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Abstract

This paper originally came out of my 1999 Swarthmore College Math-
ematics Senior Conference. I've made minor touch-ups to make it more
presentable.

This paper begins where the Swarthmore College Mathematics and Statis-
tics course Math 47: Introduction to Real Analysis left off. Namely, basic
measure theory is covered with an eye toward exploring the Lebesgue inte-
gral and comparing it to the Riemann integral. Knowledge of the notation
and techniques used in an introductory analysis course is assumed through-
out.
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Chapter 1

How to Count Rectangles: A
Review of Integration

1.1 Riemann Revisited

The development of the integral in most introductory analysis courses is
centered almost exclusively on the Riemann integral. This relatively intu-
itive approach begins by taking a partition P = {xq, ..., x,} of the domain
of the real-valued function f in question. Given P, the Riemann sum of f

is simply
n

Z(l’z —xzi—1) - f() where z;_1 < ¢; < z;.
i=1

The integral of f, if it exists, is the limit of the Riemann sum as n — oo.

1.2 Shortcomings of Riemann Integration

Although the Riemann integral suffices in most daily situations, it fails to
meet our needs in several important ways. First, the class of Riemann
integrable functions is relatively small.

Second and related to the first, the Riemann integral does not have
satisfactory limit properties. That is, given a sequence of Riemann integrable
functions {f,} with a limit function f = lim fn, it does not necessarily
follow that the limit function f is Riemann 7irltoeograble.

Third, all L, spaces except for L, fail to be complete under the Riemann

integral.
Examples and illustrate some of these problems.



Example 1.1 Consider the sequence of functions {fn,} over the interval

E =10,1].
o gf L <gp< Lo
fule) = {2 VST g
0  otherwise

The limit function of this sequence is simply f = 0. In this example, each
function in the sequence is integrable as is the limit function. However, the
limit of the sequence of integrals is not equal to the integral of the limit of
the sequence. That is,

1

1
lim falx)de =1#0= / lim fn(x)dz.
0

n—oo 0 n—oo

We will return to this function as an example of how the Lebesgue integral
fails as well.

Example 1.2 Consider the sequence of functions {d,} over the interval

E =0,1]. |
() {1 if v € {rp}

0 otherwise

where {ry,} is the set of the first n elements of some decided upon enumera-

tion of the rational numbers. Each function d, is Riemann integrable since

it is discontinuous only at n points. The limit function D = lim d,, is given
n—oo

by

0 if x is irrational

D(z) = {1 if T is rational

This function, known as the Dirichlet function, is discontinuous everywhere
and therefore not Riemann integrable. Another way of showing that D(x) is
not Riemann integrable is to take upper and lower sums, which result in 1
and 0, respectively.

1.3 A New Way to Count Rectangles: Lebesgue
Integration

An equally intuitive, but long in coming method of integration, was pre-
sented by Lebesgue in 1902. Rather than partitioning the domain of the
function, as in the Riemann integral, Lebesgue chose to partition the range.
Thus, for each interval in the partition, rather than asking for the value of



the function between the end points of the interval in the domain, he asked
how much of the domain is mapped by the function to some value between
two end points in the range. See Figure[1.1

A

range
)

range

A

domain

domain

Figure 1.1: Two ways to count rectangles — partitioning the range as opposed
to partitioning the domain of a function.

Partitioning the range of a function and counting the resultant rectangles
becomes tricky since we must employ some way of determining (or measur-
ing) how much of the domain is sent to a particular portion of a partition
of the range. Measure theory addresses just this problem.

As it turns out, the Lebesgue integral solves many of the problems left
by the Riemann integral. With this in mind, we now turn to measure theory.



Chapter 2

Measure Theory

Measure theory is a rich subject in and of itself. However, we present it here
expressly for the purpose proposed at the end of to define the “length”
of an arbitrary set so as to formalize the idea of the Lebesgue integral. As
such, only the very basics of measure theory are presented here and many
of the rote proofs are left to the reader.

2.1 Measure

Given an interval E = [a, b] and a set S of subsets of E which is closed under
countable unions, we define the following.

Definition 2.1 A set function on S is a function which assigns to each
set A €S a real number.

Definition 2.2 A set function p on S is called a measure if the following
properties hold.

e Semi-Positive-Definite: 0 < pu(A) <b—a for all A€ S.
e Trivial Case: u(h) = 0.
o Monotonicity: u(A) < u(B) for all A,BeS,ACB

o Countable Additwvity: if A = Uy y An, then p(A) = > 07 n(Ay),
where A, € S forn =1,2,... and A, () Am =0 for n # m.

As can be seen from the definition, the concept of measure is a general
one indeed.



Example 2.3 Fzamples of measure abound. To begin at the beginning, con-
sider the trivial measure: pu(A) =0 for all A€ S.

Example 2.4 Let {x1,...,z,} C E be a finite set of points and E = [a,b].
Let a < z; < xj <b for alli < j. Consider the set A= E/{x1,...,x,}, the
interval E without the points x1,...,x,. Let our measure be such that the
measure of any interval with endpoints x <y is y — x. Then,

m(A) =m([a,z1) U (z1,22) U... U (Tp-1,2n) U (2n,b])
= m((a,21)) + m((1,72)) + -+ m((Tn1,0)) + (2, B])
=(x1—a)+ (2 —x1)+ ...+ (2 —zp-1) + (b — z3)

Notice that the only complication which may arise in this example is how we

define our set of subsets, S. We will explore this further in §2.3,

2.2 Outer and Inner Measure

To keep us grounded in reality, we would like to use a measure which puts
our intuitive notion of length at ease. Thus we define the following.

Definition 2.5 The outer measure of any interval I on the real number
line with endpoints a < b is b — a and is denoted as m*(I).

We would like to generalize this definition of outer measure to all sets of
real numbers, not just intervals. To do this, we use the following theorem,
upon which the remainder of our work depends heavily.

Theorem 2.6 Every non-empty open set G C R can be uniquely expressed
as a finite or countably infinite union of pairwise disjoint open intervals.
Proof Idea: Let x € G and consider the open interval I, = (az,bsy) con-
structed from

az = glb{y| (y,z) C G}

and

by = lub{z| (z,z) C G}.

I, is called the component of x in G. G = Uzealy is exactly the decom-
position of G we are looking for. It is straight-forward to show that, given



x1,x2 € G, either I, and I, are disjoint or they are equal. The countabil-
ity of this collection of open intervals follows easily from their disjointness;
simply pick one rational number from each interval and use it to label that
interval. Since the intervals are disjoint, no two will have the same label
and since the rationals are countable, so will be the intervals which they la-
bel. Uniqueness of the decomposition is, as usual, a straight-forward proof
by contradiction.

With this theorem, it is possible to extend the definition of outer measure
to open sets of real numbers.

Definition 2.7 The outer measure m*(G) of an open set G C E is given
by >, m*(I;) where the I; form the unique decomposition of G into a finite or
a countably infinite union of pairwise disjoint open intervals. See Theorem

[2.6.

From this directly follows a definition of outer measure for any set.

Definition 2.8 The outer measure m*(A) of any set A C R is given by
glb{m*(G)|A C G and G open in E}.

Now that outer measure is well-defined for arbitrary subsets of E, we
turn to a closely related measure, inner measure.

Definition 2.9 The inner measure of any set A C E, denoted m,(A),
is defined as m*(E) — m*(E/A), where E/A is the compliment of A with
respect to F.

Intuitively, the inner measure is in some ways “measuring” the same thing
as the outer measure, only in a more roundabout way. We cannot take it
for granted, however, that the inner and outer measures of any given set are
the same, although we are very interested in the cases when they are, as
we shall soon see. For now, though, let us state without proof some simple
observations regarding inner and outer measure.

Lemma 2.10 The measures my and m* both exhibit monotonicity. That
is, given A C B C F, it follows that,

o m*(A) <m*(B)

o m.(A) < m,(B)



Lemma 2.11 Given a set A C E, it follows that ms(A) < m*(A).

Lemma 2.12 The outer measure m* exhibits subadditivity. That is, when-
ever {An|n=1,2,...} is a set of subsets of E, then

m* ([ An) <> m*(An).
n=1

n=1

2.3 Shortcomings of Outer and Inner Measure

Now that we have some concrete measures to work with, we must exam-
ine whether they satisfy our needs. The first shortcoming we discover is
presented below.

Theorem 2.13 The outer measure, m*, is not countably additive on the
set of all subsets of E.

Proof Idea: By construction. It is possible to construct pairwise disjoint
sets Ay such that E = U2, Ay, and m*(E) # Y 02, m*(Ay).

This is rather disappointing. It would be nice to have a measure which
is defined on all subsets of E and still satisfies our intuition enough to use it
as the basis for the development of the Lebesgue integral. However, it turns
out that the set of subsets of £ on which the outer measure m* is countably
additive is large enough to make it worth our while to continue using the
outer measure. We discuss this point in Chapter



Chapter 3

Measurable Sets &
Measurable Functions

3.1 Measurable Sets

Let’s look at a certain subset of all the sets on which inner and outer measure
are well-defined — the set of Lebesgue measurable sets.

Definition 3.1 A set A C E is Lebesgue measurable, or measurable,
if m*(A) = m.(A), in which case the measure of A is denoted simply by
m(A) and is given by m(A) = m*(A) = m.(A).

A straight-forward extension of this definition applies to unbounded sets,

Definition 3.2 The measure for an unbounded set A is defined simply as,

m(A) = lim m(A["\[-n,n]).

n—00
Lemma 3.3 Measurable sets have the following properties.
e A set A C E is measurable if and only if
m*(A) +m*(E/A) =b—a,
where a and b are the endpoints of the interval E.

o A set A C E is measurable if and only if its complement E/A ‘s
measurable.

Proof: The lemma follows directly from the definition of measurable .



Example 3.4 Referring back to Example we see that a set consisting
of an interval which is missing a finite number of points has the same outer
measure as the interval itself. That is,

Thus, by Lemma (3.3, E/{i,...,zn} is measurable if and only if
m*({xi,...,zn}) =0.

The following theorem takes us back to where we left off at the end of

2.3

Theorem 3.5 The outer measure, m*, is countably additive on the set of
all measurable subsets of E. That is, whenever {A,|n = 1,2,...} is a set
of measurable subsets of E, then

m*((J An) =D m*(Ay)
n=1 n=1

Proof Idea: Although the proof of this theorem is not difficult, it is some-
what lengthy in its technical detail and is therefore left for the enrichment
of the reader.

So, knowing that we intend to define the Lebesgue integral in terms of the
outer measure, it seems that the size of the class of “Lebesgue integrable”
functions may somehow be limited by the fact that, as far as we know, the
outer measure is only defined on measurable sets. We will return to this
idea in Chapter [4

3.2 Measurable Functions

Definition 3.6 Let A be a bounded measurable subset of R and f: A — R
a function. Then f is said to be measurable on A if {x € A| f(x) > r}
is measurable (as a set) for every real number r.

There are many equivalent definitions of measurable which follow similar
lines. In this definition we see the beginnings of being able to “count the
rectangles” created by partitioning the range of a function rather than the
domain. See Figure 3.1
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Figure 3.1: The function f is measurable if the shaded region of the domain
is measurable as a set for all choices of the real number r.

Example 3.7 Consider again the sequence of functions over E = [0,1]
defined in Example

n -1 1

0 otherwise

We want to show that each f, is a measurable function. There are three
cases to consider, corresponding to three possible choices for the real number
r. They are,

o r >2": The set {x € E| fu(x) > r} is the null set and is therefore
measurable.

e 0 < r < 2" : The set {x € E|fo(x) > r} is the closed interval
(5, 2,}_1] and is therefore measurable (with a measure of 5 ).

e < 0: The set {x € E| fu(x) > r} is the entire interval E and is
therefore measurable.

Thus, each f, is a measurable function.



Example 3.8 Consider again the sequence of functions over E = [0,1]
defined in Example

() = {1 if v € {rp}

0 otherwise

We want to show that each d, is a measurable function. There are three
cases to consider, corresponding to three possible choices for the real number
r. They are,

o r >1: The set {x € E|dy(z) > r} is the null set and is therefore
measurable.

e 0<r<1:Theset{xe E|d,(x)>r}is the set of the first n rational
numbers (in a decided upon enumeration) and is therefore measurable
(with a measure of 0).

o < 0: The set {x € E|dy(x) > r} is the entire interval E and is
therefore measurable.

Thus, each d, is a measurable function.

The above examples naturally bring up the question of whether or not
the limit function of a sequence of measurable functions is itself a measurable
function. Clearly, the limit function in Example is measurable since it
is the trivial function. But what of the Dirichlet function in Example [3.8]/
The following lemma answers this question.

Lemma 3.9 If each function in a sequence {f,} is measurable on a set A
and if f is the pointwise limit function of {fn}, then f is measurable on A
as well.

Proof: The proof of the lemma requires a close examination of the defini-
tions of limit and measurable, as follows. Let x € A and r € R such that
f(z) > r. Let p be a natural number such that f(x) > r+ 1/p. Then, by
definition of limit, there exists a natural number N such that for alln > N,
fo(z) > 1+ 1/p. Thus,

flz)=lim fo(z) >r+1/p>r.
This implies that

{zeAlf@>rt=J J [ {z€Alfalz)>r+1/p}.

p=1 N=1n=N+1

Since this set is measurable and r was arbitrary, it follows that f is measur-

able.



3.3 Simple Functions

Similar to the way which step functions are put to use in the development the
Riemann integral, our development of the Lebesgue integral will make use
of a pedestrian class of measurable functions, aptly named simple functions.

Definition 3.10 A simple function [ : A — R is a measurable function
which takes on finitely many values.

We’ve already seen simple functions in Examples [I.1] and The utility of
simple functions becomes apparent in the following theorem.

Theorem 3.11 A function f: A — R is measurable if and only if it is the
pointwise limit of a sequence of simple functions.

Proof Idea: (=) The forward direction of the proof involves constructing
a sequence of simple functions whose limit is the given measurable function
f. This construction is omitted for brevity.

(<) The reverse direction is given by Lemma .

Example 3.12 Ezxample combined with Theorem (or even just
Lemma tells us that the Dirichlet function is indeed measurable.



Chapter 4

The Lebesgue Integral

4.1 Integrating Bounded Measurable Functions

We introduce the Lebesgue integral by first restricting our attention to
bounded measurable functions. The approach here is almost identical to
that used in constructing the Riemann integral except that here we parti-
tion the range rather than the domain of the function.

Let f : A — R be a bounded measurable function on a bounded mea-
surable subset A of R. Let [ = glb{f(x) |z € A} and u > lub{f(z) |z € A}
where v is arbitrary insofar as it is greater than the least upper bound of f
on A.

As with the Riemann integral, we’ll define the Lebesgue integral of f
over an interval A as the limit of some “Lebesgue sum”.

Definition 4.1 The Lebesgue sum of f with respect to a partition P =
{Y0, .- yn} of the interval [I,u] is given as

L(f,P) =) uim{z € Alyia < f(x) <ui})
=1
where y; € [yi—1,yi] fori=1,...,n and f is a bounded measurable function

over a bounded measurable set A C R.

This is the new way to count rectangles; the y; is the height of the rectangle
and the m({z € A|yi—1 < f(z) < y;}) serves as the base of the rectangle.
The definition of the actual Lebesgue integral is virtually identical to that
of the Riemann integral.

13



Definition 4.2 A bounded measurable function f : A — R is Lebesgue
integrable on A if there is a number L € R such that, given ¢ > 0, there
exists a & > 0 such that |L(f, P) — L| < € whenever ||P|| < §. L is known
as the Lebesgue integral of f on A and is denoted by fA fdm.

4.2 Criteria for Integrability

As with the definition of the Riemann integral, the definition of the Lebesgue
integral does not illuminate us as to whether a given function is Lebesgue
integrable and, if it is, what the Lebesgue integral is. The following theorem,
presented without proof, fills this gap.

Theorem 4.3 A bounded measurable function f is Lebesgue integrable on
a bounded measurable set A if and only if, given € > 0, there exist simple
functions f and f such that

f<f<f

/Afdm—/Afdm<e.

Corollary 4.4 If f is a bounded measurable function on a bounded mea-
surable set A, then f is Lebesgue integrable on A. Furthermore,

and

/fdm :lub{/ fdm| f is simple and f < f}
A AT - -
:glb{/ fdm|f is simple and f > f} .
A
Proof Idea: This corollary is a result of the proof of Theorem[].3

Example 4.5 Let’s find the Lebesgue integral of the Dirichlet function (see
Ezxample . We know by Ezxample that the Dirichlet function s
measurable. Thus, by Corollary[{.4), it is Lebesgue integrable. Specifically,
we claim that f[o,l] Ddm = 0. Looking back to the definition of the Lebesque
integral , we must show that, given € > 0, there exists a § > 0 such that
|L(D, P)| < € whenever the width of the partition P is less than §. Referring
to Definition [{.1] for |L(D, P)|, this means that we must find § such that

LD, P)| = yi m({z € [0,1] | g1 < D(2) <yi}) <e,
=1



where P = {yo = 0,...,y, = 2} is a partition of the interval [0,2] in the
range, y; € [yi—1,y;] fori=1,...,n, and the absolute value signs have been

omitted since all quantities here are inherently positive. We accomplish this
by picking 6 = €/3. Then

DP’_Z% ({z € [0,1]|yi-1 < D(x) < yi})

=y m({w € [0,1}]0 < D(x) < €/3})
+ yim({z €[0,1]|y;-1 < D(x) <y;}),
where yj—1 < 1 < y;. All other terms in the sum vanish because D(x) only

takes on two values, 0 and 1. The first term achieves its mazimum when
y; = €/3 and when m({zx € [0,1]|0 < D(z) < ¢/3} = 1. Thus,

DPI—Zyz ({z €[0,1]|yi—1 < D(x) < yi})

[6/3] [y; m({z € [0,1]|yj—1 < D(x) < y;})].

Also, we know that y; <1+ €/3. Finding an upper bound on

m({z € [0,1][y;—1 < D(z) <y;})

1 equivalent to asking for an upper bound on the measure of the rational
numbers in the interval [0,1]. Since any non-empty open interval centered
on a rational number contains other rational numbers, an upper bound on
the measure of the rational numbers is simply the sum of the measures of
all the intervals surrounding the rationals. That is, given an enumeration
of the rationals, let the n'™ rational number be contained in an interval of
measure €/3"1. In this way,

m({z €[0,1]|yj—1 < D(z) <y;}) < Z 3+l g’
n=1

and we finally get that
IL(D, P)| <¢/3+y;m({z €0,1]|y;-1 < D(x) <y;})
<€/3+4 (14 ¢€/3)(¢/6)

—¢/3+¢/3+€2/18
<e,



where we have assumed without loss of generality that € < 1. This completes
the proof that f[o 1] Ddm = 0. Combined with Lemma we also know

that the irrationals must have measure 1 on the interval [0,1]. This result
makes intuitive sense since the rationals are countably infinite whereas the
irrationals are uncountably infinite.

4.3 Properties of the Lebesgue Integral

It is comforting to know that the Lebesgue integral shares many properties
with the Riemann integral.

Theorem 4.6 Let f and g be bounded measurable functions on a bounded
measurable set A. Then,

o Monotonicity: If f < g, then [, fdm < [, gdm.

o Linearity:

/A(f+g)dm:/Afdm+/Agdm

/Acfdm—c/AfdmforceR.

and

e For any numbers l,u € R such that | < f < wu, it follows that
L-m(A) < [, fdm < u-m(A).

o [y fdm| < [,|fldm.

o If A and B are disjoint bounded measurable sets and f: AUB — R
is a bounded measurable function, then

foysinfyome 1o

o Countable Additivity: If A = U2, A; where the A; are pairwise disjoint
bounded measurable sets, then

/Afdm:g/&fdm.

Further comparison of the Riemann and the Lebesgue integral is made
in Chapter



4.4 Integrating Unbounded Measurable Functions

Thus far, we have restricted ourselves to integrating bounded measurable
functions. The generalization of the Lebesgue integral to unbounded mea-
surable functions is straight-forward but will not be given in full detail here.
In general, though, it involves the introduction of 0o as possible values of
the integral. As it turns out, all of the properties of the Lebesgue integral
listed in hold for unbounded measurable functions as well.



Chapter 5

Comparison of Lebesgue and
Riemann Integrals

5.1 Summary of Events

Having achieved what we first set out to do — to define an integral based on
a new way of counting rectangles, let us look back at the motivation behind
this endeavor. As outlined in we are striving to define an integral such
that the class of integrable functions is large and well-behaved. Ideally, we
would like the class of integrable functions to have nice limit properties; that
the integral of the limit is the limit of the integral. Examples and
show that this is not in general true of the Riemann integral.

Aside from examining the convergence properties of the Lebesgue in-
tegral, we are also interested in how it behaves relative to the Riemann
integral. Is a Riemann integrable function Lebesgue integrable and, if so,
what are the values of the respective integrals?

5.2 Convergence of the Lebesgue Integral

The following lemmas and theorems build upon each other and end with
a broad statement which identifies when the limit and Lebesgue integral
operations are interchangeable.

Lemma 5.1 Let g be a non-negative measurable function on a bounded mea-
surable set A. If {A,} are measurable subsets of A such that

Al C Ay C A3 C v

18



and if L € R is such that L > [, gdm for all n, then L > [, gdm.
Proof Idea: (Proof by belief). Given that the Lebesgue integral depends
on the measure of subsets of the domain of the function, and that measure
follows our intuition, this lemma is easy to believe without proof.

Theorem 5.2 (Monotone Convergence Theorem) Let A be a bounded mea-
surable subset of R and {f,} be a sequence of measurable functions on A
such that 0 < f1 < fo < ---. Let f be the pointwise limit of {f,}. That is,

n—oo

for allx € E. Then f is integrable and

lim [ fndm = / fdm.

Proof: By Lemmal(3.9, f is measurable since each f,, is measurable. Mono-
tonicity of the Lebesgue integral (Theorem |4.6) implies that {fA fn dm} 18
an increasing sequence. So, not discounting oo as a possibility, this sequence
has a limit L. Since f > f, implies that fAfdm > fA fndm for all n, it
follows that [, fdm > L.

On the other hand, we can also show that [, fdm < L. Let ¢ € (0,1)
and let g : A — R be a simple function such that 0 < g < f. Consider
the sets A, = {z| fu(x) > cg(x)}, which happen to satisfy the hypotheses of
Lemmal5.1l. The reason for including c is so that cg < f, which implies that
U, Ay =A. For anyn=1,2,---, we have

L= lim fndmz/ fndmzc/ gdm.
Ap Ap

n—oo A

By Lemma L >cf,, gdm. Since Uyl An = A and ¢ € (0,1) was
arbitrary, it follows that L > qun gdm. By Corollary|4.4

/fdm:lub{/fdm\fz’ssimple andfgf},
A A

we get L> [, fdm.
Combining the above two inequalities gives L = fA fdm, as desired.

Lemma 5.3 (Fatou’s Lemma) Let A C R be a bounded measurable set. If
{fn} is a sequence of non-negative measurable functions on A and

f(@) = Lim fu(z) = lim {glb fu(x) [k = n)}

n—oo



for every x € A, then [, fdm < lim [, fndm.
Proof: Let e
gn(x) = glb{fi(x) [k > n}

for eachn =1,2,--- and for each x € A. Fach g, is a measurable function

since the set
oo

{z|gn(@) > r} = [J{z| fu(e) > 7}
k=n
is measurable. Notice that g, < f, for alln and that {g,} is a monotonically

icreasing sequence of non-negative functions.
By definition,

tim gu(@) = lim {glb fu(@) |k = n} = lim f(z) = /(@)

n—0oo n—o0

Therefore, by the Monotone Convergence Theorem ,

lim [ gnpdm = / fdm.
A A

n—oo

This, combined with

/ gn(z)dm < / fn(x)dm for each n and each x € A
A A

due to the monotonicity (Theorem |].0) of the Lebesgue integral, leads to

tim gndmz/fdmg lim [ f,dm,
A A

n—0eo n—oo J A

as desired.

Theorem 5.4 (Lebesgue Dominated Convergence Theorem) Let A € R be

a bounded measurable set and let { f,} be a sequence of measurable functions

on A such that lim f,(x) = f(x) for all x € A. If there exists a function
n—oo

g whose Lebesgue integral is finite such that |fn(z)| < g(x) for all n and all
x € A, then
lim [ fndm = / fdm.
A

n—oo A
Proof: To begin, the functions f,, and f have finite Lebesgue integrals since

g does (this fact does take some proof, but is omitted here). By our choice
of g we have f, +g > 0 on the set A. So,

/(f+g)dm§ Lim [ (fn+g)dm
A

n—oo J A



by Fatou’s Lemma and hence,

/fdms tim [ fodm
A

n—oo J A

by the linearity of the Lebesgue integral (Theorem @)
The same argument can be used with the function g — f, to obtain

- [ sam< tim <—/fndm>.
A n—oo A
But since

lim (—/ fndm> =lim {glb (—/ fkdm> \an}
n—00 A n—oo A

=lim {lub / fedm|k > n}
n—oo A

=lim fndm,
n—oo A

it follows that
/ fdm> lim [ f,dm.
A

n—oo A

Finally, combining the above two inequalities,
[ ram< tim [ goam< G [ adm< [ gam,
A n—ooJ A n—eo Ja A

shows that lim fA fndm exists and is equal to fA fdm, as desired.
n—oo

5.3 Convergence of the Riemann Integral

Now that we have a grasp of the convergence properties of the Lebesgue
integral, let’s compare it with those of the Riemann integral. The Riemann
equivalent to the Lebesgue Dominated Convergence Theorem (|5.4), is stated

below in Theorem [5.5]

Theorem 5.5 Let a,b € R, a < b, and let {f,} be a uniformly convergent

sequence of Riemann integrable functions on [a,b] such that

Jz_)ngofn(:c) = f(x) for all x € [a,b]. Then

b

b
lim fn(l’)dl':/ f(z)dx.

—
n—oo a



Recall that {f,} is uniformly convergent if, given € > 0, there exists a
natural number N such that |f(z) — fn(z)| < € whenever n > N, for all
x € [a,b]. Clearly, the hypotheses placed on {f,} in order for the Lebesgue
Dominated Convergence Theorem to hold are much less stringent than re-
quiring {f,} to converge uniformly. Thus, we can at least expect that the
class of Lebesgue integrable functions has somewhat better limit properties
than those of the class of Riemann integrable functions. In fact, we have
already witnessed this in Example with the Dirichlet function.

5.4 A Final Comparison

The following theorem, stated without proof, explicitly relates the Riemann
and Lebesgue integrals.

Theorem 5.6 If f is Riemann integrable on [a,b], then f is Lebesgue inte-
grable on [a,b], and

b
/ f(z)dx = fdm.
a [a,b]

What’s more, we’ve already seen that the converse of this theorem isn’t true.
Thus, not only does the class of Lebesgue integrable functions have better
limit properties, but it is also larger than the class of Riemann integrable
functions.

As promised in we now turn to the Lebesgue integral to re-examine
the function given in Example

Example 5.7 Consider the sequence of functions {f,} over the interval

E =10,1].
fle) =42 Tor =S g
0 otherwise

The limit function of this sequence is simply f = 0. In this example, each
function in the sequence is Riemann integrable, as is the limit function.
Howewver, the limit of the sequence of Riemann integrals is not equal to the
Riemann integral of the limit of the sequence. That is,

1

1
lim falx)de =1#0= / lim fn(x)dz.
0

n—oo 0 n—oo

By Theorem [5.6, it is also the case that

lim fndm=1#£0= / lim fp(z)dx.
=00 J0,1] [0,1] "



This example goes to show that, although the Lebesgue integral is su-
perior to the Riemann integral insofar as the size of the class of integrable
functions and the limit properties of these functions, there are still functions
which defy Lebesgue integration.

One point we have not yet touched on is the effect of the Lebesgue inte-
gral on the L, spaces. It turns out that Lo is complete under the Lebesgue
integral. This is of considerable importance, especially when dealing with
the theory behind Fourier series. However interesting that topic may be,
though, it will have to wait for another time.
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