
CHAPTER 2

Lebesgue Integration

With a basic knowledge of the Lebesgue measure theory, we now proceed to establish
the Lebesgue integration theory.

In this chapter, unless otherwise stated, all sets considered will be assumed to be
measurable.

We begin with simple functions.

1. Simple functions vanishing outside a set of finite measure

Recall that the characteristic function XA of any set A is defined by

XA(x) =

{
1 if x ∈ A

0 otherwise.

A function ϕ : E → R is said to be simple if there exists a1, a2, . . . , an ∈ R and
E1, E2, . . . , En ⊆ E such that ϕ =

∑n
i=1 aiXEi

. Note that here the Ei’s are implicitly
assumed to be measurable, so a simple function shall always be measurable. We have
another characterization of simple functions:

Proposition 2.1. A function ϕ : E → R is simple if and only if it takes only finitely
many distinct values a1, a2, . . . , an and ϕ−1{ ai } is a measurable set for all i = 1, 2, . . . , n.

Proof. Exercise. ¤

With the above proposition we see that every simple function ϕ can be written uniquely
in the form

ϕ =
n∑

i=1

aiXEi

where the ai’s are all non-zero and distinct, and the Ei’s are disjoint. (Simply take
Ei = ϕ−1{ ai } for i = 1, 2, . . . , n where a1, a2, . . . , an are all the distinct values of ϕ.) We
say this is the canonical representation of ϕ.

We adopt the following notation:
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2 2. LEBESGUE INTEGRATION

Notation. A function f : E → R is said to vanish outside a set of finite measure if
there exists a set A with m(A) < ∞ such that f vanishes outside A, i.e.

f = 0 on E \ A

or equivalently f(x) = 0 for all x ∈ E \ A. We denote the set of all simple functions
defined on E which vanish outside a set of finite measure by S0(E). Note that it forms a
vector space.

We are now ready for the definition of the Lebesgue integral of such functions.

Definition. For any ϕ ∈ S0(E) and any A ⊆ E, we define the Lebesgue integral of
ϕ over A by ∫

A

ϕ =
n∑

i=1

aim(Ei ∩ A)

where ϕ =
∑n

i=1 aiXEi
is the canonical representation of ϕ. (From now on we shall adopt

the convention that 0 ·∞ = 0. We need this convention here because it may happen that
one ai is 0 while the corresponding Ei ∩A has infinite measure. Also note that here A is
implicitly assumed to be measurable so m(Ei ∩A) makes sense. We shall never integrate
over non-measurable sets.)

It follows readily from the above definition that
∫

A

ϕ =

∫

E

ϕXA

for any ϕ ∈ S0(E) and for any A ⊆ E.

We now establish some major properties of this integral (with monotonicity and lin-
earity being probably the most important ones). We begin with the following lemma.

Lemma 2.2. Suppose ϕ =
∑n

i=1 aiXEi
∈ S0(E) where the Ei’s are disjoint. Then for

any A ⊆ E, ∫

A

ϕ =
n∑

i=1

aim(Ei ∩ A)

holds even if the ai’s are not necessarily distinct.

Proof. If ϕ =
∑m

j=1 bjXBj
is the canonical representation of ϕ, we have

(1) Bj =
⋃

{ i : ai=bj }
Ei

for j = 1, 2, . . . , m and

(2) { 1, 2, . . . , n } =
m⋃

j=1

{ i : ai = bj },
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where both unions are disjoint unions. Hence for any A ⊆ E, we have

∫

A

ϕ =
m∑

j=1

bjm (Bj ∩ A) (by definition of the integral)

=
m∑

j=1

bjm


 ⋃

{ i : ai=bj }
(Ei ∩ A)


 (by (1))

=
m∑

j=1

bj

∑

{ i : ai=bj }
m(Ei ∩ A) (by finite additivity of m)

=
m∑

j=1

∑

{ i : ai=bj }
aim(Ei ∩ A)

=
n∑

i=1

aim(Ei ∩ A) (by (2))

This completes our proof. ¤

Proposition 2.3. (Properties of the Lebesgue integral) Suppose ϕ, ψ ∈ S0(E). Then
for any A ⊆ E,

(a)
∫

A
(ϕ + ψ) =

∫
A

ϕ +
∫

A
ψ. (Note that ϕ + ψ ∈ S0(E) too by the vector space structure

of S0(E).)

(b)
∫

A
αϕ = α

∫
A

ϕ for all α ∈ R. (Note αϕ ∈ S0(E) again.)

(c) If ϕ ≤ ψ a.e. on A then
∫

A
ϕ ≤ ∫

A
ψ.

(d) If ϕ = ψ a.e. on A then
∫

A
ϕ =

∫
A

ψ.

(e) If ϕ ≥ 0 a.e. on A and
∫

A
ϕ = 0, then ϕ = 0 a.e. on A.

(f)
∣∣∫

A
ϕ
∣∣ ≤ ∫

A
|ϕ|. (Note |ϕ| ∈ S0(E) too. Why?)

Remark. (a) and (b) are known as the linearity property of the integral, while (c)
is known as the monotonicity property. Furthermore, Lemma 2.2 is now seen to hold by
the linearity of the integral even without the disjointness assumption on the Ei’s.

Proof. (a) Let ϕ =
∑n

i=1 aiXAi
and ψ =

∑m
j=1 bjXBj

be canonical representations

of ϕ and ψ respectively. Then noting that XAi
=

∑m
j=1XAi∩Bj

for all i and XBj
=
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∑n
i=1XAi∩Bj

for all j we see that

ϕ =
n∑

i=1

aiXAi
=

n∑
i=1

m∑
j=1

aiXAi∩Bj

ψ =
m∑

j=1

bjXBj
=

n∑
i=1

m∑
j=1

bjXAi∩Bj

Consequently

ϕ + ψ =
n∑

i=1

m∑
j=1

(ai + bj)XAi∩Bj
.

But the Ai ∩Bj’s are disjoint. So by Lemma 2.2 we have
∫

A

ϕ =
n∑

i=1

m∑
j=1

aim(Ai ∩Bj ∩ A)

∫

A

ψ =
n∑

i=1

m∑
j=1

bjm(Ai ∩Bj ∩ A)

and
∫

A

(ϕ + ψ) =
n∑

i=1

m∑
j=1

(ai + bj)m(Ai ∩Bj ∩ A).

Hence
∫

A
(ϕ + ψ) =

∫
A

ϕ +
∫

A
ψ.

(b) If α = 0 the result is trivial; if not, then let ϕ =
∑n

i=1 aiXAi
be the canonical

representation of ϕ. We see that αϕ =
∑n

i=1 αaiXAi
is the canonical representation

of αϕ and hence the result follows.
(c) Since

∫
A

ϕ − ∫
A

ψ =
∫

A
(ϕ − ψ) by linearity, it suffices to show

∫
A

φ ≥ 0 whenever
φ ≥ 0 a.e. on A. This is easy, since if a1, a2, . . . , an are the distinct values of φ, then∫

A

φ =
∑

{ i : ai<0 }
aim(φ−1{ ai } ∩ A) +

∑

{ i : ai≥0 }
aim(φ−1{ ai } ∩ A) ≥

∑

{ i : ai<0 }
ai · 0 = 0

where the inequality follows from the fact that m(φ−1{ ai ∩ A }) = 0 for all ai < 0.
(d) This is immediate from (c).
(e) Since it is given that ϕ ≥ 0 a.e. on A, it suffices to show m({x : ϕ(x) > 0 } ∩A) = 0.

Suppose not, then there exists a > 0 such that m({ x : ϕ(x) = a } ∩ A) > 0 so∫
A

ϕ ≥ a ·m({ x : ϕ(x) = a } ∩ A) > 0. This leads to a contradiction.
(f) This follows directly from monotonicity since −|ϕ| ≤ ϕ ≤ |ϕ|.

¤
Exercise 2.1. Show that if A,B ⊆ E, A ∩ B = ∅ and ϕ ∈ S0(E), then

∫
A∪B

ϕ =∫
A

ϕ +
∫

B
ϕ.
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Exercise 2.2. Show that if ϕ ∈ S0(E) vanishes outside F , then
∫

A
ϕ =

∫
A∩F

ϕ for
any A ⊆ E.

Exercise 2.3. Show that if A ⊆ B ⊆ E and 0 ≤ ϕ ∈ S0(E), then
∫

A
ϕ ≤ ∫

B
ϕ.

2. Bounded measurable functions vanishing outside a set of finite measure

Resembling the construction of the Riemann integral (using simple functions in place
of step functions), we define the upper and lower Lebesgue integrals.

Definition. Let f : E → R be a bounded function which vanish outside a set of finite
measure. For any A ⊆ E, we define the upper integral and the lower integral of f on A
by

∫

A

f = inf

{ ∫

A

ψ : f ≤ ψ on A,ψ ∈ S0(E)

}

∫

A

f = sup

{ ∫

A

ϕ : f ≥ ϕ on A,ϕ ∈ S0(E)

}

If the two values agree we denote the common value by
∫

A
f . (Again the set A is implicitly

assumed to be measurable so that
∫

A
ψ and

∫
A

ϕ make sense.)

Note that both the infimum and the supremum in the definitions of the upper and
lower integrals exist because f is bounded and vanishes outside a set of finite measure.
(This is why f has to be a bounded function here.) It is evident that for the functions
we investigated in Section 1 (namely simple functions vanishing outside a set of finite
measure) have their upper and lower integrals both equal to their integral as defined in

the last section. In other words, if ϕ ∈ S0(E) then
∫

A
ϕ =

∫
A
ϕ =

∫
A

ϕ, where the last

integral is as defined in the last section. It is also clear that −∞ <
∫

A
f ≤ ∫

A
f < ∞

whenever they are defined; we investigate when
∫

A
f =

∫
A
f .

Proposition 2.4. Let f be as in the above definition. Then
∫

A
f =

∫
A
f for all A ⊆ E

if and only if f is measurable.

Proof. (⇐) Let f be a bounded measurable function defined on E which vanishes
outside F with F ⊆ E and m(F ) < ∞. Then for each positive integer n there are simple
functions ϕn, ψn ∈ S0(E) vanishing outside F such that ϕn ≤ f ≤ ψn and 0 ≤ ψn −ϕn ≤
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1/n on E (Why?). Hence for any A ⊆ E, we have

0 ≤
∫

A

f −
∫

A

f (subtraction makes sense since both integrals are finite)

≤
∫

A

ψn −
∫

A

ϕn (by definition of

∫

A

f and

∫

A

f)

=

∫

A

(ψn − ϕn) (by linearity of Section 1)

=

∫

A∩F

(ψn − ϕn) (by Exercise 2.2, ϕn = ψn = 0 outside F )

≤
∫

F

(ψn − ϕn) (by Exercise 2.3, ψn − ϕn ≥ 0 on F and A ∩ F ⊆ F )

≤ m(F )/n (by monotonicity of Section 1, ψn − ϕn ≤ 1/n on F )

for all n. Letting n → ∞ we have
∫

A
f =

∫
A
f . (Note here we used the fact that

m(F ) < ∞.)

(⇒) Suppose
∫

A
f =

∫
A
f for any A ⊆ E. Then

∫
E
f =

∫
E
f . Denote the common

value by L. Then for all positive integers n there exists ϕn, ψn ∈ S0(E) such that ϕn ≤
f ≤ ψn on E and L − 1/n ≤ ∫

E
ϕn ≤

∫
E

ψn ≤ L + 1/n. (Note here we used the fact
that L ∈ R, a fact we have observed before.) Let ϕ = supn ϕn and ψ = infn ψn. We shall
show ϕ = ψ a.e. on E. (Then the desired conclusion follows since then ϕ ≤ f ≤ ψ on E
implies that ϕ = f = ψ a.e. on E and hence f is measurable.) To show that ϕ = ψ a.e.
on E, let 4 = {x ∈ E : ϕ(x) 6= ψ(x) } and 4i = { x ∈ E : ψ(x) − ϕ(x) > 1/i }. Then
4 =

⋃∞
i=14i. We wish to show m(4) = 0, which will be true if we can show m(4i)=0

for all i. Now for any i and n, since ψn − ϕn ≥ ψ − ϕ ≥ 1/i on 4i, we have

1

i
m(4i) =

∫

4i

1

i
(by definition of the integral)

≤
∫

4i

(ψn − ϕn) (by monotonicity in Section 1)

≤
∫

E

(ψn − ϕn) (by Exercise 2.3, ψn − ϕn ≥ 0 on E and 4i ⊆ E)

≤
∫

E

ψn −
∫

E

ϕn (by linearity of Section 1)

≤ 2/n (by our choice of ϕn, ψn).

Letting n →∞ we have m(4i) = 0 for all i, completing our proof. ¤

Notation. We shall denote the set of all (real-valued) bounded measurable functions
defined on E which vanishes outside a set of finite measure by B0(E).
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So from now on for f ∈ B0(E), we have
∫

A

f = inf

{∫

A

ψ : f ≤ ψ ∈ S0(E)

}
= sup

{ ∫

A

ϕ : f ≥ ϕ ∈ S0(E)

}

for any A ⊆ E.

Note also that B0(E) is a vector lattice, by which we mean it is a vector space partially
ordered by ≤ (such that f ≤ g if and only if f(x) ≤ g(x) for all x ∈ E) and every two
elements of it (say f, g ∈ B0(E)) have a least upper bound in it (namely f ∨ g ∈ B0(E)).
(Why is it a least upper bound?)

We have the following nice proposition concerning the relationship between the Rie-
mann and the Lebsegue integrals.

Proposition 2.5. If f : [a, b] → R is Riemann integrable on the closed and bounded
interval [a, b], then f ∈ B0([a, b]) and

(3) (R)

∫ b

a

f = (L)

∫

[a,b]

f,

where the (R) and (L) represents Riemann integral and Lebesgue integral respectively.

Proof. Since step functions defined on closed and bounded interval [a, b] are simple
and have the same Lebesgue and Riemann integral over [a, b] (why?), we see from the
definitions

(R)

∫ b

a

f = sup

{ ∫ b

a

ϕ : f ≥ ϕ step on [a, b]

}

(L)

∫

[a,b]

f = sup

{ ∫

[a,b]

ϕ : f ≥ ϕ simple on [a, b]

}

(L)

∫

[a,b]

f = inf

{ ∫

[a,b]

ψ : f ≤ ψ simple on [a, b]

}

(R)

∫ b

a

f = inf

{ ∫ b

a

ψ : f ≤ ψ step on [a, b]

}

that

(4) (R)

∫ b

a

f ≤ (L)

∫

[a,b]

f ≤ (L)

∫

[a,b]

f ≤ (R)

∫ b

a

f

whenever the four quantities exist. Now if f is Riemann integrable over [a, b], then f is
bounded on [a, b]. Since [a, b] is of finite measure, we see that all four quantities in (4)

exist. In that case (R)
∫ b

a
f = (R)

∫ b

a
f as well so all four quantities in (4) are equal, which

implies that f is measurable (so f ∈ B0([a, b])) and (3) holds. ¤
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Proposition 2.6. (Properties of the Lebesgue integral) Suppose f, g ∈ B0(E). Then
f + g, αf, |f | ∈ B0(E), and for any A ⊆ E, we have

(a)
∫

A
(f + g) =

∫
A

f +
∫

A
g.

(b)
∫

A
αf = α

∫
A

f for all α ∈ R.

(c)
∫

A
f =

∫
E

fXA.

(d) If B ⊆ A then
∫

A
f =

∫
B

f +
∫

A\B f .

(e) If B ⊆ A and f ≥ 0 a.e. on A then
∫

B
f ≤ ∫

A
f .

(f) If f ≤ g a.e. on A then
∫

A
f ≤ ∫

A
g.

(g) If f = g a.e. on A then
∫

A
f =

∫
A

g.

(h) If f ≥ 0 a.e. on A and
∫

A
f = 0, then f = 0 a.e. on A.

(i)
∣∣∫

A
f
∣∣ ≤ ∫

A
|f |.

Proof. We prove only (h); the others are easy and left as an exercise.

(h) For each positive integer n let An = { x ∈ A : f(x) ≥ 1/n }. Then

0 =

∫

A

f ≥
∫

An

f (by (e))

≥
∫

An

1

n
(by (f))

=
1

n
m(An) (by definition of the integral)

≥ 0

so m(An) = 0. Since this holds for all n, we see from f−1(0,∞) ∩ A = ∪∞n=1An that
0 ≤ m(f−1(0,∞)∩A) ≤ ∑∞

n=1 m(An) = 0 so m(f−1(0,∞)∩A) = 0. Together with f ≥ 0
a.e. on A, we see that f = 0 a.e. on A. ¤

We end this section with the important Bounded Convergence Theorem.

Theorem 2.7. (Bounded Convergence Theorem) Suppose m(E) < ∞, and { fn } is a
sequence of measurable functions defined and uniformly bounded on E by some constant
M > 0, i.e.

|fn| ≤ M for all n on E.

If { fn } converges to a function f (pointwisely) a.e. on E, then f is also bounded mea-
surable on E, limn→∞

∫
E

fn exists (in R) and is given by

(5) lim
n→∞

∫

E

fn =

∫

E

f



2. BOUNDED MEASURABLE FUNCTIONS VANISHING OUTSIDE A SET OF FINITE MEASURE 9

Proof. Under the given assumptions it is clear that f , being the pointwise limit of
{ fn } a.e. on E, is bounded (by M) and measurable on E. We wish to show limn→∞

∫
E

fn

exists and (5) holds. The result is trivial if m(E) = 0. So assume m(E) > 0 and let ε > 0
be given. Then for each natural number i let

Ei = {x ∈ E : |fj(x)− f(x)| ≥ ε/2m(E) for some j ≥ i } .

Then {Ei } is a decreasing sequence of sets with m(E1) ≤ m(E) < ∞. So

m(Ei) ↓ m

( ∞⋂
i=1

Ei

)
= 0,

the last equality follows from the fact that

m

( ∞⋂
i=1

Ei

)
≤ m ({ x ∈ E : fn(x) 9 f(x) }) = 0.

Choose N large enough such that m(EN) < ε/4M and let A = EN . Then |fn − f | <
ε/2m(E) everywhere on E \ A for all n ≥ N , and hence whenever n ≥ N we have

∣∣∣∣
∫

E

fn −
∫

E

f

∣∣∣∣ ≤
∫

E

|fn − f | (by linearity and (i))

=

∫

E\A
|fn − f |+

∫

A

|fn − f | (by (e))

≤
∫

E\A

ε

2m(E)
+

∫

A

2M (by our choice of N and that n ≥ N)

=
εm(E \ A)

2m(E)
+ 2Mm(A)

≤ ε

2
+ 2M

ε

4M
= ε.

Hence limn→∞
∫

E
fn exists (in R) and (5) holds.

(Alternatively when ε > 0 is given, by Littlewood’s 3rd Principle we can choose a
subset A of E with m(A) < ε/4M such that { fn } converges uniformly to f on E \ A.
Then choose N large enough such that |fn − f | < ε/2m(E) everywhere on E \ A for all
n ≥ N , we see that whenever n ≥ N , we have (as in the above)∣∣∣∣

∫

E

fn −
∫

E

f

∣∣∣∣ < ε.

Hence limn→∞
∫

E
fn exists (in R) and (5) holds.) ¤

Remark. Note that the first argument is just an adaptation of the proof of Little-
wood’s 3rd Principal to the present situation.

Exercise 2.4. Find an example to show that the assumption m(E) < ∞ cannot be
dropped in the Bounded Convergence Theorem.
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Exercise 2.5. Prove or disprove the following: Let E be of finite or infinite measure.
If { fn } is a sequence of uniformly bounded measurable functions on E which vanishes
outside a set of finite measure and converges pointwisely to f ∈ B0(E) a.e. on E, then
limn→∞

∫
E

fn =
∫

E
f . (Compare with the statement of the Bounded Convergence Theo-

rem.)

3. Integration of non-negative measurable functions

We integrate non-negative measurable functions through approximation by bounded
measurable functions vanishing outside a set of finite measure, which we studied in the
last section.

Definition. For a non-negative measurable function f : E → [0,∞] (where E is a
set which may be of finite or infinite measure), we define

∫

A

f = sup

{∫

A

ϕ : ϕ ≤ f on A,ϕ ∈ B0(E)

}

for any A ⊆ E.

Note that for non-negative bounded measurable functions vanishing outside a set of
finite measure, this definition agrees with the old one. Also note that we allow the
functions to take infinite value here.

We verify the monotonicity and linearity of such integrals.

Proposition 2.8. Suppose f, g : E → [0,∞] are non-negative measurable and A ⊆ E.

(a) If f ≤ g a.e. on A then
∫

A
f ≤ ∫

A
g.

(b) For α > 0, f + g and αf are non-negative measurable functions too and
∫

A

(f + g) =

∫

A

f +

∫

A

g

∫

A

αf = α

∫

A

f.

Proof. (a) This is clearly true, for if ϕ ∈ B0(E) and ϕ ≤ f on A, then ϕ ≤ g on
A so

∫
A

ϕ ≤ ∫
A

g by definition of
∫

A
g. Taking supremum over all such ϕ’s, we get∫

A
f ≤ ∫

A
g.

(b) The assertion on
∫

A
αf can be proved using supremum arguments similar to that in

(a) by noting that for α > 0 and ϕ ∈ B0(E), ϕ/α ≤ f on A whenever ϕ ≤ αf on A,
and αϕ ≤ αf on A whenever ϕ ≤ f on A.
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To verify
∫

A
(f + g) =

∫
A

f +
∫

A
g, note that if ϕ, ψ ∈ B0(E) and ϕ ≤ f , ψ ≤ g on

A, then ϕ + ψ ∈ B0(E) and ϕ + ψ ≤ f + g on A so
∫

A

(f + g) ≥
∫

A

(ϕ + ψ) (by definition of

∫

A

(f + g))

=

∫

A

ϕ +

∫

A

ψ (by linearity of the last section);

take supremum over all such ϕ’s and ψ’s we have
∫

A
(f + g) ≥ ∫

A
f +

∫
A

g. For
the opposite inequality, note that if φ ∈ B0(E) with φ ≤ f + g on A, then write
ϕ = min{φ, f} and ψ = φ− ϕ we see that ϕ, ψ ∈ B0(E) (note (i) −M ≤ ϕ ≤ φ ≤ M
if |φ| ≤ M so ϕ is bounded on E; (ii) ψ = φ − ϕ is bounded on E because both
φ and ϕ are; (iii) measurability of ϕ, ψ is clear; and (iv) from ϕ = min{φ, f} and
ψ = max{0, φ − f} we see that ϕ, ψ = 0 whenever φ = 0 so ϕ, ψ vanishes outside a
set of finite measure). Further, we have ϕ ≤ f , ψ ≤ g on A. Hence

∫

A

φ =

∫

A

ϕ +

∫

A

ψ (by linearity in the last section)

≤
∫

A

f +

∫

A

g (by definition of
∫

A
f and

∫
A

g)

Taking supremum over all such φ’s we get
∫

A
(f + g) ≤ ∫

A
f +

∫
A

g and we are done.

¤

Theorem 2.9. (Fatou’s Lemma) Suppose { fn } is a sequence of non-negative measur-
able functions defined on E and { fn } converges (pointwisely) to a non-negative function
f a.e. on E. Then ∫

E

f ≤ lim inf
n→∞

∫

E

fn.

Proof. Let h ∈ B0(E) and h ≤ f on E. Then there exists A ⊆ E with m(A) < ∞
such that h = 0 outside A. Let hn = min{fn, h} on A, we have hn is uniformly bounded
and measurable on A: in fact if |h| ≤ M on E, then hn = min{fn, h} ≥ min{0, h} ≥ −M
and hn = min{fn, h} ≤ h ≤ M so |hn| ≤ M on A. Further, with the observation that
min{a, b} = (a + b− |a− b|)/2 for all real a, b we have

hn =
fn + h− |fn − h|

2
→ f + h− |f − h|

2
= min{f, h} = h

on A. Since m(A) < ∞, we can conclude by Bounded Convergence Theorem that
∫

A
h =

limn→∞
∫

A
hn. So assuming hn = 0 on E \ A, we have

∫

E

h =

∫

A

h = lim
n→∞

∫

A

hn = lim
n→∞

∫

E

hn ≤ lim inf
n→∞

∫

E

fn

where the first equality follows from h = 0 on E \A and the last inequality holds because
hn ≤ fn on E for all n. Taking supremum over all such h’s, we get the desired inequality.

¤
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Theorem 2.10. (Monotone Convergence Theorem) If { fn } is an increasing sequence
of non-negative measurable functions defined on E (increasing in the sense that fn ≤ fn+1

for all n on E) and fn → f a.e.on E, then∫

E

fn ↑
∫

E

f

by which it means {∫
E

fn} is an increasing sequence with limit
∫

E
f .

In symbol,

0 ≤ fn ↑ f a.e.on E ⇒
∫

E

fn ↑
∫

E

f

Proof. ∫

E

f ≤ lim inf
n→∞

∫

E

fn ≤ lim sup
n→∞

∫

E

fn ≤
∫

E

f,

the first inequality follows from Fatou’s Lemma, the last inequality follows from fn ≤ f
on E for all n. Hence

∫
E

fn ↑
∫

E
f . (That

∫
E

fn increases as n increases is immediate
from monotonicity of such integrals.) ¤

Corollary 2.10.1. (Extension of Fatou’s lemma) If { fn } is a sequence of non-
negative measurable functions on E, then

∫
E

lim infn→∞ fn ≤ lim infn→∞
∫

E
fn.

The proof is easy and left as an exercise.

The following proposition is concerned with the absolute continuity of the integral.
(The concept of absolute continuity is to be defined in Chapter 3.)

Proposition 2.11. Suppose f is a non-negative measurable function defined on E
such that

∫
E

f < ∞. Then for all ε > 0, there is a δ > 0 such that
∫

A

f < ε

whenever A ⊆ E with m(A) < δ.

Proof. The result clearly holds if f is bounded on E. Suppose now f is not neces-
sarily bounded, we see that (f ∧ n) ↑ f so by Monotone Convergence Theorem∫

A

f = lim
n→∞

∫

A

(f ∧ n)

for all A ⊆ E. Note that by assumption
∫

E
f < ∞ so both sides of the equality above

are finite. Hence if ε > 0 is given, then there is a N such that
∣∣∫

A
f − ∫

A
(f ∧N)

∣∣ < ε/2.
Take δ = ε/2N , we see that

∫

A

f ≤
∣∣∣∣
∫

A

f −
∫

A

(f ∧N)

∣∣∣∣ +

∫

A

(f ∧N) ≤ ε/2 + Nm(A) ≤ ε/2 + Nδ < ε

whenever A ⊆ E with m(A) < δ. So we are done. ¤



4. EXTENDED REAL-VALUED INTEGRABLE FUNCTIONS 13

Exercise 2.6. For a non-negative measurable function f defined on E, show that∫
A

f =
∫

E
fXA for any A ⊆ E. Also show that

∫
A

f ≤ ∫
B

f if A ⊆ B ⊆ E.

Exercise 2.7. Show that if A,B ⊆ E are disjoint and f is a non-negative measurable
function defined on E, then

∫
A∪B

f =
∫

A
f +

∫
B

f .

Exercise 2.8. Show that if f is a non-negative measurable function defined on E and∫
E

f = 0, then f = 0 a.e. on E.

Exercise 2.9. Show that if f is a non-negative measurable function defined on E and∫
E

f < ∞, then f is finite a.e.

4. Extended real-valued integrable functions

In the last section we integrated non-negative measurable functions, and in this section
we wish to drop the non-negative requirement. Recall that it is a natural requirement
that our integral be linear, and now we can integrate a general non-negative measurable
function, so it is tempting to define the integral of a general (not necessarily non-negative)
measurable function f to be

∫
f+−∫

f− where f+ = f∨0 and f− = (−f)∨0, since f+, f−

are non-negative measurable and they sum up to f . But it turns out that we cannot always
do that, because it may well happen that

∫
f+ and

∫
f− are both infinite, in which case

their difference would be meaningless. (Remember that ∞−∞ is undefined.) So we need
to restrict ourselves to a smaller class of functions than the collection of all measurable
functions when we drop the non-negative requirement and come to the following definition.

Definition. For f : E → [−∞,∞], denote f+ = f ∨ 0 and f− = (−f) ∨ 0. Then f
is said to be integrable if and only if both

∫
E

f+ and
∫

E
f− are finite, in which case we

define the integral of f by ∫

A

f =

∫

A

f+ −
∫

A

f−

for any A ⊆ E.

Notation. We shall denote the class of all (extended real-valued) integrable functions
defined on E by L(E).

Note that in the above definition, f+ and f− are both non-negative measurable, so for
any set A ⊆ E,

∫
A

f+ and
∫

A
f− are both defined according to Section 3. Furthermore,∫

A
f+ ≤ ∫

E
f+ < ∞ (by Exercise 2.6) and similarly

∫
A

f− < ∞ so their difference makes
sense now. Also note that for non-negative integrable functions this definition agrees with
our old one.

We provide an alternative characterization of integrable functions.

Proposition 2.12. A measurable function f defined on E is integrable if and only if∫
E
|f | < ∞.

Proof. Easy! Just note that |f | = f+ + f−. ¤
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We proceed to investigate the structure of L(E). We want to say it is a vector lattice.
But we have to be careful here: Given f, g ∈ L(E) it may well happen that f(x) = +∞
and g(x) = −∞ for some x ∈ E and then f + g cannot be defined by f(x) + g(x) at
that x. Luckily there cannot be too many such x’s, in the sense that the set of all such
x’s is of measure zero. In fact every integrable function is finite a.e., a result which the
reader should prove from Exercise 2.9. We know that the values of a function on a set
of measure zero are not important as far as integration is concerned. (This was observed
as in the case of bounded measurable functions vanishing outside a set of finite measure;
the reader should verify this for the case of general integrable functions as well.) So that
eliminates our previous worries: more precisely, let us agree from now on two functions
f, g : E → [−∞,∞] are said to be equal (write f = g) if and only if they take the same
values a.e.on E, and f + g shall mean a function whose value at x is equal to f(x) + g(x)
for a.e.x ∈ E. Also say f ≤ g if and only if f(x) ≤ g(x) for a.e.x ∈ E. Then we have the
following proposition.

Proposition 2.13. L(E) forms a vector lattice (partially ordered by ≤).

Proof. If f, g ∈ L(E), then
∫

E
|f + g| ≤ ∫

E
|f | + ∫

E
|g| < ∞ (we are using linearity

and monotonicity in Section 3 here) and hence f + g ∈ L(E) (the measurability of f + g
is previously known). The rest of the proposition is trivial. ¤

With the vector lattice structure of L(E) it is natural to ask whether the integral is
linear and monotone or not. We expect it to be true; we verify it below.

Proposition 2.14. For any f, g ∈ L(E) and A ⊆ E, we have
∫

A
(f +g) =

∫
A

f +
∫

A
g

and
∫

A
αf = α

∫
A

f . Furthermore, if f ≤ g a.e.on A then
∫

A
f ≤ ∫

A
g.

Proof. The parts for monotonicity and
∫

A
αf = α

∫
A

f are easy and left as an exer-
cise. (Simply make use of the corresponding results in Section 3.)

So now let f, g ∈ L(E) and A ⊆ E be given, and we prove
∫

A
(f + g) =

∫
A

f +
∫

A
g.

By definition of the integral, the LHS is just
∫

A
(f + g)+ − ∫

A
(f + g)− and the RHS is∫

A
f+ − ∫

A
f− +

∫
A

g+ − ∫
A

g−, all terms being finite. So it suffices to show

(6)

∫

A

(f + g)+ +

∫

A

f− +

∫

A

g− =

∫

A

(f + g)− +

∫

A

f+ +

∫

A

g+,

which will be true if we can show

(7) (f + g)+ + f− + g− = (f + g)− + f+ + g+

a.e. on A because we can then use linearity of Section 3 to conclude that (6) is true. But
(7) is clearly true a.e., because (f + g)+− (f + g)− = f + g = f+− f− + g+− g− a.e., all
terms being finite a.e. This completes our proof. ¤

Finally we prove the important Generalized Lebesgue Dominated Convergence Theo-
rem.
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Theorem 2.15. If {fn}, {gn} are sequences of measurable functions defined on E,
|fn| ≤ gn, f = limn→∞ fn, g = lim infn→∞ gn and limn→∞

∫
E

gn =
∫

E
g < ∞, then

limn→∞
∫

E
fn exists and is equal to

∫
E

f .

Proof. Since |fn| ≤ gn implies gn ± fn are non-negative measurable, we see (by the
Extension of Fatou’s Lemma, Corollary 2.10.1) that∫

E

g +

∫

E

f =

∫

E

lim inf
n→∞

(gn + fn) ≤ lim inf
n→∞

∫

E

(gn + fn) =

∫

E

g + lim inf
n→∞

∫

E

fn.

and similarly∫

E

g −
∫

E

f =

∫

E

lim inf
n→∞

(gn − fn) ≤ lim inf
n→∞

∫

E

(gn − fn) =

∫

E

g − lim sup
n→∞

∫

E

fn.

So
∫

E
f ≤ lim infn→∞

∫
E

fn ≤ lim supn→∞
∫

E
fn ≤

∫
E

f (note here we used the assumption
that

∫
E

g < ∞) and the desired conclusion follows. ¤
Corollary 2.15.1. (Lebsegue Dominated Convergence Theorem) Suppose a sequence

of measurable functions {fn} defined on E converges pointwisely a.e. on E to f . If |fn| ≤ g
on E for some integrable function g, then

∫
E

fn converges to
∫

E
f .

A final word of remark: The idea of this section extends readily to complex-valued
functions, and the readers who are familar with general measure theory should find that
the results in the whole chapter is valid on a general measure space without needing the
slightest modification.


