
Appendix D

Measure theory and Lebesgue
integration

”As far as the laws of mathematics refer to reality, they are not certain,
and as far as they are certain, they do not refer to reality.”
Albert Einstein (1879-1955)

In this appendix, we will briefly recall the main concepts and results about the measure theory and
Lebesgue integration. Then, we will introduce the Lp spaces that prove especially useful in the analysis
of the solutions of partial differential equations.
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D.1 Measure theory

Measure theory initially was proposed to provide an analysis of and generalize notions such as length,
area and volume (not strictly related to physical sizes) of subsets of Euclidean spaces. The approach to
measure and integration is axomatic, i.e. a measure is any function µ defined on subsets which satisfy a
cetain list of properties. In this respect, measure theory is a branch of real analysis which investigates,
among other concepts, measurable functions and integrals.

D.1.1 Definitions and properties

Definition D.1 A collection S of subsets of a set X is said to be a topology in X is S has the following
three properties:

(i) ∅ ∈ S and X ∈ S,
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108 Chapter D. Measure theory and Lebesgue integration

(ii) if Vi ∈ S for i = 1, . . . , n then, V1 ∩ V2 ∩ · · · ∩ Vn ∈ S,

(iii) if {Vα} is an arbitrary collection of members of S (finite, countable or not), then
⋃

α VαinS.

if S is a topology in X, then X is called a topological space and the members of S are called the open
sets in X.

Definition D.2 A collection F of subsets of a set X is said to be a σ-algebra in X if F has the following
three properties:

(i) X ∈ F ,

(ii) if A ∈ F , then Ac ∈ F , where Ac is the complement of A relatie to X,

(iii) if A =
⋃∞

n=1 An and if An ∈ F for all n, then A ∈ F .

If F is a σ-algebra in X, then the pair (X, F ) is called a measurable space . If X is a measurable space,
Y is a topological space and f is a mapping of X into Y , then f is said to be measurable provided that
f−1(V ) is a measurable set in X for every open set V in Y .

Definition D.3 A measure is a function defined on a σ-algebra F over a set X and taking values in the
interval [0,∞[ such that the following properties are satisfied:

(i) the emptyset has measure zero, µ(∅) = 0;

(ii) countable additivity: if (Ei) is a countable sequence of pairwise disjoint sets in F , then

µ

( ∞⋃

i=1

Ei

)
=

∞∑

i=1

µ(Ei) .

The triple (X, F, µ) is then called a measure space and the members of F are called measurable sets.

For measure spaces that are also topological spaces, various compatibility conditions can be placed for
the measure and the topology.

Theorem D.1 Let f and g be real measurable functions on a measurable space X, let Φ be a continuous
mapping of the plane into a topological space Y and define h(x) = Φ(u(x), v(x)) for x ∈ X. Then,
h : X → Y is measurable.

Proposition D.1 If E is a measurable set in X and if

χE(x) =
{

1 if x ∈ E
0 if x /∈ E

then, χE is a measurable function called the characteristic function of the set E.

Definition D.4 Let (an) be a sequence in [−∞,∞] and put

bk = sup{ak, ak+1, ak+2, . . . } k = 1, 2, 3, . . .

and β = inf{b1, b2, b3, . . . }. We call β the upper limit of (an) and write

β = lim sup
n→∞

an .
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The lower limit is defined analogously by interchanging sup and inf in the previous definition. Moreover,
we have

lim inf
n→∞

an = − lim sup
n→∞

(−an) ,

and, if (an) converges, then
lim sup

n→∞
an = lim inf

n→∞
an = lim

n→
an .

Supose (fn) is a sequence of real functions on a set X. Then supn fn and lim supn→∞ fn are the functions
defined on X by:

(sup
n

fn)(x) = sup
n

(fn(x)) , (lim sup
n→∞

fn)(x) = lim sup
n→∞

(fn(x)) .

Moreover, if f(x) = limn→∞ fn(x) the limit being assumed to exist at every x ∈ X, then f is called the
pointwise limit of the sequence (fn).

Theorem D.2 If fn : X → R is measurable, for n = 1, 2, . . . and

g = sup
n≥1

fn , h = lim sup
n→∞

fn ,

then g and h are both measurable.

Corollary D.1 The limit of very pointwise convergent sequence of complex measurable functions is mea-
surable. If f and g are measurable then so are max(f, g) and min(f, g). In particular, this is true of the
functions

f+ = max(f, 0) and f− = −min(f, 0) ,

respectively called the positiveand negative parts of f .

We have f = f+ − f− and |f | = f+ + f−.

Proposition D.2 If f = g − h, g ≥ 0 and h ≥ 0 then f+ ≤ g and f− ≤ h.

D.1.2 Completeness

A measurable set X is called a null set if µ(X) = 0. By extension, a subset of a null set is called a negligible
set. A negligible set need not be measurable, but every measurable negligible set is automatically a null
set. A measure is called complete if every negligible set is measurable.

A measure can be extended to a complete one by considering the σ-algebra of subsets Y which differ
by a negligible set from a measurable set X, that is, such that the symmetric difference of X and Y is
contained in a null set. One defines µ(Y ) to equal µ(X).

D.1.3 Non-measureable sets

D.2 Riemann integration

Suppose that a function f is bounded on the interval [a, b], where a, b ∈ R and a < b and consider a
dissection ∆ : a = x0 < x1 < · · · < xn = b of [a, b]. Then,
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Definition D.5 (Riemann sum) The lower Riemann sum of f(x) corresponding to the dissection ∆ is
defined as the following sum:

s(f,∆) =
n∑

j=1

(xj − xj−1 inf
x∈[xj−1,xj ]

f(x)

anf the upper Riemann sum of f(x) corresponding to the dissection ∆ is given by the sum:

S(f,∆) =
n∑

j=1

(xj − xj−1 sup
x∈[xj−1,xj ]

f(x) .

Theorem D.3 Suppose that a function f : R → R is bounded on [a, b], where a < b, a, b ∈ R and that
∆ and ∆′ are two dissections of [a, b] such that ∆′ ⊆ ∆. Then,

s(f, δ′) ≤ s(f,∆) and S(f,∆) ≤ S(f,∆′) .

If ∆′′ is another dissection of [a, b] then,

s(f,∆′) ≤ S(f,∆′′) .

Definition D.6 For all dissections ∆ of [a, b], the real number I−(f, a, b) = sup
∆

s(f, ∆) is called the

lower integral of f(x) over [a, b] and the real number I+(f, a, b) = inf
∆

S(f,∆) is called the upper integral

of f(x) over [a, b].

Theorem D.4 Suppose that a function f is bounded on the interval [a, b], where a < b and a, b ∈ R.
Then

I−(f, a, b) ≤ I+(f, a, b) .

Definition D.7 Suppose that a function f is bounded on the interval [a, b], where a < b and a, b ∈ R
and suppose that I−(f, a, b) = I+(f, a, b). Then, the function f is said to be Riemann integrable over
[a, b] and we write ∫ b

a
f(x) dx = I−(f, a, b) = I+(f, a, b) .

Lemma D.1 Suppose that a function f is bounded on the interval [a, b], where a < b and a, b ∈ R. The
following two statements are equivalent:

(i) f is Riemann integrable over [a, b]

(ii) given any ε > 0, there exists a dissection ∆ of [a, b] such that

S(f, ∆)− s(f, ∆) < ε .

We have several additional properties of Riemann integrals.

Lemma D.2 Suppose that f, g are Riemann integrable over [a, b], where a < b and a, b ∈ R. Then

(i) f + g is Riemann integrable over [a, b] and
∫ b

a
(f(x) + g(x)) dx =

∫ b

a
f(x) dx +

∫ b

a
g(x) dx,

(ii) for every c ∈ R, cf is Riemann integrable over [a, b] and
∫ b

a
cf(x) dx = c

∫ b

A
f(x) dx,
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(iii) if f(x) ≥ 0 for every x ∈ [a, b] then
∫ b

a
f(x) dx ≥ 0,

(iv) if f(x) ≥ g(x) for every x ∈ [a, b] then
∫ b

a
f(x) dx ≥

∫ b

a
g(x) dx.

Proposition D.3 Suppose that f is Riemann integrable over [a, b] where a, b ∈ R and a < b. Then,
for every real number c ∈ [a, b], f is Riemann integrable over [a, c] and Riemann integrable over [c, b].
Moreover, we can write: ∫ b

A
f(x) dx =

∫ c

a
f(x) dx +

∫ b

c
f(x) dx .

Similarly, we have the following result.

Proposition D.4 Suppose that a, b, c ∈ R and that a < c < b. Suppose further that f is Riemann
integrable over [a, c] and is Riemann integrable over [c, b]. Then, f is Riemann integrable over [a, b] and

∫ b

a
f(x)dx =

∫ c

a
f(x) dx +

∫ b

c
f(x) dx .

Theorem D.5 Suppose that f is Riemann integrable over [a, b], where a, b ∈ R and a < b. Suppose that
f(x) = g(x) for every x ∈ [a, b], except possibly at x = x0 Then g is Riemann integrable over [a, b] and

∫ b

a
f(x) dx =

∫ b

a
g(x) dx .

D.3 Lebesgue integration

Suppose we are considering integrating functions like χ(x), the characteristic function of the set S =
{x ∈ Q} ⊂ R (i.e. χS(x) = 1 if x ∈ S and χS(x) = 0 if x /∈ S). Or suppose we are considering real-valued
measurements x of a phenomenon and wondering what is the probability for x to be a rational number.
From the prababilistic theory, we know that if the measurements are distributed normally with a mean
of µ and a standard deviation of σ, then the probability is given by:

Pr[x ∈ Q] =
∫

S

1√
2πσ2

exp

(
−1

2

(
x− µ

σ

)2
)

dx , (D.1)

and the Riemann integral is useless to evaluate this integral.

D.3.1 Sets of measure zero

The study of Lebesgue integral depends on the notion of zero measure sets in R.

Definition D.8 A set S ⊆ R is said to have measure zero if, for every ε > 0 there exiss a countable
family F of intervals I such that

S ⊆
⋃

I∈F
I and

∑

I∈F
µ(I) < ε ,

where, for every I ∈ F , µ(I) denotes the length of the interval I.

This definition states that the set S can be covered by a countable union of open intervals of arbitrarily
small total length.

Proposition D.5 Every countable set in R has measure zero. Furthermore, a outable union of sets of
measure zero in R has measure zero.
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D.3.2 Compact sets

Definition D.9 A set S ⊆ R is said to be compact if and only if, for every family F of open intervals
I such that

S ⊆
⋃

I∈F
I

there exists a finite subfamily F0 ⊆ F such that

S ⊆
⋃

I∈F0

I .

This definition means that every open covering of S can be achieved by a subcovering.

Theorem D.6 (Heine-Borel) Suppose that F ⊆ R is bounded and closed. Then, F is compact.

D.3.3 Lebesgue integral

Definition D.10 A function is simple if its range is a finite set.

A simple function ϕ in R has always the following representation:

ϕ =
n∑

k=1

akχEk ,

where ak are distinct values of ϕ and Ek = ϕ−1({ak}). Conversely, any expression of this form, where ak

need not be distinct and Ek not necessarily ϕ−1({ak}) also defines a simple function. In the remainder,
we will consider that Ek be measurable and that they partition the set X.

Definition D.11 Let (X, µ) be a measure space. The Lebesgue integral over X of a R+-valued simple
function ϕ is defined as: ∫

X
ϕ dµ =

∫

X

n∑

k=1

akχEk dµ =
n∑

k=1

akµ(Ek) .

The quantity on the right represents tha sum of the areas below the graph of ϕ. If ϕ =
∑

i aiχAi =∑
j bjχBj , where Ai and Bj partition X, then

∑

i

aiµ(Ai) =
∑

j

∑

i

aiµ(Ai ∩Bj) =
∑

j

∑

i

bjµ(Ai ∩Bj) =
∑

j

bjµ(Bj) .

The second equality follows since the value of ϕ is ai = bj on Ai ∩Bj , so ai = bj whenever Ai ∩Bj ,= ∅.
The integral is thus well-defined. Similarly, for two simple functions ϕ ≤ ψ then

∫
X ϕ dµ ≤

∫
X ψ dµ

(monotonicity of the integral).

Theorem D.7 For non-negative simple functions, the Lebesgue integral is linear.

Definition D.12 Let f : X → [0,+∞] be measurable. Consider the set Sf if all measurable functions
0 ≤ ϕ ≤ f . The integral of f over X is defined as:

∫

X
f dµ = sup

ϕ∈Sf

∫

X
ϕ dµ .
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The simple functions in Sf are supposed to approximate f as close as possible. The integral of f is
obtained by computing the integrals of these approximations.

Theorem D.8 (Approximation theory) Let f : X → [0,+∞] be measurable. Then, there exists
a sequence of non-negative functions {ϕn} ↗ f , meaning ϕn are increasing pointwise and converging
pointwise toward f . Moreover, if f is bounded, it is possible for the ϕn to converge toward f uniformly.

Definition D.13 If f is not necessarily non-negative, we define:
∫

X
f dµ =

∫

X
f+ dµ−

∫

X
f− dµ ,

provided that the two integrals are not both ∞.

The functions f+ and f− are measurable and represent the positive and negative part of f , respectively:

f+(x) = max(+f(x), 0) f−(x) = max(−f(x), 0) .

Let A be a measurable subset of X, we can define:
∫

A
d dµ =

∫

X
fχA dµ ,

to introduce the Lebesgue integral on subsets of X.

Proposition D.6 A measurable function f : X → [0,∞] vanishes almost everywhere if and only if∫
X f = 0.

D.3.4 Convergence results

Theorem D.9 (Monotone convergence) Let (X, µ) be a measure space. Let fn be non-negative mea-
surable functions increasing pointwise toward f . Then,

∫

X
f dµ =

∫

X

(
lim

n→∞
fn

)
dµ = lim

n→∞

∫

X
fn dµ .

This theorem allows to prove linearity of the Lebesgue integral for non-simple functions. Given any
two non-negative measurable functions f, g we know (Theorem D.8) that there are non-negative simple
functions {ϕn} ↗ f and {ψn} ↗ g. Then, {ϕn + ψn} ↗ f + g and so, since the integral is linear for
simple functions:

∫
f + g = lim

n→∞

∫
ϕn + ψn = lim

n→∞

∫
ϕn +

∫
ψn =

∫
f +

∫
g .

And, if f, g are not necessarily non-negative, then:
∫

f + g =
∫

(f+ − f−) + (g+ − g−) =
∫

(f+ + g+ − (f− + g−))

=
∫

(f+ + g+)−
∫

(f− + g−) =
∫

f+ +
∫

g+ −
(∫

(f− +
∫

g−
)

=
∫

f +
∫

g .
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Theorem D.10 (Beppo Levi) Let fn : X → [0,∞] be measurable. Then:
∫ ∞∑

n=1

fn =
∞∑

n=1

∫
fn .

Theorem D.11 (Fatou’s lemma) Let fn : X → [0,∞] be measurable. Then,
∫

lim inf
n→∞

fn ≤ lim inf
n→∞

∫
fn .

Definition D.14 A function f : X → R is called integrable if it is measurable and if
∫
X |f | < ∞.

It follows that f is integrable if and only if f+ and f− are both integrable. Moreover,
∫
|f | < ∞ implies

that |f | < ∞ almost everywhere.

Theorem D.12 (Dominated convergence) Let (X, µ) be a measure space. Let fn : X → R be a
sequence of measurable functions converging pointwise toward f . Moreover, supose that there is an inte-
grable function g such that |fn| ≤ g for all n. Then fn and f are also integrable and:

lim
n→∞

∫

X
|fn − f | dµ = 0 .

It is sufficient to require that fn converge to f pointwise almost everywhere, or that |fn| is bounded above
by g almost everywhere. Using the triangle inequality, we conclude that

lim
n→∞

∫

X
fn dµ =

∫

X
f dµ ,

and this corresponds to the common application of this theorem.

D.3.5 Generalization

Theorem D.13 (Beppo Levi) Let (X,µ) be a measure space and fn : X → R be measurable functions
with

∫ ∑
|fn| =

∑∫
|fn| < ∞. Then,

∞∑

n=1

∫
fn =

∫ ∞∑

n=1

fn .

Proposition D.7 Let g : X → [0,∞] be measurable in the measure space (X, A, µ). Let

ν(E) =
∫

E
f dµ , E ∈ A .

Then, ν is a measure on (X, A) and for any measurable function f on X,
∫

X
f dν =

∫

X
fg dµ ,

and this result is usually written as: dν = gdµ.

Lemma D.3 (Change of variables) Let X, Y be measure spaces and g : X → Y , f : Y → R. Then,
∫

X
(f ◦ g) dµ =

∫

Y
fdν ,

where ν(B) = µ(g−1(B)) is a measure defined for all measurable B ⊆ Y .
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Applying these results together leads to:

Theorem D.14 (Differential change of variables in Rn) Let g : X → Y be a diffeomorphism of
open sets in Rn. If A ⊆ X is measurable and f : Y → R is measurable then,

∫

g(A)
f dλ =

∫

A
(f ◦ g) dµ =

∫

A
(f ◦ g) · |det Dg| dλ .

And we have Lebesgue versions of results about the Riemann integral.

Theorem D.15 (First fundamental theorem of calculus) Let I ⊆ R be an interval and f : I → R
be integrable with Lebesgue measure in R. Then, the function

F (x) =
∫ x

a
f(t) dt ,

is continuous. Moreover, if f is continuous at x, then F ′(x) = f(x).

Theorem D.16 (Second fundamental theorem of calculus) Suppose f : [a, b] → R is measurable
and bounded above and below. If f = g′ for some g, then

∫ b

a
f(x) dx = g(b)− g(a) .

In this result, we shall not assume as strong hypotheses that f ′ is continuous or even that it is Lebesgue
integrable. If g exists, then it can also be computed as countable limit lim

n→∞
n(g(x + 1/n) − g(x)), thus

showing that g′ is measurable.

Theorem D.17 (Continuous dependence on integral parameter) Let (X, µ) be a measure space,
T be any metric space and f : X × T → R with f(·, t) being measurable for each t ∈ T . Consider the
function

F (t) =
∫

x∈X
f(x, t) .

Then, we have F continuous at t0 ∈ T if the following conditions are met:

(i) for each x ∈ X, f(x, ·) is continuous at t0 ∈ I,

(ii) there is an integrable function g such that |f(x, t)| ≤ g(x) for all t ∈ T .

Theorem D.18 (Differentiation under the integral sign) Using the same notations, with T being
an open real interval, we have

F ′(t) =
d

dt

∫

x∈X
f(x, t) =

∫

x∈X

∂

∂t
f(x, t) ,

if the following conditions are satisfied:

(i) for each x ∈ X,
∂

∂t
f(x, t) exists,

(ii) there is an integrable function g such that
∣∣∣∣
∂

∂t
f(x, t)

∣∣∣∣ ≤ g(x), for all t ∈ T .

This result can be generalized to T being any open set in Rn, taking partial derivatives.
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D.4 Lp spaces

The Lp spaces, named after H. Lebesgue (1875-1941), are spaces of p-power integrable functions and form
an important class of examples of Banach spaces.

D.4.1 Definitions

Let Ω be a domain in Rd and let p ∈ [1,+∞[ be a positive real number. We denote Lp(Ω, dµ) the space
of all measurable functions u, defined on Ω, for which

‖f‖L∞
def=

∫

Ω
|f(x)|p dµ < ∞ .

The elements of Lp are indeed equivalence classes of measurable functions satisfying the previous equality
(two functions being equivalent if they coincide almost everywhere in Ω). If p = ∞, we denote by
Lp(Ω, dµ) the space of all measurable functions, defined on Ω, such that:

‖f‖L∞
def= sup {λ /µ{x , |f(x)| > λ} > 0} .

We need to introduce the notion of exponent conjugate. If p ∈]1,∞[, p′
def=

p

p− 1
, if p = 1 then p′

def= +∞

and if p = +∞, p′
def= 1. The exponents p and p′ are said to be (Hölder) conjugates of each other and,

under the convention that 1/∞ = 0, we have

1
p

+
1
p′

= 1 .

Theorem D.19 For any value p ∈ [1,∞[, the space Lp(Ω, dµ), endowed with the norm ‖ · ‖Lp, is a
Banach space.

It is clear that if u ∈ Lp(Ω) and c ∈ C, then cu ∈ Lp(Ω). Moreover, if u, v ∈ Lp(Ω), then since

|u(x) + v(x)|p ≤ (|u(x)| + |v(x)|)p ≤ 2p(|u(x)|p + |v(x)|p) ,

u + v ∈ Lp(Ω), so Lp(Ω) is a vector space.

Proposition D.8 (Hölder inequality) Let (Ω, µ) be a measure space, f be a function of Lp(Ω, dµ)
and g be a function of Lp′(Ω, dµ). Then, the product fg is in L1(Ω, dµ) and

∫

Ω
|f(x)g(x)| dµ(x) ≤ ‖f‖Lp‖g‖Lp′ .

For 1 < p, p′ < ∞, the inequality becomes equality if and only if |f |p is proportional to |g|p′ almost
everywhere. When p = p′ = 2, we retrieve the Cauchy-Schwarz inequality.

Proposition D.9 (Minkowski’s inequality) If 1 ≤ p < ∞, then for all u, v ∈ Lp(Ω)

‖u + v‖p ≤ ‖u‖p + ‖v‖p .

Theorem D.20 (Jensen’s inequality) Let ρ ∈ L1(Ω) be a non-negative function such that
∫
Ω ρ(x)dx = 1.

Then, for every measurable function f such that fρ ∈ L1(Ω) and for every convex measurable function
ϕ : R → R, we have:

ϕ

(∫

Ω
f(x)ρ(x) dx

)
≤

∫

Ω
ϕ(f(x))ρ(x) dx .
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In particular, for ϕ(x) = x2, we have:
(∫

Ω
f(x)ρ(x) dx

)2

≤
∫

Ω
(f(x))2ρ(x) dx .

Theorem D.21 (Fubini’s theorem) Suppose F ∈ L1(Ω1 × Ω2). Then, for almost every x ∈ Ω1,
F (x, ·) ∈ L1(Ω2) and for almost every y ∈ Ω2, F (·, y) ∈ L1(Ω1). Furthermore, we have, by noting
d(x, y) = dx⊗ dy:

∫

Ω1×Ω2

F (x, y)d(x, y) =
∫

Ω1

∫

Ω2

F (x, y)dydx =
∫

Ω2

∫

Ω1

F (x, y)dxdy .

D.4.2 Properties of Lp spaces

Corollary D.2 Let p, q ∈]1,∞[ be two real numbers such that 1/P + 1/q ≤ 1. Then, the function
Lp × Lq → Lr, (f, g) 2→ fg is a bilinear continuous map if 1/r = 1/p + 1/q.

Corollary D.3 If Ω is a space of finite measure, then Lp(Ω, dµ) ⊂ Lq(Ω, dµ) if p ≥ q.

Lemma D.4 Given (Ω, dµ) a measure space. Let f be a measurable function and p ∈ [1,∞[. Then, if

sup
‖g‖

Lp′≤1

∫

Ω
|f(x)g(x)| dµ(x) < +∞ ,

then, f is in Lp(Ω) and we have

‖f‖Lp = sup
‖g‖

Lp′≤1

∣∣∣∣
∫

Ω
f(x)g(x) dµ(x)

∣∣∣∣ .

The next result provides a reverse form of Hölder and Minkwski inequalities for the case 0 < p < 1. This
result is used to show the uniform convexity of certain Lp spaces.

Theorem D.22 Let 0 < p < 1 so that the conjugate writes p′ = p((p− 1) < 0. Suppose f ∈ Lp(Ω) and

0 < g

∫

Ω
|g(x)|p dµ(x) < ∞ .

Then, ∫

Ω
|f(x)g(x)| dµ(x) ≥

(∫

Ω
|f(x)|p dµ(x)

)1/p (∫

Ω
|g(x)|p′ dµ(x)

)1/p′

.

and we have also
‖|u| + |v|‖p ≥ ‖u‖p + ‖v‖p .

Definition D.15 A function f , measurable on Ω is said to be essentialy bounded on Ω if there exists
a constant C such that f(x) ≤ C almost everywhere in Ω. The greatest lower bound of C is called the
essential supremum of |f | on Ω and is denoted by ess supx∈Ω |f(x)|.

We denote by L∞(Ω) the space of all functions f that are essentially bounded on Ω . It is then easy to
verify that the functional ‖ · ‖∞ defined by

‖f‖∞ = ess sup
x∈Ω

|f(x)| ,

is a norm on L∞(Ω).
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D.4.3 Density of continuous functions in Lp spaces

At first, we shall introduce new functional spaces, the Lp
loc spaces.

Definition D.16 We denote Lp
loc(Ω) the space of all p-power (1 ≤ p ≤ ∞) locally integrable functions

on Ω. It is the set of functions f such that, for any compact subset K of Ω

f ∈ Lp(K, dµ) .

The Hölder inequality implies that q ≥ p ⇒ Lq(K, dµ) ⊂ Lp(K, dµ) thus yielding the following result.

Proposition D.10 If p < p′ then, Lp′

loc(Ω) is included in the space Lp
loc.

Definition D.17 Let f be a function of L1
loc(Ω). The support of f , denoted Supp f is the remainder of

the largest open subset U such that f|U ≡ 0.

In other words, a function f ∈ L1
loc(Ω) is said to have finite support if f(x) = 0 for all but finitely many

x.

Proposition D.11 Let f be a function of L1
loc(Ω). The support of f is the set of points x ∈ Ω for which

every open neighborhood N(x) of x has positive measure:

Supp f = {x ∈ Ω , /x ∈ some open Nx , µ(Nx) > 0 .

We introduce the following fundamental result about the density of compact support functions.

Theorem D.23 Given p ∈ [1,∞[, the space Cc(Ω) of all continuous functions with compact support in
Ω is dense in the space Lp(Ω, dµ).

Finally, we have a useful imbedding result for Lp spaces over domains with finite volume.

Theorem D.24 Suppose volΩ =
∫

Ω
1dx < ∞ and 1 ≤ p, q ≤ ∞. If f ∈ Lq(Ω), then f ∈ Lp(Ω) and

‖f‖p ≤ (volΩ)(1/p)−(1/q)‖f‖q .

Hence, Lq(Ω) → Lp(Ω). If f ∈ L∞(Ω), then

lim
p→∞

‖f‖p = ‖f‖∞ .

Finally, if f ∈ Lp(Ω) for 1 ≤ p < ∞ and if there is a constant C such that for all such p

‖f‖p ≤ C ,

then f ∈ L∞(Ω) and
‖f‖∞ ≤ C .

Corollary D.4 Lp(Ω) ⊂ L1
loc(Ω) for 1 ≤ p ≤ ∞ and any domain Ω.
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D.4.4 Completeness of Lp spaces

We give a sequence of important results about Lp spaces.

Proposition D.12 (i) Lp(Ω) is a Banach space if 1 ≤ p ≤ ∞.

(ii) If 1 ≤ p ≤ ∞, a Cauchy sequence in Lp(Ω) has a subsequence converging pointwise almost every-
where on Ω.

(iii) L2(Ω) is a Hilbert space with respect to the inner product

〈f, g〉 =
∫

Ω
f(x) g(x) dx .

and Hölder inequality for L2(Ω) is simply the Schwarz inequality:

|〈f, g〉| ≤ ‖f‖L2 ‖g‖L2 .

(iv) The space L1(Ω, dµ) ∩ L∞(Ω, dµ) ∩ Lp(Ω, dµ) is dense in the space Lp(Ω, dµ).

Corollary D.5 The space C0(Ω) is dense in Lp(Ω) if 1 ≤ p < ∞.
The space Lp(Ω) is separable if 1 ≤ p < ∞.

Remark D.1 C(Ω), considered as a closed subspace of L∞(Ω) is not dense in that space. The same
consideration applies to C0(Ω) and C∞0 (Ω); this leads to conclude that L∞(Ω) is not separable.

Proposition D.13 C∞0 (Ω) is dense in Lp(Ω) if 1 ≤ p < ∞.

D.4.5 The uniform convexity of Lp spaces

Definition D.18 The norm on any normed space X is called uniformly convex if for every number ε
satisfying 0 < ε ≤ 2, there exists a number δ(ε) > 0 such that if x, y ∈ X satisfy ‖x‖X = ‖y‖X = 1 and
‖x− y‖X ≥ ε then

‖(x + y)/2‖X ≤ 1− δ(ε) .

For 1 < p < ∞, the space Lp(Ω) is uniformly convex, its norm ‖ · ‖p satisfying the condition above.
Clarkson showed this result via a set of inequalities for Lp(Ω) that generalizes the parallelogram law in
L2(Ω).

Lemma D.5 (i) If 1 ≤ p < ∞ and a ≥ 0, b ≥ 0, then

(a + b)p ≤ 2p−1 (ap + bp) .

(ii) If 0 < s < 1, the function f(x) = (1− sx)/x is a decreasing function of x > 0.

(iii) If 1 < p ≤ 2 and 0 ≤ t ≤ 1, then

∣∣∣∣
1 + t

2

∣∣∣∣
p′

+
∣∣∣∣
1− t

2

∣∣∣∣
p′

≤
(

1
2

+
1
2
tp

)1/(p−1)

,

where p′ = p/(p− 1) is the exponent conjugate to p.
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(iv) Let z, w ∈ C. If 1 < p ≤ 2, then
∣∣∣∣
z + w

2

∣∣∣∣
p′

+
∣∣∣∣
z − w

2

∣∣∣∣
p′

≤
(

1
2
|z|p +

1
2
|w|p

)1/(p−1)

,

and if 2 ≤ p < ∞, then ∣∣∣∣
z + w

2

∣∣∣∣
p

+
∣∣∣∣
z − w

2

∣∣∣∣
p

≤ 1
2
|z|p +

1
2
|w|p ,

Theorem D.25 (Clarkson’s inequalites) Let f, g ∈ Lp(Ω). For 1 < p < ∞ let p′ = p/(p − 1). If
2 ≤ p < ∞, then ∥∥∥∥

f + g

2

∥∥∥∥
p

p

+
∥∥∥∥
f − g

2

∥∥∥∥
p

p

≤ 1
2
‖f‖p

p +
1
2
‖g‖p

p ,

∥∥∥∥
f + g

2

∥∥∥∥
p′

p

+
∥∥∥∥
f − g

2

∥∥∥∥
p′

p

≥
(

1
2
‖f‖p

p +
1
2
‖g‖p

p

)p′−1

.

If 1 < p ≤ 2, then ∥∥∥∥
f + g

2

∥∥∥∥
p′

p

+
∥∥∥∥
f − g

2

∥∥∥∥
p′

p

≤
(

1
2
‖f‖p

p +
1
2
‖g‖p

p

)p′−1

,

∥∥∥∥
f + g

2

∥∥∥∥
p

p

+
∥∥∥∥
f − g

2

∥∥∥∥
p

p

≥ 1
2
‖f‖p

p +
1
2
‖g‖p

p .

Corollary D.6 If 1 < p < ∞, the space Lp(Ω) is uniformly convex.

D.4.6 The dual of Lp(Ω)

The main result of this section is the following theorem that establishes that a linear functional can be
represented on Lp spaces when p ∈ R.

Definition D.19 Let 1 ≤ p ≤ ∞ and let p′ denote the exponent conjugate to p. For each element
g ∈ Lp′(Ω) we can define a linear functional Lg on Lp(Ω) via

Lg(f) =
∫

Ω
f(x)vg(x)dµ(x) , f ∈ Lp(Ω) .

By Hölder’s inequality, |Lg(f)| ≤ ‖f‖p‖g‖p′ , so that Lg ∈ (Lp(Ω))′ and

‖Lg‖(Lp(Ω))′ ≤ ‖g‖p′ .

Indeed, the equality must holds in the previous expression. Hence, the operator map g to Lg is an
isometric isomorphism of Lp′(Ω) onto a subspace of (Lp(Ω))′.

Theorem D.26 (Riesz representation theorem for Lp) Let 1 < p < ∞ and let L ∈ (Lp(Ω))′.
Then, there exists g ∈ Lp′(Ω) such that for all finLp(Ω)

L(f) =
∫

Ω
f(x)g(x)dµ(x) .

Moreover, ‖g‖p′ = ‖L‖(Lp(Ω))′. Thus, (lp(Ω))′ ∼= Lp′(Ω).
Let L ∈ (L1(Ω))′. Then, there exists g ∈ L∞(Ω) such that for all f ∈ L1(Ω)

L(f) =
∫

Ω
f(x)g(x) dµ(x) ,

and ‖f‖∞ = ‖L‖(L1(Ω))′‖. Thus, (L1(Ω))′ ∼= L∞(Ω).


