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9.  ALTERNATING  CURRENT  CRCUITS 

______________________________________________________________________________________________________________________________________________________________________


9.  ALTERNATING  CURRENT  CIRCUITS 

9.1.  Harmonic  time-varying  quantities 


1.  A  harmonic time–varying quantity  is a quantity depending on time as a sine or cosine function, 
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The two alternatives are equivalent, since 
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so that, for instance, the second can be readily turned into the first, as 
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Therefore the sine type of time–variation will be used in the following to describe a harmonic time–varying quantity. 


In the expression of a harmonic time–varying quantity, 
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    Fig. 9.11. 

the quantity   Fmax   is called the amplitude and the time–varying quantity and   (t+(   is named the instantaneous phase. It is then obvious that  (   is the initial phase, and the quantity   (  is called the angular frequency; the latter is linked to the frequency   f   and the period   T   of the harmonic time–varying quantity according with the relations 
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The time variation and the main characteristics of a harmonic time–varying function are illustrated in fig. 9.1. 


The most important feature of a harmonic time–varying function is the fact that it is periodic, meaning that the values of the function repeat themselves after an integer multiple of the period  T , 
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A definition can be formulated now: an alternating current circuit is a linear dynamic circuit where all quantities have a harmonic time–variation of the same frequency. 


2. A slightly different expression of harmonic time–varying functions is however used in the study of alternating current circuits – this is called the instantaneous representative (or representation) of such a function and is formulated in terms of the so called effective value of the harmonic time–varying function. 


The effective value of a function is its root–mean–square (r.m.s.) value over its definition domain; in the case of a periodic function, this means the r.m.s. value over a period, 
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Invoking this definition, the effective value of a harmonic time–varying function is given by 
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where  ( = 0  was considered for the sake of simplicity. It follows that 
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and the instantaneous representative of the harmonic time–varying function  f  is 
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It is now obvious that any harmonic time–varying quantity  f(t)  of a given (angular)  frequency  is entirely characterised by two real parameters: the  effective value 
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and the  initial phase 



[image: image15.wmf][

)

(

]

p

p

p

y

,

or

2

,

0

-

Î

    

    

   . 

Therefore, any convenable mathematical object characterised by such parameters only can be a valid representative of a harmonic time–varying function, 
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3.  There are, however, some conditions imposed to such additional representatives of harmonic time–varying quantities: they have to satisfy in an acceptable manner the properties of these functions which are relevant in the operation of dynamic circuits, properties related to linear and differential operations. 


1(. The sum of two harmonic time–varying quantities of the same frequency is also a harmonic time–varying function of the same frequency. Indeed, it is simply of matter of trigonometric calculus to prove that 
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2(. The product by a real constant of a harmonic time–varying quantity of given frequency is also a  harmonic time–varying function of the same frequency. Indeed, it is again simple to prove that 



[image: image18.wmf](

)

(

)

(

)

(

)

(

)

(

)

ï

ï

ï

î

ï

ï

ï

í

ì

î

í

ì

<

±

>

=

=

+

=

Þ

þ

ý

ü

Î

=

+

=

 

   

    

   

   

   

          

  

      

      

    

    

  

0

if

,

0

if

,

sin

2

,

sin

2

0

0

0

0

0

0

0

l

p

y

l

y

y

l

y

w

l

l

y

w

F

F

t

F

t

f

t

f

t

f

t

F

t

f

R

   . 


3(. The derivative of a harmonic time–varying quantity of given frequency is also a  harmonic time–varying function of the same frequency, 
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of effective value  (  times greater than and initial phase increased by  (/2  with respect to the original function. Indeed, it is again simple to see that 
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where, by denoting 
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one obtains the given result, 
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4.  A simple and illustrative representative of a harmonic time–varying function  f(t)  is the geometric or phasor representative – this is a vector in the (real) plane, denoted as 
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of length equal to the effective value  F  of the function and rotated counterclockwise at an angle equal to the initial phase  (  with respect to the horizontal axis (fig. 9.2). The one–to–one correspondence between the instantaneous and phasor representatives is obvious, 
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         Fig. 9.2. 




       Fig. 9.3. 


Immediately related to this phasor representative there can be devised a more convenient representative of harmonic time–varying functions. Let the  imaginary unit  be denoted as 
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by the letter  j  instead of letter  i , which is retained to designate the electric current intensity. The complex representative of a harmonic time–varying function is a complex number, denoted as 
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of modulus equal to the effective value  F  and argument equal to the initial phase  (  of the harmonic time–varying function, so that the real and imaginary parts of this complex number are 
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Thus, the one–to–one correspondence to the other representatives is simply illustrated by the fact that the complex representative is represented in the complex plane by a point indicated by a position vector identical to the phasor representative (fig. 9.3), 
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That is why even the position vector of the complex number in the complex plane can be directly designated by  
[image: image32.wmf]F
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The validity of using these additional representatives can be sustained by checking if they satisfy the above mentioned properties of harmonic time–varying functions. 


1(.  It is a simple matter to check that the sum of two harmonic time–varying functions  f1  and  f2  of the same frequency, resulting in a time–varying function  f  of the same frequency, corresponds to the vector sum of their phasor representatives  (fig. 9.4) and to the sum of their complex representatives, respectively, 
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           Fig. 9.4. 



          Fig. 9.5. 


2(.  It is also obvious that the product by a real constant of a harmonic time–varying function  f0  of a  given frequency, resulting in a time–varying function  f  of the same frequency, corresponds to the product by the same real constant of the phasor representative (fig. 9.5) or the complex representative of the original function, respectively, 
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3(.  Most important, there are simple geometric or complex operations performed on associated representatives, respectively, corresponding to the derivation of a harmonic time–varying function. According with the property of harmonic time–varying functions relative to the their derivative, the latter is a  harmonic time–varying function of the same frequency, of effective value  (  times greater and initial phase increased with  (/2 with respect to the same parameters of the original function, 
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Thus, the phasor representative of the derivative of a harmonic time–varying function is a phasor rotated counterclockwise – that is, in the positive trigonometric direction – by a right angle  (/2  and of length  (  times greater than that of the phasor representative of the original function  (fig. 9.6). Correspondingly, the complex representative of the derivative of a harmonic time–varying function is the product by the complex constant   j(   of the complex representative of the original function
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The former correspondence is obvious; for the latter correspondence one can readily compute 
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where, according with Euler’s formula, 
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The fact that the complex representation of harmonic time–varying functions, while retaining linear operations, reduces the derivation of time–varying functions to a simple multiplication by   j( 

  [image: image43.png]


 


         Fig. 9.6. 

of their complex representatives is very important, and constitutes the main argument for using the complex representation in the study of alternating current circuits. 


5.  A final important remark is concerned with the units used in the study of the quantities characterising the alternating current operation of a circuit. 


The instantaneous values of a harmonic time–varying quantity, as well as its effective value, are obviously measured in corresponding  I.S.  units. For the complex representatives of such harmonic time–varying quantities, however, this can no longer be done: there is no ordering relationship possible on the set of complex numbers. On the other hand, the modulus of such a complex representative – that is, the effective value of the represented quantity – is still measured in the corresponding  I.S.  units. 


The following rule can then be observed when operating with complex representatives of harmonic time–varying quantities or with other complex parameters used to characterise the alternating current operation of linear dynamic circuits: the modulus (or, in some cases, the real and the imaginary parts) of a complex quantity is (are) measured in the  I.S.  units corresponding to that quantity. 


9.2.  The electric dipole under alternating current conditions 


1.  The operation of an alternating current circuit can be easily understood if one starts with the study of its simplest building block – the electric dipole corresponding to a branch of the circuit. On the other hand, since an alternating current circuit is a set of interconnected ideal circuit elements, one can distinguish between a purely passive dipole and a purely active dipole, so that these different types of dipoles will be approached separately. 


Let a purely passive dipole be considered first, carrying a current 



[image: image44.wmf](

)

(

)

  

      

      

  

b

b

w

j

I

sin

2

e

I

t

I

t

i

=

Û

+

=

 

under a voltage at terminals 
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associated with the current according to the load rule (fig. 9.7).  The main problem related 
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 Fig. 9.7. 

to the study of such a (passive) dipole is to find the dipole characteristic(s) that would allow one to compute the current when the voltage is given, and vice-versa, to compute the voltage when the current is given, 
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2.  The solution to this problem is easily found if it is reformulated in terms of the parameters characterising the harmonic time–varying quantities involved: how to introduce dipole characteristic(s) that would allow to compute the effective value and initial phase of the current when the effective value and initial phase of the voltage are given, and vice-versa, 
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The relationship between the effective values of the voltage and current is obviously a multiplicative relation; one defines the  dipole impedance  as 
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The relationship between the initial phase of the voltage and the current is obviously an additive relation; one defines the  dipole phase difference  as 
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as the difference between the voltage and current (initial) phases, necessarily in this order. 


The couple  
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  is thus necessary and sufficient to describe the operation of a passive dipole. Indeed, suppose that the voltage is given, as  
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It is quite obvious that a similar manner to characterise a purely passive dipole is given by the couple   
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is the  dipole admittance, and 
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is again the  dipole phase difference. 


In the subsequent section, it will be shown that the phase difference of a purely passive dipole is restricted to the interval 
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3.  Another approach to the characterisation of a purely passive dipole is based on the correspondence between the complex and instantaneous representatives of harmonic time–varying functions: the link between the voltage and current at the terminals of the dipole is translated in the link between their complex representatives, 
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The complex representatives of the voltage and current at the terminals of the passive dipole can be directly related: one simply computes 
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The  complex impedance  of the purely passive dipole is then defined as 
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it assembles the needed characteristics of the couple   
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and is obviously necessary and sufficient to express 
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 , that is, to express the relationship between the voltage and the current at the terminals of a passive dipole. 


It is obvious that the reciprocal ratio can be considered as well; the complex admittance  of a purely passive dipole is defined as 
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It is immediately related to the complex impedance, as 
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and to the couple  
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         Fig. 9.8. 


These complex parameters allow the comprehensive description of the operation under alternating current conditions of a passive dipole directly in terms of complex representatives of harmonic time–varying quantities at terminals (fig. 9.8), 
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5.  Alternative ways of characterising a passive dipole under alternating current conditions are defined, starting from the complex characteristics introduced above. 


The complex impedance can be specified not only in terms of its modulus and argument, but also in terms of its real and imaginary parts, 
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which are called the (equivalent) dipole resistance and the (equivalent) dipole admittance, respectively. The relationship between these new and the previously defined parameters is obtained by a simple comparison, 
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it follows that 
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Quite similarly, the complex admittance can be expressed not only in terms of its modulus and argument, but also in terms of its real and imaginary parts, 
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which are respectively called the (equivalent) dipole conductance and the (equivalent) dipole susceptance. The relationship between these new and the previously defined parameters is simply obtained by comparing 
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it follows that 
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Finaly, the relationship between these last equivalent sets of characteristic parameters of a passive dipole,  
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 , is not as simple as it coud seem. Indeed, from 
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it follows that 
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and, similarly, from 
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it follows that 
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6.  The last sets of parameters characterising a passive dipole can be used in the construction of  equivalent circuits  of a passive dipole. 


Let some of the previous relations be combined as 
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 Fig. 9.9. 




 Fig. 9.10. 


This decomposition of the complex voltage  
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  into two components, one proportional to the complex current  
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  (said to be in phase with it), and the other proportional to the product by  j  of the complex current  
[image: image99.wmf]I

  (said to be in quadrature with it – meaning rotated by  +(/2), is illustrated in fig. 9.9. On the other hand, the decomposition of the total voltage into a sum of voltages, 
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each of them proportional to the current, corresponds to a series connection of two complex circuit elements, as illustrated in fig. 9.10. It must be noted, however, that while the resistive component  uR  is instantaneously proportional to the current  i , the reactive component  uX  is proportional to the current with the phase increased by  (/2 . 


Similarly, by combining some other previous relations results in 
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 Fig. 9.11. 




 Fig. 9.12. 


This decomposition of the complex current  
[image: image105.wmf]I

  into two components, one proportional to the complex voltage  
[image: image106.wmf]U

  (said to be in phase with it), and the other proportional to the product by  –j  of the complex voltage  
[image: image107.wmf]U

  (said to be in quadrature with it – meaning rotated by  –(/2), is illustrated in fig. 9.11. On the other hand, the decomposition of the total current into a sum of currents, 
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each of them proportional to the voltage, corresponds to a parallel connection of two complex circuit elements, as illustrated in fig. 9.12. It must be noted, however, that while the conductive component  iG  is instantaneously proportional to the voltage  u , the susceptive component  iB  is proportional to the voltage with the phase decreased by  (/2 . 


7.  Let  a purely active dipole  be considered now, carrying a current 
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under a voltage at terminals 
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associated with the  current  according to the  source  rule (fig. 9.13).  The  main  problem 
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        Fig. 9.13. 

related to the study of such a (active) dipole is again to find the dipole characteristic(s) that would allow one to compute the current when the voltage is given, and vice-versa, to compute the voltage when the current is given, 
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The first kind of ideal active dipole that needs consideration is the ideal voltage generator (fig. 9.14), characterised by its harmonic time–varying e.m.f., 
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The constitutive/operating equation of this element, 
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can be immediately rewritten in terms of harmonic time–varying quantities as 
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This equation leads to 
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or simply 
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Finaly, this relation can be concisely expressed in terms of complex representatives as 
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which gives the answer to the characterisation problem of this dipole. 


 [image: image119.png]


 


           [image: image120.png]


 


           Fig. 9.14. 




        Fig. 9.15. 


The other kind of ideal active dipole to be considered is the ideal current generator (fig. 9.15), characterised by its harmonic time–varying generated current, 
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The constitutive/operating equation of this element, 
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can be immediately rewritten in terms of harmonic time–varying quantities as 
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This equation corresponds to 
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Finaly, this relation can be concisely expressed in terms of complex representatives as 
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which gives the answer to the characterisation problem of this dipole. 


9.3. Electromagnetic power under alternating current conditions 


1.  The energy related operation of alternating current circuits is also easier understood if the energy related quantities are first studied in the simple case of a dipole. 


Let a dipole be considered, carrying a current 
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under a voltage at terminals 
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associated with the current according to, say, the load rule (fig. 9.16). 
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         Fig. 9.16. 


The  instantaneous electromagnetic power  received by the dipole at terminals is 
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where  
[image: image132.wmf]b
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  is the phase difference of the dipole. 


The instantaneous power is thus a periodic time–function, of period  T/2  (i.e., of frequency  2f), and obviously can not be used to characterise the overall power performance of the dipole. Instead, taking into account this very periodicity, the average electromagnetic power received over a period could be a reasonable measure of the power actually used by the dipole, 
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This is called the  active power  received at the terminals by the dipole, and its value is 
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The active power is the electromagnetic power effectively used by the dipole and transferred into some other form of energy (thermal, mechanical, etc.). 


In the case when the dipole is a passive dipole, two equivalent formulae can be used for computing the received active power,  
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It can be concluded that the active power transferred at the terminals of a dipole is given by 



[image: image138.wmf]  

      

  

W

cos

2

2

U

G

I

R

I

U

P

e

e

=

=

=

j

   , 

the last two relations being valid for a passive dipole only. 


An important remark is now worth mentioning. The average power computed above for the dipole under study corresponds to the reference directions of voltage and current at terminals associated according with the load rule – it is a received power. The considered dipole is a passive dipole if this received average power is positive, i.e., 
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meaning that the phase difference of a passive dipole satisfy the condition 
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The preceding expressions of the active power found for a passive dipole can be related to the series and parallel equivalent circuits of such a dipole. Moreover, they suggest that the active power has to be assigned to the equivelent resistance or conductance only. This suggestion can readily be checked. 


Considering the series connected equivalent circuit of a passive dipole (fig. 9.17), the instantaneous electromagnetic power received by its equivalent resistance is 
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The corresponding average value over a period is computed as above and gives 



[image: image142.wmf](

)

(

)

[

]

P

I

R

dt

t

I

R

T

t

p

P

e

T

e

R

R

=

=

+

-

=

=

ò

2

0

2

2

2

cos

1

1

b

w

   . 

This result confirms that the active power received by a passive dipole is indeed asigned exclusively to its equivalent resistance. 
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   Fig. 9.17. 




          Fig. 9.18. 


A similar argument is valid with reference to the parallel equvalent circuit of the passive dipole (fig. 9.18): the instantaneous electromagnetic power received by its equivalent conductance is 
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The corresponding average value over a period is computed as above and gives 
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This result also confirms that the active power received by a passive dipole is indeed asigned exclusively to its equivalent conductance. 


2.  A natural question arises: if, under alternating current conditions, all the active power – that is all the average effective power consumption of a passive dipole – is asigned to its equivalent resistance or conductance, then what could be the part played by the equivalent reactance or susceptance in the power transfer associated with a dipole ? The answer can be found if the detailed analysis of the power transfer associated with the equivalent reactance or susceptance is done. 


If the series connected equivalent circuit of a passive dipole is considered (fig. 9.17), and the phase difference between the current and the reactive voltage is accounted for, then the instantaneous electromagnetic power transferred to its equivalent reactance is 
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This result seems to contradict the fact that all the effective power consumption goes to the equivalent resistance. However, this statement is valid with reference to average values only; indeed, the corresponding average value over a period is 
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and the conclusion of the preceding subsection is thus confirmed. 


A similar analysis can be done starting from the parallel connected equivalent circuit of a passive dipole (fig. 9.18): if the phase difference between the voltage and the susceptive current is accounted for, the instantaneous electromagnetic power transferred to its equivalent susceptance is 
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This result seems to contradict the fact that all the effective power consumption goes to the equivalent susceptance. However, this statement is valid with reference to average values only; indeed, the corresponding average value over a period is 
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and the conclusion of the preceding subsection is again confirmed. 


The  preceding  analysis  shows  that  the  presence  of  the  equivalent  reactance/ 
succeptance is associated with a non-zero power circulation between the reactive part of the dipole and the rest of the circuit: during a part of a period some power is received by the reactive part of the dipole and during the rest of the period the same power is delivered back to the rest of the circuit, so that the average value of the corresponding power transfer over a period is zero. 


Such a behaviour can not be characterised by its average value. Instead, the amplitude (the multiplicative factor) of the harmonic time–varying factor of this power circulation can be used as a measure of this power transfer process – by definition, this is the reactive power received by the passive dipole under consideration, 
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For this definition to be consistent, the equivalence of the two approaches considered above has to be checked. Indeed, 
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and an additional formula for the reactive power, dependent on quantities at terminals only is thus obtained, which can be interpreted as the reactive power received at the terminals of the dipole. 


It can be concluded that the reactive power transferred at the terminals of a dipole is given by 
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the last two relations being valid for a passive dipole only. 


3.  The two aspects of the power transfer at the terminals of a dipole – the actual average power consumption and the power circulation of zero average – can be assembled into a single complex quantity, the  complex power, defined as 
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This relation can be detailed, accorcing with the formulae obtained before for its real and imaginary parts: 
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Finaly, the complex power is given by three equivalent formulae, 
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the last two, however, being valid for passive dipoles only. It must be noted that the first expression of the complex power involves the complex voltage and (conjugate) current, while  the last two formulae involve the effective voltage or current. There is no unit of the  complex  power; however, its   numerical   value   has  to  be  such  that  its  real  and 
imaginary parts, 
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are expressed in their corresponding  I.S.  units. 


4.  Another power related quantity can be defined: the apparent power is the modulus of the complex power, 
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Correspondingly, the formulae for the calculus of the apparent power transfer associated with a dipole is 
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A comparison of the first formula above and the corresponding formula of the active power,  
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shows that, since  
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 , the maximum value of the active power is just the apparent power, 
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A rigorous analysis shows that, indeed, the apparent power is the maximum value that the active power could reach, under constant effective values of the dipole voltage and current, 
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Finaly, an associated power performance parameter can be defined – the  power factor  is the ratio of the active power to its maximum admissible value, the apparent power, 
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in the case of a dipole operating under alternating current conditions, its value is just 
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This parameter characterises the efficiency of using the most of the theoreticaly available active power: the greater the power factor  k , the greater part of the apparent power is effectively used. That is why the problem of increasng the power factor  
[image: image174.wmf]j
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  is extremely important in the case when large amounts of power are involved. 


9.4.  Ideal circuit elements under alternating current conditions 


It is now useful to summarise the characterisation of the operation of an alternating current circuit, with application to the building blocks of such circuits – the ideal circuit elements. These circuit elements are here analysed especially in what concerns the characterisation of their operation in terms of the complex representation of the quantities at terminals and the power transfer at their terminals. 


1.  Let  a purely passive dipole  be considered first, carrying a current 
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under a voltage at terminals 
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associated with the current according with the load rule (fig. 9.19). The operation of such a dipole is characterised, in terms of complex representatives of the voltage and current, by the equations 
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     Fig. 9.19. 
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and its power transfer performance is concisely characterised in terms of the received complex power, 
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The complex impedance is obtained as 
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where
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accordingly, 
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As well, 
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In the case of an  ideal resistor  (fig. 9.20), characterised by the operation equation 
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     Fig. 9.20. 
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simple substitutions result in 
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whence 
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It follows that 
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and, successively, 
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In terms of complex representatives of the voltage and current, the ideal resistor is then concisely characterised by the complex equation  
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where 
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is the complex impedance of the ideal resistor.  


The power transfer performance is characterised by a received complex power 
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to which it corresponds 
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Moreover, according with the considerations in  section  9.3  above, 
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the active power received by an ideal resistor is the average over a period of the power dissipated in it. 


In the case of an  ideal capacitor (fig. 9.21), characterised by the operation equation 
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     Fig. 9.21. 

simple substitutions and the rule of derivation of harmonic time–varying functions result in 
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whence 
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It follows that 
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and, successively, 
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In terms of complex representatives of the voltage and current, the ideal capacitor is then concisely characterised by the complex equation  
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is the complex impedance of the ideal capacitor. 


The power transfer performance of the ideal capacitor is characterised by a received complex power  
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to which it corresponds 
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Moreover, according with the considerations in  section  9.3  above, and the expession of the electric energy, 
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the reactive power received by an ideal capacitor is negative and is the average over a period of the electric energy stored in it. 


In the case of an  ideal coil  (fig. 9.22), characterised by the operation equation 
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     Fig. 9.22. 

simple substitutions and the rule of derivation of harmonic time–varying functions result in 
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whence 
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It follows that 
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and, successively, 
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In terms of complex representatives of the voltage and current, the ideal coil is then concisely characterised by the complex equation  
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is the complex impedance of the ideal coil. 


The power transfer performance of an ideal coil is characterised by a received complex power  
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to which it corresponds 
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Moreover, according with the considerations in  section  9.3  above, and the expession of the magnetic energy, 
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the reactive power received by an ideal coil is positive and is the average over a period of the magnetic energy stored in it. 


An immediate extension of the preceding case is that of a  system of ideal coupled coils  (fig. 9.23), characterised by the system of equations  
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By analogy with similar terms associated to the single coil approached above, it folows that such a system of coupled coils is characterised, in terms of complex representatives of currents and voltages, by the system of complex equations 
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where 
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are the complex (self–) impedances of each coil  k  and 
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are the mutual (coupling) complex impedances between coils  k  and  s . 
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     Fig. 9.23. 


As well, the complex power received at terminals by the system of coupled coils can be shown to be 
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to which it corresponds 
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where the terms are to be assigned the plus sign when the currents flow in the same direction through the associated marked teminal and the minus sign when the currents flow in the opposite direction through the associated marked teminal. Moreover, according with the considerations in section 9.3 above, and the expession of the magnetic energy, 
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the reactive power received by the system of ideal coupled coils is positive and is the average over a period of the magnetic energy stored in it. 


2.  Let  a purely active dipole  be considered now, carrying a current 
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under a voltage at terminals 
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     Fig. 9.24. 

associated with the current according with the source rule (fig. 9.24). The two types of such active dipolar elements are recalled bellow. 


In the case of an  ideal voltage generator  (fig. 9.25), characterised by its harmonic time–varying e.m.f., 
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the operating equation, 
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can be immediately rewritten in terms of harmonic time–varying quantities as 
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This equation corresponds to 
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whence the characterisation of the ideal voltage generator in terms of complex quantities, 



[image: image246.wmf]  

      

      

  

I

,

E

U

"

=

   . 



 [image: image247.png]


 


  [image: image248.png]


 






     Fig. 9.25. 


According with the supposed reference directions of the current and voltage at terminals and the operating equation in terms of complex quantities, the power transfer performance of the ideal voltage generator is concisely characterised in terms of the complex power delivered at terminals, 
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In the case of an  ideal current generator  (fig. 9.26), characterised by its harmonic time–varying generated current, 
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The operating equation of this element, 
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can be immediately rewritten in terms of harmonic time–varying quantities as 
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This equation corresponds to 
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whence the characterisation of the ideal current generator in terms of complex quantities, 
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     Fig. 9.26. 


According with the supposed reference directions of the current and voltage at terminals and the operating equation in terms of complex quantities, the power transfer performance of the ideal current generator is concisely characterised in terms of the complex power delivered at terminals, 
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9.5.  Complex  calculus  of  alternating  current  circuits 


1.  The preceding section illustrates quite clearly that the alternating current operation of ideal circuit elements is treated simply in terms of complex representatives of harmonic time–varying quantities. This remark is valid as well for an alternating current circuit of any complexity, and this can be proved by re–stating the fundamental relations regarding dynamic circuits in terms of complex representatives of harmonic time–varying quantities. 


The starting point is the observation that Kirchhoff’s equations, 
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along with Joubert’s equation, 
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are essentially linear relations in terms of currents and voltages at the terminals of branches or circuit elements. On the other hand, the correspondence between harmonic time–varying quantities and their complex representatives preserves linear operations, 
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and, moreover, reduces the differentiation with respect to time of harmonic time–varying quantities to a simple algebraic operation performed on their complex representatives, 
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As a consequence, when all quantities in a circuit are harmonic time–varying quantities of the same frequency, then to each such quantity it corresponds a complex representative and, according to the above mentioned properties, to Kirchhoff’s and Joubert’s equations it directly corresponds  complex Kirchhoff’s and Joubert’s equations, 
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If now the complex Joubert’s equation is accounted for in the complex Kirchhoff’s voltage equation, 
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the complex e.m.f.’s are transferred to the right hand side and the expressions for the complex voltages at the terminals of circuit elements are expressed as in the preceding section, the explicite complex Kirchhoff’s voltage equation takes the form 
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In particular, if the coil in branch  k  is part of a system of  n  coupled coils, the inductive term within the parantheses has to be changed accordingly, and the last equation becomes 
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Along with the complex Kirchhoff’s current equation, 



[image: image268.wmf](

)

  

  

0

I

=

å

Î

a

k

k

   , 

these complex equations completely describe the operation of any alternating current circuit in terms of the complex representatives of harmonic time–varying quantities. 


2.  The power performance of an alternating current circuit can also be evaluated in terms of complex quantities, by using a consequence of the complex Kirchhoff’s equations which represents the  theorem of complex power conservation. In the following, however, a simpler argument will be used, based on a consequence of Poynting’s theorem on electromagnetic energy, namely the theorem of power conservation in a dynamic circuit. Using lower-case letters to indicate time–dependent quantities, the theorem of power conservation in a dynamic circuit is written as 
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In the case of an alternating current circuit, the average value of power related quantities is of a primary interest – it represents the active power transfer associated with the circuit, 
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Such time–average value over a period of the power transfer at terminals  pt , generated power  pG , and dissipated power  pJ  is just the corresponding active power: the active power received at the teminals of the circuit, 
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the active power delivered by the generators in the circuit, 
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and the active power dissipated in (the resistors of) the circuit, 
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The time–average value over a period of the electromagnetic energy stored in (the reactive elements of) the circuit is, however, zero, due to the periodicity of all quantities in the circuit, 
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A first consequence of these results is the equation of active power conservation in an alternating current circuit, 
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A second consequence is the confirmation of the fact that the power transfer associated with the reactive elements reduces to a simple power circulation between these elements and the rest, with a zero time–average. This is quite normal, since the reactive elements in a circuit exhibit precisely such a behaviour, their associated instantaneous power transfer presenting a harmonic time–variation (of twice the alternating current frequency). Therefore, the preceding results also imply that the multiplicative coefficients of such harmonic time–variations of the zero–average power circulation associated with the alternating current circuit must be the same for the two sides of the power conservation equation. It thus follows that an equation of reactive power conservation in an alternating current circuit is also valid, 
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As for a single dipole, the two conservation equations can be assembled in a single complex equation: let the second one be multiplied by the complex unit   j   and added to the first. After reordering the terms one obtains 



[image: image277.wmf](

)

(

)

Q

P

Q

P

Q

P

G

G

t

t

j

j

j

+

=

+

+

+

   . 

The relation can be written concisely as 
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and represents the theorem of complex power conservation in an alternatimg current circuit: the sum between the complex power received at the terminals and the complex power delivered by (all) the generators equals the complex received by (all) the passive elements in an alternaticg current circuit. 


Taking into account the preceding analysis of the power transfer under alternating current conditions, the detailed form of the theorem is 
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The first sum on the left refers to the accessible termials (nodes) of the circuit, where  
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  is the potential of the access node  a  and the current  
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 connecting the node to outside circuits is assigned a positive sign when entering the node and a negative sign when leaving it. The second sum on the left refers to all the generators in the circuit: the terms of the first kind are assigned a positive sign when the reference direction of the complex e.m.f.  
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  and current  
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  are the same and a negative sign when these reference directions are opposite; the terms of the second kind are assigned a positive sign when the reference direction of the complex voltage  
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  and generated current  
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  are associated according with the source rule and a negative sign when these reference directions are associated according with the load rule. The first sum on the right refers to the (self–) impedances in the circuit and its terms, involving complex impedances and effective currents, are all taken with a positive sign. Finaly, the last sum on the right refers to mutual (coupling) impedances (inductances); its terms are assigned a positive sign when the implied currents  Ik  and  Is  have the same reference direction with respect to the marked terminal of the corresponding coil and a negative sign when the implied currents have opposite reference direction with respect to the marked terminal of the corresponding coil. 


3.  In principle, an alternating current circuit can be solved by first formulating its dynamic circuit equations, then translating these equations into their complex form and finaly solving the resulting system of complex algebraic equations. However, the complex Kirchhoff’s equations, along with the theorem of complex power conservation, can be used directly in the study of alternating current circuits. The following  algorithm  can be applied to find the solution to a typical alternating current circuit problem: 


1(. The given data are: the frequency, the topology (configuration) of the circuit, the characteristic values of passive elements  (Rk , Ck , Lk , Lks ) , the instantaneous characteristics of the generators  
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The  unknown quantities  to be determined are the instantaneous currents  
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2(. The complex circuit associated with the problem is first constructed: each passive element is represented by its complex impedance and each active element is represented by the corresponding complex generator characterised by the complex representative of its instantaneous representative, as discussed in phe preceding section. Complex representatives  
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3(. The complex Kirchhoff’s equations are then directly formulated for the complex circuit and the resulting system of complex algebraic equations is solved for the complex representatives of the unknown quantities. 


4(. Finaly, the instantaneous representatives of the unknown quantities are determined from their complex representatives by applying the simple correspondence rules. 


5(. The theorem of complex power conservation can eventualy be used for checking the result: the correct solution must satisfy the power conservation. 


An example is here considered for the application of the above algorithm.  


Let the circuit presented in  fig. 9.27  be considered, where 
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        Fig. 9.27. 



  Fig. 9.28. 


1(. The unknown quantities obviously are  
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 , with the reference directions indicated in fig. 9.28. 


2(. The complex circuit is constructed as in fig. 9.29, where the complex characteristics of the active elements are 
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the angular frequency is 
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and the complex impedances of passive elements are 
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The complex unknown quantities are  
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2

1

I

,

U

,

I

 , with the same reference directions as their instantaneous correspondents. 


3(. The complex Kirchhoff’s equations written for the upper node and the left and right loops with respect to the clockwise direction are 
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        Fig. 9.29. 



    Fig. 9.30. 

Using the numeric values, these equations are successively rewritten as 
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whence 
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4(. The instantaneous representatives corresponding to the determined complex quantities are directly obtained if the complex quantities are expressed in their exponential form. In turn, this is obtained easier if the phasors associated to the complex quantities are represented in the complex plane (fig. 9.30). It immediately follows that 
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and, according to the instantaneous – complex representatives correspondence rules, 
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5(. The computation of the complex power balance constitutes a good check of the solution. Since the circuit is isolated, the equation of complex power conservation reduces to 
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The two sides are separately computed as 
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The resulting power balance, 
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detailed as 
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validates the correctness of the solution. 


9.6.  Theorems  on  alternating  current  circuits 


1.  The study of alternating current circuits is facilitated by the use of additional theorems, formulated in the terms of the complex representation approach. 


The starting point is the important remark on the  similarity  between Kirchhoff’s theorems for direct current circuits and the complex Kirchhoff’s theorems for alternatimg current circuits. Let the complex proper impedance of a branch be introduced as 
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along with the complex mutual (coupling) impedances, 
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Then, in the case of alternating current circuits without coupled coils, there is a perfect  similarity between the corresponding Kirchhoff’s equations, 
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The important immediate consequence is that all theorems proved for direct current circuits translate into valid theorems for complex alternatimg current circuits without coupled coils. 


In the case of alternating current circuits with coupled coils, Kirchhoff’s equations for direct current circuits and complex alternating current circuits bear some similarity in the sense of their  linearity, 
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The important immediate consequence is that all theorems proved for direct current circuits, based exclusively on the linearity of equations, translate into valid theorems for complex alternatimg current circuits with coupled coils. 


Based on these statements, the theorems regarding the alternating current circuits presented in the following are given without proof. 


2. The important equivalence theorem for alternating current circuits, which are linear by hypothesis, represented by the superposition theorem, remains valid: the state  
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  of a complex alternating current circuit is the superposition (algebraic sum) of particular states  
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  corresponding to maintaining, in turn, a single complex generator in the circuit while all other are passivated. A passivated generator is a generator whose active part  (complex electromotive force  
[image: image328.wmf]E

  or generated current  
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)  is equated to zero, so that its internal complex impedance (or admittance) only remains to be considered (fig. 9.31). This is equivalent to saying that passivating an ideal complex source means short–circuiting each ideal complex voltage source and open–circuiting each ideal complex current source. In a more compact way, 
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   Fig. 9.31. 


3. The important group of equivalence theorems are immediately translated for complex alternating circuits without coupled coils. It is recalled that, for circuits with the same number of accessible terminals, the equivalence criterion is: two complex alternating current circuits are said to be equivalent if, under the same set of complex voltages at terminals, one obtains the same set of complex currents through terminals, or vice–versa, for any such given set. 


The equivalence theorems for passive complex circuits are first considered – these refer to circuits including complex  self impedances  only. 


    [image: image333.png]


 






   Fig. 9.32. 


The equivalent complex impedance of  a group of  n  series connected complex self impedances (fig. 9.32) is given by 



[image: image334.wmf]  

  

å

=

k

k

Z

Z

   , 

and the associated theorem of the complex voltage divider is 
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   Fig. 9.33. 


The equivalent complex impedance(admittance) of  a group of  n  parallel connected complex self impedances (admittances) as in fig. 9.33 is given by 
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and the associated theorem of the complex current divider is 
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   Fig. 9.34. 


As well, the star–delta and delta–star equivalence theorems for star– and delta– connected complex self impedances (fig. 9.34) are given by a system of symmetric equations, for which it is worth noticing that in each case a single relation is sufficient to be retained, since the other two can be derived by taking a cyclic permutation of subscripts,  1 SYMBOL 174 \f "Symbol" 2 SYMBOL 174 \f "Symbol" 3 SYMBOL 174 \f "Symbol" 1 , 
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4. The equivalence theorems for active complex circuits are stated within the limits of the same equivalence criterion as above. 
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   Fig. 9.35. 


The equivalence theorem of non–ideal complex sources (with internal self impedances, fig. 9.35) states the conditions which ensure that a non–ideal complex voltage source  
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The very important theorem of equvalent complex generators is as well valid: with respect to a pair  A , B  of its terminals, a complex active circuit (with internal coupled coils, eventualy) is equivalent to a non–ideal complex voltage generator or a non–ideal complex current generator (fig. 9.36). The complex electromotive force of the equivalent complex voltage source is equal to the open–circuit complex voltage  
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  of the given complex circuit with respect to the terminals  A  and  B , the complex generated current of the equivalent complex current source is equal to the short–circuit complex current  
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  of the given complex circuit with respect to the terminals  A  and  B , and the internal complex impedance (or admittance) of either one of the equivalent complex generators,  
[image: image349.wmf]0

0

Y

1

Z

AB

AB

=

 , is the equivalent complex impedance (or admittance) of the passivated complex circuit, taken with respect to the terminals  A  and  B  (fig. 9.37). It must be recalled that passivating a complex circuit means substituting each ideal complex source by its internal complex impedance (admittance), that is short–circuiting each ideal complex voltage source and open–circuiting each ideal complex current source. It is to be underlined that the theorem is only valid for alternating current circuits ahich interact with external circuits at the sole terminals  A  and  B . 
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  Fig. 9.36. 
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  Fig. 9.37. 


5. The simplest connection of a complex source and a complex load (without copled coils) used in practice – a given non–ideal complex source  
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  delivering power (or signals) to an arbitrary complex load  
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  (fig. 9.38) – is studied quite similarly to the corresponding direct current case. 


The complex current and voltage at the source/load terminals are, respectively, 
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and, generaly, the effective value of the current decreases when increasing the load impedance, while the effective value of the voltage increases when increasing the load impedance. 


The complex generated power, the active power loss and transferred active power are, respectively 
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where the complex impedances have been considered given respectively as 
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The active power transfered to the load is then 
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and reaches its maximum value when the denominator attains its minumum. Since the resistances  are  non-negative,  minimising the denominator  supposes  first  cancelling its 

second term, 
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The maximum value of the resulting expression, 
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is reached under the conditions analised previously, for the corresponding direct current problem, 
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   Fig. 9.38. 

These arguments lead to the theorem of the maximum active power transfer: a given non–ideal complex source delivers the maximum active power to a complex load impedance equal to the complex conjugate of the complex internal source impedance, 
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The load is said to be matched to the source when operating under maximum power transfer conditions, which are therefore also named (load) matching conditions. 


9.7.  Applications  of  alternating  current  circuits 


1.  A first application to be considered is directly linked to the last subject approached in the preceding section: it concerns the analysis of a simple source–and–load alternating circuit and the improvement of the power factor of the latter. 
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       Fig. 9.39. 




       Fig. 9.40. 


Let a very simple electric energy distribution network be considered, consisting in a nonideal complex voltage generator  
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 , a connection line  
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 , and a load characterised, as usual, by its nominal (effective) voltage  U2 , nominal active power  P2 , and nominal (supposedly inductive) power factor  cos (2  (fig. 9.39). A simpler equivalent circuit is immediately constructed, by assembling the source and line complex impedances into an equivalent internal complex impedance, 



[image: image369.wmf](

)

(

)

(

)

(

)

x

r

x

x

r

r

x

r

x

r

l

g

l

g

l

l

g

g

l

g

j

j

j

j

z

z

z

+

=

+

+

+

=

+

+

+

=

+

=

   , 

so that an equivalent generator  
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  remains to be considered  (fig. 9.40). 


Starting from the given data, simple calculations give other values of interest, 
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The equivalent circuit is described by the complex equation 
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corresponding to the phasor diagram in fig. 9.41, whence the approximate value of the effective voltage  U2  is obtained as 
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It follows that there exists a voltage drop between the source and the load, of relative value 
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          Fig. 9.41. 



         Fig. 9.42. 


The analysis of the last result shows that, generaly, the voltage drop between the source and the load is reduced quadraticaly if the voltage  U2  is increased; that is why the electric energy is transmitted over long distances on high voltage lines. On the other hand, the formula obtained above allows one to evaluate the needed source effective e.m.f.  E  if the load nominal effective voltage  U2  is imposed or the available load effective voltage  U2  if the source effective e.m.f.  E  is imposed. One may note that an inductive load determines a larger voltage drop than a resistive load (since  tg ( 2  is positive for the first and is zero for the second), and that a capacitive load (of negative value for  tg ( 2 ) determines a smaller voltage drop than a resistive load. Moreover, if the capacitive load presents a capacitive phase difference satisfying the condition 



[image: image380.wmf]x

r

-

<

2

tg

f

   , 

then the load effective voltage U2 may even be greater than the source effective e.m.f.  E . 


There exists as well an  active power loss  in the equivalent internal resistance  r  (or, for that matter, in the source resistance  rg  and the line resistance  rl ) , 
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with a relative value (with respect to the load nominal active power) 
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The analysis of this result shows again that the active power loss is reduced when the voltage is increased, with the same conclusion of using high voltage for the transmission of electric energy over long distances. On the other hand, at a local level, a reduction of the power loss can be obtained by increasing the equivelent load inductive power factor (under the same values of load nominal voltage  U2  and active pover  P2 ) toward the optimum unitary value, for which  ( 2 = 0  and  tg ( 2 = 0 . 


The improvement of the load power factor under the above specified conditions can be achieved simply by connecting a suitable (ideal) capacitor parallel to the load (fig. 9.42). The load voltage remains the same for such a parallel connection, and the load active power is not changed since an ideal capacitor requires no active power. 


The total complex current in the circuit changes from the value  
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and the power factor of the equivalent load changes from the value  cos ( 2  to  the new value  
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 , corresponding to the new phase difference  
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Since the reactive power received by a capacitor is 
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the value of the correction capacitance results then as 
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2.  Another interesting application concerns a phenomenon somehow related to the   improvement  of  the   power   factor   discussed  above;  it  is  the   resonance  in  an  

alternating  current  circuit. 


There are two accepted definition of the resonance. An alternating current circuit is said to operate at resonance if its exchanged reactive power equals zero. This first definition is quite general, but it concerns a quantity – the reactive power – which is difficult to be evaluated or measured. A definition more adequate for measurement is the following: an alternating current circuit is said to operate at resonance if, under defined source conditions, the effective value of a specified quantity reaches an extremum value (either a maximum or a minimum). 


As typical examples, let two simple circuits be considered, consisting in a series or a parallel connection of a nonideal coil  
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 . The associated complex circuits are directly studied. If the general definition of resonance is considered, then simple resonance cconditions result as 
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If the experimental definition of resonance is considered, then the typical source condition is that of a given effective value of the voltage or current at the circuit terminals. 


U = const      or      I = const. 

Finaly, the resulting resonance condition is usualy expressed as the resonance (angular) frequency, depending on the characteristics of the elements in the circuit. 


The complex impedance of the  series connected  complex circuit (fig. 9.43) is 
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that is 
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whence 



[image: image403.wmf](

)

(

)

ú

ú

û

ù

ê

ê

ë

é

+

-

+

ú

ú

û

ù

ê

ê

ë

é

+

+

=

+

=

2

2

2

1

j

1

j

Z

CR

CR

L

CR

R

r

X

R

e

e

w

w

w

w

   . 

The general resonance condition is 
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where the fact that  
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  was accounted for. The resonant (angular) frequency results as 
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where 
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is the resonant (angular) frequency of the reference series  r–L–C  circuit (fig. 9.44), where an ideal capacitor  
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     Fig. 9.43. 




        Fig. 9.44. 


The experimental resonance conditions for the series connected circuit in fig. 9.43 are rather difficult to obtain. That is why the simpler series  r–L–C  complex circuit (fig. 9.44) will be analysed in the following. 


Proceeding as above, the complex impedance of the series  r–L–C  circuit is 
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and the general resonance condition results simply in 
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Invoking the experimental definition of resonance the (modulus of the complex) impedance is computed, 
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for which the extremum condition is 
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Now more than one experimental resonance can be defined if, for instance, constant effective voltage  U  at terminals is assumed. The current resonance is defined as 
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On the other hand, for instance, the resonance of the capacitive voltage, given by 
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obviously happens at an angular frequency  
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 , and the resonance of the inductive voltage, given by 
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happens again at still another angular frequency  
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The complex admittance of the  parallel connected  complex circuit (fig. 9.45) is 
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that is 
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whence 
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The general resonance condition is 
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where the fact that  
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  was accounted for. The resonant (angular) frequency results as 
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where 



[image: image429.wmf]LC

1

0

=

w

 

is the resonant (angular) frequency of the reference parallel  R–L–C  circuit (fig. 9.46), obtained when an ideal coil  
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       Fig. 9.46. 


The experimental resonance conditions for the parallel connected circuit in fig. 9.45 are significantly more difficult to obtain. That is why the simpler parallel  R–L–C  complex circuit (fig. 9.46) will be analysed in the following. 


Proceeding as above, the complex admittance of the parallel  R–L–C  circuit is 
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and the general resonance condition results simply in 
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For the experimental definition of resonance the (modulus of the complex) admittance is computed, 
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for which the extremum conditions are 
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Now more than one experimental resonance can be defined if, for instance, constant effective current  I  at terminals is assumed. The voltage resonance is defined as 
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On the other hand, for instance, the resonance of the capacitive current, given by 
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obviously happens at an angular frequency  
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 , and the resonance of the inductive voltage, given by 
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happens again at still another angular frequency  
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The most important use of resonant circuits is linked to their frequency selective property. Indeed, let a simple parallel connected  R–L–C circuit be considered as shown in fig. 9.46; when operating, for instance, under constant effective current conditions, the dependence of the effective voltage at terminals on frequency is that presented in fig. 9.47. 
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    Fig. 9.47. 


Let the current carried by the circuit contain three components of the same effective voltage but different frequencies, 
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Since the circuit is linear, each component current determines an associated component voltage of the same frequency. The effective values of the component voltages are related to the frequency according with the dependence indicated in fig. 9.47, 
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Let the component frequencies be ordered, for example, as 
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then, according to the voltage dependence on frequency, the effective values of the component voltages are then 
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These values show that the resonant circuit performs a selection of component signals according with their frequency: the voltage  u  at the terminals of the resonant circuit under consideration consists almost entirely in the component  u2 , of a frequency near the resonant frequency of the circuit, while the components of frequencies different from the resonant frequency are rejected. 


3.  A very important application of alternating current circuits is represented by a particular assembly of active and passive elements into so called  three–phase circuits. 


A three–phase circuit is an alternating current circuit consisting in three parts of approximately the same configuration, where the corresponding electric quantities have approximately the same effective value and a phase difference of  
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  ((120() between them. The three–phase circuits are studied directly in terms of the complex representation of the electric quantities. 


In a three–phase circuit one can distinguish the three–phase generator (or generators), the three–phase load (or loads) and the lines connecting them. Let the simplest three–phase circuit be considered, where the three–phase generator consists into three alternating current voltage sources – the phases of the generator, the three–phase load consists into three loads operating under alternating current conditions – the phases of the load, and three (or, sometimes, four) lines connecting the corresponding phases (components) of the generator and load. 


The reason for using three–phase circuits is twofold. First, supposing that different  corresponding generator and load phases do not influence one another, there is an important reduction in the material needed for the lines: a three–phase circuit needs three (or four) connecting lines, while three separate generator–load couples would have needed six connecting lines. Second, there are special applications in electric three–phase machinery which are significantly more efficient than other constructive approaches. 


The generator and the load phases can be either star– or triangle–connected. 


The  star (wye) connection  of the three–phase generator and load is presented in fig. 9.48. The three generator phases have a common point called the null (or neutral) generator terminal  O . The three load phases have as well a common point called the null (or neutral) load terminal  N . The corresponding phase terminals of the three–phase generator and load are connected by  associated lines; eventualy,  the null terminals of the three–phase generator and load can also be connected by a null line. The complex quantities  associated  with  the   (ideal)  three–phase   generator  are  the   phase   e.m.f.’s 
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    Fig. 9.48. 
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  at the generator end. The complex quantities associated with the three–phase load are the phase impedances  
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  at the load end. The complex quantities associated with the lines are their impedances  
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 , generaly position–dependent along the lines. The series connection of phases and lines in the star connection determines the equation 
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the phase and line currents of the same subscript are equal. 
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    Fig. 9.49. 


The triangle (delta) connection of the three–phase generator and load is presented in fig. 9.49. The three generator phases are connected in a loop between the accessible terminals and, similarly, the three load phases are connected in a loop between the accessible terminals. The corresponding terminals of the three–phase generator and load are connected by associated lines; obviously, there is not a null line. The complex quantities associated with the (ideal) three–phase generator are the phase e.m.f.’s  
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 . Similarly, the complex quantities associated with the three–phase load are the phase impedances  
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 . The complex quantities associated with the lines are their impedances  
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  and the line voltages  
[image: image473.wmf]31

23

12

U

,

U

,

U

 

 

 

 

 , generaly position–dependent along the lines. The connection of phases and lines in the triangle connection determines the equation 
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the phase and line voltages of the same subscript are equal, separately at the generator and the load ends. 


A three–phase circuit operates under  symmetric conditions  when the phase or line quantities of the same type have precisely the same effective values and present between them phase differencies of precisely  
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For instance, a symmetric system of phase voltages at the generators end in a star connection is (fig. 9.50) 
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It can be easily shown that, in such a case, the associated line voltages obtained by considering Kirchhoff’s voltage equation in fig. 9.51, 
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        Fig. 9.50. 



 Fig. 9.51 
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are also symmetric, 
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where 
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Similarly, a system of symmetric phase currents of a triangle–connected load could be (fig. 9.52) 
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In this case it is easy to obtain the corresponding line curents by considering Kirchhoff’s current equation at the terminals (fig. 9.53), 
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        Fig. 9.52. 



 Fig. 9.53 
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which are also symmetric, 
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where 
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A three–phase load is said to be  balanced  if its phase complex impedances are the same, 
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for the star–connection, or 
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for the triangle–connection. In such cases simple application of the star–triangle equivalence theorems show that a balanced star–connected load of impedances  
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  is equivalent to a balanced triangle–connected load of impedances 
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conversely, a balanced triangle–connected load of impedances  
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The three–phase circuits essentialy are and can be studied as alternating current circuits. However, due to specific symmetries in their constituency and operation, special procedures for the study of three–phase circuits have been also developed. 


In particular, it can be easily shown that the study of a three–phase balanced load operating under a three–phase symmetric system of voltages can be reduced to the study of a single phase of it, the quantities in the other two phases resulting afterwards by simply changing by  
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  the phase of the corresponding quantities in the reference phase under study. 


In the same particular case of a three–phase balanced load of phase impedance 
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operating under a three–phase symmetric system of line voltages of effective value  Ul , it 
results  also  a   three–phase   symmetric  system  of  line  currents  of  effective  value  Il . Moreover, the active and reactive power received by the circuit can be computed to be 
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