CONDUCTION AND
ELECTROQUASISTATIC

CHARGE RELAXATION

7.0 INTRODUCTION

This is the last in the sequence of chapters concerned largely with electrostatic and
electroquasistatic fields. The electric field E is still irrotational and can therefore
be represented in terms of the electric potential ®.

VXE=0E=-V® (1)

The source of E is the charge density. In Chap. 4, we began our exploration of EQS
fields by treating the distribution of this source as prescribed. By the end of Chap.
4, we identified solutions to boundary value problems, where equipotential surfaces
were replaced by perfectly conducting metallic electrodes. There, and throughout
Chap. 5, the sources residing on the surfaces of electrodes as surface charge densities
were made self-consistent with the field. However, in the volume, the charge density
was still prescribed.

In Chap. 6, the first of two steps were taken toward a self-consistent description
of the charge density in the volume. In relating E to its sources through Gauss’
law, we recognized the existence of two types of charge densities, p,, and p,, which,
respectively, represented unpaired and paired charges. The paired charges were
related to the polarization density P with the result that Gauss’ law could be
written as (6.2.15)

V-D=p, (2)

where D = ¢,E + P. Throughout Chap. 6, the volume was assumed to be perfectly
insulating. Thus, p, was either zero or a given distribution.
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(a) (b)

Fig. 7.0.1 EQS distributions of potential and current density are analogous
to those of voltage and current in a network of resistors and capacitors. (a)
Systems of perfect dielectrics and perfect conductors are analogous to capaci-
tive networks. (b) Conduction effects considered in this chapter are analogous
to those introduced by adding resistors to the network.

The second step toward a self-consistent description of the volume charge
density is taken by adding to (1) and (2) an equation expressing conservation of
the unpaired charges, (2.3.3).

Ipu
Pu _

V.1,
ot (3)

That the charge appearing in this equation is indeed the unpaired charge den-
sity follows by taking the divergence of Ampere’s law expressed with polarization,
(6.2.17), and using Gauss’ law as given by (2) to eliminate D.

To make use of these three differential laws, it is necessary to specify P and
J. In Chap. 6, we learned that the former was usually accomplished by either
specifying the polarization density P or by introducing a polarization constitutive
law relating P to E. In this chapter, we will almost always be concerned with linear
dielectrics, where D = €¢E.

A new constitutive law is required to relate J, to the electric field intensity.
The first of the following sections is therefore devoted to the constitutive law of
conduction. With the completion of Sec. 7.1, we have before us the differential laws
that are the theme of this chapter.

To anticipate the developments that follow, it is helpful to make an analogy
to circuit theory. If the previous two chapters are regarded as describing circuits
consisting of interconnected capacitors, as shown in Fig. 7.0.1a, then this chapter
adds resistors to the circuit, as in Fig. 7.0.1b. Suppose that the voltage source is a
step function. As the circuit is composed of resistors and capacitors, the distribution
of currents and voltages in the circuit is finally determined by the resistors alone.
That is, as t — oo, the capacitors cease charging and are equivalent to open circuits.
The distribution of voltages is then determined by the steady flow of current through
the resistors. In this long-time limit, the charge on the capacitors is determined from
the voltages already specified by the resistive network.

The steady current flow is analogous to the field situation where dp,, /0t — 0
in the conservation of charge expression, (3). We will find that (1) and (3), the
latter written with J, represented by the conduction constitutive law, then fully
determine the distribution of potential, of E, and hence of J,. Just as the charges
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on the capacitors in the circuit of Fig. 7.0.1b are then specified by the already
determined voltage distribution, the charge distribution can be found in an after-
the-fact fashion from the already determined field distribution by using Gauss’ law,
(2). After considering the physical basis for common conduction constitutive laws
in Sec. 7.1, Secs. 7.2-7.6 are devoted to steady conduction phenomena.

In the circuit of Fig. 7.0.1b, the distribution of voltages an instant after the
voltage step is applied is determined by the capacitors without regard for the re-
sistors. From a field theory point of view, this is the physical situation described in
Chaps. 4 and 5. It is the objective of Secs. 7.7-7.9 to form an appreciation for how
this initial distribution of the fields and sources relaxes to the steady condition,
already studied in Secs. 7.2-7.6, that prevails when ¢ — oco.

In Chaps. 3-5 we invoked the “perfect conductivity” model for a conductor.
For electroquasistatic systems, we will conclude this chapter with an answer to the
question, “Under what circumstances can a conductor be regarded as perfect?”

Finally, if the fields and currents are essentially static, there is no distinction
between EQS and MQS laws. That is, if 9B/t is negligible in an MQS system,
Faraday’s law again reduces to (1). Thus, the first half of this chapter provides
an understanding of steady conduction in some MQS as well as EQS systems. In
Chap. 8, we determine the magnetic field intensity from a given distribution of
current density. Provided that rates of change are slow enough so that effects of
magnetic induction can be ignored, the solution to the steady conduction problem
as addressed in Secs. 7.2-7.6 provides the distribution of the magnetic field source,
the current density, needed to begin Chap. 8.

Just how fast can the fields vary without producing effects of magnetic in-
duction? For EQS systems, the answer to this question comes in Secs. 7.7-7.9. The
EQS effects of finite conductivity and finite rates of change are in sharp contrast
to their MQS counterparts, studied in the last half of Chap. 10.

7.1 CONDUCTION CONSTITUTIVE LAWS

In the presence of materials, fields vary in space over at least two length scales.
The microscopic scale is typically the distance between atoms or molecules while
the much larger macroscopic scale is typically the dimension of an object made
from the material. As developed in the previous chapter, fields in polarized media
are averages over the microscopic scale of the dipoles. In effect, the experimental
determination of the polarization constitutive law relating the macroscopic P and
E (Sec. 6.4) does not deal with the microscopic field.

With the understanding that experimentally measured values will again be
used to evaluate macroscopic parameters, we assume that the average force acting
on an unpaired or free charge, ¢, within matter is of the same form as the Lorentz
force, (1.1.1).

£ = q(B+v x u,H) (1)

By contrast with a polarization charge, a free charge is not bound to the atoms and
molecules, of which matter is constituted, but under the influence of the electric and
magnetic fields can travel over distances that are large compared to interatomic or
intermolecular distances. In general, the charged particles collide with the atomic
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or molecular constituents, and so the force given by (1) does not lead to uniform
acceleration, as it would for a charged particle in free space. In fact, in the conven-
tional conduction process, a particle experiences so many collisions on time scales
of interest that the average velocity it acquires is quite low. This phenomenon gives
rise to two consequences. First, inertial effects can be disregarded in the time aver-
age balance of forces on the particle. Second, the velocity is so low that the forces
due to magnetic fields are usually negligible. (The magnetic force term leads to
the Hall effect, which is small and very difficult to observe in metallic conductors,
but because of the relatively larger translational velocities reached by the charge
carriers in semiconductors, more easily observed in these.)

With the driving force ascribed solely to the electric field and counterbalanced
by a “viscous” force, proportional to the average translational velocity v of the
charged particle, the force equation becomes

f=+|¢t|E=vgv (2)

where the upper and lower signs correspond to particles of positive and negative
charge, respectively. The coefficients v, are positive constants representing the
time average “drag” resulting from collisions of the carriers with the fixed atoms
or molecules through which they move.

Written in terms of the mobilities, pu4, the velocities of the positive and neg-
ative particles follow from (2) as

Vi = :t,uiE (3)

where pt+ = |¢+|/v+. The mobility is defined as positive. The positive and negative
particles move with and against the electric field intensity, respectively.

Now suppose that there are two types of charged particles, one positive and
the other negative. These might be the positive sodium and negative chlorine ions
resulting when salt is dissolved in water. In a metal, the positive charges represent
the (zero mobility) atomic sites, while the negative particles are electrons. Then,
with Ny and N_, respectively, defined as the number of these charged particles per
unit volume, the current density is

Ju=Nilgelvy = Nolg-|v- (4)

A flux of negative particles comprises an electrical current that is in a direction
opposite to that of the particle motion. Thus, the second term in (4) appears with
a negative sign. The velocities in this expression are related to E by (3), so it follows
that the current density is

Ju = (Nilgtlps + N-[g-[p-)E (5)
In terms of the same variables, the unpaired charge density is
pu = Nylgs| — N_|g—| (6)

Ohmic Conduction. In general, the distributions of particle densities N and
N_ are determined by the electric field. However, in many materials, the quantity
in brackets in (5) is a property of the material, called the electrical conductivity o.
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Ju=0E; o= (Nylgslps + N-fg-|p-) (7)

The MKS units of o are (ohm - m)~! = Siemens/m = S/m.

In these materials, the charge densities Nyqg; and N_q_ keep each other in
(approximate) balance so that there is little effect of the applied field on their sum.
Thus, the conductivity o(r) is specified as a function of position in nonuniform
media by the distribution Ny in the material and by the local mobilities, which can
also be functions of r.

The conduction constitutive law given by (7) is Ohm’s law generalized in a
field-theoretical sense. Values of the conductivity for some common materials are
given in Table 7.1.1. It is important to keep in mind that any constitutive law is
of restricted use, and Ohm’s law is no exception. For metals and semiconductors,
it is usually a good model on a sufficiently large scale. It is also widely used in
dealing with electrolytes. However, as materials become semi-insulators, it can be
of questionable validity.

Unipolar Conduction. To form an appreciation for the implications of Ohm’s
law, it will be helpful to contrast it with the law for unipolar conduction. In that
case, charged particles of only one sign move in a neutral background, so that the
expressions for the current density and charge density that replace (5) and (6) are

Ju = |p|luE (8)

Pu =P (9)
where the charge density p now carries its own sign. Typical of situations described
by these relations is the passage of ions through air.

Note that a current density exists in unipolar conduction only if there is a net
charge density. By contrast, for Ohmic conduction, where the current density and
the charge density are given by (7) and (6), respectively, there can be a current
density at a location where there is no net charge density. For example, in a metal,
negative electrons move through a background of fixed positively charged atoms.
Thus, in (7), py = 0 and the conductivity is due solely to the electrons. But it
follows from (6) that the positive charges do have an important effect, in that they
can nullify the charge density of the electrons. We will often find that in an Ohmic
conductor there is a current density where there is no net unpaired charge density.

7.2 STEADY OHMIC CONDUCTION

To set the stage for the next two sections, consider the fields in a material that has
a linear polarizability and is described by Ohm’s law, (7.1.7).

J=0(r)E; D =¢(r)E (1)
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TABLE 7.1.1
CONDUCTIVITY OF VARIOUS MATERIALS

Metals and Alloys in Solid State

o— mhos/m at 20°C

Aluminum, commercial hard drawn .......................... 3.54 x 107
Copper, annealed . ........ ..o 5.80 x 107
Copper, hard drawn ....... ... i i 5.65 x 107
Gold, pure drawn. .......ooinuiit et e 4.10 x 107
Irom, 99.98%0 . . oot 1.0 x 107
SHEEL - ettt 0.5-1.0 x 107
LEAA - vttt 0.48 x 107
Magnesium .. ... 2.17 x 107
Nichrome. . ... s 0.10 x 107
NICKEL - ettt ettt ettt 1.28 x 107
SIIVET, 99.98%0 . . oo vttt 6.14 x 107
TUNEStEN . . e 1.81 x 107

Semi-insulating and Dielectric Solids

Bakelite (average range)™ ... ... ... .. ... . i 107 —10%
Celluloid™ ... 1078
Glass, ordinary™ ... ... .. i e 10712
Hard rubber™®. ... o 1071 —10716
MECR™ L 107" —10718
Paraffin® ... . 107 —10716
Quartz, fused™ . ... .. e less than 1077
Sulfur™ . less than 1076
Teflon™ .. less than 10~ ¢
Liquids
MeTCUrY . . oo 0.10 x 107
Alcohol, ethyl, 15° C ..ot 33 x 107
Water, Distilled, 18° C ..ot 2  x 107
Cornt Ol .ottt 5 x 107"

*For highly insulating materials. Ohm’s law is of dubious validity and conductivity
values are only useful for making estimates.

In general, these properties are functions of position, r. Typically, electrodes
are used to constrain the potential over some of the surface enclosing this material,
as suggested by Fig. 7.2.1.

In this section, we suppose that the excitations are essentially constant in
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Fig. 7.2.1 Configuration having volume enclosed by surfaces S’, upon which
the potential is constrained, and S/, upon which its normal derivative is con-
strained.

time, in the sense that the rate of accumulation of charge at any given location
has a negligible influence on the distribution of the current density. Thus, the time
derivative of the unpaired charge density in the charge conservation law, (7.0.3), is
negligible. This implies that the current density is solenoidal.

g

Of course, in the EQS approximation, the electric field is also irrotational.
VxE=0E=-V® (3)

Combining (2) and (3) gives a second-order differential equation for the potential
distribution.

V-oV® =0 (4)

In regions of uniform conductivity (o = constant), it assumes a familiar form.
V20 =0 (5)

In a uniform conductor, the potential distribution satisfies Laplace’s equation.

It is important to realize that the physical reasons for obtaining Laplace’s
equation for the potential distribution in a uniform conductor are quite different
from those that led to Laplace’s equation in the electroquasistatic cases of Chaps.
4 and 5. With steady conduction, the governing requirement is that the divergence
of the current density vanish. The unpaired charge density does not influence the
current distribution, but is rather determined by it. In a uniform conductor, the
continuity constraint on J happens to imply that there is no unpaired charge density.
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Fig. 7.2.2 Boundary between region (a) that is insulating relative to
region (b).

In a nonuniform conductor, (4) shows that there is an accumulation of un-
paired charge. Indeed, with o a function of position, (2) becomes

oV-E+E - Vo=0 (6)

Once the potential distribution has been found, Gauss’ law can be used to determine
the distribution of unpaired charge density.

pu=€V-E4+E- Ve (7)
Equation (6) can be solved for div E and that quantity substituted into (7) to obtain

€
w=——E- E.
p . Vo +E- Ve (8)

Even though the distribution of € plays no part in determining E, through Gauss’
law, it does influence the distribution of unpaired charge density.

Continuity Conditions. Where the conductivity changes abruptly, the con-
tinuity conditions follow from (2) and (3). The condition

n-(0,E* — 0, E) =0 9)

is derived from (2), just as (1.3.17) followed from Gauss’ law. The continuity con-
ditions implied by (3) are familiar from Sec. 5.3.

nx (E*"-E)=0&0"-0"=0 (10)

Illustration. Boundary Condition at an Insulating Surface

Insulated wires and ordinary resistors are examples where a conducting medium is
bounded by one that is essentially insulating. What boundary condition should be
used to determine the current distribution inside the conducting material?
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In Fig. 7.2.2, region (a) is relatively insulating compared to region (b), o, <
op. It follows from (9) that the normal electric field in region (a) is much greater
than in region (b), E2 > E%. According to (10), the tangential components of E are
equal, E¢ = E?. With the assumption that the normal and tangential components of
E are of the same order of magnitude in the insulating region, these two statements
establish the relative magnitudes of the normal and tangential components of E,
respectively, sketched in Fig. 7.2.2. We conclude that in the relatively conducting
region (b), the normal component of E is essentially zero compared to the tangential
component. Thus, to determine the fields in the relatively conducting region, the
boundary condition used at an insulating surface is

n-J=0=n-V®é=0 (11)

At an insulating boundary, inside the conductor, the normal derivative of
the potential is zero, while the boundary potential adjusts itself to make this true.
Current lines are diverted so that they remain tangential to the insulating boundary,
as sketched in Fig. 7.2.2.

Just as Gauss’ law embodied in (8) is used to find the unpaired volume charge
density ez post facto, Gauss’ continuity condition (6.5.3) serves to evaluate the
unpaired surface charge density. Combined with the current continuity condition,
(9), it becomes

Osu =1 - €, EY (1 — ebga>
€4 Ob (12)

Conductance. If there are only two electrodes contacting the conductor of
Fig. 7.2.1 and hence one voltage v; = v and current ¢; = ¢, the voltage-current
relation for the terminal pair is of the form

i=Gu (13)

where G is the conductance. To relate G to field quantities, (2) is integrated over
a volume V enclosed by a surface S, and Gauss’ theorem is used to convert the
volume integral to one of the current oE - da over the surface S. This integral law
is then applied to the surface shown in Fig. 7.2.1 enclosing the electrode that is
connected to the positive terminal. Where it intersects the wire, the contribution
is —i, so that the integral over the closed surface becomes

—i+/ cE-da=0 (14)
S1

where S7 is the surface where the perfectly conducting electrode having potential
v1 interfaces with the Ohmic conductor.

Division of (14) by the terminal voltage v gives an expression for the conduc-
tance defined by (13).
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(a) ()  (0)

Fig. 7.2.3 Typical configurations involving a conducting material and per-
fectly conducting electrodes. (a) Region of interest is filled by material having
uniform conductivity. (b) Region composed of different materials, each having
uniform conductivity. Conductivity is discontinuous at interfaces. (¢) Conduc-
tivity is smoothly varying.

G:izw
v v (15)

Note that the linearity of the equation governing the potential distribution, (4),
assures that ¢ is proportional to v. Hence, (15) is independent of v and, indeed, a
parameter characterizing the system independent of the excitation.

A comparison of (15) for the conductance with (6.5.6) for the capacitance
suggests an analogy that will be developed in Sec. 7.5.

Qualitative View of Fields in Conductors. Three classes of steady conduction
configurations are typified in Fig. 7.2.3. In the first, the region of interest is one of
uniform conductivity bounded either by surfaces with constrained potentials or by
perfect insulators. In the second, the conductivity varies abruptly but by a finite
amount at interfaces, while in the third, it varies smoothly. Because Gauss’ law plays
no role in determining the potential distribution, the permittivity distributions in
these three classes of configurations are arbitrary. Of course, they do have a strong
influence on the resulting distributions of unpaired charge density.

A qualitative picture of the electric field distribution within conductors emerges
from arguments similar to those used in Sec. 6.5 for linear dielectrics. Because J is
solenoidal and has the same direction as E, it passes from the high-potential to the
low-potential electrodes through tubes within which lines of J neither terminate
nor originate. The E lines form the same tubes but either terminate or originate on
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the sum of unpaired and polarization charges. The sum of these charge densities is
div €,E, which can be determined from (6).

v v
pu+pp:V'€oE:7€0E'7o—:760.]'7;7
o o

(16)
At an abrupt discontinuity, the sum of the surface charges determines the discon-
tinuity of normal E. In view of (9),

Osu +0sp =1 (e, E* — eoEb) =n-¢,E? (1 — %) (17)
b
Note that the distribution of € plays no part in shaping the E lines.

In following a typical current tube from high potential to low in the uniform
conductor of Fig. 7.2.3a, no conductivity gradients are encountered, so (16) tells us
there is no source of E. Thus, it is no surprise that ® satisfies Laplace’s equation
throughout the uniform conductor.

In following the current tube through the discontinuity of Fig. 7.2.3b, from
low to high conductivity, (17) shows that there is a negative surface source of E.
Thus, E tends to be excluded from the more conducting region and intensified in
the less conducting region.

With the conductivity increasing smoothly in the direction of E, as illustrated
in Fig. 7.2.3c, E - Vo is positive. Thus, the source of E is negative and the E lines
attenuate along the flux tube.

Uniform and piece-wise uniform conductors are commonly encountered, and
examples in this category are taken up in Secs. 7.4 and 7.5. Examples where the
conductivity is smoothly distributed are analogous to the smoothly varying permit-
tivity configurations exemplified in Sec. 6.7. In a simple one-dimensional configu-
ration, the following example illustrates all three categories.

Example 7.2.1. One-Dimensional Resistors

The resistor shown in Fig. 7.2.4 has a uniform cross-section of area A in any = — z
plane. Over its length d it has a conductivity o(y). Perfectly conducting electrodes
constrain the potential to be v at y = 0 and to be zero at y = d. The cylindrical
conductor is surrounded by a perfect insulator.

The potential is assumed to depend only on y. Thus, the electric field and cur-
rent density are y directed, and the condition that there be no component of E nor-
mal to the insulating boundaries is automatically satisfied. For the one-dimensional
field, (4) reduces to

d , do

The quantity in parentheses, the negative of the current density, is conserved over

the length of the resistor. Thus, with J, defined as constant,

e

@ _ 1
O'dy J (19)

This expression is now integrated from the lower electrode to an arbitrary location

1.
il Y Y
/ d@z—/ £dy:><I>:v—/ ﬁdy (20)
v o 7 o 9
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Fig. 7.2.4 Cylindrical resistor having conductivity that is a function
of position y between the electrodes. The material surrounding the con-
ductor is insulating.

Evaluation of this expression where y = d and ® = 0 relates the current density to

the terminal voltage.
d d
o d
v:/ J—dy:>Jo:U// & (21)
o 9 o 7

Introduction of this expression into (20) then gives the potential distribution.

@:{1/?//‘?] (22)

The conductance, defined by (15), follows from (21).

d
G =2k :A// & (23)
0 g

v

These relations hold for any one-dimensional distribution of o. Of course,
there is no dependence on €, which could have any distribution. The permittivity
could even depend on x and z. In terms of the circuit analogy suggested in the
introduction, the resistors determine the distribution of voltages regardless of the
interconnected capacitors.

Three special cases conform to the three categories of configurations illustrated
in Fig. 7.2.3.

Uniform Conductivity. If o is uniform, evaluation of (22) and (23) gives

y
®=v(1-2) (24)

G=== (25)
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Fig. 7.2.5 Conductivity, potential, charge density, and field distribu-
tions in special cases for the configuration of Fig. 7.2.4. (a) Uniform
conductivity. (b) Layers of uniform but different conductivities. (c) Ex-
ponentially varying conductivity.

The potential and electric field are the same as they would be between plane parallel
electrodes in free space in a uniform perfect dielectric. However, because of the
insulating walls, the conduction field remains uniform regardless of the length of the
resistor compared to its transverse dimensions.

It is clear from (16) that there is no volume charge density, and this is consis-
tent with the uniform field that has been found. These distributions of o, ®, and E
are shown in Fig. 7.2.5a.

Piece-Wise Uniform Conductivity. With the resistor composed of uni-
formly conducting layers in series, as shown in Fig. 7.2.5b, the potential and con-
ductance follow from (22) and (23) as

v{l—i(ﬁ’b} 0<y<b
o= (26)
v{l—i[(b/ab)—l—(y—b)/aa]} b<y<a+bd

A
G=—7——F— (27)
[(b/70) + (a/0a)]
Again, there are no sources to distort the electric field in the uniformly conducting
regions. However, at the discontinuity in conductivity, (17) shows that there is sur-
face charge. For o, > 04, this surface charge is positive, tending to account for the
more intense field shown in Fig. 7.2.5b in the upper region.

Smoothly Varying Conductivity. With the exponential variation o =
ooexp(—y/d), (22) and (23) become

ev/d _
. v[l ik 1)”] (28)
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Ao,

“=qe-1

(29)
Here the charge density that accounts for the distribution of E follows from (16).

oo u/d (30)

Put pp = oud

Thus, the field is shielded from the lower region by an exponentially increasing
volume charge density.

7.3 DISTRIBUTED CURRENT SOURCES AND
ASSOCIATED FIELDS

Under steady conditions, conservation of charge requires that the current density
be solenoidal. Thus, J lines do not originate or terminate. We have so far thought
of current tubes as originating outside the region of interest, on the boundaries.
It is sometimes convenient to introduce a volume distribution of current sources,
s(r,t) A/m3, defined so that the steady charge conservation equation becomes

%J~da:/sdv@V~J:5
s 1% (1)

The motivation for introducing a distributed source of current becomes clear as we
now define singular sources and think about how these can be realized physically.

Distributed Current Source Singularities. The analogy between (1) and
Gauss’ law begs for the definition of point, line, and surface current sources, as
depicted in Fig. 7.3.1. In returning to Sec. 1.3 where the analogous singular charge
distributions were defined, it should be kept in mind that we are now considering
a source of current density, not of electric flux.

A point source of current gives rise to a net current ¢, out of a volume V' that
shrinks to zero while always enveloping the source.

‘7{‘] -da =i ip = lim / sdv (2)
5 v Jv

Such a source might be used to represent the current distribution around a
small electrode introduced into a conducting material. As shown in Fig. 7.3.1d, the
electrode is connected to a source of current i, through an insulated wire. At least
under steady conditions, the wire and its insulation can be made fine enough so
that the current distribution in the surrounding conductor is not disturbed.

Note that if the wire and its insulation are considered, the current density
remains solenoidal. A surface surrounding the spherical electrode is pierced by the
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(d) (e) (f)

Fig. 7.3.1 Singular current source distributions represented conceptually by
the top row, suggesting how these might be realized physically by the bottom
row by electrodes fed through insulated wires.

wire. The contribution to the integral of J-da from this part of the surface integral is
equal and opposite to that of the remainder of the surface surrounding the electrode.
The point source is, in this case, an artifice for ignoring the effect of the insulated
wire on the current distribution.

The tubular volume having a cross-sectional area A used to define a line charge
density in Sec. 1.3 (Fig. 1.3.4) is equally applicable here to defining a line current
density.

Ky = lim [ sda (3)

A—0 JA

In general, K; is a function of position along the line, as shown in Fig. 7.3.1b. If
this is the case, a physical realization would require a bundle of insulated wires,
each terminated in an electrode segment delivering its current to the surrounding
medium, as shown in Fig. 7.3.1e. Most often, the line source is used with two-
dimensional flows and describes a uniform wire electrode driven at one end by a
current source.

The surface current source of Figs. 7.3.1c and 7.3.1f is defined using the same
incremental control volume enclosing the surface source as shown in Fig. 1.3.5.

E+4%
Jo=lim [ sdg
[k (4)

Note that Js is the net current density entering the surrounding material at
a given location.
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Fig. 7.3.2 For a small spherical electrode, the conductance relative to
a large conductor at “infinity” is given by (7).

Fields Associated with Current Source Singularities. In the immediate
vicinity of a point current source immersed in a uniform conductor, the current
distribution is spherically symmetric. Thus, with J = oE, the integral current
continuity law, (1), requires that

dnr?oE,. =i, (5)

From this, the electric field intensity and potential of a point source follow as

7 7
E.=—t_-=¢=_2" 6
4mor? 4dmor (6)

Example 7.3.1. Conductance of an Isolated Spherical Electrode

A simple way to measure the conductivity of a liquid is based on using a small
spherical electrode of radius a, as shown in Fig. 7.3.2. The electrode, connected to
an insulated wire, is immersed in the liquid of uniform conductivity o. The liquid
is in a container with a second electrode having a large area compared to that of
the sphere, and located many radii a from the sphere. Thus, the potential drop
associated with a current i that passes from the spherical electrode to the large
electrode is largely in the vicinity of the sphere.

By definition the potential at the surface of the sphere is v, so evaluation of
the potential for a point source, (6), at r = a gives

7

v = =G=

dmoa

i
o droa (7)
This conductance is analogous to the capacitance of an isolated spherical electrode,
as given by (4.6.8). Here, a fine insulated wire connected to the sphere would have
little effect on the current distribution.

The conductance associated with a contact on a conducting material is often
approximated by picturing the contact as a hemispherical electrode, as shown in Fig.
7.3.3. The region above the surface is an insulator. Thus, there is no current density
and hence no electric field intensity normal to this surface. Note that this condition
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Fig. 7.3.3 Hemispherical electrode provides contact with infinite half-
space of material with conductance given by (8).

is satisfied by the field associated with a point source positioned on the conductor-
insulator interface. An additional requirement is that the potential on the surface of
the electrode be v. Because current is carried by only half of the spherical surface, it
follows from reevaluation of (6a) that the conductance of the hemispherical surface
contact is

G =2moa (8)

The fields associated with uniform line and surface sources are analogous to
those discussed for line and surface charges in Sec. 1.3.

The superposition principle, as discussed for Poisson’s equation in Sec. 4.3,
is equally applicable here. Thus, the fields associated with higher-order source sin-
gularities can again be found by superimposing those of the basic singular sources
already defined. Because it can be used to model a battery imbedded in a conductor,
the dipole source is of particular importance.

Example 7.3.2. Dipole Current Source in Spherical Coordinates

A positive point current source of magnitude 4, is located at z = d, just above
a negative source (a sink) of equal magnitude at the origin. The source-sink pair,
shown in Fig. 7.3.4, gives rise to fields analogous to those of Fig. 4.4.2. In the limit
where the spacing d goes to zero while the product of the source strength and this
spacing remains finite, this pair of sources forms a dipole. Starting wit