characteristic physical field behaviour in the spatial
domain.

Operations in the Spatial Domain

When the field in the spatial domain has to be evaluated for large lateral distances,
we see from Equation (7.1) and Figure 7.1 that the oscillation of the Bessel function in

the spectral domain becomes very rapid. In such a case, only the parts of G̃(kρ, z, z
′)

where a rapid variation occurs contribute to the integral. Over the smoother level
parts, the successive positive and negative parts of the integral cancel each other and
such parts thus contribute only very little. The rapid variation of G̃(kρ, z, z

′) takes
place around the branch point(s) and pole(s). The physical interpretation follows

from the analytical inverse Fourier transform of the extracted parts G̃bp(kρ, z, z
′) and

G̃po(kρ, z, z
′).

The Space Wave

From Figure 7.4, it is clear that the spatial counterpart of G̃bp(kρ, z, z
′) is a cylindrical

field traveling parallel to the layer structure with wavenumber k0. Its inverse Fourier
transform can be obtained analytically using Equations (B.2), (B.3), (B.4) from Ap-
pendix B.2 and the results from Table B.1 of Appendix B.4 for n = 0, m = −1, ∆ = 0
to obtain

Gbp(ρ, z, z
′) = +

1

2π
C−1

bp (z, z′)

(
e−jk0ρ

ρ
− e−k0ρ

ρ

)

+
1

2π
C+1

bp (z, z′)

(
−
(
jk0 +

1

ρ

)
e−jk0ρ

ρ2
+

1

ρ3
+
k2
0

2

e−k0ρ

ρ

)
(7.12)

which is smooth for small ρ, while for large transverse distances it behaves as

lim
ρ→+∞

Gbp(ρ, z, z
′) ≈ +

1

2π
C−1

bp (z, z′)

(
e−jk0ρ

ρ

)

+
1

2π
C+1

bp (z, z′)(−jk0)

(
e−jk0ρ

ρ2

)
. (7.13)

For a homogeneous medium, the first term describes the spherical wave front in the
lateral direction, while for an open non-homogeneous medium, the second term shows
that the field decays very rapidly in the direction parallel to the layers of the medium
and produces a zero in the far field radiation pattern.

The Surface Wave

The cylindrical wave front associated with the inverse Fourier transform of G̃po(kρ, z, z
′)

is done analytically using Equations (B.5), (B.6) from Appendix B.3 to obtain

Gpo(ρ, z, z
′) =

1

2π
Cpo(z, z

′) 2kP

(
−j π

2
H

(2)
0 (kP ρ) −K0(kP ρ)

)
(7.14)
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with H
(2)
0 the Hankel function and K0 the modified Bessel function, both of the 2th

kind and of order 0. By using the small argument expansions of these functions,
we see that the expression is well behaved at the origin ρ → 0. By using the large

argument expansion of H
(2)
0 , we obtain for large transverse distances

lim
ρ→+∞

Gpo(ρ, z, z
′) ≈ 1

2π
Cpo(z, z

′) 2kP

(
−j π

2

)
ej π

4

√
π

2

e−jkP ρ

√
kP ρ

. (7.15)

We thus recover the characteristic behaviour of a cylindrical wavefront propagating
with wavenumber kP .

The Quasi-Static Field

When the field is evaluated for small transverse distances ρ, the period of the Bessel
function is very large, such that the inverse Fourier transform is almost entirely deter-
mined by the slowly decaying part of G̃(kρ, z, z

′). This part has been extracted with

G̃as(kρ, z, z
′), where we assumed kρ much larger than any wavenumber ki = ω

√
µiεi.

Since this assumption is equivalent with ω → 0, we obtain the quasi-static field con-
stituents described by

Gas(ρ, z, z
′) =

3∑

m=1

Nm∑

i=1

Cmi
as G

m
as(ρ,∆i) (7.16)

where the spatial counterparts of the spectral asymptotes are given in Table B.2 of
Appendix B.4. Upon examining these expressions, we see that these functions are
smooth for large z, z′ separation ∆, but become almost singular when this distance
tends to zero. In these cases, only the convergence factor t = 1/ki,max limits their
amplitude for ρ = 0.

The Regular and Singular Parts

The inverse Fourier transform is thus done partly numerically and partly analytically.
The total “Green’s function” in the space domain

G(ρ, z, z′) = Gnu(ρ, z, z′) + (Gpo(ρ, z, z
′) +Gbp(ρ, z, z

′) +Gas(ρ, z, z
′))

= Gnu(ρ, z, z′) + Gan(ρ, z, z′) (7.17)

consist of the purely numerical result Gnu(ρ, z, z′) and the analytical part Gan(ρ, z, z′)
= Gpo(ρ, z, z

′)+Gbp(ρ, z, z
′)+Gas(ρ, z, z

′). The numerical part Gnu(ρ, z, z′) thus con-
tains the field constituents that could not be extracted analytically, and usually only
gives a small contribution, typically still important for the field at intermediate dis-
tance. The dominant field behaviour for large transverse distance has been extracted
analytically and is composed of the space wave field Gbp(ρ, z, z

′) and the surface wave
field Gpo(ρ, z, z

′). The dominant field contribution for small transverse distance is
extracted as the quasi-static field contributions Gas(ρ, z, z

′). However, for further use
in the space domain, we rearrange these contributions into a regular part GR(ρ, z, z′)
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and a singular part GS(ρ, z, z′)

G(ρ, z, z′) = (Gnu(ρ, z, z′) +Gpo(ρ, z, z
′) +Gbp(ρ, z, z

′)) +Gas(ρ, z, z
′)

= GR(ρ, z, z′) + GS(ρ, z, z′) (7.18)

The regular partGR(ρ, z, z′) should behave smoothly everywhere, including the patho-
logical case ρ→ 0, such that it can always be integrated numerically very easily. From
the previous section, it thus follows to combine the numerical part with the space and
surface wave constituents of the field into GR(ρ, z, z′) = Gnu(ρ, z, z′) +Gpo(ρ, z, z

′) +
Gbp(ρ, z, z

′). A numerical integration is not possible in an efficient manner for a func-
tion with singular or almost singular behaviour. Such behaviour occurs typically for
small spatial separation. Luckily however, the singular and quasi singular field be-
haviour has been isolated in closed form in Gas(ρ, z, z

′) and these contributions will
also be integrated further analytically such that GS(ρ, z, z′) = Gas(ρ, z, z

′).

7.3 Space Domain Evaluation of Reaction Integrals

The z, z′ dependent part of all reaction integrals was done analytically in the spectral
domain in Section 6.4 of Chapter 6. All information regarding spatial separation in the
Z direction and the type of testing and expansion function used in z, z ′ coordinates
is thus incorporated already in the “Green’s function” in the spectral domain, for
which we keep the terminology “Green’s function”, although it is to be understood
that they are no longer the field components excited by point-like excitations. After
the inverse Fourier transform described above in Section 7.2, we obtain expressions
of the form G(ρ). The remaining evaluation of the reaction integrals takes place in
the space domain and involves only the transverse x, y, x′, y′ or ρ, φ coordinates.

7.3.1 Types of Reaction Integrals in Space Domain

The remaining types of integrals that have to be done in the spatial domain can be
grouped as surface-surface and line-line integrals of vector and scalar quantities
∫

Sm

~∆m(x, y).

∫

Sn

G(ρ)~∆n(x′, y′) dS′dS (7.19)

∫

lm

~∆m(x, y).

∫

ln

G(ρ)~∆n(x′, y′) dl′dl (7.20)

∫

Sm

Πm(x, y)

∫

Sn

G(ρ)Πn(x′, y′) dS′dS (7.21)

∫

lm

Πm(x, y)

∫

ln

G(ρ)Πn(x′, y′) dl′dl (7.22)

and combined surface-line or line-surface integrals of vector and scalar quantities
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∫

Sm

~∆m(x, y).

∫

ln

G(ρ)~∆n(x′, y′) dl′dS (7.23)

∫

lm

~∆m(x, y).

∫

Sn

G(ρ)~∆n(x′, y′) dS′dl (7.24)

∫

Sm

Πm(x, y)

∫

ln

G(ρ)Πn(x′, y′) dl′dS (7.25)

∫

lm

Πm(x, y)

∫

Sn

G(ρ)Πn(x′, y′) dS′dl (7.26)

where

ρ =
√

(x− x′)2 + (y − y′)2. (7.27)

The possible combinations of integration domains for observation and source coordi-
nates are depicted in Figure 7.5.

The evaluation of the above integrals over the testing functions are simplified as in
Equations (3.51), (3.52) in the model evaluation of Section 3.5.1 of Chapter 3, by
multiplying their value at the center xc, yc of the integration domains with their
surface Sm or length lm

Sm
~∆m(xc, yc).

∫

Sn

G(ρ′)~∆n(x′, y′) dS′ (7.28)

lm~∆m(xc, yc).

∫

ln

G(ρ′)~∆n(x′, y′) dl′ (7.29)

SmΠm(xc, yc)

∫

Sn

G(ρ′)Πn(x′, y′) dS′ (7.30)

lmΠm(xc, yc)

∫

ln

G(ρ′)Πn(x′, y′) dl′ (7.31)

Sm
~∆m(xc, yc).

∫

ln

G(ρ′)~∆n(x′, y′) dl′ (7.32)

lm~∆m(xc, yc).

∫

Sn

G(ρ′)~∆n(x,′ , y′) dS′ (7.33)

SmΠm(xc, yc)

∫

ln

G(ρ′)Πn(x′, y′) dl′ (7.34)

lmΠm(xc, yc)

∫

Sn

G(ρ′)Πn(x′, y′) dS′ (7.35)

with now

ρ′ =
√

(xc − x′)2 + (yc − y′)2. (7.36)

A further improvement would be to implement a complete Galerkin evaluation of these
integrals also for the transverse x, y, x′, y′ coordinates, since the z, z′ integrations
are already and exactly evaluated in a Galerkin sense. With the above simplifications
however, the only remaining integrations over the source domains are

∫

Sn

G(ρ′)~∆n(x′, y′) dS′ (7.37)

∫

ln

G(ρ′)~∆n(x′, y′) dl′ (7.38)

∫

Sn

G(ρ′)Πn(x′, y′) dS′ (7.39)

∫

ln

G(ρ′)Πn(x′, y′) dl′ (7.40)

where the surface integration of a scalar quantity Equation (7.39) and line integrals
of vector and scalar quantities Equations (7.38) and (7.40) can in principle be derived
from the most complicated surface integral of a vector quantity Equation (7.37).
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Figure 7.5: Possible combinations of two-dimensional integration domains in the space do-
main for observation surface Sm or line segment lm with source surface Sn or line segment
ln.

7.3.2 The Regular and Singular Parts of the Green’s functions

Inserting the regular and singular parts of the Green’s function Equation (7.18) into
Equation (7.37), and obliterating the index n notation, we need to evaluate

∫

S′

G(ρ,)~∆(x′, y′) dS′ =

∫

S′

GR(ρ,)~∆(x′, y′) dS′ +

∫

S′

GS(ρ,)~∆(x′, y′) dS′. (7.41)

The regular part is integrated numerically in Section 7.3.3. The singular part can be
integrated analytically as explained in Section 7.3.4.
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As a last preparation, we note that both the regular and singular parts can be evalu-
ated without additional error at this point by using the value of the constant function

Π(x′, y′) = Π(x′c, y
′
c) (7.42)

and by using the exact expansion for the linear vector function

~∆(x′, y′) =+

[
∆x(x′c, y

′
c) +

∂∆x

∂x′
(x′c, y

′
c)(x

′−x′c) +
∂∆x

∂y′
(x′c, y

′
c)(y

′−y′c)
]
~ix.

~∆m(~ρ,) =+

[
∆y(x′c, y

′
c) +

∂∆y

∂x′
(x′c, y

′
c)(x

′−x′c) +
∂∆y

∂y′
(x′c, y

′
c)(y

′−y′c)
]
~iy. (7.43)

7.3.3 Numerical Integration of Regular Part

The regular part of the Green’s function GR(ρ′) is not completely available in closed
form, but all its contributions are very smooth as a function of ρ′, and therefore this
part can be safely integrated numerically. Since the discretisation is always chosen
such that the size of each integration domain is much smaller then the variation of
the field or Green’s function in the spatial domain, we can approximate the regular
part of the Green’s function by the lowest order terms of its series expansion around
the center point x′c, y

′
c

GR(x′, y′) ≈ GR(x′c, y
′
c) +

∂GR

∂x′
(x′c, y

′
c)(x

′ − x′c) +
∂GR

∂y′
(x′c, y

′
c)(y

′ − y′c)

+
1

2

∂2GR

∂x′2
(x′c, y

′
c)(x

′ − x′c)
2 +

1

2

∂2GR

∂y′2
(x′c, y

′
c)(y

′ − y′c)
2

+
∂2GR

∂x′∂y′
(x′c, y

′
c)(x

′ − x′c)(y
′ − y′c). (7.44)

Line Integrals

Inserting Equations (7.42) and (7.44) into the line integral of a scalar quantity Equa-
tion (7.40), and expressing the derivatives of the regular part of the Green’s function
GR(ρ′) in cylindrical coordinates, we obtain
∫

l′

GR(ρ′)Π(x′, y′) dl′ ≈

Π(x′c, y
′
c)

[
GR(ρ′c)L00 +

1

ρ′3c

∂GR

∂ρ′
(ρ′c)

{
1

2

(
y′2c L20 + x′2c L02

)
− x′cy

′
cL11

}

+
1

ρ′2c

∂2GR

∂ρ′2
(ρ′c)

{
1

2

(
x′2c L20 + y′2c L02

)
+ x′cy

′
cL11

}]
(7.45)

while inserting Equations (7.43) and (7.44) into the line integral of a vector quantity
Equation (7.38), neglecting higher order terms and again expressing the derivatives of
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the regular Green’s function GR(ρ′) in cylindrical coordinates, we obtain the slightly
more complicated result
∫

l′

GR(ρ′)~∆(x′, y′) dl′ ≈

~∆(x′c, y
′
c)

[
GR(ρ′c)L00 +

1

ρ′3c

∂GR

∂ρ′
(ρ′c)

{
1

2

(
y′2c L20 + x′2c L02

)
− x′cy

′
cL11

}

+
1

ρ′2c

∂2GR

∂ρ′2
(ρ′c)

{
1

2

(
x′2c L20 + y′2c L02

)
+ x′cy

′
cL11

}]

+
∂~∆

∂x′
(x′c, y

′
c)

1

ρ′c

∂GR

∂ρ′
(ρ′c)

[∫
x′cL20 + y′cL11

]

+
∂~∆

∂y′
(x′c, y

′
c)

1

ρ′c

∂GR

∂ρ′
(ρ′c)

[∫
y′cL02 + x′cL11

]
(7.46)

where the “line moment” integrals occurring in the above Equations (7.45) and (7.46)
are defined as

L00 =

∫

l′

dl′ (7.47)

L11 =

∫

l′

(x′ − x′c)(y
′ − y′c) dl′ (7.48)

L20 =

∫

l′

(x′ − x′c)
2 dl′ (7.49)

L02 =

∫

l′

(y′ − y′c)
2 dl′ (7.50)

and can be easily determined analytically for any line segment l′.

Surface Integrals

Similar formulas are obtained for the surface integrations. Inserting Equations (7.42)
and (7.44) into the surface integral of a scalar quantity Equation (7.39), we obtain
the formula
∫

S′

GR(ρ′)Π(x′, y′) dS′ ≈

Π(x′c, y
′
c)

[
GR(ρ′c)S00 +

1

ρ′3c

∂GR

∂ρ′
(ρ′c)

{
1

2

(
y′2c S20 + x′2c S02

)
− x′cy

′
cS11

}

+
1

ρ′2c

∂2GR

∂ρ′2
(ρ′c)

{
1

2

(
x′2c S20 + y′2c S02

)
+ x′cy

′
cS11

}]
(7.51)

while inserting Equations (7.43) and (7.44) into the surface integral of the vector
quantity Equation (7.37), we obtain the more complicated result
∫

S′

GR(ρ′)~∆(x′, y′) dS′ ≈

~∆(x′c, y
′
c)

[
GR(ρ′c)S00 +

1

ρ′3c

∂GR

∂ρ′
(ρ′c)

{
1

2

(
y′2c S20 + x′2c S02

)
− x′cy

′
cS11

}
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+
1

ρ′2c

∂2GR

∂ρ′2
(ρ′c)

{
1

2

(
x′2c S20 + y′2c S02

)
+ x′cy

′
cS11

}]

+
∂~∆

∂x′
(x′c, y

′
c)

1

ρ′c

∂GR

∂ρ′
(ρ′c)

[∫
x′cS20 + y′cS11

]

+
∂~∆

∂y′
(x′c, y

′
c)

1

ρ′c

∂GR

∂ρ′
(ρ′c)

[∫
y′cS02 + x′cS11

]
(7.52)

where the “surface moment” integrals occurring in Equations (7.51) and (7.52) are
now defined as

S00 =

∫

S′

dS′ (7.53)

S11 =

∫

S′

(x′ − x′c)(y
′ − y′c) dS′ (7.54)

S20 =

∫

S′

(x′ − x′c)
2 dS′ (7.55)

S02 =

∫

S′

(y′ − y′c)
2 dS′ (7.56)

can again be determined analytically for all regular geometrical shapes of the surface
S′.

In all the above formulas, the “line moment” integrals L00, L10, L01, L22 and the
“surface moment” integrals S00, S10, S01, S22 are available in closed form. The values
of the scalar functions and vector functions Π(x′c, y

′
c), ~∆(x′c, y

′
c) and their derivatives

at the center point (x′c, y
′
c) of the source domain are known analytically. Only the

value of the regular Green’s function GR and its derivatives

GR(ρ′c),
∂GR

∂ρ′
(ρ′c),

∂2GR

∂2ρ′
(ρ′c) (7.57)

have to be evaluated numerically at the transverse distance ρ′c with

ρ′c =
√

(xc − x′c)
2 + (yc − y′c)

2. (7.58)

7.3.4 Analytical Integration of Singular Part

The singular nature of the other part of the Green’s function GS(ρ′) excludes a nu-
merical treatment, but all contributions to GS(ρ′) are available in closed form and can
also be integrated further analytically with some effort as described hereafter. The
singular part of the Green’s function consists of several contributions that are the
spatial counterparts of the asymptotic functions that were extracted in the spectral
domain in order to make the numerical inverse Fourier transformation possible. The
singular part of the Green’s function is written as in Equation (7.16)

GS(ρ′, z, z′) =

3∑

m=1

Nm∑

i=1

Cmi
as G

m
as(ρ

′,∆i) (7.59)
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where the first summation runs over the type m = 1, 2, 3 of the extracted function of
which the expressions are given in Table B.2 of Appendix B.4, and the second sum-
mation i takes into account Nm multiple z, z′ distances ∆i for that type of function.

Line Integrals

Inserting the complete expansion for the scalar quantity Equation (7.42), but retaining
the analytical expressions for the singular part of the Greens’ function GS(ρ′), we
obtain for the line integral of a scalar quantity (7.40)
∫

l′

GS(ρ′)Π(x′, y′) dl′ = Π(x′c, y
′
c)

∫

l′

GS(ρ′) dl′ (7.60)

while combining the exact expansion for the vector quantity Equation (7.43) with the
analytical expressions for GS(ρ′) for the line integral of a vector Equation (7.38) gives
∫

l′

GS(ρ′)~∆(x′, y′) dl′ = ~∆(x′c, y
′
c)

∫

l′

GS(ρ′) dl′

+
∂~∆

∂x′
(x′c, y

′
c)



∫

l′

x′GS(ρ′) dl′ − x′c

∫

l′

GS(ρ′) dl′


 .

+
∂~∆

∂y′
(x′c, y

′
c)



∫

l′

y′GS(ρ′) dl′ − y′c

∫

l′

GS(ρ′) dl′


 . (7.61)

We thus see that the line integrals that have to be evaluated analytically are all of
the form

∫

l





1
x
y



GS(ρ,∆) dl (7.62)

where the integrations run over a straight line segment from the Cartesian coordinates
xu, yu to xv , yv or from the cylindrical coordinates ρu, φu to ρv, φv as depicted in
Figure 7.6. Apart from these coordinates, the analytical integration is sometimes
facilitated by the introduction of a “rotated” η, ξ coordinate system, such that the ξ
axis stands orthogonally to the line segment l. In these coordinates, the line integrals
are written as

∫

l





1
x
y



GS(ρ,∆) dl =

φv∫

φu





1
ρ cosφ
ρ sinφ



GS(ρl(φ),∆)

√

ρ2 +

(
∂ρ

∂φ

)2

dφ (7.63)

=

ηv∫

ηu





1
L cosφL + η sinφL

L sinφL − η cosφL



GS(

√
L2 + η2,∆) dη (7.64)
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Figure 7.6: Analytical integration over a line segment in a cylindrical ρ, φ and in a “rotated”
ξ, η coordinate system.

where L is the length on the ξ axis to the line segment, φL is the angle it substends with
the X axis, and ρl(φ) the equation of the line segment itself in cylindrical coordinates

ρl(φ) =
L

cos (φ− φL)
. (7.65)

The full analytical evaluation of GS(ρ) involves inserting the summation of Equation
(7.59) over the types of extracted functions Gm

as(ρ,∆), and over the multiple possible
z, z′ distances ∆i. From the explicit formulas for the functions Gm

as(ρ,∆) given in
Table B.2 of Appendix B.4, we see that the basic integrals to be evaluated are all of
the form

∫

l





1
x
y





1√
ρ2 + ∆2

dl, (7.66)

∫

l





1
x
y



 ln

(√
ρ2 + ∆2 + ∆

)
dl, (7.67)

∫

l





1
x
y




√
ρ2 + ∆2 dl (7.68)

for which the full analytical results are given completely in Appendix C.1.

Surface Integrals

Inserting the complete expansion for the scalar quantity Equation (7.42), but retaining
the analytical expressions for the singular part of the Greens’ function GS(ρ′), we
obtain for the surface integral of a scalar quantity (7.39)
∫

S′

GS(ρ′)Π(x′, y′) dS′ = Π(x′c, y
′
c)

∫

S′

GS(ρ′) dS′ (7.69)
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Figure 7.7: Decomposition of the domain S of the surface integration into triangular domains
Si.

while combining the exact expansion for the vector quantity Equation (7.43) with the
analytical expressions for GS(ρ′) for the surface integral of a vector Equation (7.37)
gives
∫

S′

GS(ρ′)~∆(x′, y′) dS′ = ~∆(x′c, y
′
c)

∫

S′

GS(ρ′) dS′

+
∂~∆

∂x′
(x′c, y

′
c)



∫

S′

x′GS(ρ′) dS′ − x′c

∫

S′

GS(ρ′) dS′


 .

+
∂~∆

∂y′
(x′c, y

′
c)



∫

S′

y′GS(ρ′) dS′ − y′c

∫

S′

GS(ρ′) dS′


 . (7.70)

The analytical solution for the following types of surface integrals

∫

S





1
x
y



GS(ρ,∆) dS =

∑

i

∫

Si





1
x
y



GS(ρ,∆) dSi (7.71)

is facilitated by decomposing the integral over the surface S into a sum of surface
integrals over the triangular area’s Si, each bounded by the outer edge li and the
connecting lines of the origin o with the points xu, yu, xv , yv as shown in Figure 7.7.
These resulting types of surface integrals can again be evaluated as shown in Figure
7.8 in the cylindrical ρ, φ coordinate system of Figure 7.8(a) or in the “rotated” ξ, η
coordinate system of Figure 7.8(b) as

∫

Si





1
x
y



GS(ρ,∆) dSi =

φv∫

φu

ρl(φ)∫

0





1
ρ cosφ
ρ sinφ



GS(ρ,∆) ρdρdφ (7.72)
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(a) Cylindrical ρ, φ coordinate system.
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where the inner integration limit for the cylindrical coordinate system ρl(φ) is Equa-
tion (7.65), and for the “rotated” ξ, η coordinate system, the inner integration limits
are
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ηv

L
ξ (7.75)

η−(ξ) =
ηu

L
ξ (7.76)

ξ+(η) =
L

ηv
η (7.77)

ξ−(η) =
L

ηu
η. (7.78)

The full analytical surface integration also involves inserting an expansion of the
type Equation (7.59) and evaluating all the occurring integrals which are ultimately
composed of the basic types
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ρ2 + ∆2 dS (7.81)

for which the full analytical results are given completely in Appendix C.2.

7.4 Conclusions

This chapter has focused on some techniques applied in the numerical evaluation
of the inverse Fourier transform and the remaining space domain evaluation of the
reaction integrals for the MoM impedance matrix. The physically decisive behaviour
of the electromagnetic field in the space domain can be derived in closed form from the
distinctive features of the field in the spectral domain. We can thus extract the space
wave, surface wave and quasi-static field components in closed form. The part which
cannot be extracted analytically in the spectral domain has to be Fourier transformed
numerically to the space domain. For the evaluation of the reaction integrals, the
numerical and analytical parts of the field are rearranged into a well behaved regular
part and a quasi-singular part. The regular part can be integrated safely numerically,
while the quasi-singular terms can again be integrated fully analytically. In this way,
it is attempted to reduce any computational expensive purely numerical work to a
minimum, while dealing with all important computations in an analytical manner.
Now that a fairly complete overview of the implementation of a 3D boundary integral
equation solver for planar stratified media has been presented, we can move to the
ultimate goal of the work presented, to perform a full wave electromagnetic analysis
of typical high frequency problems in a planar stratified surround as presented in the
next chapter.
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Chapter 8

Applications : “Quasi 3D”
Structures in Planar
Stratified Media

8.1 Introduction

The integral equation full wave electromagnetic solver MAGMAS3D developed in this
work and described in the previous chapters can be applied to analyse a multitude
of practical problems. The only requirement is that the physical structure fits in
the framework of, or in a first approximation can be simplified into, a “quasi 3D”
structure in a planar multilayered environment as described in Section 5.7 in Chapter
5. Due to the technical background of the problem, most of the problems that one
first thinks of as being fully three dimensional are upon closer investigation actually
covered by the formulation developed in this work.

The validation of the theory and software developed in this work is given in this chap-
ter. It is performed by comparison with known analytical results, published simulated
and measured results from open literature, and comparison with commercially avail-
able full wave software packages such as the integral equation based Zeland Software
IE3D and the present day flag ship EM simulator, the High Frequency Structure
Simulator (HFSS) provided by Ansoft Corporation, which uses the Finite Element
Method (FEM).

The validation examples given below are dived into three categories of increasing com-
plexity which roughly correspond to the gradual development of the software. The
first class of examples are the simplest and are primarily aimed at a first verification

177
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Figure 8.1: From a “circuit-theoretical” to a “field-theoretical” short circuit of a two-
conductor transmission line.

of correctness of the software. The typical antenna structures are already more com-
plicated and are grouped in the second category. The circuit oriented examples of the
last category are the most complicated and most demanding of the software, but also
constitute the potentially biggest area of future growth and application of numerical
electromagnetics.

8.2 Basic Test Structures

The examples in this section are rough first time validations of the techniques de-
veloped in this work. The first two examples were actually analysed with separate
stand alone test software, not integrated within the MAGMAS3D framework. This
test software can handle quasi 3D structures as described in Chapter 5, but only for a
homogeneous medium, or a half open homogeneous space above an infinite perfectly
conducting ground plane. However, the computations are performed as if a general
layered medium is present. In this way, the basic principles of the hybrid field for-
mulation and combined spectral space domain approach can be tested based on the
simple free space scalar Green’s function and without the additional complications
that arise in a general multilayered medium. The third example is the first result of
the more general MAGMAS3D software, the implementation of which was strongly
aided by the experience gained in the development of the test software.

8.2.1 Reflection of Even and Odd Modes on 2-Conductor Line

In this example, we illustrate the difference between a “circuit-theoretical” and a
“field-theoretical” short circuit of a transmission line. The geometry is given in Figure
8.1. A two-conductor transmission line is located above an infinite ground plane.
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The “circuit-theoretical” short is obtained by connecting the metallic lines of this
waveguiding structure straight to the ground plane. A “field-theoretical” short circuit
in principle requires an infinitely large perfectly conducting vertical plate. Therefore,
progressive better short circuits are obtained with the increasing size of a finite vertical
plate as indicated in Figure 8.1. Dimensions for the transmission line are w2 = 1cm,
h2 = 1.5cm, s = 2cm. We will also compare the reflection for the even mode and odd
mode. For the dimensions stated above these modes have characteristic impedances of
90Ω for the even mode and 280Ω for the odd mode. The S-parameter reference plane
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Figure 8.2: Smith chart representation of the reflection coefficient S11 on the two conductor
transmission line of Figure 8.1 for even (×) and odd mode (◦): (1) open, (2) “circuit-
theoretical” short circuit by connecting the conductors straight to the ground plane, (3), (4)
progressive better ”field-theoretical” short circuits with a vertical plate of increasing size,
1.4-1.8 GHz, 17 points.
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(a) Even mode. (b) Odd mode.

Figure 8.3: Vector current distributions on the vertical plate with size w4, h4of Figure 8.1
for even and odd mode at the central frequency 1.6 GHz.

is located at one wavelength from the short at 1.6 GHz, at l = 18.75cm. The computed
S-parameters are given on a Smith chart from 1.4-1.8 GHz in 17 frequency points for
even (×) and odd (◦) mode in Figure 8.2. As a reference result, the reflection for an
open line is given first in Figure 8.2(1). The “circuit-theoretical” short circuit results
of Figure 8.2(2) are compared with the results of a “field-theoretical” short circuit
in Figures 8.2(3), 8.2(4) for a vertical rectangular plate of dimensions w3 = 8cm,
h3 = 3cm, w4 = 12cm, h4 = 4.5cm. The largest plate has 16 × 6 subdivisions
along Y and Z, while the transmission line conductors have 2× 25 subdivisions along
Y and X. As expected, the short circuit performs better for the odd mode, as the
field distribution is more confined between the conductors. Also notice that the
amplitude of the reflection coefficient S11 is smaller for the even mode, indicating a
larger radiation loss. The resulting vector current distributions on the largest vertical
plate with dimensions w4, h4 are depicted at the central frequency of 1.6 GHz in
Figure 8.3.

8.2.2 Resonance of Closed Rectangular Cavity

Figure 8.4 shows a perfectly conducting rectangular cavity constructed out of horizon-
tal and vertical conducting plates. For such a simple rectangular cavity the resonance
frequencies are known analytically. As a verification of the developed software, in this
example we attempt to calculate these frequencies in a numerical manner. The numer-
ical approach can also be applied for arbitrarily shaped cavities where no analytical
expressions for the resonant frequencies are available.

A first method to compute the resonant frequencies numerically consists of monitoring
the numerical stability of the solution of the EFIE. The EFIE has no unique solution
for the current on the surface of the cavity at the resonant frequencies (see Section
3.5.1 of Chapter 3). This theoretical fact causes the numerical solution to become
unstable in the neighbourhood of a resonance. The resonant frequencies can then be
detected by plotting the condition number of the discrete matrix representation of the
integral equation as a function of frequency for a fixed geometry, or as a function of
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Figure 8.4: Perfectly conducting rectangular cavity with a dipole current source excitation.
The frequency is kept fixed while the width w is varied to detect the analytically known
resonance frequencies in a numerical manner. The resonances that can be detected in this
way depend upon the position xc, yc of the excitation within the cavity.

a varying characteristic dimension for a fixed frequency. The first technique has been
tested with our software but did not give the desired result with a sufficient degree
of accuracy, as the number of unknowns (up to 3300) seems to be too large. Also,
with the numerical techniques developed in this work, the numerically intensive com-
putation of the Green’s functions has to be redone for each frequency point, which is
rather inefficient for this particular test. The second approach in which the frequency
is kept fixed was used in [277] for a very simple two dimensional example with a very
limited number of unknowns. This approach is also used in our three dimensional
example, where we keep the frequency fixed at 1.875 GHz and vary the lateral size
W of the rectangular boxes. The Green’s functions now have to be computed only
once and simply stored for reuse with a series of different lateral dimensions W . The
heigh of the cavity is also kept fixed at a small dimension H = 0.04m compared to
the wavelength λ = 0.16m such that no resonances can be associated with the Z
direction. It also limits the numerically intensive computation of Green’s functions to
a minimum. The structure is excited with a simple vertical dipole current excitation
as depicted in Figure 8.4. The widths at which a resonance is expected are now given
as

Wm,n =
√
m2 + n2

λ

2
(8.1)

with m,n the modenumbers associated with the field distributions along the X,Y
directions. The lowest order resonance situations that we wish to calculate are

W1,1 =
√

2
λ

2
= 0.1131m, (8.2)

W1,2 =
√

5
λ

2
= 0.1789m, (8.3)
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W2,2 =
√

8
λ

2
= 0.2263m. (8.4)

The width W was thus varied between 0.04m and 0.25m. The largest box structure
has 25 × 25 × 4 subdivisions along X,Y and Z. The technique of [277] again gave
insatisfactory results as the condition number depends on the matrix size which varied
in our example from 220 to 3300 unknowns, such that the resonances could hardly be
distinguished from the monotonic increase with matrix size. Luckily, the resonances
can also be detected in a more physical manner by examining the electromagnetic
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Figure 8.5: Imaginary part of the self impedance of the imposed current source for 33 cavity
widths W between 0.04m and 0.25m. The detection of cavity resonances at widths Wm,n

depends on the position of the excitation xc, yc within the box.
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Figure 8.6: A vertical conducting plate penetrating an air-dielectric interface and illuminated
by a current dipole source.

self-coupling of the imposed dipole current. The real part of this self impedance is
necessarily zero since no radiation can leave the cavity. The reactive imaginary part
however undergoes a characteristic jump as we pass through a resonant situation.
Figure 8.5(a) plots the imaginary part of the self impedance as a function of 33 cavity
widths W between 0.04m and 0.25m, when the excitation is positioned perfectly in
the middle of the cavity. Notice that for this case, only the first resonance seems
to be detected. This immediately points out the drawback for this approach, since
the measure in which a resonant field distribution is excited strongly depends on the
location of the excitation. By positioning the current source perfectly in the middle,
the higher order asymmetric field distributions of the m,n = 1, 2 and m,n = 2, 2
modes are not excited at all. Figure 8.5(b) demonstrates that by moving the excitation
into the corner of the cavity at xc = −W/4, yc = −W/4, these higher order resonances
are also correctly detected.

8.2.3 Current Distribution on Vertical Plate Penetrating a Di-
electric Interface

In this example, we verify for a generic test structure that all analytical and numer-
ical work for the discretisation of the BIE in a stratified medium described in the
previous chapters translates into the correct behaviour of the current distribution on
a macroscopic scale.

The test structure of Fig. 8.6 shows a large vertical conducting surface that penetrates
the interface between two infinite media. The upper half space has εr0 = 1.0, while
the lower half space has ε1r = 16.0. The dimensions of the plate are w = 10.0cm,
h = 7.5cm, and the air-dielectric interface is located in the middle of the plate.
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Figure 8.7: Amplitude of Y, Z current components on the large vertical plate of Figure 8.6.

The computation was done with 16 × 12 subdivisions along Y and Z. The plate is
illuminated with a vertical current dipole located at d1 = 10cm, d2 = 1.25cm as
illustrated in Fig. 8.6. The frequency is 1.875 GHz. At this frequency, the top half of
the plate has a vertical dimension which corresponds to a quarter wavelength in air,
while in the lower half space, it is a complete wavelength high.

By the direction of the illuminating current source, we expect a dominant Jz compo-
nent. This is satisfied by comparison of the amplitudes of the Y, Z current components
depicted in Figures 8.7(a) and 8.7(b). We also expect the different wavelengths in the
upper and lower medium to manifest themselves in the current distribution. This is
seen most clearly in Figure 8.7(b).

The behaviour of the Jz current component over the interface at z = 0 also needs
to be verified. The line of reasoning is similar to the one given in [244]. From the
continuity of the Hy field components over the interface close the surface of the plate,
it follows that the Jz current components are also continuous at z = 0. Continuity of
the Ex field across the interface can be related to the charge densities and thus the
derivatives of the Jz currents just above and below the interface as

∂Jz

∂z
(0+)

∂Jz

∂z
(0−)

=
εr0

εr1
(8.5)

which is also satisfied in Figure 8.7(b).
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Figure 8.8: Structure of a probe fed stacked quarter wavelength patch antenna with vertical
short circuit.

8.3 Antennas

In this section, a number of quasi three dimensional antenna structures are analysed.
These three dimensional antennas typically result from efforts to improve the charac-
teristics of traditional printed planar antennas, such as their limited bandwidth and
efficiency. A possible technique to improve the bandwidth is to use electrically thicker
or multilayer substrates, as in the structure of Section 8.3.3. This has however the
disadvantage of increasing the physical size of the antenna and it also enhances the
propagation of surface wave modes. At higher frequencies, this can cause a reduction
of radiation efficiency, and an increased mutual coupling when multiple antennas are
disposed in array configurations. One technique to avoid mutual coupling in arrays
is the use of metallic cavities to enclose the radiator as in Section 8.3.4. Surface wave
excitation can be suppressed by reducing substrate permittivity up to the point where
air filled antennas are considered as in the first example of Section 8.3.1. For present
day mobile communications, the physical size of the antenna has to be limited and
the stringent design specifications can only be met by leaving the traditional planar
antenna structure and using the additional degrees of freedom available in quasi three
dimensional antennas as the ones of Sections 8.3.1, 8.3.2, 8.3.3 given below.

8.3.1 The Stacked Quarter Wavelength Patch Antenna

In practical communications systems, one often requires wideband or dual frequency
operation, for which it is very attractive to use a single antenna element. Dual fre-
quency operation can be achieved in a single element by adding shorting pins. The
bandwidth can be improved by exploiting the effect of mutual coupling between two
stacked (placed above eachother ) or juxtaposed (placed next to eachother) patches.
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Figure 8.9: Real part of the input impedance of the antenna of Figure 8.8, 1.3-2.7 GHz, 57
points.

In this way, the resonance frequencies of two slightly different sized resonators can
be “smeared out” into wideband frequency operation. The juxtaposed configuration
however results in a significantly wider structure. In [278], these considerations are
combined in the design depicted in Figure 8.8. The antenna consist of two stacked
patches, constructed simply in air for which we assume εr = 1.0. The size of the
patches can be reduced from the standard half wavelength to only a quarter wave-
length by short circuiting them at the edge with a vertical conducting plate. This
vertical short circuit generates a mirror image (although an imperfect one) to sim-
ulate the other half of the patches. The position of the two resonance frequencies
can be shifted by altering the dimensions of the patches and in this way a dual band
antenna (resonance frequencies clearly separated) or a wideband antenna (resonances
blurred together) can be obtained. The dimensions in Figure 8.8 are Wp = 35.0mm,
Lp2 = 25.0mm, t1 = 6.8mm, t2 = 4.8mm, Ls = 18.0mm, Ws = 17.5mm. Figure
8.9 depicts the real part of the input impedance for two values of the length of the
lower patch, Lp1 = 29mm and Lp1 = 38mm in the frequency band 1.2-2.7 GHz in 57
points. The upper patch was discretised using 13 × 16 subdivisions, while the lower
patch has 15× 16 and 18× 16 subdivisions along X and Y for sizes Lp1 = 29mm and
Lp1 = 38mm respectively. The vertical wall has 16 × 3 subdivisions along Y and Z
between the ground plane and middle patch, and 16×2 subdivisions between the two
patches. The results of [278] were obtained with their own Finite Element Method
(FEM) and takes into account the finite thickness of the metal sheets (0.3mm), as-
sumes a finite ground plane of 100mm× 100mm and employs a special probe model
for the feed. Our results assume infinitely thin metal, an infinite ground plane and
we use only a constant vertical current to model the probe feed.



8.3. ANTENNAS 187

PSfrag replacements

εr1

X Y

Z

Wp

Lp

Ws

Ls t1

Figure 8.10: Geometry of short circuited
probe fed patch antenna fabricated on single
layer substrate.

P
S
fra

g
rep

la
cem

en
ts

Re(S)
Im

(S
)

1

1

-1
-1

0

0

× : BIE MAGMAS3D
- - : Measured [247]

Figure 8.11: Input reflection S11 for the
antenna of Figure 8.10, 2.6-2.95 GHz, 36
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8.3.2 The Short Circuited Patch Antenna

The same principle is applied for the probe fed short circuited patch antenna of
Figure 8.10. However, this single patch antenna is fabricated on a single layer Duroid
5870 substrate with t1 = 1.57mm, εr1 = 2.33 and loss tangent tan δ = 0.0012. The
dimensions of the patch are Wp = 30mm, Lp = 42mm. The patch has 30 × 20
subdivisions along X and Y . The vertical wall has 30 × 2 subdivisions along X and
Z. The probe feed is positioned at Ws = 9mm, Ls = 4.2mm. Figure 8.11 compares
the measured results for the input reflection coefficient S11 of this structure from
[247], [248], [249] with our computed results in the frequency band 2.6-2.95 GHz in
36 points on a Smith chart. In our simulations, the probe feed was modeled with a
constant vertical current and the losses were neglected. Notice that the antenna is
not matched to the feed as it was not produced with a specific application in mind,
but only to validate theory and numerical computations.

8.3.3 The Patch Antenna with Vertical Metalisation

A more complicated antenna is depicted in Figure 8.12. The antenna is fabricated
in a double layer medium. The lower substrate (RO 3003) has εr1 = 3.00, t1 =
1.54mm, tan δ = 0.0013 while the upper layer is the same as in the previous example.
The antenna consists of two patches, connected with a vertical metallic wall. Their
dimensions are Wp = 30mm, Lp = 40mm while the coaxial feed is positioned at
Ws = 11.25mm, Ls = 5.00mm. The two patches both have 30×20 subdivisions along
X and Y , and the vertical wall has 30× 2 subdivisions along X and Z. Figures 8.13
and 8.14 compare the measurements of S11 from [249] with our simulated results in the
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Figure 8.14: Input reflection S11 for the an-
tenna of Figure 8.12, 2.4-3.0 GHz, 61 points.

frequency band 1.9-2.3 GHz in 41 points, and 2.4-3.0 GHz in 61 points respectively.
Notice that the predictions become less accurate in the higher frequency band.

8.3.4 The Cavity Backed Aperture/Patch Antenna with Di-
electric Overlay

In the previous antenna examples, the vertical conductors still have modest size com-
pared to the horizontal parts of the antenna. In the following example, this is no
longer the case, as the vertical parts now have the same size as the horizontal parts,
of the order of magnitude of the wavelength. Figure 8.15 depicts the cavity-backed
antenna that we will analyse. This antenna can be considered as a slot or a patch
antenna depending on whether one concentrates on the opening or on the patch in
the upper ground plane as the part responsible for generating radiation. Feeding is
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Figure 8.15: Geometry of a coaxially fed cavity-backed aperture or patch antenna covered
with a dielectric superstrate.

achieved with a coaxial line of which the inner conductor terminates on the middle of
the patch. The structure is backed by a rectangular metallic cavity. The dimensions
of the patch are Wp = Lp = 1.5cm. The size of the cavity is Wa = La = 1.875cm,
and a depth Ha = 0.9375cm. The patch has 9× 11 subdivisions along X and Y . The
cavity has 10 × 10 × 6 subdivisions along X,Y and Z. The influence of a top cover
dielectric layer of thickness t = 7874mm and εr = 2.2 on the antenna performance is
also considered.

This antenna was designed, analysed and measured in [279]. For the theoretical
analysis, they short circuited the slot in the upper ground plane and replaced it by
equivalent magnetic sheet currents. Expressing continuity of the magnetic field over
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Figure 8.16: Input impedance R+jX of the cavity-backed antenna of Figure 8.15 when no
dielectric cover is present, 3.0-12.0 GHz, 73 points.
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Figure 8.17: Input impedance R+jX of the antenna of Figure 8.15 with and without a
dielectric overlay, as computed and measured by [279] in the frequency range 3.0-8.0 GHz.
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Figure 8.18: Input impedance R+jX of the antenna of Figure 8.15 with and without a di-
electric overlay, as computed in the frequency range 3.0-8.0 GHz, in 81 points, and compared
with the measurements of [279].

the aperture opening results in an integral equation for this magnetic current. The
kernels occurring in this equation are a Green’s function for the lower closed air filled
rectangular cavity and a Green’s function for the upper single layer medium. In [279],
a combination of pulse and piece-wise sinusoidal subdomain expansion functions are
used to model the magnetic current, and a spectral domain approach to compute
the matrix elements was used. The excitation is a delta gap voltage generator in
the slot area between patch and ground plane. This is a very efficient approach for
this particular example, as only the magnetic current over the small aperture opening
has to be modeled. The approach is however limited to perfectly conducting closed
rectangular cavities.

To show the validity of our approach, we perform a dual analysis in which all electric
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currents are computed. The bottom of the cavity is taken as an infinite ground plane
of the layer structure. The current on the cavity side walls, the patch and on the
upper ground plane is expanded using rooftop functions. The upper ground plane
is thus necessarily finite in our approach with dimensions Wg = Lg = 48.75mm and
26 × 26 subdivisions along its outer perimeter. Our excitation is a current source
connecting the patch to the surrounding upper ground plane. Of course, our analysis
is less efficient than the approach of [279] for this particular example. However, our
more general approach can handle arbitrarily shaped cavities, with possible openings
in the side walls and can take into account the effect of the finite ground plane if
desired.

In [279], simulations were done for this antenna without a dielectric cover in the 3.0-
12.0 GHz frequency range, while measured results are only available for a dielectric
covered antenna in the 3.0-8.0 GHz range. In Figure 8.16, we compare the computa-
tions of [279] for the homogeneous case with our own results over the entire frequency
range 3.0-12.0 GHz, in 73 points. Fairly good agreement is observed. These results
for the homogeneous case are also repeated in Figure 8.17 but only over the frequency
range 3.0-8.0 GHz as a reference curve. In this Figure, we also depict the computed
and measured results of [279] for the case when the dielectric cover is present. One
clearly observes the shift of the resonance frequency as the electrical size of the an-
tenna is slightly increased due to the presence of the dielectric cover. The measured
results are also compared with our own simulation results in Figure 8.18 over the
3.0-8.0 GHz range, in 81 frequency points. A slight shift in frequency is present be-
tween our own simulations and those of [279] for all cases, with the measured results
neutrally in the middle. Deviations may be due to different feed models used, as a
further increase of the size of our finite ground plane or a further refinement of the
mesh gave no further significant improvement of the results.

8.4 Circuits, Packaging, Interconnections

In this section, the applicability of our full wave field solver to tackle problems from
traditional low frequency and higher frequency microwave electronics is demonstrated.
In general, the geometry and material composition of a circuit problem creates a more
complicated boundary value problem than for a typical antenna structure. The size of
the problem domain is also generally smaller compared to the wavelength, while the
discretisation of the current still needs to be very dense to model very fine geometrical
features. In general, this has created some numerical problems such that it was more
difficult to obtain the accurate and stable solutions for the problems presented below.
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Figure 8.19: Series resonator obtained by connecting a multilayered capacitor and a square
spiral inductor with an airbridge in series on a microstrip line.

8.4.1 The Lumped Element Series Resonator

Figure 8.19 shows the physical configuration of a lumped element resonator consisting
of a series connection of a multilayered capacitor and a square spiral inductor with an
airbridge. The circuit is fed by a simple microstrip line above an infinite ground plane.
This example is designed to illustrate the approximate nature of classical lumped ele-
ment circuit theory and explicitly shows the transition into the frequency range where
a complete solution of the boundary value problem is required to take into account
the wave nature of the field as discussed in Sections 2.7 and 2.8 of Chapter 2. The
medium is assumed to be homogeneous with εr1 = 1.0. The characteristic impedance
of the microstrip line is then completely determined by its width Wf = 6.25mm
and height Hf = 5mm above the ground plane at Zc = 115Ω. All S-parameters
are normalized to this impedance. The main dimensions of the multilayered capac-
itor and square spiral inductor are Lc = 16.25mm and Li = 20.00mm respectively.
Most of the structure conforms with a regular geometrical grid with unit cell size
1.25mm× 1.25mm× 1.25mm and the mesh shown in Figure 8.19. Only the spacing
between the turns of the spiral inductor is half the unit cell size. The dimensions were
explicitly chosen such that the deviation from the lumped element behaviour occurs
below 3 GHz. When the lumped elements are small compared to the wavelength,
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Figure 8.20: S-parameters for the resonator of Figure 8.19(a) obtained from the lumped
element equivalent of Figure 8.19(b) and 2 full wave simulations from 0.1-3.0 GHz, 30 points.

their behaviour can still be characterised by a single number. The electrostatic ca-
pacitance C = 0.80pF , and the quasi-static inductance L = 50nH can be obtained
from approximate formulas [280]. A low frequency equivalent circuit is depicted in
Figure 8.19(b). Although the individual lumped elements are “small” at 1GHz, their
series connection already has a considerable dimension, and a section of transmis-
sion line was inserted to model the distributed nature of the circuit to some extent.
The length of the section equals the distance between the centers of the components
d = 18.25mm. The circuit simulation can be performed by paper and pencil or using
Agilent ADS and these results are compared with two full wave simulations in Figure
8.20. The first uses the hybrid BIE method implemented within this work, and the
second uses the space domain dyadic EFIE formulation implemented within Zeland
Software IE3D. The reduced order equivalent circuit model is seen to be only valid
in the lower frequency range. The validity of such circuit models can be extended
to higher frequencies by adding more discrete elements, up to the point where the
number of discrete elements equals the number of expansion functions used in the full
wave analysis.

8.4.2 The Packaged Microwave Circuit

Microwave Monolithic Integrated Circuits (MMIC’s) are commonly packaged in a
metallic box [281], [282] as depicted in Figure 8.21. The effect of the enclosing cavity
can often be assumed to be negligible, if proximity effects [283] resulting from electro-
magnetic coupling with closely located sidewalls can be avoided. This approach has
not posed very serious problems because the size of the circuit packages has not been
electrically large. As the level of integration and/or operation frequency increases,
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circuit behaviour of the MMIC.

the electrical size of the enclosure also increases. If the system operates at frequencies
near one of the enclosure resonances, the electromagnetic coupling between different
parts of the circuit or the interaction of the circuit with the package can be signifi-
cantly altered as resonant field distributions within the enclosure can be excited [253],
[284]. In this case, the topology of the circuit itself and the location of the circuit
within the enclosure can be very important as it determines the measure in which
the resonant field distributions are excited [284], [285]. Apart from trying to avoid
their excitation by paying attention to geometry, the effect of the resonance can also
be damped by introducing absorbing materials or resistive films to reduce the quality
factor of the resonant cavity [284], [285], [286]. Nevertheless, there usually remain
frequency shifts and other perturbations of the circuit response. These phenomena
are displayed in the present example from [285].

A simple microstrip trace with width w = 1.40mm is realised on a lossy substrate
with thickness t1 = 1.27mm and εr1 = 10.5(1 − j0.0023). It has a stop band in
the transmission S21 at 11.0 GHz due to the shunt stub with the same width and
length l = 1.90mm located in the middle of the line. This circuit is then placed at
position xc, yc in a perfectly conducting metallic box with dimensions a = 15.00mm,
b = 24.00mm, c = 12.70mm as depicted in Figure 8.21. The microstrip circuit is
meshed according to a regular grid with unit cell size w/3. The box has 15 × 24
subdivisions along X and Y . In the Z direction, there are 2 subdivisions in the
first and third layer, with 9 subdivisions in the middle air “layer” as depicted in
Figure 8.21. For an enclosure of this size, there is only one resonant mode in the
9.0-12.0 GHz band, namely the TM110 mode at 11.8 GHz. To damp the effect of this
mode when excited, a microwave absorbing layer with thickness t3 = 1.27mm and
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Figure 8.22: Amplitude of S21 for the boxed circuit of Figure 8.21 as computed in 49 points
in the frequency range 9.0-12.0 GHz. The response is influenced by the location yc in the
box.

εr3 = 21(1− j0.02), µr3 = 1.1(1− j1.4) is attached to the cover of the enclosure.

Figure 8.22 compares the results of [285] with our own computations for the amplitude
of S21 from 9.0-12.0 GHz in 49 points for two positions yc of the circuit within the
box. When the circuit is positioned off center at xc = 7.50mm, yc = 17.00mm,
the circuit behaviour is hardly altered. However, when the circuit is moved to the
center of the box at xc = 7.50mm, yc = 12.00mm the excitation of the box resonance
significantly alters the overall behaviour. In [285], a detailed study of the relation
between excitation of the resonant field distribution and location and direction of the
current components on the line and stub can be found.

The theoretical analysis of [285] was done using a BIE applied on the surface of the
microstrip circuit only. The effect of the box is taken into account in the Green’s
function, such that the current on the box walls does not need to be discretised. A
spatial domain approach for the computation of the matrix elements was used. In our
analysis, the bottom and top cover of the box are part of the planar layer structure,
while the current on the circuit and the vertical box walls is completely expanded
using rooftop functions.

8.4.3 The Microstrip Rectangular Spiral Inductor

The following structure may be considered as a typical example of the degree to which
physical data has to be simplified in order to make the problem accessible to fruit-
ful numerico-mathematical analysis. It also shows the importance of modelling fine
geometrical features if their dimensions are an appreciable fraction of the wavelength.

The example was originally introduced in [287]. They fabricated and measured a
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Figure 8.23: Microstrip rectangular spiral inductor with an airbridge of which the upper
piece is modeled as a zero thickness flat strip.

square spiral inductor with an airbridge. The dimensions of this inductor were ex-
plicitly taken a bit larger than usual, such that all resonant phenomena are in a
frequency area that allows practical realisation and verification by measurements. In
this distributed inductor, all coupling effects between lines and discontinuities and
the transmission properties of the airbridge have to be taken fully into account.

The geometrical models for the numerical analysis are depicted in Figures 8.23 and
8.24 with an impression of the most dense mesh used in the computations. The
printed circuit part of the spiral inductor is realised on a single layer Al2O3 substrate
with thickness t = 635.0µm and εr = 9.8. The feeding microstrip lines of width
ws = 625.0µm then have an approximate impedance of 50Ω. The turns of the spiral
have the same width and have a spacing s = 312.5µm everywhere. This part of the
structure can be modeled without introducing any grave approximations. However,
the airbridge is realised in practice using a wire with circular cross section of diameter
317.5µm. It is soldered vertically onto the printed circuit and the bended into the
horizontal section such that the lower edge is located at a height h = 317.5µm above
the printed circuit. The real physical problem is thus fully three dimensional. If
the circular cross section is approximated as a rectangular one, the problem becomes
“quasi 3D” and the numerical analysis is strongly simplified. The width of the vertical
studs of the airbridge are taken as w = 312.5µm to conform with the mesh on the spiral
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Figure 8.24: Microstrip rectangular spiral inductor with an airbridge of which the finite
thickness of the upper piece is modeled as a box.

inductor, while the lower edge of the airbridge is positioned at a height h = 317.5µm.
The upper piece of the airbridge will be modeled either as a flat strip as in Figure 8.23
with zero thickness t = 000.0µm or as a rectangular box with thickness t = 317.5µm
as in Figure 8.24. The mesh on the horizontal parts of the model conform perfectly
with a regular geometrical grid with unit cell size 78.125µm× 78.125µm, creating 8
subdivisions along the width ws of the microstrip line, and 4 along the width w of the
airbridge and vertical studs. Along the Z direction, 4 subdivisions were taken over
the heights h and t as depicted in Figure 8.24, creating only slight deviations from
the horizontal unit cell size.

Apart from the resulting geometrical simplification of cross section and bends at the
corners, the numerical models also assume the current to flow on the surface of the
wire instead of being distributed over its entire cross section. Any losses are also
neglected in the analysis.

We investigate the influence of modelling the finite thickness of the upper piece of
the airbridge. The original measurements by [287] were done in the frequency range
0.1-30.0 GHz and supplemented with Finite Difference Time Domain (FDTD) sim-
ulations. The finite thickness of the upper piece of the airbridge was not taken into
account as it was modeled as a flat strip as depicted in Figure 8.23. A Boundary
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Figure 8.25: Amplitude and phase of S11, 2.0-20.0 GHz, 145
points. Thickness of the upper piece of the airbridge t =
000.0µm.
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Figure 8.26: Amplitude and phase of S11, 2.0-20.0 GHz, 145
points. Thickness of the upper piece of the airbridge t =
317.5µm.
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Figure 8.27: Amplitude and phase of S21, 2.0-20.0 GHz, 145
points. Thickness of the upper piece of the airbridge t =
000.0µm.
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Figure 8.28: Amplitude and phase of S21, 2.0-20.0 GHz, 145
points. Thickness of the upper piece of the airbridge t =
317.5µm.
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Figure 8.29: Amplitude and phase of S22, 2.0-20.0 GHz, 145
points. Thickness of the upper piece of the airbridge t =
000.0µm.
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Figure 8.30: Amplitude and phase of S22, 2.0-20.0 GHz, 145
points. Thickness of the upper piece of the airbridge t =
317.5µm.
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Integral Equation (BIE) analysis with a spectral domain approach was done [237].
They also modeled the upper piece as a flat strip and assumed a constant vertical
current to model the vertical studs of the airbridge. Both of these results still show
an appreciable deviation with the measurements. The improved analysis of [239] in-
vestigates the influence of taking into account the finite thickness of the upper piece
of the airbridge in the frequency range 0.2-20.0 GHz. They model all current compo-
nents with a complete space domain three dimensional MPIE approach applied to the
“quasi 3D” geometrical model of Figure 8.24. They also performed additional FDTD
simulations for both zero and finite thickness to verify their results. The simulated
results for finite thickness of [239] correspond better with the original measurements
of [287]. The structure has been used further by a number of authors as a reference
result, for example in [95], [266], [235], [288], each producing however less accurate
numerical results.
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Figure 8.31: Amplitude and Phase of S11, 1.0-30.0 GHz, 233 points. Comparison of MAG-
MAS3D BIE and FDTD full wave simulations with experimental data.
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As a first verification, we compare our simulated results with the simulated MPIE-
BIE results of [239] in the frequency range 0.2-20.0 GHz. Here we can assume an
identical geometrical model of the structure and a similar mathematical model for
the electromagnetic analysis. In these figures, the results of [239] for the thickness
of the upper piece of the air bridge t = 000.0µm and t = 317.5µm are taken as
reference curves. Figure 8.25 shows amplitude and phase of S11 as we computed for
t = 000.0µm in the frequency range 0.2-20 GHz, in 145 points. The shift that occurs
when the upper piece of the airbridge is modeled as a box is given in the same format
in Figure 8.26. Figures 8.27 and 8.28 show the effect on the transmission S21. The
corresponding results for S22 are given in Figure 8.29 and 8.30 where a bigger effect
on the phase data can be discerned.

As a second verification, we compare our simulated results for thickness t = 317.5µm
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Figure 8.32: Amplitude and Phase of S21, 1.0-30.0 GHz, 233 points. Comparison of MAG-
MAS3D BIE and FDTD full wave simulations with experimental data.
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with the original measurements of [287] over the entire 0.1-30.0 GHz frequency range
in Figures 8.31 and 8.32 in 233 points. To better appreciate the degree of difficulty to
match full wave simulations to actual measurements, the FDTD simulations of [287]
have also been included.

8.4.4 The Surface Mounted Plastic Packaged Integrated Cir-
cuit

The following example illustrates the potential of “full wave” electromagnetic field
solvers to assist researchers and designers in modelling and designing complicated
three dimensional packaging and interconnection problems arising in realistic elec-
tronic circuits.

Traditional low cost lead frame surface mounted plastic packages (SOIC8 (Single Out-
line Integrated Circuit with 8 leads), SSOP8, SSOP24 (Shrink Small Outline Package
with 8 or 24 leads)) have been the workhorse of traditional low frequency electronics.
The design of such packages has been dictated mainly by mechanical and thermal
considerations [289]. In the low frequency range, the electrical effects of the package
and interconnections on circuit performance can still be modeled using reduced or-
der lumped element equivalent circuits of the physical discontinuities. Commercial
wireless products up to 2.4 GHz have been designed in this manner [290]. However,
the inherent low pass characteristics of these packages present a major impediment to
operation at higher frequencies. Furthermore, the traditional reduced order lumped
element circuit design methodology simply cannot take into account the complicated
interaction of the circuit with the package and interconnection structure at these
higher frequencies. Nevertheless, if not properly taken into account, these phenom-
ena can seriously degrade the originally intended circuit behaviour. For present day
and next generation high performance integrated circuits and packages, the electrical
characteristics thus come into the forefront already at the design stage. At this point,
“full wave” electromagnetic field solvers can come to the rescue.

Figure 8.33 shows the full physical configuration of the problem that we will study.
A generic integrated circuit is packaged with a standard SOIC8 plastic package and
surface mounted on a standard Printed Circuit Board (PCB).

The unpackaged circuit is in this case a simple planar microstrip filter realised on
a substrate with thickness 0.150mm and εr1 = 4.0 above an infinite ground plane
as depicted in Figure 8.34. The mesh used on this circuit is the same as in Figure
8.35(a). The circuit is intended to have a transmission (S21) stop band around 9.5
GHz as verified by the full wave analysis results of Figure 8.34.

For operation in conjunction with other parts of the total system, the filter is packaged
and surface mounted on a PCB as depicted in Figure 8.33. The filter is now embedded
in a finite plastic encasing with the same εr1 = 4.0. The infinite ground plane is
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Figure 8.33: Simplified (quasi-) three dimensional geometrical model for the full wave electromagnetic analysis of a SOIC8 (Short
Outline Integrated Circuit with 8 leads) packaging and interconnection structure. A generic (MM)IC ( (Monolithic Microwave)
Integrated Circuit) is packaged in a plastic encasing, and surface mounted on a standard PCB (Printed Circuit Board). The IC is
connected with the signal traces of ports 1 and 2 on the PCB using the bond wires and “signal” leads. The elevated ground “paddle”
is interconnected with the motherboard ground plane using the “grounding” leads and vias. The “support” leads are only connected
with the PCB ground plane.
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Figure 8.34: Planar geometry and full wave analysis results of the unpackaged microstrip
filter circuit. S-parameters computed in frequency range 1.0-14.0 GHz, in 53 points.

replaced by a finite ground elevated “paddle” of dimensions 2.4mm × 2.4mm. This
structure is supported above the PCB by metal studs called the “leads”, leaving an
intervening air region between PCB and plastic package of thickness 0.2mm. Some
of the leads are made in one piece with the ground paddle. These “grounding” leads
connect the elevated paddle with the real PCB ground plane by vias which penetrate
through the PCB dielectric with εr2 = 10.0 and thickness 0.25mm. Other “support”
leads are not connected with the paddle but have vias to the PCB ground plane and
only serve to support the structure mechanically. Still other “signal” leads are not
connected with the paddle nor with the ground plane. These can be used to transfer
the useful signal or wave traveling on the PCB signal traces to the package such that
it can finally reach the filter by means of wire bonds. One conductor of the wave
guiding structure thus consists of the PCB signal traces, “signal” leads, bond wires
and printed part of the filter. The second conductor which carries the “return current”
is composed of the ground paddle, the grounding leads, vias and PCB ground plane.

The characteristics of this packaged filter are now measured between the signal traces
on the PCB. In a low frequency circuit theoretical way of reasoning the effects can
be distinguished as follows. The “discontinuities” like trace to lead transition, PCB-
air-plastic transition and bond wires disturb the propagation of the useful signal.
Electromagnetic capacitive coupling occurs between all closely spaced parts [290],
especially between the leads and between leads and PCB ground, and inductive effects
can be associated with all parts where the current has to travel along a certain length,
like along the paddle and through the bond wires [290]. Finally, the finite elevated
ground paddle provides “poor grounding characteristics” for the actual circuit. From
an electromagnetic point of view, the effects of the packaging and interconnection
are studied by transforming the relatively simple boundary value problem of Figure
8.34 into the considerably more complicated one of Figure 8.33 and comparing their
solutions.
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Figure 8.35: Top and Side View of the mesh on the geometrical model of Figure 8.33.

This SOIC8 example was studied in [290]. Using Sonnet em 3D planar BIE software,
circuits models were extracted to model the effect of the package and interconnections
on circuit behaviour. Results were compared with complete full wave simulations of
the total structure. The effects of different grounding topologies were studied. These
results will be used further on as reference data. In these BIE analyses, it is assumed
that the plastic package extends horizontally to infinity such that the structure can be
analysed as a stacked layer structure. The approach was verified further in [291] for
the geometrically more complicated SSOP24 structure. Lumped element equivalents
were extracted using Sonnet em and Finite Element Method HFSS. Measurements
were performed on a simplified scale model. The SOIC8 was also analysed in [292]
using the FDTD method, such that the finite extent of the plastic encasing can be
taken into account. This seems to affect the results slightly starting from 11 GHz.
Finally, a complete full wave analysis and design of a SSOP8 package was done in
[289] also using Finite Element Method HFSS.

In this work, we focus on the complete full wave simulations of the entire structure. We
compare the results of [290] using Sonnet em 3D planar BIE software with simulations
performed with Zeland Software IE3D fully three dimensional BIE software, our own
hybrid BIE ‘quasi three dimensional MAGMAS3D software and finally the fully three
dimensional Finite Element Method used in Ansoft HFSS. In all of these analyses,
including the Finite Element Method, it is assumed that the top plastic encasing
extends to infinity horizontally, such that a stacked layer structure can be assumed
as a background medium. In this way all computations assume identical geometrical
and material parameters such that results can be compared on an equal basis.

A top and side view of the structure of Figure 8.33 is given in Figures 8.35(a) and
8.35(b). The horizontal parts of the structure conform perfectly with a regular geo-
metrical grid with cell size 0.1mm× 0.1mm. The thicknesses that determine the ver-
tical dimensions of Figure 8.35(b) are t1 = 0.635mm, t2 = 0.635mm, t3 = 0.200mm,
t4 = 0.250mm, t5 = 0.100mm, t6 = 0.150mm, with the mesh in the Z direction also
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Figure 8.36: (Quasi) 3D geometry and comparison of 4 full wave analysis results for a the
completely packaged and interconnected structure of Figure 8.33. S-parameters computed
in the frequency range 1.0-14.0 GHz, in 53 points.

depicted. The leads are numbered as indicated in Figure 8.35(a). In this configura-
tion, leads 3 and 6 are “support” leads, while 2,4,5 and 8 are “grounding” leads. The
remaining “signal” leads 1 and 7 are connected with the PCB signal traces and thus
correspond to ports 1 and 2 of the entire structure.

The main result of the analysis gives the net effect of the entire packaging and inter-
connection structure on the circuit behaviour. This is best observed by comparing
the effect on the amplitude of the S-parameters as depicted in Figure 8.36, which
was computed in the frequency range 1-14 GHz, in 27 points and these results are
to be compared with the original unpackaged behaviour of Figure 8.34. The packag-
ing and interconnections severely affect circuit performance, as they shift the original
transmission zero from 9.5 GHz down to 7.75 GHz. Also notice that with exactly the
same physical input parameters, all full wave solvers indeed predict roughly the same
qualitative behaviour, but considerable deviations in the quantitative results are still
present. Although not particularly a popular topic, robustness and correctness of full
wave software certainly merits additional attention. In the low frequency range, the
similar results of the 3D solvers Zeland Software IE3D, MAGMAS3D and HFSS are
somewhat different from the Sonnet em 3D planar solver. This slight difference is
believed to be caused by the fact that this last solver does not model the horizontal
current components on the vertical pieces, but assumes only truly vertical currents.
On the high frequency end, correspondence between Sonnet em, MAGMAS3D and
HFSS seems to indicate less reliable results from Zeland Software IED3. Unfortu-
nately, experimental verification seems remote as this deviation occurs in the region
where the effect of the finite plastic encasing becomes important.

The fairly good agreement between the results of Figure 8.36 was obtained only after
some trial and error computations. In particular, it was apparently necessary to model
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Figure 8.37: Amplitude and phase of the S-parameters obtained from 4 full wave analyses
of the geometrical model with infinitely thin conductors everywhere. (The layer structure is
still the same as in Figure 8.33.)

the vertical pieces of the bond wires, leads and vias as boxes with finite thickness.
Initial exploratory computations assumed infinitely thin conductors everywhere and
gives the results of Figures 8.37 for the amplitude and phase of the S-parameters (The
layer structure is not depicted but still present in Figure 8.37). Since the reference
results of [290] were obtained with Sonnet em which uses volumetric vertical currents,
it was decided to model the vertical pieces as boxes, giving the improved results
of Figures 8.38. Since the BIE methods are surface based, this slight geometrical
refinement increased the size of the linear system to be solved from 4070×4070 for the
infinitely thin model to 5190×5190 for the finite thickness model. No such comparable
increase in computational effort was observed for the Finite Element Method HFSS
computations.

In our last test case, we examine the influence of the grounding configuration on the
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Figure 8.38: Amplitude and phase of the S-parameters obtained from 4 full wave analyses of
the geometrical model with finite thickness vertical conductors and infinitely thin horizontal
conductors. (The layer structure is still the same as in Figure 8.33.)

circuit behaviour. The following simulations were performed with the finite thickness
geometrical model. In the original configuration of Figure 8.33, which we will call
grounding configuration A, the leads 2,4,5,8 connect the elevated ground paddle to
the motherboard ground plane. This situation is depicted in a simplified manner in
Figure 8.39(a). It also shows symbolically the path of the image return current. This
return current flows below the filter on the ground paddle and has to find its way back
to the PCB motherboard ground plain. It flows as close as possible below the filter
on the paddle until it reaches the edge below the bond wire. It then flows essentially
along the edge of the paddle until it reaches a grounded lead such that it can descend
through the lead and the via to the PCB ground. The S21 transmission for this case
A is plotted again on a linear scale now in Figure 8.39(b) and compared with the
simulations of [290]. In situation B of Figure 8.39(a), we disconnect grounding leads
4,5 such that they become simple support leads. The leads 2,8 continue to provide



2
1
0

A
p
p
li
ca

ti
o
n
s

PSfrag replacements

1

2

3

4 5

6

7

8

C

PSfrag replacements

1

2

3

4 5

6

7

8

B

PSfrag replacements

1

2

3

4 5

6

7

8

A

(a) Grounding configurations A : leads 2,4,5,8 grounded, B : leads 2,8 grounded, C : leads 4,5 grounded .

-40

-35

-30

-25

-20

-15

-10

-5

0

1 2 3 4 5 6 7 8 9 10 11 12 13 14

P
S
fra

g
rep

la
cem

en
ts

A
m

p
li
tu

d
e

o
f
S

2
1

[d
B

]

Frequency [GHz]

BIE Sonnet em [290]

A
B

C

-40

-35

-30

-25

-20

-15

-10

-5

0

1 2 3 4 5 6 7 8 9 10 11 12 13 14

P
S
fra

g
rep

la
cem

en
ts

A
m

p
li
tu

d
e

o
f
S

2
1

[d
B

]

Frequency [GHz]

BIE MAGMAS3D
A

B

C

(b) Amplitude of S21 for the different grounding configurations A,B,C of Figure 8.39(a). Comparison between results of Sonnet em [290] on
the left and MAGMAS3D on the right.

Figure 8.39: Influence of the grounding configuration of the elevated ground paddle on overall circuit behaviour. As the quality of the
grounding deteriorates from configuration A to C, the first transmission zero of S21 originally located at 9.5 GHz for the unpackaged
case shifts down progressively.
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paddle) of Figure 8.33 for the different grounding configurations of Figure 8.39(a) at a frequency of 3 GHz.
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grounding close to the bond wires. The grounding of the paddle now deteriorates as
two current return paths are cut of. This can be seen also in Figure 8.39(b) where
the transmission zero in S21 is now shifted even further down to 5.5 GHz. Finally,
in the worst scenario C of Figure 8.39(a), we disconnect the best grounding leads 2,8
and only return the grounding leads 4,5 which are located very far from the bond
wires. In this case, the worst shift in transmission zero of S21 occurs down to 4 GHz
as depicted in Figure 8.39(b).

For this problem, we can clearly relate the macroscopic device behaviour to the funda-
mental vector current distribution on the conducting surfaces of the structure. Figure
8.40(a) depicts the vector current distribution on the elevated ground paddle and leads
(the part on the same height as the paddle) for the three different grounding config-
urations of Figure 8.39(a) at a frequency of 3 GHz. These plots clearly show that
the current indeed flows below the filter, the remaining return path that the current
follows, and the singularities of the current along the edges of the conductors. The
amplitude of the total current at each point is plotted also in Figure 8.40(b) for the
three configurations. For the worst grounding configuration C, we see that the return
current has to travel a long distance to reach the bottom grounding leads. In the
amplitude plot of Figure 8.40(b), it is seen the current spreads out over the ground
plane, thereby creating inductive and capacitive reactive effects that have detrimental
effects on the overall device behaviour.

8.5 Conclusions

This chapter has demonstrated the capabilities of the full wave electromagnetic bound-
ary integral equation field solver developed in this work. Any problem which fits the
description of a “quasi 3D” dimensional structure embedded within a planar multi-
layered environment as given in Section 5.7 of Chapter 5 can in principle be analysed.
Many electromagnetic boundary value problems arising in practical high frequency
electrical engineering which appear fully three dimensional at first sight are actu-
ally covered by the formulation presented in this work. Correctness and accuracy
of the solver have been validated by comparison with analytical results, simulations
and measurements from open literature, and by comparison with results from com-
mercially available full wave solvers. The range of problems covered in this chapter
demonstrates that in the near future, full wave field solvers have the potential to
become indispensable research and design tools, provided that the electromagnetic
modelling community will spend sufficient attention on improving accuracy, correct-
ness, robustness, speed and user-friendliness of the software tools it develops.



Chapter 9

Conclusions

Since the 1960’s, the field of electromagnetics has slowly been transformed by the in-
creasing availability of computing resources. Analytical and experimental techniques
in electromagnetics have been supplemented with the still rising field of numerical
analysis. High frequency full wave electromagnetic field analysis, having its roots in
the antenna field, has now drastically increased its capacities in handling complex ge-
ometries and material configurations. Today, the full wave analysis of realistic three
dimensional electromagnetic engineering problems, the most complicated of which
typically arise in electronic circuits, is slowly becoming a reality. The availability of
such numerical modelling technology in the form of commercial CAD packages since
the 1980’s has gradually opened up the potential area of application of computational
electromagnetics from the strictly military to the entire commercial field founded
upon high frequency and high speed electronic circuitry.

The work performed in this thesis reflects this ongoing evolution. The boundary
integral solver MAGMAS, originally dedicated to the analysis of planar patch an-
tenna configurations, has been transformed into the MAGMAS3D tool, capable of
analysing a wide range of three dimensional structures embedded within a planar
stratified medium. The planar antenna background has provided the two main char-
acteristics of the MAGMAS3D solver. First, the antenna background has, as in the
entire electromagnetics field, provided a strong analytical foundation. The upgrade
of the planar to the 3D solver described in this work clearly continues within this
tradition, with most of the progress again founded upon analytical developments.
Secondly, the technical background of the planar antenna with its fabrication on
a dielectric substrate has now provided the capacity to analyse three dimensional
structures also located in a planar layered medium. The combination of this ge-
ometry with this material surrounding arises frequently in other related areas, with
applications not remaining restricted to planar and 3D antennas, but extending into
the circuit domain of Microwave and Millimeter wave Integrated Circuits (MMIC’s),

213
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Micro-Electromechanical Systems (MEMS), RF Printed Circuit boards (PCB’s), high
frequency interconnect and packaging problems and high speed digital circuits. The
work performed to achieve this progress is extensively documented in this dissertation,
with the main new developments highlighted below.

Chapter 4 generalises the expression for the electric and magnetic field generated by
a dipole current source in the spectral domain from only a transverse current source
located at the interface between dielectric layers to a complete three dimensional
current source with arbitrary position within the layer structure. A new notation
was developed, which clearly expresses all Green’s functions as a function of voltages
and currents on the equivalent transmission line systems, which is more suited for the
analysis of three dimensional structures, and which is at the same time more conform
with the ones used in modern literature. A completely new factorised form for any
Green’s function expression was developed, valid for an arbitrary layer structure.
It extracts the often problematic z, z′ dependence of the expressions in simple and
symmetric form. This factorisation offers numerical and analytical advantages over
the standard available expressions found in literature.

In Chapter 5, it was shown for the first time that the several distinct mixed potential
formulations for the electric field in the spatial domain are related by the theoretical
gauge transformation formalism, applied to the case of a multilayered medium. The
study of the relationship of the field formulation with the geometry of the problem has
resulted in a new hybrid dyadic mixed potential field formulation, specifically tailored
to analyse “quasi 3D” structures. These structures are not fully three dimensional in
a strict sense, but can still be used to analyse most problems that one first thinks of as
being fully three dimensional. The formulation has the advantage that it avoids typical
theoretical and numerical problems that hamper the traditional separate dyadic or
mixed potential formulations.

Chapter 6 demonstrates how the geometry of the problem also has a strong influence
on how the elements of the discrete matrix representation of the BIE can be computed.
Traditional spectral and space domain approaches have been further blended in a
combined spectral space domain approach, which is used together with the hybrid
field formulation. All z, z′ dependent parts of the reaction integrals involve the dyadic
parts of the formulation and are done in closed form in the spectral domain. All
transverse integrations are done with the space domain mixed potential formalism.
The return to the space domain takes place at an optimal intermediate stage of
the computation, depending on the directions of fields and currents. The closed
form spectral integrations replace traditional purely numerical integrations with an
interpolation procedure in the spatial domain to evaluate the z, z ′ dependent parts.
Contrary to other similar work, the closed form formulas are used to model all current
components and are valid for an arbitrarily layered medium.

Chapter 7 points out that several numerical and analytical techniques already devel-
oped in [11], [14] had to be upgraded as well. Several improvements were made such
that the inverse Fourier transform can now act upon the more involved analytical
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formulas of Chapter 6. For the space domain evaluation of the reaction integrals,
line integrals now also have to be included and combined with the existing surface
integrations. The necessary numerical and analytical formulas were developed.

These concepts were developed and tested in two software packages. Initial develop-
ments were tested in separate stand alone software, capable of analysing “quasi 3D”
structures, but only for the case of a homogeneous medium, possibly located above an
infinite ground plane. The more general techniques for a general multilayered medium
have been incorporated into the MAGMAS3D framework.

Chapter 8 demonstrates the geometrical and electromagnetic capabilities of the soft-
ware. The potential area of application is illustrated by a range of examples not only
from the traditional antenna field but also from the “high frequency” microwave and
more traditional “low frequency” circuit domain. The correctness and accuracy of
the software is validated by comparison with known analytical results, measurements
and simulations from open literature, and other simulated results obtained from com-
mercially available full wave simulators.

Future work on the MAGMAS3D framework can be divided in two categories. The
first type of work is the one required if commercial viability is to be achieved. In
this case, the graphical user interface should be improved to accommodate the new
geometrical structures. The processing of purely geometrical information like the gen-
eration of a suitable mesh should be streamlined. In the core electromagnetic engine,
additional attention should be spent on increasing efficiency and speed, for example
by applying the DCIM techniques already developed by Soliman [20] to accelerate the
numerical inverse Fourier transform. The second category comprises further research
activities. Work has already been done to combine planar magnetic current mod-
elling with the three dimensional electric currents, but this has not yet achieved an
operational status. On the longer term, work has also started to use the techniques
described in this thesis to model limited volumes of dielectric inhomogeneities within
the layer structure with a volumetric integral equation approach.
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Appendix A

Factorisation of Green’s
function

A.1 Transfer Functions

When z > z′, the transfer functions are

V >
iref ,jref

=

iref +1∏

k=jref

e−γkdk + Γ>
k e

−γkdk

1 + Γ>
k

(A.1) I>
iref ,jref

=

iref +1∏

k=jref

e−γkdk − Γ>
k e

−γkdk

1 − Γ>
k

(A.2)

while for z < z′, they are

V <
iref ,jref

=

iref∏

k=jref +1

1 + Γ<
k

e−γkdk + Γ<
k e

−γkdk
(A.3) I<

iref ,jref
=

iref∏

k=jref +1

1 − Γ<
k

e−γkdk − Γ<
k e

−γkdk
(A.4)

A.2 Observation Shift Functions

When the reference interface for observation layer i is on the left side iref = i, we
define Y >

+ = Yi + Y >
i , Y >

− = Yi − Y >
i and Y <

+ = Yi + Y <
i , Y <

− = Yi − Y <
i for

V
≶
i,i(z) =

1

2Y
≶
i

(
Y

≶
+ e−γi(z−zi) + Y

≶
− e

+γi(z−zi)
)

(A.5)
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I
≶
i,i(z) =

1

2Y
≶
i

(
Y

≶
+ e−γi(z−zi) − Y

≶
+ e+γi(z−zi)

)
. (A.6)

When the reference interface for observation layer i is on the right side iref = i− 1,
we redefine Y >

+ = Yi +Y >
i−1, Y

>
− = Yi −Y >

i−1 and Y <
+ = Yi +Y <

i−1, Y
<
− = Yi −Y <

i−1 for

V
≶
i,i−1(z) =

1

2Y
≶
i−1

(
Y

≶
+ e−γi(zi−1−z) + Y

≶
− e+γi(zi−1−z)

)
(A.7)

I
≶
i,i−1(z) =

1

2Y
≶
i−1

(
Y

≶
+ e−γi(zi−1−z) − Y

≶
− e+γi(zi−1−z)

)
. (A.8)

A.3 Source Shift Functions

When the refer interference for source layer j is on the left side jref = j, we again
define Y <

+ = Yj + Y <
j , Y <

− = Yj − Y <
j and Y >

+ = Yj + Y >
j , Y >

− = Yj − Y >
j for

V
V,≶
j,j (z′) =

1

2Yj

(
Y

≷
+ e−γj(z

′−zj) − Y
≷
− e+γj(z

′−zj)
) 1

Y <
j − Y >

j

(A.9)

V
I,≶
j,j (z′) =

1

2Yj

(
Y

≷
+ e−γj(z

′−zj) + Y
≷
− e+γj(z

′−zj)
) 1

Y <
j − Y >

j

(A.10)

I
V,≶
j,j (z′) =

Y
≶
j

2

(
Y

≷
+ e−γj(z

′−zj) − Y
≷
− e+γj(z

′−zj)
) 1

Y <
j − Y >

j

(A.11)

I
I,≶
j,j (z′) =

Y
≶
j

2Yj

(
Y

≷
+ e−γj(z

′−zj) + Y
≷
− e+γj(z

′−zj)
) 1

Y <
j − Y >

j

. (A.12)

When the refer interference for source layer j is on the left side jref = j − 1, we
redefine Y <

+ = Yj + Y <
j−1, Y

<
− = Yj − Y <

j−1 and Y >
+ = Yj + Y >

j−1, Y
>
− = Yj − Y >

j−1 for

V
V,≶
j−1,j(z

′) =
1

2Yj−

(
Y

≷
+ e−γj(zj−1−z′) − Y

≷
− e

+γj(zj−1−z′)
) 1

Y <
j−1 − Y >

j−1

(A.13)

V
I,≶
j−1,j(z

′) =
1

2Yj−

(
Y

≷
+ e−γj(zj−1−z′) + Y

≷
− e

+γj(zj−1−z′)
) 1

Y <
j−1 − Y >

j−1

(A.14)

I
V,≶
j−1,j(z

′) =
Y

≶
j−1

2

(
Y

≷
+ e−γj(zj−1−z′) − Y

≷
− e+γj(zj−1−z′)

) 1

Y <
j−1 − Y >

j−1

(A.15)

I
I,≶
j−1,j(z

′) =
Y

≶
j−1

2Yj

(
Y

≷
+ e−γj(zj−1−z′) + Y

≷
− e+γj(zj−1−z′)

) 1

Y <
j−1 − Y >

j−1

. (A.16)



Appendix B

Analytical Sommerfeld
Integrals

Some characteristic field behaviours in the spatial domain can be studied with Som-
merfeld integrals that can be performed analytically.

B.1 The Sommerfeld Identity

The Sommerfeld identity ([36], p. 242, formula 14) decomposes the frequency domain
free space scalar Green’s function into a continuous spectrum of cylindrical and plane
waves

+∞∫

0

e
−j
√
k2

ρ − k2
0 |z − z′|

√
k2

ρ − k2
0

J0(ρkρ) kρdkρ =
e−jk0R

R
(B.1)

with ρ =
√

(x− x′)2 + (y − y′)2, R =
√

(x− x′)2 + (y − y′)2 + (z − z′)2.

B.2 Space Wave Field Components

The extraction of the space wave field components in the spatial domain can be
obtained from the Sommerfeld identity above or from ([203], p. 667, formula 6.554.1)

+∞∫

0

1√
k2

ρ − k2
0

J0(ρkρ) kρdkρ =
e−jk0ρ

ρ
(B.2)
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+∞∫

0

1√
k2

ρ + k2
0

J0(ρkρ) kρdkρ =
e−k0ρ

ρ
. (B.3)

By partial integration to k0, we obtain from Equation (B.2)

+∞∫

0

√
k2

ρ − k2
0 J0(ρkρ) kρdkρ = −

(
jk0 +

1

ρ

)
e−jk0ρ

ρ2
. (B.4)

B.3 Surface Wave Field Components

The spatial surface wave components are obtained from ([203], p. 676, formula
6.577.1)

+∞∫

0

1

k2
ρ − k2

0

J0(ρkρ) kρdkρ = −j π
2
H

(2)
0 (k0ρ) (B.5)

+∞∫

0

1

k2
ρ + k2

0

J0(ρkρ) kρdkρ = K0(k0ρ) (B.6)

with H
(2)
0 the Hankel function and K0 the modified Bessel function, both of the 2th

kind and of order 0.

B.4 Quasi Static Field Components

For the near field behaviour in the spatial domain, a number of analytical Sommerfeld
integrals can be derived from ([203], p. 692, formula 6.621.4)

+∞∫

0

e−kρ∆

km
ρ

Jn(ρkρ) kρdkρ = (−1)−m+1ρ−n d−m+1

d∆−m+1




(√
ρ2 + ∆2 − ∆

)n

√
ρ2 + ∆2


 (B.7)

for which the results are collected in Table B.1.

Although a trend is visible that a faster spectral decay gives a less singular spatial
behaviour, the integrals for m = +2,+3 still diverge. This is however caused by
the behaviour at the origin of the spectral domain and disturbs the anology between
spectral asymptotic and spatial singular behaviour. This can be avoided by including
a convergence factor 1 − e−kρt in the integrandum which forces the function to 0 for
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n=0 n=1 n=2

m=-1
2∆2 − ρ2

√
ρ2 + ∆2

5
3ρ∆

√
ρ2 + ∆2

5

3ρ2

√
ρ2 + ∆2

5

m=0
∆

√
ρ2 + ∆2

3
ρ

√
ρ2 + ∆2

3

2

ρ2
− ∆

(
2∆2 + 3ρ2

)

ρ2
√
ρ2 + ∆2

3

m=+1
1√

ρ2 + ∆2

1

ρ

(
1 − ∆√

ρ2 + ∆2

) √
ρ2 + ∆2

ρ2

(
1 − ∆√

ρ2 + ∆2

)2

Table B.1: Usefull analytical Sommerfeld integrals obtained from Equation (B.7).

kρ → 0. It then becomes possible to continue the intuitively expected correspondence
by evaluating

+∞∫

0

(
1 − e−kρt

)m
e−kρ∆

km
ρ

Jn(ρkρ) kρdkρ (B.8)

of which we only need the results for n = 0 summarized in Table B.2

n=0

m=+1
1√

ρ2 + ∆2
− 1√

ρ2 + (∆ + t2)
2

m=+2 ln

(√
ρ2 + (∆ + t)

2
+ ∆ + t

)2

(√
ρ2 + ∆2 + ∆

)(√
ρ2 + (∆ + 2t)2 + ∆ + 2t

)

m=+3

−3(∆ + 3t) ln
(√

ρ2 + (∆ + 3t)2 + ∆ + 3t
)

+ 3
√
ρ2 + (∆ + 3t)2

+3(∆ + 2t) ln
(√

ρ2 + (∆ + 2t)2 + ∆ + 2t
)
− 3
√
ρ2 + (∆ + 2t)2

−3(∆ + 1t) ln
(√

ρ2 + (∆ + 1t)2 + ∆ + 1t
)

+ 3
√
ρ2 + (∆ + 1t)2

+3(∆ ) ln
(√

ρ2 + (∆ )2 + ∆
)
− 3
√
ρ2 + (∆ )2

Table B.2: Analytical Sommerfeld integrals for Equation (B.8).
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Appendix C

Analytical Space Domain
Integrals

C.1 Line Integrals

The integrations over a straight line segment l are evaluated in the ρ, φ and ξ, η
coordinate systems of Figure 7.6 of Chapter 7, where all symbols are defined.

C.1.1 Integrals of the type
∫

l

{1, x, y} 1√
ρ2 + ∆2

dl

∫

l

1√
ρ2 + ∆2

dl = ln

√
ρ2

v + ∆2 + ηv√
ρ2

u + ∆2 + ηu

(C.1)

∫

l

{
x
y

}
1√

ρ2 + ∆2
dl = +

{
+ cosφL

+ sinφL

}
L

∫

l

1√
ρ2 + ∆2

dl

+

{
− sinφL

+ cosφL

}(√
ρ2

v + ∆2 −
√
ρ2

u + ∆2
)

(C.2)

C.1.2 Integrals of the type
∫

l

{1, x, y} ln
(√

ρ2 + ∆2 + ∆
)

dl

∫

l

ln
(√

ρ2 + ∆2 + ∆
)

dl =
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+ ηv ln
(√

ρ2
v + ∆2 + ∆

)
− ηu ln

(√
ρ2

u + ∆2 + ∆
)

− L


+sgn(ηv)



arcsin

L2 + ∆
(√

ρ2
v + ∆2 + ∆

)

√
L2 + ∆2

(√
ρ2

v + ∆2 + ∆
) − π

2





−sgn(ηu)



arcsin

L2 + ∆
(√

ρ2
u + ∆2 + ∆

)

√
L2 + ∆2

(√
ρ2

u + ∆2 + ∆
) − π

2








− (ηv − ηu) + ∆ ln

∣∣∣∣∣
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√
ρ2

v + ∆2

ηu +
√
ρ2

u + ∆2

∣∣∣∣∣ (C.3)

∫
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{
x
y

}
ln
(√

ρ2 + ∆2 + ∆
)

dl =

+

{
+ cosφL

+ sinφL

}
L

∫
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ln
(√
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dl

+

{
− sinφL
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−1
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(
ρ2

v − ρ2
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+

∆

2
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v + ∆2 −
√
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)

+
η2

v

2
ln
(√

ρ2
v + ∆2 + ∆

)
− η2

u

2
ln
(√

ρ2
u + ∆2 + ∆

)

+
L2

2
ln

√
ρ2

v + ∆2 + ∆√
ρ2

u + ∆2 + ∆

]
(C.4)

C.1.3 Integrals of the type
∫

l

{1, x, y}
√
ρ2 + ∆2 dl

∫

l

√
ρ2 + ∆2 dl = +

ηv

2

√
ρ2

v + ∆2 − ηu

2

√
ρ2

y + ∆2

+
L2 + ∆2

2
ln

∣∣∣∣∣
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√
ρ2

v + ∆2

ηu +
√
ρ2

u + ∆2

∣∣∣∣∣ (C.5)

∫

l

{
x
y

}√
ρ2 + ∆2 dl = +

{
+ cosφL

+ sinφL

}
L

∫

l

√
ρ2 + ∆2 dl

+

{
− sinφL

+ cosφL

}
1

3

[√
ρ2

v + ∆2
3 −

√
ρ2

u + ∆2
3
]

(C.6)
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C.2 Surface Integrals

The surface integrations over a rectangular area S are made in the ρ, φ coordinate
system of Figure 7.8(a) and the ξ, η coordinates of Figure 7.8(b) of Chapter 7.

C.2.1 Integrals of the type
∫

S

{1, x, y} 1√
ρ2 + ∆2

dS

∫

S

1√
ρ2 + ∆2

dS = −∆ (φv − φu) − L ln

(√
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)

+∆
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∆ sin (φv − φL)√
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]
(C.7)

∫
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+
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+ sinφL
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− sinφL
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2
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−L∆2

2

{
+

1

ρv
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√
ρ2
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∆
− 1

ρu
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√
ρ2

u + ∆2 + ρu

∆

}]
(C.8)

C.2.2 Integrals of the type
∫

S

{1, x, y} ln
(√

ρ2 + ∆2 + ∆
)

dS

∫
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ln
(√

ρ2 + ∆2 + ∆
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−L
4
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2
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√
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+sgn(ηv)
L

2

[
|ηv |

{
ln
(√

ρ2
v + ∆2 + ∆

)
− 1
}
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√
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−L



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ρ2
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




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−sgn(ηu)
L

2
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|ηu|

{
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ρ2
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)
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√
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∫
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+ sinφL
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+
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∆
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) − π

2









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u + ∆2
)

+
∆3L

6

{
1

ρv
ln
(√

ρ2
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(C.10)
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C.2.3 Integrals of the type
∫

S

{1, x, y}
√
ρ2 + ∆2 dS

∫
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√
ρ2 + ∆2 dS = +
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∫
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pp. 549–73, 1900.

[41] R.P. Feynman, R.B. Leighton, and M. Sands, The Feynman Lectures on
Physics, Volume II: Electromagnetism and Matter, Addison-Wesley Publish-
ing Company, Inc., 1964, ISBN 0-201-02117-X.

[42] G.S. Smith, An Introduction to Classical Electromagnetic Radiation, Cambridge
University Press, Cambridge, 1997, 653 pages, ISBN 0-521-58698-4.

[43] E.K. Miller and J.A. Landt, “Direct time-domain techniques for transient ra-
diation and scattering from wires,” Proceedings of the IEEE, pp. 1396–1423,
Nov. 1980.

[44] E.K. Miller, “An exploration of radiation physics in electromagnetics,” Mon-
treal, Canada, 1997, IEEE International Symposium on Antennas and Propa-
gation Digest, pp. 048–2051.

[45] J.G. Maloney, G.S. Smith, and W.R. Scott, “Accurate computation of the
radiation from simple antennas using the finite-difference time-domain method,”
IEEE Trans. Antennas Propagat., pp. 1059–1068, Jul. 1990.

[46] G.S. Smith, “On the interpretation for radiation from simple current distribu-
tions,” IEEE Antennas Propagat. Mag., pp. 39–44, Aug. 1998.

[47] G.S. Smith and T.W. Herschel, “On the transient radiation of energy from
simple current distributions and linear antennas,” IEEE Antennas Propagat.
Mag., pp. 49–62, Jun. 2001.

[48] C.C. Bantin, “Radiation from a pulse-excited thin wire monopole,” IEEE
Antennas Propagat. Mag., pp. 64–69, Jun. 2001.

[49] M.A. Heald, “Electric fields and charges in elementary circuits,” American
Journal of Physics, pp. 522–526, Jun. 1984.

[50] C.S. Lai, “Alternative choice for the energy flow vector of the electromagnetic
field,” American Journal of Physics, pp. 841–842, Sep. 1981.



BIBLIOGRAPHY 233
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[158] A. Sommerfeld, “Über die ausbreitung der wellen in der drahtlosen telegraphie,”
Ann. der Physik, vol. 28, pp. 665–736, Mar. 1909.

[159] J.R. Wait, “Propagation of radiowaves over a stratified ground,” Geophysics,
vol. 18, pp. 416–422, 1953.

[160] C. Tang, “Electromagnetic fields due to dipole antennas embedded in stratified
anisotropic media,” IEEE Trans. Antennas Propagat., vol. AP-27, pp. 665–670,
Sep. 1979.

[161] S.M. Ali and S.F. Massoud, “Electromagnetic fields of buried sources in strat-
ified anisotropic media,” IEEE Trans. Antennas Propagat., vol. AP-27, pp.
671–678, Sep. 1979.

[162] J.A. Kong, “Electromagnetic fields due to dipole antennas over stratified
anisotropic media,” Geophysics, vol. 37, pp. 958–966, Dec. 1972.

[163] T. Sphicopoulos, V. Teodoris, and F.E. Gardiol, “Tractable form of the dyadic
Green’s function for application to multilayered isotropic media,” Electron.
Lett., vol. 19, pp. 1055–1057, 1983.

[164] T. Itoh and R. Mittra, “Spectral domain approach for calculating the dispersion
characteristics of microstrip lines,” IEEE Trans. Microwave Theory Tech., vol.
MTT-21, pp. 496–499, 1973.

[165] J.B. Davies and D. Mirshekar-Syahkal, “Spectral domain solution of arbitrary
coplanar transmission line with multilayer substrates,” IEEE Trans. Microwave
Theory Tech., vol. MTT-25, pp. 143–146, Feb. 1977.

[166] R. Mittra and T. Itoh, “A new technique for the analysis of the dispersion
characteristics of microstrip lines,” IEEE Trans. Microwave Theory Tech., vol.
MTT-19, pp. 47–56, Jan. 1971.

[167] T. Itoh and R. Mittra, “A technique for computing dispersion characteristics of
shielded microstrip lines,” IEEE Trans. Microwave Theory Tech., vol. MTT-22,
pp. 896–898, Oct. 1974.



242 BIBLIOGRAPHY

[168] Y. Rahmat-Samii, T. Itoh, and R. Mittra, “A spectral domain analysis for
solving microstrip discontinuity problems,” IEEE Trans. Microwave Theory
Tech., vol. MTT-22, pp. 372–378, Apr. 1974.

[169] T. Itoh, “Generalized spectral domain method for multiconductor printed lines
an its application to turnable suspended microstrip,” IEEE Trans. Microwave
Theory Tech., vol. MTT-26, pp. 983–987, Dec. 1978.

[170] T. Itoh, “Spectral domain immittance approach for dispersion characteristics of
generalized printed transmission lines,” IEEE Trans. Microwave Theory Tech.,
vol. MTT-28, pp. 733–736, Jul. 1980.

[171] R.H. Jansen, “The spectral-domain approach for microwave integrated circuits,”
IEEE Trans. Microwave Theory Tech., vol. MTT-33, pp. 1043–1056, Oct. 1985.

[172] J. Wang, “General method for the computation of radiation in stratified media,”
IEE Proc. Pt. H., Microwaves Antennas Propagat., vol. 132, pp. 379–387, Feb.
1985.

[173] N.K. Das and D.M. Pozar, “A generalized spectral-domain Green’s function
for multilayer dielectric substrates with application to multilayer transmission
lines,” IEEE Trans. Microwave Theory Tech., vol. MTT-35, pp. 326–335, Mar.
1987.

[174] G.P.S. Cavalcante, D.A. Rogers, and A.J. Gariola, “Analysis of electromagnetic
wave propagation in multilayered media using dyadic Green’s functions,” Radio
Sci., vol. 17, pp. 503–508, 1982.

[175] T. Sphicopoulos, V. Theodoris, and F. Gardiol, “Dyadic Green function for the
electromagnetic field in multilayered isotropic media: an operator approach,”
IEE Proc. Pt. H., Microwaves Antennas Propagat., vol. 132, pp. 329–334, Aug.
1985.

[176] J.K. Lee and J.A. Kong, “Dyadic Green’s functions for layered anistropic
medium,” Electromagnetics, vol. 3, pp. 111–130, 1983.

[177] J.S. Bagby, “Dyadic Green’s functions for integrated electronic and optical
circuits,” IEEE Trans. Microwave Theory Tech., vol. MTT-35, pp. 206–210,
Feb. 1987.

[178] L. Vegni, R. Cichetti, and P. Capece, “Spectral dyadic Green’s function formu-
lation for planar integrated structures,” IEEE Trans. Antennas Propagat., vol.
AP-36, pp. 1075–1065, Aug. 1988.

[179] M.S. Viola and D.P. Nyquist, “An observation on the Sommerfeld-integral
representation of the electric dyadic Green’s function for layered media,” IEEE
Trans. Microwave Theory Tech., vol. MTT-36, pp. 1289–1292, August 1988.



BIBLIOGRAPHY 243

[180] S. Barkeshli and P.H. Pathak, “On the dyadic Green’s function for a planar
multilayered dielectric/magnetic media,” IEEE Trans. Antennas Propagat., vol.
AP-40, pp. 128–142, Jan. 1992.

[181] P. Bernardi, “Dyadic Green’s functions for conductor-backed layered structures
excited by arbitrary tridimensional sources,” IEEE Trans. Antennas Propagat.,
vol. AP-42, pp. 1474–1483, Aug. 1994.

[182] S.-G. Pan and I. Wolff, “Scalarization of dyadic spectral Green’s functions and
network formalism for three-dimensional full-wave analysis of planar lines and
antennas,” IEEE Trans. Microwave Theory Tech., vol. MTT-42, pp. 2118–2127,
Nov. 1994.

[183] K.A. Michalski and J.R. Mosig, “Multilayered media Green’s functions in inte-
gral equation formulations,” IEEE Trans. Antennas Propagat., vol. AP-45, pp.
508–519, March 1997.

[184] T.M. Gregorczyk, Integrated 3D antennas for millimeter-wave applications:
theoretical study and technological realization, Ph.D. Dissertation, École Poly-
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1569.

[247] Ph. Gay-Balmaz and J.R. Mosig, “Structures rayonnantes 3-D planaires en
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