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8.  DYNAMIC  CRCUITS 

______________________________________________________________________________________________________________________________________________________________________


8.  DYNAMIC  CIRCUITS 

8.1.  Circuit  elements  and  fundamental  relations 


A dinamic circuit is a set of interconnected ideal circuit elements operating under quasi–steady state conditions. The ideal circuit elements have been introduced already in previuos chapters and are only briefly presented here. 


1.  An active circuit element is an ideal circuit element where electromagnetic energy is generated – more precisely transformed from some energy of another type. The active circuit elements are the ideal generators. 


The ideal voltage generator is the active dipole element where the electromagnetic energy is generated under imposed voltage conditions. It is characterised by the (time–dependent) electromotive force (e.m.f.)  e(t)  and its direction  (fig. 8.1). The electromotive force  e  is determined by the internal energy conversion processes and depends on different physical parameters and, generaly, on time – this dependence on time is considered here. The state/ operating equation of the ideal voltage generator is 
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where the reference directions of current and voltage are associated according with the source rule. The energy conversion processes are simply characterised by the fact that the power delivered at the terminals is just the generated power, 
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      Fig. 8.1. 




      Fig. 8.2. 


The ideal current generator is the active dipole element where the electromagnetic energy is generated under imposed current conditions and delivered at terminals. It is characterised by the (time–dependent) generated current  a(t)  and its direction  (fig. 8.2). The generated curent  a  is determined by the internal energy conversion processes and depends on different physical parameters and, generaly, on time – this dependence on time is considered here. The state/ operating equation of the ideal current generator is 
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where the reference directions of current and voltage are associated according with the source rule. The energy conversion processes are simply characterised by the fact that the power delivered at the terminals is just the generated power, 
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2.  A passive circuit element is an ideal circuit element where the electromagnetic energy received at terminals is dissipated or stored – the element is called dissipative in the former case and reactive in the latter case. 


The  ideal resistor  is the dissipative dipole element where the electromagnetic energy received at terminals is irreversibly transformed into internal energy (heat) of the internal conducting substance. It is characterised by the resistance  R  or its reciprocal, the conductance  G . Correspondingly, the state/operating equation is, 
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where  
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  and the reference directions of current and voltage are associated according with the load rule (fig. 8.3). The energy conversion processes are simply characterised by the fact that the power received at the terminals is dissipated, 
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      Fig. 8.3. 




     Fig. 8.4. 


The  ideal capacitor  is the reactive dipole element where the electromagnetic energy received at terminals is stored as electric energy, associated with the opposite electric charges accumulated within the element. The ideal capacitor is characterised by the capacitance  C  and its state equation is 
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where the reference direction of the voltage goes from the positive to the negative charge (fig. 8.4). Supposing that the capacitance is time–invariant, the operating equation is 
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where the reference directions of current and voltage are associated according with the load rule. The energy conversion processes are simply characterised by the fact that the power received at the terminals, 
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is the rate of increase of the accumulated electric energy, 
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The  ideal coil  is the reactive dipole element where the electromagnetic energy received at terminals is stored as magnetic energy, associated with the magnetic flux developed within the element. The ideal coil is characterised by the inductance  L  and its state equation is 
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where the reference directions of the current and magnetic flux are associated according with the right-hand rule (fig. 8.5). Supposing that the inductance is time–invariant, the operating equation is 
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where the reference directions of current and voltage are associated according with the load rule. The energy conversion processes are simply characterised by the fact that the power received at the terminals, 
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is the rate of increase of the accumulated magnetic energy, 
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     Fig. 8.5. 



            Fig. 8.6. 


Additionaly, the system of (ideal) coupled coils is the reactive multipole element where the electromagnetic energy received at terminals is stored as magnetic energy, associated with the magnetic fluxes developed within the element. The system of (ideal) coupled coils is characterised by the set of  self  and  mutual inductances  Ljj , Ljk = Lkj , j,k = 1,…,n  and its state equations are 
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where the reference directions of the currents and magnetic fluxes are determined, in relation with the specified marked terminals of the coils, according with the right-hand rule (fig. 8.6). Assuming that the inductances are time–independent, the operating equations are 
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where the reference directions of current and voltage are associated according with the load rule for each coil. The energy conversion processes are simply characterised by the fact that the power received at the terminals, 
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is the rate of increase of the accumulated magnetic energy, 
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3.  The state of a dynamic (linear) circuit is characterised by the set of appropriate state quantities associated with each couple of terminals of constituting elements, as follows. 


For a given electromotive force, the state of a voltage generator is characterised by the current  i , while for a given generated current, the state of a current generator is characterised by the voltage  u .


The state of a resistor can be characterised either by the curent or the voltage – usualy the current  i  is taken as the state variable of this circuit element. The state of a capcitor is characterised by the electric charge  q ; usualy, however, the voltage  u  is equivalently taken as the state variable. The state of a coil is characterised by its magnetic flux  ( ; usualy, however, the current  i  is equivalently taken as the state variable. Similarly, the state of a system of coupled coils is characterised by the set of magnetic fluxes  (k ; usualy, however, the set of currents  ik  is equivalently taken as the set of state variables. 


A very important remark is that, according with the manner of defining the ideal circuit elements, electric charges are present in capacitors only, while magnetic fluxes are present in coils only – there is no electric charge outside capacitors and there is no magnetic flux outside coils. This remark is fundamental in deriving the equations that describe the behaviour of dynamic circuits. 


4.  The evolution of the state variables of a dynamic circuit is described by Kirchhoff’s theorems (equations) for dynamic circuits. 


Kirchhoff’s current theorem is formulated for a node; let then  (a)  be a node – that is, a ramification point in the circuit – as in fig. 8.7. Let the node be included into a closed surface  ( , which can always be so chosen that it does not separate two plates of a capacitor, and let the law of electric charge conservation be invoked for this surface, 
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On the left-hand side, the total electric conduction current getting out across the surface  (  is obviously the algebraic sum of currents carried by tha brances concurring in the node, 
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on the right-hand side, the electric charge inside the domain bounded by the closed surface  (  is identicaly zero, 
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since the surface includes no unbalanced electric charge on a single capacitor plate. It follows that 
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the algebraic sum of currents concurring in a node equals zero at any moment. 
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 Fig. 8.7. 




    Fig. 8.8. 


Kirchhoff’s voltage theorem is formulated for a loop; let then  (p)  be a loop – that is, a sequence of branches assembling into a contour in the circuit – as in fig. 8.8. Let  (  be the closed line traced along the voltage lines at the terminals of the branches in the loop, and let Faraday’s law (on electromagnetic induction) be invoked for this contour, 
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On the left-hand side, the induced e.m.f. is just the total electric voltage along the contour ( , which is obviously the algebraic sum of voltages at the terminals of the branches in the loop, 
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on the right-hand side, the magnetic flux over the surface bounded by the closed line  (  is identicaly zero, 
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since the surface is traced outside the coils, where the magnetic flux is present. It follows that 
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the algebraic sum of voltages at the terminals of branches in a loop equals zero at any moment. 


The link between the variables occuring in Kirchhoff’s equations above is offered by Joubert’s theorem. Let the most general branch  (k) be considered (fig. 8.9), where  the same reference direction  is considered for the current  ik , the voltage between terminals  utk , the generated current  ak , the e.m.f.  ek , and the voltages across the circuit element in the branch. The sequence of the voltages across the circuit elements in the branch and the voltage between the terminals of the branch constitute a loop, so that Kirchhoff’s voltage theorem gives 
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where, in particular, 
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 . It readily follows Joubert’s theorem, 
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   Fig. 8.9. 

In particular, Joubert’s theorem for linear circuits takes the form 
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where the voltage across the coil is to be taken as  
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  if the coil  k  is included in a system of coupled coils, and the link between the current and the voltage across the capacitor is given by the operating equation 
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An extended form of Kirchhoff’s voltage theorem can be now obtained if the expression given by Joubert’s theorem is used – it gives 
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Transferring the e.m.f.’s to the right-hand side, this results in the desired equation, 
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In particular, the extended form of Kirchhoff’s theorem for linear circuits is 
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where again the voltage across the coil is to be taken as  
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  if the coil  k  is included in a system of coupled coils, and the link between the current and the voltage across the capacitor is given by the operating equation 



[image: image47.wmf]  

  

t

d

u

d

C

i

k

C

k

k

=

   . 


5.  From the energy point of view, a consequence of Kirchhoff’s equations can be proved, representing the theorem of power conservation in a dynamic circuit. However, an indirect argument is invoked here, starting from the theorem of electromagnetic energy, 
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On the left-hand side, the electromagnetic power received by the circuit across its surrounding surface reducess to the electromagnetic power received at the circuit terminals (at most, at all its  N  nodes), if this is a unisolated circuit, 
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where  va  is the potential of the node  (a)  and  ia  is the electric current entering the node from outside the circuit. 


On the right-hand side, the mechanical power associated with the electromagnetic field is identicaly  zero, 
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since there is no movement present in the system. 


The electromagnetic power transferred to the substance reduces then to the power transferred to conductors, if the absence of hysteretic phenomena is supposed, as it is usualy the case with linear circuits. In turn, the electromagnetic power transferred to the conductors in the circuit is given, according to Joule’s law on the power transfer associated with electric conduction, by 
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that is the difference between the dissipated and the generated power in the circuit. According with the fact that different energy transfer processes are asigned to different specific circuit elements in the  B  branches of the (linear) circuit, it follows that 
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where the reference directions of the quantities associated with the generators eventualy present are associated according with the source rule. 


Finaly, the electromagnetic energy accumulated in the system is just the sum of the electric and magnetic energy, 
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stored in the capacitors and in the coils of the circuit, respectively. Assuming again  linear circuits, the electromagnetic energy stored in the circuit is 
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in the absence of coupled coils and 
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in the presence of coupled coils. 


The above expressions are assembled into 
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which can be rewritten in the general form of the theorem of power conservation in dynamic circuits, 
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the sum between the power received at the terminals of a dynamic circuit and the power generated by its generators equals the sum between the power dissipated in the resistors of the circuit and the rate of increase (in time) of the electric and magnetic energy stored in the capacitors and coils of the circuit. 


In particular, in the case of linear circuits, the theorem of power conservation in dynamic circuits takes the extended form 
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where the last term reduces to  
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  in the case where there are no coupled coils in the circuit. 


8.2.  The  solution  to  the  equations  of  dynamic  circuits 


1.  The evolution of (the state of) a dynamic circuit is described by the solution to the equations of the circuit – Kirchhoff’s equations. It is extremely difficult to obtain such a solution in the case of nonlinear circuits; therefore, only linear dynamic circuits are considered in the following. 


The standard problem of a linear dynamic circuit is the following: The given data are: the configuration (topology) of the circuit, the characteristics of its active elements (ek  and  ak ), the characteristics of its passive elements (Rk , Ck , and  Lk  or  Lks ), and data about the initial state of the reactive elements, as it will be analysed further on. The unknown data are the evolution of state variables characterising the circuit elements: the currents  ik(t)  through resistors, coils and voltage generators and the voltages  uCk(t)  and  uk(t)  across capacitors and current generators, respectively, starting from an initial moment conventionally taken as  t = 0 . 


2.  The equations of linear dynamic circuits – Kirchhoff’s equations – are 
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and 
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where the voltage across a coil  k  is to be taken as  
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  if that coil is included in a system of coupled coils. 


Some comments are quite important. 


1(. Kirchhoff’s voltage equations are obviously linear differential inhomogeneous equations: they are linear equations, include derivatives of some of the unknown quantities, and inlcude also some given time–dependent e.m.f.’s in the right-hand side. 


2(. Even if it is not obvious, Kirchhoff’s current equations are generaly also linear differential inhomogeneous equations: they are obviously linear equations, and may include differential terms as  
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  and given time–dependent terms as  
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 ,  corresponding to the presence of such elements – capacitors or current generators – in the branches concurring in the node under consideration. 


3(. Finaly, all the coefficients of the unknown quantities (or their derivatives) are constant. 


The problem associated with the evolution of a linear dynamic circuit is thus the problem of solving a system of linear differential inhomogeneous equations with constant coefficients. Such equations were extensively studied from the mathematical point of view, and some important results are given in the following. 


(1)  The solution of a system of linear differential inhomogeneous equations with constant coefficients exists and is continuous on the closed interval of continuity of coefficients and given right-hand time–functions, and is derivable on the open interval of continuity of coefficients and given right-hand time–functions. 


(2)  The solution for any unknown time–function  fk(t)  (that is, unknown voltage  uk  or  unknown current  ik)  is decomposable into a so called  free solution  and a so called  forced solution, 
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(3)  The free solution  
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  is the general solution of the homogeneous system of equations, obtained from the original (complete) equations if all given time–functions (in the right-hand side) are equated to zero. This corresponds with considering zero values for all e.m.f’s of voltage generators and generated currents of current generators, i.e. the absence of all generators in the circuit. This solution depends not only on time but also on some undetermined integration constants, 
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where  m  is called the order of the system of differential equations and is generaly equal to the number of reactive elements in the circuit. 


(4)  The time–dependence of the free solution is generaly a linear combination of products of so called functions of exponential type, namely exponential functions  ert , powers of the variable  tp , and trigonometric functions  
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. Moreover, if resistors are present in the circuit, then the exponential terms have a negative exponent,  
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 . The values of parameters  ( , p , (  depend on the characteristics of the passive circuit elements present. 


(5)  The forced solution  
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  is a particular solution of the inhomogeneous (complete) system of equations, and its form depends on the given time–dependence of the functions characterising the generators – e.m.f.’s  ek(t)  and generated currents  ak(t) . 


(6)  There is no general rule concerning the time–dependence of the forced solution. However, when the given functions characterising the generators, that is,  ek(t)  and  ak(t) , are functions of exponential type, the forced solution is a function of the same type. 


3.  The conclusion of the mathematical results briefly presented above is that the time–functions representing the solution of a linear dynamic circuit has the form 
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and is a continuous and derivable function on the closed, respectively open, interval of continuity of coefficients and given right-hand side functions characterising the generators. It now remains to determine the values of the integration constants  A1 , … , Am  in the complete solution. 


Let a node  (a)  be cosidered, and let Kirchhoff’s current equation for this node,  
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be rewritten by separating the currents carried by branches containing a capacitor from those that do not include any capacitor, 
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The first sum can be successively written as 
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where  
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  is the total charge of node  a , that is the algebraic sum of electric charges on the capacitor plates connected to this node. The second sum can be written as 
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that is, as the non–capacitive total current in node  a . Using these notations, Kirchhoff’s current equation in node  a  becomes 
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For a consistent solution to exist, it is necessary  that all quantities in the circuit – including the non–capacitive total current in node  a – exist at any moment, which imposes the continuity of the total charge  
[image: image78.wmf](
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  of any node  a . This is obviously true over the interval of continuity of coefficients and given right-hand side functions of the system of equations; it remains to impose the node charge continuity at the very first moment when the continuity is not explicitly stated, which is the initial moment  t = 0 . So a  necessary condition  for a consistent solution is 
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The right-hand side is just the limit of the node charge when  
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 , while the left-hand side has to be given. Expressing the node charge in terms of the circuit variables, the necessary continuity condition is 
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where
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are necessarily given initial data. 


Let now a loop  (p)  be cosidered, and let Kirchhoff’s voltage equation for this node,  
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for voltages across the elements in the branches of the considered loop, be rewritten by separating the voltages across coils from those across any non–inductive circuit element, 
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The first sum can be successively written as 
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where  
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  is the total flux of loop  p , that is the algebraic sum of magnetic fluxes of the coils in this loop. The second sum can be written as 
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that is, as the non–inductive total voltage of loop  p . Using these notations, Kirchhoff’s voltage equation for loop  p  becomes 
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For a consistent solution to exist, it is necessary  that all quantities in the circuit – including the non–inductive total voltage of loop  p – exist at any moment, which imposes the continuity of the total flux  
[image: image89.wmf](
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  of any loop  p . This is obviously true over the interval of continuity of coefficients and given right-hand side functions of the system of equations; it remains to impose the loop flux continuity at the very first moment when the continuity is not explicitly stated, which is the initial moment  t = 0 . So a necessary condition for a consistent solution is 
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The right-hand side is just the limit of the loop flux when  
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 , while the left-hand side  has to be given.  Expressing the  loop flux  in terms of the  circuit variables, the 

necessary continuity condition is 
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where coupled coils were generaly supposed as present and 



[image: image93.wmf](

)

-

=

0

0

s

L

s

L

i

i

 

are necessarily given initial data. 


It may be concluded that the necessary data about the initial state of the reactive elements are the initial values  (at  t = 0–)  of voltages across any capacitor and of currents carried by any coil, 
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and the equations needed to determine the initialy undetermined integration constants are 
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4.  A simple  example  is illustrative for the algorithm of solving the equations of a dynamic circuit. 


Let a series connected  RC  circuit be considered, its terminals being switched at the moment  t = 0  from the terminals of a constant voltage source of e.m.f.  E1  to the terminals of a constant voltage source of e.m.f.  E2  (fig. 8.10), starting from a steady state. 
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        Fig. 8.10. 



Fig. 8.11. 


Before the initial moment  t = 0 , the circuit has the configuration of  fig. 8.11, and is operating under steady state conditions, when all quantities are constant,  
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 . Kirchhoff’s current equation is irrelevant, since there is no ramification in the circuit; Kirchhoff’s voltage equation is 
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where, in view of the steady state operating conditions,  
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The differential equation that describes the circuit is then 
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which gives 
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The needed initial data for the circuit under consideration are then 
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          Fig. 8.12. 


After the initial moment  t = 0 , the circuit has the configuration 
of  fig. 8.12, and is operating as a dynamic circuit. Kirchhoff’s current equation is again irrelevant, and Kirchhoff’s voltage equation is now 
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where 
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The differential equation that describes the circuit is now 
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with the solution decomposed as 
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The free solution  
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 , that is the solution of the homogeneous equation 
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is searched in the form 
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Substituting these expressions in the circuit equation, it follows that 
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so that, since   
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The time constant of the circuit is now defined as 
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so that the free solution is written as 
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where   A   is the yet undetermined integration constant. 


The  forced solution  
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 , that is the  solution of the  complete inhomogeneous 

equation 
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is searched in the form similar to the right-hand side functions (which is a particular case of an exponential function with zero exponent), 



[image: image121.wmf](

)

.

const

=

=

B

t

u

F

C

   , 

for which 
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Substituting these expressions in the circuit equation, it follows that 
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so that it remains that 
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The complete solution of the circuit equation is thus 
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where the integration constant  A  is to be determined from the condition of charge continuity, 
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Substituting the known value of  
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it results the equation 
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whence 
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The evoluution of the voltage across the capacitor is obtained by assembling the solutions to the circuit equations before and after the initial moment (fig. 8.13), 
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It can be easily verified that indeed the voltage is continuous at the moment  t = 0 , 
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while for  t > 0  the voltage across the capacitor tends assymptoticaly toward the limit 
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This circuit illustrates the switching of a capacitor from a voltage  E1  to a voltage  E2 : if  E1 < E2 , this corresponds to charging the capacitor; if  E1 > E2 , this corresponds with discharging the capacitor. 
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 Fig. 8.13. 


The current carried by the circuit is readily computed, for  t > 0 , as 
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so that the evolution of the current in the circuit is (fig. 8.14) 
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 Fig. 8.14. 

It is obvious that if  E1 < E2  (charging process), then  i > 0  for  t > 0  and the opposite,  i < 0  for  t > 0 , is valid when  E1 > E2  (discharging process). The current is discontinuous at the switching moment  t = 0 , 
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and it tends assymptoticaly to zero when the charging/discharging process is completed.,
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The time constant  ( = RC  of the circuit is a measure of the  slowness of transient (time–varying) processes  in the circuit. Indeed, it can be shown that the time constant is the duration, measured on the assymptote, between the initial moment and the intersection of the assymptote and the tangent to the representative curve at  t = 0  (fig. 8.13 or 8.14). 
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     Fig. 8.15. 
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     Fig. 8.16. 

This means that if the time constant is very small, then, for instance, the current decays quite rapidly to zero (as in fig. 8.15, where a four times shorter time constant  (  is considered, as compared with the reference one  (0), while when the time constant is very large the current decays significantly slower as in fig. 8.16, where a three times longer time constant  (  is considered, as compared with the reference one  (0). Moreover, it can be seen that after a time interval of three time constants from the initiation of the transient processes the time–varying quantity is within  5%  from its assymptotic value. 
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