
REVIEW OF LEBESGUE MEASURE AND INTEGRATION

CHRISTOPHER HEIL

These notes will briefly review some basic concepts related to the theory of Lebesgue
measure and the Lebesgue integral. We are not trying to give a complete development,
but rather review the basic definitions and theorems with at most a sketch of the proof of
some theorems. These notes follow the text Measure and Integral by R. L. Wheeden and
A. Zygmund, Dekker, 1977, and full details and proofs can be found there.

1. OPEN, CLOSED, AND COMPACT SUBSETS OF EUCLIDEAN SPACE

Notation 1.1. N = {1, 2, 3, . . .} is the set of natural numbers, Z = {. . . ,−1, 0, 1, . . .} is the
set of integers, Q is the set of rational numbers, R is the set of real numbers, and C is the
set of complex numbers. Rd is real d-dimensional Euclidean space, the space of all vectors
x = (x1, . . . , xd) with x1, . . . , xd ∈ R.

On occasion, we formally use the extended real number line R ∪ {−∞,∞} = [−∞,∞],
but it is important to note that ∞ is a formal object, not a number. To write a ∈ [−∞,∞]
means that either a is a finite real number or a is one of ±∞. We write |a| < ∞ to mean
that a is a finite real number. Note that there is no analogue of the extended reals when we
consider complex numbers; there’s no obvious “∞” or “−∞.”

We declare some arithmetic conventions for the extended real numbers: ∞ + ∞ = ∞,
1/0 = ∞, 1/∞ = 0, and 0 · ∞ = 0. The symbols ∞−∞ are undefined, i.e., they have no
meaning.

The empty set is denoted by ∅. Two sets A, B are disjoint if A ∩ B = ∅. A collection
{Ak} of sets are disjoint if Aj ∩ Ak = ∅ whenever j 6= k.

The real part of a complex number z = a + ib is Re (z) = a, and the imaginary part is
Im (z) = b. The complex conjugate of z = a + ib is z̄ = a − ib. The modulus, or absolute

value, of z = a + ib is |z| =
√

zz̄ =
√

a2 + b2. �

For concreteness, we will use the Euclidean distance on Rd in these notes. However, all
the results of this section are valid with respect to any norm on Rd.

Definition 1.2.

(a) The Euclidean norm on Rd is

|x| = (x2
1 + · · · + x2

d)
1/2.

The distance between x, y ∈ Rd is |x − y|.
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2 REVIEW OF LEBESGUE MEASURE AND INTEGRATION

(b) Suppose that {xn}n∈N is a sequence of points in Rd and that x ∈ Rd. We say that xn

converges to x, and write xn → x or x = lim
n→∞

xn, if

lim
n→∞

|xn − x| = 0. �

Using this definition of distance, we can now define open and closed sets in Rd and state
some of their basic properties.

Definition 1.3. Let E ⊆ Rd be given.

(a) E is open if for each point x ∈ E there is some open ball

Br(x) = {y ∈ Rd : |x − y| < r}
centered at x that is completely contained in E, i.e., Br(x) ⊆ E for some r > 0.

(b) A point x ∈ Rd is a limit point of E if there exist points xn ∈ E that converge to x,
i.e., such that xn → x.

(c) The complement of E is

EC = Rd\E = {x ∈ Rd : x /∈ E}.

(d) E is closed if its complement EC is open. It can be shown that E is closed if and
only if E contains all its limit points.

(e) If E is any subset of R, then its closure Ē is the smallest closed set that contains E.
It can be shown that

Ē = E ∪ {x ∈ Rd : x is a limit point of E}.

(f) E is dense in Rd if Ē = Rd. For example, the set Q of all rational numbers is a dense
subset of R.

(g) E is bounded if it is contained in some ball with finite radius, i.e., if there is some
r > 0 such that E ⊆ Br(0). �

The following notion of compact sets is very important.

Definition 1.4. Let E ⊆ Rd be given.

(a) An open cover of E is any collection {Uα}α∈J of open sets such that E ⊆ ⋃

α Uα.
The index set J may be finite, countable, or uncountable, i.e., there may be finitely
many, countably many, or uncountably many open sets Uα in the collection.

(b) E is compact if every open cover {Uα}α∈J of E contains a finite subcover. That is,
E is compact if whenever we choose open sets Uα such that E ⊆ ⋃

α Uα, then there
exist finitely many indices α1, . . . , αk ∈ J such that E ⊆ Uα1

∪ · · · ∪ Uαk
. �

Theorem 1.5. Let E ⊆ Rd be given.

(a) (Heine–Borel Theorem) E is compact if and only if it is both closed and bounded.
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(b) (Bolzano–Weierstrass Theorem) If E is compact, then every countable sequence of
points {xn}n∈N with xn ∈ E has a convergent subsequence (even if the original
sequence does not converge). That is, there exist indices n1 < n2 < . . . and a point
x ∈ Rd so that xnk

→ x. (Note that x is then a limit point of E, and therefore x ∈ E
since E is closed.) �

Theorem 1.6. Let E, F ⊆ Rd be given.

(a) If E ⊆ F , then Ē ⊆ F̄ .

(b) If E and F are compact sets then E + F = {x + y : x ∈ E and y ∈ F} is compact.

(c) If E and F are bounded sets (not necessarily compact), then E + F ⊆ Ē + F̄ .

Proof. (a) We just have to show that every limit point of E is a limit point of F . So, suppose
that x is a limit point of E. Then there exist points xn ∈ E such that xn → x. However,
E ⊆ F , so each xn is also an element of F . Therefore x is a limit point of F by definition.

(b) Suppose E and F are both compact. Then E and F are both bounded, so they are
contained in some finite balls centered at the origin, say E ⊆ Br(0) and F ⊆ Bs(0). Hence
E + F ⊆ Br+s(0), so E + F is bounded.

To show that E + F is closed, suppose that z is any limit point of E + F . This means
that there are points zn ∈ E + F which converge to z. By definition, zn = xn + yn for
some xn ∈ E and yn ∈ F . WE DO NOT KNOW whether xn and yn will converge to some
points x and y! However, we do know that {xn}n∈N is a sequence of points in E and that
E is compact. Therefore, there exists a subsequence {xnk

}k∈N which does converge to some
x ∈ E. For simplicity of notation, write x′

k = xnk
and y′

k = ynk
. Now, {y′

k}k∈N is a sequence
of points in F and F is compact, so there must be a subsequence {y′

kj
}j∈N which converges

to some y ∈ F . Note that since x′
k → x, it is still true that x′

kj
→ x. Again for simplicity

write x′′
j = x′

kj
and y′′

j = y′
kj

. Then we have x′′
j → x and y′′

j → y. Therefore x′′
j + y′′

j → x + y.

However, remember where these points came from: x′′
j = xnkj

and y′′
j = ynkj

. Therefore

x′′
j + y′′

j → z since xn + yn → z. So it must be the case that z = x + y. Thus z ∈ E + F , so
E + F contains all its limit points, and therefore is closed. Since E + F is both closed and
bounded, it is compact.

(c) Suppose that E and F are bounded sets. Then Ē and F̄ are closed and bounded sets,
hence compact. Certainly E + F ⊆ Ē + F̄ , so we just have to show that every limit point of
E + F is in Ē + F̄ .

So, suppose that z is a limit point of E + F . Then there exist points zn ∈ E + F such
that zn → z. By definition, zn = xn + yn for some xn ∈ E and yn ∈ F . Since Ē and F̄ are
compact, we can imitate the argument of part b and find convergent subsequences x′′

j and

y′′
j , i.e., x′′

j → x ∈ Ē and y′′
j → y ∈ F̄ for some x ∈ Ē and y ∈ F̄ (not necessarily x ∈ E or

y ∈ F ). Therefore x + y = lim x′′
j + lim y′′

j = lim (x′′
j + y′′

j ) = z, so z ∈ Ē + F̄ , as desired. �



4 REVIEW OF LEBESGUE MEASURE AND INTEGRATION

2. MEASURE THEORY

Our goal in this section is to assign to each subset of Rd a “size” or “measure” that
generalizes the concept of area or volume from simple sets to arbitrary sets. However, we will
see that this cannot be done for all sets without introducing some strange pathologies, and
therefore we must restrict the definition of measure to a subclass of well-behaved “measurable
sets.”

Definition 2.1.

(a) A cube or rectangular box in Rd is a set of the form

Q = [a1, b1] × · · · × [ad, bd].

The volume of this cube is

vol(Q) = (b1 − a1) · · · (bd − ad).

(b) The exterior Lebesgue measure of an arbitrary set E ⊆ Rd is

|E|e = inf

{

∑

k

vol(Qk) : all countable sequences of cubes Qk with E ⊆ ⋃

k

Qk

}

.

The exterior measure of a set lies in the range 0 ≤ |E|e ≤ ∞. Allowing the possibility
of infinite exterior measure, every subset of Rd has a uniquely defined nonnegative
exterior measure. �

Example 2.2.

(a) A seemingly “obvious” fact is that if Q is a cube in Rd then |Q|e = vol(Q). Since Q
covers itself with one cube, it does follow immediately from the definition that |Q|e ≤
vol(Q). However, the other inequality is not so trivial to prove. More generally, if
Q1, . . . , Qn are disjoint cubes, then it can be shown that

|Q1 ∪ · · · ∪ Qn|e = vol(Q1) + · · · + vol(Qn).

(b) |Rd|e = ∞.

(c) If S ⊆ Rd contains only countably many points then |S|e = 0. For example, the set
of rational numbers in R has zero exterior measure, i.e., |Q|e = 0.

(d) The Cantor set C is an example of a subset of R which contains uncountably many
points yet has exterior measure |C|e = 0. The Cantor set is also closed and equals
its own boundary. �

Definition 2.3. A property which holds except on a set of exterior measure zero is said to
hold almost everywhere (abbreviated a.e.). For example, if

g(x) =

{

1, x rational,

0, x irrational,
(2.1)
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then we say that g = 0 a.e. since the set of points {x ∈ R : g(x) 6= 0} is countable and
therefore has measure zero.

The prefix essential is often applied to a property that holds a.e. For example, the essential

supremum of a function f : E → [−∞,∞] is

ess sup
x∈E

f(x) = inf{M : f(x) ≤ M a.e.}.

Thus, for the function g given in equation (2.1) we have

sup
x∈R

g(x) = 1 while ess sup
x∈R

g(x) = 0. �

Here are some basic properties of exterior measure.

Lemma 2.4. Let E, F ⊆ Rd be given.

(a) If E ⊆ F , then |E|e ≤ |F |e.
(b) If E1, E2, . . . ⊆ Rd, then

∣

∣

⋃

Ek

∣

∣

e
≤ ∑

k |Ek|e.
(c) If E ⊆ Rd and ε > 0, then there exists an open set U ⊇ E such that |U |e ≤ |E|e + ε.

(Note that we also have |E|e ≤ |U |e by part a.) �

Remark 2.5. We might expect in Lemma 2.4(b) that if the sets E1, E2, . . . are disjoint,
then we would actually have | ∪Ek|e =

∑

k |Ek|e. Yet it can be shown that this is FALSE in
general: there exist disjoint sets E1, E2, . . . ⊆ Rd such that | ∪ Ek|e <

∑

k |Ek|e.
Likewise, in Lemma 2.4(c) we might expect that since E ⊆ U and |E|e ≤ |U |e ≤ |E|3 + ε,

the set U\E should have small exterior measure. Specifically, we expect that |U\E|e ≤ ε.
Yet this is also FALSE in general! Consequently, for such sets we have |(U\E)∪E|e = |U |e ≤
|E|e +ε < |E|e + |U\E|e even though U is the union of the two disjoint sets U\E and E. �

The problem is that, in some sense, the definition of exterior measure is too inclusive. All
sets have an exterior measure, even though there exist some very strange sets that behave in
unexpected ways (the existence of such strange sets is a consequence of the Axiom of Choice).
One way to handle this problem is to restrict our attention to sets which are “well-behaved”
with respect to exterior measure. This leads us to make the following definition.

Definition 2.6. A set E ⊆ Rd is Lebesgue measurable, or simply measurable, if given any
ε > 0 there exists an open set U ⊇ E such that |U\E|e ≤ ε.

If E is measurable, then its Lebesgue measure is its exterior measure, and is denoted
|E| = |E|e. �
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There exists sets that are not measurable. However, as the proof of this fact relies on the
Axiom of Choice, it is nonconstructive, i.e., it simply says that such sets exist but does not
explicitly display one. Typically, the sets we encounter are all measurable, and almost all
operations that we perform on measurable sets leave their measurability intact.

Lemma 2.7. (a) All open subsets of Rd are measurable.

(b) All closed subsets of Rd are measurable.

(c) Countable unions of measurable sets are measurable. That is, if E1, E2, . . . are mea-
surable, then so is

⋃

k Ek.

(d) Countable intersections of measurable sets are measurable. That is, if E1, E2, . . . are
measurable, then so is

⋂

k Ek.

(e) The complement of a measurable set is measurable. That is, if E is measurable, then
so is EC.

(f) All sets with exterior measure zero are measurable. That is, if |E|e = 0, then E is
measurable.

Proof. (f) Suppose that |E|e = 0, and let ε > 0 be given. Then by Lemma 2.4, there exists
an open set U ⊇ E such that |U |e ≤ |E|e + ε = 0 + ε = ε. Therefore, since U\E ⊆ U , we
have by Lemma 2.4(a) that |U\E|e ≤ |U |e ≤ ε. Hence E is measurable by definition. �

Theorem 2.8. Let E and E1, E2, . . . be measurable subsets of Rd.

(a)
∣

∣

⋃

Ek

∣

∣ ≤ ∑

k |Ek|.
(b) If E1, E2, . . . are disjoint, then

∣

∣

⋃

Ek

∣

∣ =
∑

k |Ek|.
(c) If E1 ⊆ E2 and |E2| < ∞, then |E1\E2| = |E1| − |E2|.
(d) If E1 ⊆ E2 ⊆ · · · , then

∣

∣

⋃

Ek

∣

∣ = lim
k→∞

|Ek|.

(e) If E1 ⊇ E2 ⊇ · · · and |E1| < ∞, then
∣

∣

⋂

Ek

∣

∣ = lim
k→∞

|Ek|.

(f) If h ∈ Rd and we define E + h = {x + h : x ∈ E}, then |E + h| = |E|.
(g) If T : Rd → Rd is linear, then |T (E)| = | det(T )| |E|. �

Here are some final attempts to illustrate the way in which measurable sets are “well-
behaved.”

Definition 2.9. Let E ⊆ Rd be arbitrary. The inner measure of E ⊆ Rd is

|E|i = sup{|F | : all closed sets F such that F ⊆ E}.

Compare this definition of inner measure to Lemma 2.4(c), which implies that the exterior
measure of E is given by

|E|e = inf{|U | : all open sets U such that U ⊇ E}.
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Theorem 2.10. If |E|e < ∞, then E is measurable if and only if |E|e = |E|i. �

Theorem 2.11 (Carathéodory’s Criterion). Let E ⊆ Rd be given. Then E is measurable if
and only if for every set A ⊆ Rd we have

|A|e = |A ∩ E|e + |A\E|e. �

From now on, when we are given a set E ⊆ Rd we implicitly assume that it is measurable

unless specifically stated otherwise.
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3. THE LEBESGUE INTEGRAL

Our goal in this section is to define the integral of most real- or complex-valued functions,
including functions for which the Riemann integral is not defined.

Definition 3.1. Let E ⊆ Rd, and consider a function mapping E to the extended nonneg-
ative reals, i.e., f : E → [0,∞].

(a) The graph of f is

Γ(f, E) =
{

(x, f(x)) ∈ Rd+1 : x ∈ E, f(x) < ∞
}

.

(b) The region under the graph of f is the set R(f, E) of all points (x, y) ∈ Rd+1 with
x ∈ E and y ∈ R and such that 0 ≤ y ≤ f(x) if f(x) < ∞, or 0 ≤ y < ∞ if
f(x) = ∞. �

We begin by defining the integral of a nonnegative, real-valued function. Later we will
extend this definition to general real- or complex-valued functions.

Definition 3.2. Let E be a measurable subset of Rd, and suppose that f : E → [0,∞].

(a) We say that f is a measurable function if R(f, E) is a measurable subset of Rd+1. It
can be shown that f is a measurable function if and only if {x ∈ Rd : f(x) ≥ α} is a
measurable subset of Rd for each α ∈ R. Sums, products, and limits of measurable
functions are measurable.

(b) If f is a measurable function, then the Lebesgue integral of f over E is the measure
of the region under the graph of f as a subset of Rd+1, i.e.,

∫

E

f =

∫

E

f(x) dx = |R(f, E)|.

If the set E is understood, then we may write simply
∫

f =
∫

E
f . Note that the

integral of a nonnegative f lies in the range

0 ≤
∫

E

f ≤ ∞. �

From now on, when we are given a function f we implicitly assume that it is measurable

unless specifically stated otherwise.
There are many equivalent ways to define the Lebesgue integral. I prefer the one given

in Definition 3.2 because it captures the intuition of what an integral should mean, i.e., the
integral should represent the “area under the graph” of f . Many texts begin by defining the
integral of step functions, i.e., functions which take only finitely many distinct values. It is
clear how to define the integral of a step function. Then, an arbitrary function f is written
as a limit of step functions and the Lebesgue integral of f is defined to be the limit of the
integrals of the step functions.

Here are some basic properties of integrals of nonnegative functions.

Theorem 3.3. Let E ⊆ Rd be given, and suppose that f , g : E → [0,∞].
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(a)
∫

E
1 = |E|.

(b) If f ≤ g, then
∫

E
f ≤

∫

E
g.

(c) If E1 ⊆ E2, then
∫

E1

f ≤
∫

E2

f .

(d) If E1, E2, . . . are disjoint sets in Rd and E = ∪Ek, then
∫

E
f =

∑

k

∫

Ek
f .

(e)
∫

E
(f + g) =

∫

E
f +

∫

E
g.

(f) (Tchebyshev’s Inequality) If α > 0, then |{x ∈ E : f(x) > α}| ≤ 1

α

∫

E
f .

(g) f = 0 a.e. on E if and only if
∫

E
f = 0.

(h) If f = g a.e., then
∫

E
f =

∫

E
g.

Proof. (a) If f(x) = 1 for all x ∈ E then R(f, E) = {(x, y) : x ∈ E, 0 ≤ y ≤ 1} =
E × [0, 1]. The seemingly obvious but nontrivial fact that |E × F | = |E| |F | then implies
that |R(f, E)| = |E|.

(b) Since R(f, E) ⊆ R(g, E), we have
∫

E
f = |R(f, E)| ≤ |R(g, E)| =

∫

E
g.

(c) This follows similarly from the fact that R(f, E1) ⊆ R(f, E2).

(d) Note that the sets R(f, Ek) are disjoint and that R(f, E) = ∪R(f, Ek). Therefore,
this part follows from Theorem 2.8(b).

(e) This is another “obvious” property that is not trivial to prove using the definition of
Lebesgue integral that we have chosen. The proof is not difficult, but it is rather long and
technical. The idea is that it is easy to prove if f and g are step functions, and that arbitrary
functions can be approximated by step functions.

(f) Let F = {x ∈ E : f(x) > α}. Then
∫

E

f ≥
∫

F

f ≥
∫

F

α = α |F |.

(g) If f = 0 a.e. on E then
∫

E
f = |R(f, E)| = 0.

Conversely, suppose that
∫

E
f = 0. Let F = {x ∈ E : f(x) > 0} be the set of points

where f is strictly positive. We have to show that |F | = 0. Now, for each α > 0, we have
by Tchebyshev’s Inequality that

0 ≤ |{x ∈ E : f(x) > α}| ≤ 1

α

∫

E

f = 0.

In particular, the set Fn = {x ∈ E : f(x) > 1/n} has measure zero for each n > 0. However,
F is the union of the countably many sets F1, F2, . . ., so 0 ≤ |F | ≤ ∑

n |Fn| = 0.

(h) If f = g a.e., then f − g = 0 a.e., so
∫

E

f −
∫

E

g =

∫

E

(f − g) = 0. �
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Note that Theorem 3.3(h) says that if two functions f and g are equal except on a set
of measure zero, then their integrals are equal. Hence, given a function f we can change
the values of f on any set of measure zero without changing the integral of the f . Hence,
whenever we are concerned only with integrals, we typically do not distinguish between two
functions that are equal except on a set of measure zero.

Now we can extend the definition of Lebesgue integral to more general functions.

Definition 3.4 (Lebesgue Integral for Real-Valued Functions). Let f be a real-valued func-
tion f : E → [−∞,∞]. We write f as a difference of two nonnegative functions by defining

f+(x) =

{

f(x), f(x) ≥ 0,

0, f(x) < 0,
and f−(x) =

{

0, f(x) ≥ 0,

|f(x)|, f(x) < 0,

so that
f = f+ − f− and |f | = f+ + f−.

We say that f is measurable if both f+ and f− are measurable, and in this case we define
the Lebesgue integral of f to be

∫

E

f(x) dx =

∫

E

f+(x) dx −
∫

E

f−(x) dx,

as long as this does not have the form ∞−∞ (in that case, the integral is undefined). �

Since 0 ≤ f+, f− ≤ |f | = f+ + f−, it follows from Definition 3.4 that
∫

E

f exists as a finite real value ⇐⇒
∫

E

f+ < ∞ and

∫

E

f− < ∞

⇐⇒
∫

E

f+ +

∫

E

f− < ∞

⇐⇒
∫

E

|f | < ∞.

Note that if |f(x)| = ∞ on a set with positive Lebesgue measure then
∫

|f | = ∞. Equiva-
lently, if

∫

E
|f | < ∞ then |f(x)| < ∞ a.e. However, it is possible to have |f(x)| < ∞ a.e.

yet still have
∫

E
|f | = ∞. For example, if f(x) = 1 for all x ∈ R, then

∫

f = ∞.

Definition 3.5 (Lebesgue Integral for Complex-Valued Functions). Suppose that f : E → C.
Split f into real and imaginary parts by writing f = Re (f) + i Im (f). Then we define the
Lebesgue integral of f to be

∫

E

f =

∫

E

Re (f) + i

∫

E

Im (f),

as long as both integrals on the right are defined and finite. �

Note that |Re (f)|, |Im (f)| ≤ |f | ≤ |Re (f)| + |Im (f)|. Therefore
∫

E

|f | < ∞ ⇐⇒
∫

E

|Re (f)|,
∫

E

|Im (f)| < ∞.
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Consequently,
∫

E

f exists as a complex number ⇐⇒
∫

E

|f | < ∞.

Definition 3.6. We say that a function f : E → [−∞,∞] or f : E → C is integrable if
∫

E
|f | < ∞. The collection of all integrable functions on E is called L1(E). That is, if we

are dealing with real-valued functions then

L1(E) =
{

f : E → [−∞,∞] :

∫

E

|f | < ∞
}

,

or if we are dealing with complex-valued functions then

L1(E) =
{

f : E → C :

∫

E

|f | < ∞
}

.

The choice of real-valued versus complex-valued functions is usually clear from context. In
either case, L1(E) is a vector space under the usual operations of function addition and
multiplication by scalars, and

‖f‖1 =

∫

E

|f |
defines a norm on this space, meaning that:

(a) 0 ≤ ‖f‖1 < ∞ for all f ∈ L1(R),

(b) ‖f‖1 = 0 if and only if f = 0 a.e.,

(c) ‖cf‖1 = |c| ‖f‖ for all f ∈ L1(R) and all scalars c, and

(d) ‖f + g‖1 ≤ ‖f‖1 + ‖g‖1 for all f , g ∈ L1(R). �

Note that in property (a), we only have that ‖f‖1 = 0 implies f = 0 a.e., not that f = 0.
In this sense ‖f‖1 does not quite satisfy the requirements of a norm (instead, it is only
a seminorm). On the other hand, we have declared that we will not distinguish between
two functions that are equal a.e., and with this identification we do have that ‖f‖1 satisfies
all the requirements of a norm. In other words, we regard any function that is 0 a.e. as
being “the” zero element of L1(R), and if f = g a.e. then we regard f and g as being the
“same” element of L1(R). To be more precise, we are really taking the elements of L1(R) to
be equivalence classes of functions that are equal a.e. This distinction between equivalence
classes of functions and the functions themselves is not usually an issue, and we will ignore it.

Definition 3.7. In analogy to L1(E), given 1 ≤ p < ∞ we define

Lp(E) =
{

f : E → [−∞,∞] :

∫

E

|f(x)|p dx < ∞
}

,

or make the obvious adjustment if we are dealing with complex-valued functions. It can be
shown that Lp(E) is a vector space, and that

‖f‖p =

(
∫

E

|f(x)|p dx

)1/p



12 REVIEW OF LEBESGUE MEASURE AND INTEGRATION

is a norm on this space (again in the sense of identification functions that are equal almost
everywhere). In fact, Lp(E) is complete in this norm (all Cauchy sequences converge), and
is therefore Banach space. If |E| < ∞ and 1 ≤ p < q < ∞ then Lq(E) ⊆ Lp(E). This
inclusion fails if E has infinite measure.

For the case p = ∞, we define

L∞(E) =
{

f : E → [−∞,∞] : ess sup
x∈E

|f(x)| < ∞
}

.

Then L∞(E) is a Banach space with respect to the norm

‖f‖∞ = ess sup
x∈E

|f(x)|.

If |E| < ∞, then L∞(E) ⊆ Lp(E) for each 1 ≤ p < ∞, and in fact L∞(E) =
⋂

p≥1
Lp(E).

For the case p = 2,

〈f, g〉 =

∫

E

f(x) g(x) dx

defines an inner product on L2(E). Thus L2(E) is a Hilbert space as well as a Banach space.
Out of all the exponents 1 ≤ p ≤ ∞, only L2(E) is a Hilbert space. �

Here is a fundamental inequality for the Lp norms.

Theorem 3.8 (Hölder’s Inequality). Let E ⊆ Rd be measurable, and fix 1 ≤ p ≤ ∞. If
f ∈ Lp(E) and g ∈ Lp′(E) then fg ∈ L1(E), and

‖fg‖1 ≤ ‖f‖p ‖g‖p′.

For 1 < p < ∞, this inequality is
∫

E

|fg| ≤
(

∫

E

|f |p
)1/p (

∫

E

|g|p′
)1/p′

.

For p = 2, Hölder’s inequality is known as the Schwarz, Cauchy–Schwarz, or Cauchy–

Bunyakowski–Schwarz inequality. It has the form
∫

E

|fg| ≤
(

∫

E

|f |2
)1/2 (

∫

E

|g|2
)1/2

.
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4. SWITCHING INTEGRALS

Suppose that f(x, y) is a function of two variables, with x varying through a domain
E ⊆ Rm and y varying through a domain F ⊆ Rn. Suppose also that we want to integrate
f over the entire domain

E × F = {(x, y) ∈ Rm+n : x ∈ E, y ∈ F}.
In this case, it is very important which set we integrate over first! In general, it is NOT true
that if we integrate over x first and y second, we will get the same result as if we integrate
over y first and x second.

Fubini’s and Tonelli’s Theorems give two conditions under which we can safely exchange
the order of integration. Fubini’s Theorem says that we can the switch integrals if f is
an integrable function, and Tonelli’s Theorem says that we can switch the integrals if f is a
nonnegative function. If neither theorem applies, then it is possible that

∫

E

∫

F
f(x, y) dx dy 6=

∫

F

∫

E
f(x, y) dy dx!

Theorem 4.1 (Fubini’s Theorem). If any one of the possible double integrals of |f(x, y)| is
finite, then interchanging the order of integration of f(x, y) is allowed. That is, if

(a)

∫

E

(
∫

F

|f(x, y)| dy

)

dx < ∞, or

(b)

∫

F

(
∫

E

|f(x, y)| dx

)

dy < ∞, or

(c)

∫∫

E×F

|f(x, y)| (dx dy) < ∞,

then
∫

E

∫

F

f(x, y) dy dx =

∫

F

∫

E

f(x, y) dx dy =

∫∫

E×F

f(x, y) (dx dy). (4.1)

Moreover, in this case g(x) =

∫

F

f(x, y) dy is well-defined for almost every x, and g is an

integrable function of x, i.e., g ∈ L1(E). Similarly, h(y) =
∫

E
f(x, y) dx is well-defined for

almost every y, and is an integrable function of y, i.e., h ∈ L1(F ). �

Theorem 4.2 (Tonelli’s Theorem). If f(x, y) ≥ 0 a.e., then interchanging the order of
integration of f(x, y) is allowed, i.e.,

∫

E

∫

F

f(x, y) dy dx =

∫

F

∫

E

f(x, y) dx dy. � (4.2)

Note that the hypotheses of Fubini’s Theorem imply that the integrals in equation (4.1)
are finite real or complex numbers. However, the integrals in equation (4.2) may be finite
real numbers or ∞. The equality in (4.2) means that if one side is finite then the other side
is finite as well, and if one is infinite then the other is infinite as well.
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Because a series can be viewed as a “discrete integral,” there are analogues of Fubini’s
and Tonelli’s theorems that apply to the problem of interchanging an integral and a sum or
interchanging two summations (see Corollary 5.3).
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5. SWITCHING INTEGRALS AND LIMITS

Suppose that {fn}n∈N is a sequence of functions that converge pointwise almost every-
where, i.e., there is a function f such that fn(x) → f(x) for almost every x. The following
example shows that this does NOT imply that the integrals of fn must converge to the

integral of f , i.e., it need NOT be true that lim
n→∞

∫

E

fn =

∫

E

lim
n→∞

fn!

Example 5.1. Let fn be defined as follows. For 0 ≤ x ≤ 1/n the graph of fn looks like an
isosceles triangle with base [0, 1/n] and height n. For all other x we set fn(x) = 0. Then
fn(x) → 0 for every x ∈ R! However,

∫

fn = 1/2 for every n, so
∫

fn does not converge to
∫

0 dx = 0. �

Our goal in this section is to give some conditions under which a limit and an integral
can be interchanged. The first result, known as the Monotone Convergence Theorem or
the Beppo–Levi Theorem, applies to the case of nonnegative functions that are monotone

increasing a.e., i.e., for which

0 ≤ f1(x) ≤ f2(x) ≤ f3(x) ≤ · · · for a.e. x ∈ E.

Theorem 5.2 (Monotone Convergence Theorem). Let E ⊆ Rd be given, and suppose that
fn : E → [0,∞] for n ∈ N. If the sequence of functions {fn}n∈N is monotone increasing a.e.
on E and if lim

n→∞
fn(x) = f(x) for a.e. x ∈ E, then

lim
n→∞

∫

E

fn =

∫

E

lim
n→∞

fn =

∫

E

f.

Proof. Note that R(f1, E) ⊆ R(f2, E) ⊆ · · · and that R(f, E) = ∪R(fn, E). It therefore
follows from Theorem 2.8(d) that

∫

E

f = |R(f, E)| = lim
n→∞

|R(fn, E)| = lim
n→∞

∫

E

fn. �

Recall that an infinite series is a limit of the partial sums of the series. Hence, we must be
careful when switching an integral and an infinite series. As a corollary of the Beppo–Levi
Theorem we can prove the following version of Tonelli’s Theorem that gives a condition on
when an integral and a summation can be interchanged.
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Corollary 5.3 (Tonelli’s Theorem). Let E ⊆ Rdbegiven, and suppose that fn : E → [0,∞]
for n ∈ N. Then

∫

E

∞
∑

n=1

fn =
∞

∑

n=1

∫

E

fn.

Proof. Set

FN (x) =

N
∑

n=1

fn(x) and F (x) =

∞
∑

n=1

fn(x).

Then F1(x) ≤ Fx(x) ≤ · · · for a.e. x, and lim
N→∞

FN(x) = F (x) a.e. Therefore, by the

Monotone Convergence Theorem,

∫

E

F = lim
N→∞

∫

E

FN = lim
N→∞

∫

E

N
∑

n=1

fn = lim
N→∞

N
∑

n=1

∫

E

fn =
∞

∑

n=1

∫

E

fn. (5.1)

Note that we were allowed to switch the sum and the integral in equation (5.1) because it
was a finite sum. �

If the functions fn are nonnegative but not monotone increasing, then we may not be
able to interchange a limit and an integral. However, the following result states that if the
functions fn are all nonnegative, then we do at least have a particular inequality.

Theorem 5.4 (Fatou’s Lemma). Let E ⊆ Rd be given, and suppose that fn : E → [0,∞]
for n ∈ N. Then

∫

E

lim inf
n→∞

fn ≤ lim inf
n→∞

∫

E

fn.

Consequently, if the fn converge pointwise almost everywhere, i.e., if lim
n→∞

fn(x) = f(x) a.e.,

and if the integrals converge as well, then
∫

E

f dx ≤ lim
n→∞

∫

E

fn dx.

Proof. Set gn(x) = inf
k≥n

fk(x). Then g1(x) ≤ g2(x) ≤ · · · , so {gn}n∈N is monotone increasing

for each x. Define

f(x) = lim inf
n→∞

fn(x) = lim
n→∞

inf
k≥n

fk(x) = lim
n→∞

gn(x).

Then by the Monotone Convergence Theorem and the fact that gn(x) ≤ fn(x), we have
∫

E

f =

∫

E

lim
n→∞

gn = lim
n→∞

∫

E

gn = lim inf
n→∞

∫

E

gn ≤ lim inf
n→∞

∫

E

fn. �

The Lebesgue Dominated Convergence Theorem, or LCDT, is perhaps the most important
and useful result of this section. It applies to functions that aren’t necessarily nonnegative
or monotone increasing, and it is the theorem to use in most cases.
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Theorem 5.5 (Lebesgue Dominated Convergence Theorem). Let E ⊆ Rd be given, and
suppose that fn : E → [−∞,∞] for n ∈ N. Suppose also that the functions fn(x) converge
pointwise almost everywhere, i.e., lim

n→∞
fn(x) = f(x) for a.e. x ∈ E. If there is a single

function g such that:

(a) |fn(x)| ≤ g(x) a.e. for every n, and

(b) g is integrable, i.e.,
∫

E
|g| < ∞,

then

lim
n→∞

∫

E

fn =

∫

E

lim
n→∞

fn =

∫

E

f.

In fact, even more is true in this case: fn converges to f in L1-norm, i.e.,

lim
n→∞

‖f − fn‖1 = lim
n→∞

∫

E

|f − fn| = 0. �

Proof. We will give the proof for nonnegative fn only, but it can be extended to general f .
Suppose that fn ≥ 0 a.e. Then by Fatou’s Lemma,

∫

E

f =

∫

E

lim inf
n→∞

fn ≤ lim inf
n→∞

∫

E

fn.

Further, since g−fn ≥ 0 a.e., we can apply Fatou’s Lemma to the functions g−fn, to obtain
∫

E

g −
∫

E

f =

∫

E

(g − f)

=

∫

E

lim inf
n→∞

(g − fn)

≤ lim inf
n→∞

∫

E

(g − fn) (by Fatou’s Lemma)

= lim inf
n→∞

(
∫

E

g −
∫

E

fn

)

=

∫

E

g − lim sup
n→∞

∫

E

fn.

Therefore,
∫

E

f ≤ lim inf
n→∞

∫

E

fn ≤ lim sup
n→∞

∫

E

fn ≤
∫

E

f.

Hence lim
n→∞

∫

E

fn exists and equals
∫

E
f . �
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6. CONVOLUTION

Definition 6.1. Let f and g be real- or complex-value functions with domain Rd. Then the
convolution of f and g is the function f ∗ g defined by

(f ∗ g)(x) =

∫

f(y) g(x− y) dy,

whenever this is well-defined. �

Theorem 6.2. If f , g ∈ L1(Rd) then f ∗ g ∈ L1(Rd), and ‖f ∗ g‖1 ≤ ‖f‖1 ‖g‖1.

Proof. We start by computing:
∫

|(f ∗ g)(x)| dx =

∫
∣

∣

∣

∣

∫

f(y) g(x− y) dy

∣

∣

∣

∣

dx ≤
∫∫

|f(y) g(x− y)| dy dx = (∗).

Because |f(y) g(x− y)| ≥ 0 for all x and y, Tonelli’s Theorem allows us to interchange the
order of integration in (∗). So, we can continue as follows:

(∗) =

∫∫

|f(y) g(x− y)| dx dy =

∫

|f(y)|
(

∫

|g(x− y)| dx

)

dy = (∗∗).

Now, since we are integrating over all of Rd, we know that
∫

|g(x− y)| dx =

∫

|g(x)| dx

(this wouldn’t necessarily be true if we were integrating on a finite domain). Therefore,

(∗∗) =

∫

|f(y)|
(

∫

|g(x)| dx

)

dy =

∫

|f(y)| ‖g‖1 dy = ‖g‖1

∫

|f(y)| dy = ‖g‖1 ‖f‖1.

Put it all together and we have shown ‖f ∗ g‖1 ≤ ‖g‖1 ‖f‖1. �

In fact, Theorem 6.2 is just a special case of the following more general result.

Theorem 6.3 (Young’s Convolution Inequality). If 1 ≤ p ≤ ∞ and f ∈ Lp(Rd) and
g ∈ L1(Rd) then f ∗ g ∈ Lp(Rd), and

‖f ∗ g‖p ≤ ‖f‖p ‖g‖1.

Proof. We’ve already done the case p = 1. The case p = ∞ is easy, so I will leave it as an
exercise. For other p’s it is a little tricky.

First let p′ be the dual exponent to p, i.e., the number which satisfies 1

p
+ 1

p′
= 1. Then

write

|(f ∗ g)(x)| ≤
∫

|f(y) g(x− y)| dy =

∫

|f(y) g(x− y)1/p| |g(x− y)1/p′| dy = (∗).
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Now apply Hölder’s inequality to the two parts of the integrand:

(∗) ≤
(

∫

|f(y) g(x− y)1/p|p dy

)1/p (
∫

|g(x − y)1/p′|p′ dy

)1/p′

=

(
∫

|f(y)|p |g(x− y)| dy

)1/p (
∫

|g(x− y)| dy

)1/p′

=

(
∫

|f(y)|p |g(x− y)| dy

)1/p (
∫

|g(y)| dy

)1/p′

= ‖g‖1/p′

1

(
∫

|f(y)|p |g(x − y)| dy

)1/p

.

Therefore,

‖f ∗ g‖p
p =

∫

|(f ∗ g)(x)|p dx = ‖g‖p/p′

1

∫∫

|f(y)|p |g(x− y)| dy dx

= ‖g‖p/p′

1

∫∫

|f(y)|p |g(x− y)| dx dy

= ‖g‖p/p′

1

∫

|f(y)|p
(

∫

|g(x − y)| dx

)

dy

= ‖g‖p/p′

1

∫

|f(y)|p
(

∫

|g(x)| dx

)

dy

= ‖g‖p/p′

1

∫

|f(y)|p ‖g‖1 dy

= ‖g‖1+p/p′

1 ‖f‖p
p

= ‖g‖p
1 ‖f‖p

p.

Take pth roots and you’re done. �
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7. CROSS PRODUCT BASES

Suppose that we have an orthonormal basis for the Hilbert space

L2[a, b] = {f : [a, b] → C : ‖f‖2 =

(
∫ b

a

|f(x)|2 dx

)1/2

< ∞}

of functions that are square-integrable defined on the interval [a, b], with inner product

〈f, g〉 =

∫ b

a

f(x) g(x) dx.

We will show how to use this orthonormal basis to construct an orthonormal basis for the
Hilbert space

L2([a, b] × [a, b]) = {F : [a, b] × [a, b] → C : ‖F‖2 =

(
∫ b

a

∫ b

a

|F (x, y)|2 dx dy

)1/2

< ∞},

of functions that are square-integrable on the square [a, b] × [a, b], under the inner product

〈F, G〉 =

∫ b

a

∫ b

a

F (x, y) G(x, y)dx dy.

Theorem 7.1. Suppose that {fn(x)}n∈N is an orthonormal basis for L2[a, b], and define

Fmn(x, y) = fm(x) fn(y).

Then {Fmn(x, y)}m,n∈N is an orthonormal basis for L2([a, b] × [a, b]).

Proof. First we check that the functions Fmn are indeed orthonormal:

〈Fmn, Fjk〉 =

∫ b

a

∫ b

a

Fmn(x, y) Fjk(x, y)dx dy

=

∫ b

a

∫ b

a

fm(x) fn(y) fj(x) fk(y)dx dy

=

∫ b

a

fn(y) fk(y)

(
∫ b

a

fm(x) fj(x) dx

)

dy

=

∫ b

a

fn(y) fk(y) 〈fm, fj〉 dy

= 〈fm, fj〉
∫ b

a

fn(y) fk(y)dy

= 〈fm, fj〉 〈fn, fk〉

=

{

1, if m = j and n = k,

0, if m 6= j or n 6= k.

This establishes that {Fmn} is an orthonormal system in L2([a, b] × [a, b]).
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Now we have to show that this orthonormal system is an orthonormal basis. We have
several choices for doing this. One way is to show that {Fmn} is complete, i.e., the only
function F ∈ L2([a, b] × [a, b]) that is orthogonal to every Fmn is the zero function. So,
suppose that F ∈ L2([a, b]× [a, b]) is such that 〈F, Fmn〉 = 0 for every m and n. It would be
easy to proceed if it was the case that F (x, y) = f(x) g(y) for some functions f , g ∈ L2[a, b],
but it is important to note that only SOME of the functions in L2([a, b] × [a, b]) can be
“factored” in this way. So, we have to be more careful. For a general function F (x, y), we
begin by computing that

0 = 〈F, Fmn〉 =

∫ b

a

∫ b

a

F (x, y) Fmn(x, y)dx dy

=

∫ b

a

∫ b

a

F (x, y) fm(x) fn(y)dx dy

=

∫ b

a

(
∫ b

a

F (x, y) fm(x) dx

)

fn(y)dy

=

∫ b

a

hm(y) fn(y) dy

= 〈hm, fn〉, (7.1)

where

hm(y) =

∫ b

a

F (x, y) fm(x) dx.

Note that hm ∈ L2[a, b] because, by the Schwarz inequality,

‖hm‖2
2 =

∫ b

a

|hm(y)|2 dy =

∫ b

a

∣

∣

∣

∣

∫ b

a

F (x, y) fm(x) dx

∣

∣

∣

∣

2

dy

≤
∫ b

a

(
∫ b

a

|F (x, y)|2 dx

) (
∫ b

a

|fm(x)|2 dx

)

dy

=

∫ b

a

(
∫ b

a

|F (x, y)|2 dx

)

‖fm‖2 dy

=

∫ b

a

∫ b

a

|F (x, y)|2 dx dy

= ‖F‖2
2 < ∞.

Moreover, considering now a fixed m, equation (7.1) says that hm is orthogonal to every
function fn in the orthonormal basis {fn}n∈N for L2[a, b]. Therefore hm = 0 a.e.

We still have to show that F = 0 a.e. So, for each y let Gy(x) be the function defined by

Gy(x) = F (x, y).
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As was the case for hm, you can easily check that for each fixed y, the function Gy is in
L2[a, b] (as a function of x alone). Moreover, since h(y) = 0 a.e., we have

〈Gy(x), fm(x)〉 =

∫ b

a

F (x, y) fm(y)dx = hm(y) = 0.

That is, Gy is orthogonal to every fm, and since {fm} is an orthonormal basis for L2[a, b]
we therefore conclude that Gy(x) = 0 for a.e. x. Since this is true for a.e. y, we conclude
that F (x, y) = 0 for a.e. (x, y) (OK, there’s a little argument to fill about sets in the plane
with measure zero, but it’s easy). We started with a function F (x, y) that was orthogonal to
every fm(x) fn(y) and showed that this F must be zero a.e., so this shows that {fm(x) fn(y)}
is complete, and hence is an orthonormal basis since we have already shown that it is an
orthonormal system.

Here is another way of showing that {fm(x) fn(y)} is complete. Instead of showing that
only the zero function is orthogonal to every element of this system, we can show that its
finite linear span is dense. So, choose any function F (x, y) ∈ L2([a, b]× [a, b]). By any one of
several arguments, we know that the set of continuous functions is dense in L2([a, b]× [a, b]).
Therefore, there is a continuous function G(x, y) ∈ L2([a, b]× [a, b]) such that ‖F −G‖2 < ε.
Now subdivide the square [a, b]× [a, b] into finitely many smaller squares Qk for k = 1, . . .N .
Then we can approximate G by a step function

H(x, y) =

N
∑

k=1

ck χQk
(x, y).

For example, by taking the squares small enough and letting ck be the average value of G
on the square Qk, we can make ‖G − H‖2 < ε. Now, each square is a cross product of two
intervals: Qk = Ik × Jk. Therefore,

χQk
(x, y) = χIk

(x) χJk
(y).

Since χIk
, χJk

∈ L2[a, b], we can write

χIk
(x) =

∑

m

amk fm(x) and χJk
(y) =

∑

n

bnk fn(y)

for some scalars amk and bnk (in fact, these scalars are given by inner products, but that
doesn’t really matter for this argument). Hence,

H(x, y) =

N
∑

k=1

ck χIk
(x) χJk

(y) =

N
∑

k=1

ck

(

∑

m

amk fm(x)

) (

∑

n

bnk fn(y)

)

=
∑

m

∑

n

( N
∑

k=1

ck amk bnk

)

fm(x) fn(y)

=
∑

m

∑

n

dmn fm(x) fn(y), (7.2)

where dmn =
∑N

k=1
ck amk bnk are some new scalars (note that this is a finite sum, so it

is well-defined). But equation (7.2) says that H is an infinite linear combination of the
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functions fm(x) fn(y), hence can be approximated to within ε in L2-norm by a function in
span{fm(x) fn(y)}. Therefore F is approximated to within 3ε in L2-norm by a function in
this span. Hence the span is dense, so {fm(x) fn(y)} is complete, and therefore forms an
orthonormal basis since we already know that it is an orthonormal system. �

Example 7.2. The set {e2πinx}n∈Z is an orthonormal basis for L2[0, 1]. Therefore, the
collection

{e2πimx e2πiny}m,n∈Z

is an orthonormal basis for L2([0, 1] × [0, 1]). �

Theorem 7.1 can easily be adapted to cover the case of finding an orthonormal basis for
L2([a, b]× [c, d]) or L2(R2), etc. The general principle is that if {fn} is an orthonormal basis
for L2(Ω1) and {gn} is an orthonormal basis for L2(Ω2), then {fm(x) gn(y)} is an orthonormal
basis for L2(Ω1 × Ω2).


