
APPENDIX C

A Cheaper Way to
Complementarity

For reference, let us state again the basic problem of Chapter 6:  In domain
D, the surface  S  of which is partitioned as  Sh ∪ Sb, find among pairs
{h, b}  which satisfy

(1)  rot h = 0   in  D,                               (3)           div b = 0   in  D,

(2) n × h = 0   on  Sh                               (4)           n · b = 0   on  Sb,

(6) ∫c τ · h = I,                                           (7)           ∫C n · b = F,

a minimizer for the error in constitutive law

               E(b, h) = ∫D µ–1
 |b – µ h|2.

(Cf. Fig. 6.1 for the definition of the “link”  c  and the “cut”  C.)  As we
saw, there is a minimizer whatever  I  and  F, with  h  and  b  weakly
solenoidal and irrotational, respectively, and a unique value of the ratio
R = I/F  (the reluctance) for which the constitutive law

(5)                           b = µ h     in  D,

is satisfied, i.e.,  E(b, h) = 0.
Complementarity consists in simultaneously solving for  h = grad ϕ  by

nodal elements for  ϕ  and for  b = rot a  by edge elements for  a, hence
(assuming one uses the same mesh  m  for both, which is not mandatory), a
rot-conformal  hm  satisfying (1–2)(6) and a  div-conformal  bm  satisfying
(3–4)(7), “m-weakly” solenoidal and irrotational respectively, but not
linked by (5).  This gave us bilateral bounds for  R  and (by computing
E(bm, hm) ) upper bounds for both approximation errors  ∫D µ |h – hm|2  and
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∫D µ–1
 |b – bm|2.
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Alas, this nice approach has a serious drawback:  As we saw in Section
6.3, the part of the computation that yields  a  is much more expensive1

than the determination of  ϕ.
Therefore, it would be interesting to be able to save on this effort, in

the case of the  a-method, by making good use of the information one has,
once  hm  has been determined.  In quite fuzzy terms for the moment—but
this will become more and more precise—can the solution in terms of  ϕ
somewhat be corrected to yield a truly solenoidal (not only  m-solenoidal)
approximation of  b?

C.1  LOCAL CORRECTIONS

So let’s suppose we have computed  hm, satisfying Eqs. (1), (2), and (6),
and such that

(8) ∫D µ hm · grad λn = 0  ∀ n ∈ Nh ,

where  λn  (preferred in this Appendix to  wn, for notational uniformity) is
the barycentric function of node  n, and  Nh = N  – N( Sh)  the set of nodes not
included in  Sh.  We want some  b ∈ W2

m, divergence-free, and—in order to
make use of the knowledge of the solution we have already acquired—close
to  hm.

What we have done in Chapter 6 seems to give an obvious solution:
Look for a minimizer of the error in constitutive law,

(9) b = arginf{∫D µ−1
 |b' – µh m|2 :  b' ∈ IBF

m} ,

where  IBF
m = {b ∈ W2

m(D) :  div b = 0,  n · b = 0  on  Sb,  ∫C n · b = F}.  Vector
fields in this space are linear combinations of face elements,

(10) b = ∑ f ∈ Fb
 bf wf ,

where  Fb  abbreviates  F(S – Sb), the set of faces not included in  Sb.  (This
way, (10) implicitly takes the no-flux condition (4) into account.)  But the
remaining nonzero face-DoFs  bf  are not independent for  b ∈ IBF

m.  They are

1Just for practice, let’s do it again, this time with the ratio  T/N  equal to 6.  Thanks to
the Euler–Poincaré formula, one has  E ~ 7N  and  F ~ 12 N.   The average number of faces
that contain a given edge is  3F/E, so each edge has  9F/E  “neighbors”, if one defines as
neighbors two edges that belong to a common tetrahedron.  The number of off-diagonal
entries of the edge-element matrix is thus  9F, that is,  108 N, against  14 N  for the matrix
created by the  ϕ-method.

constrained by linear relations:
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∑ f ∈ F(Τ) DTf bf = 0,              ∑ f ∈ F(C) DC f bf = F,

where  F(C)  is the set of faces that pave the cut  C, and  DC f = ± 1
according to relative orientation.  As  IBF

m = rot AF
m, (9) is equivalent to

finding a minimizer

(11) am ∈ arginf{∫D µ−1 |rot a – µh m|2 :  a ∈ AF
m} ,

and there is no difference between doing that and directly solving for  a
by edge elements.  The  b = rot a  thus obtained, which is the approximation
bm  of Chapter 6, is indeed the closest to  hm  in energy.  But no use is made
of the knowledge of  hm  this way.
Remark C.1.  Problem (11) is the same as problem (6.21):  Since
∫D µ−1

 |rot a – µh m|2 = ∫D µ−1
 |rot a|2 – 2∫D hm · rot a + ∫D µ |hm|2  and (by

Lemma 6.1)  ∫D hm· rot a  = 0, the two functionals in (11) and (6.21) differ by
a constant, and minimization is performed on the same subspace.  ◊

We now introduce the localization heuristics.  Let’s have a partition
of unity over  D, i.e., a family of piecewise-smooth functions   χi , indexed
over some finite set  J, and satisfying  ∑ i ∈ J χ

i  = 1.  Any  b  can be written as
a sum  b = ∑  i ∈ J χ

i b ≡ ∑ i ∈ J b
i.  For one that suits our needs (divergence free,

and close to  hm ), each  bi  should satisfy  div b i = div(χib) = b · grad χi, and
should be close to  χiµh m.  Not knowing  b, we replace  b · grad χi  by the
next best thing, which is  µh m · grad χi, and try to achieve  div bi =
µh m · grad χi  as best we can, while looking for  b i  in  W2.  Since then  div b i

belongs to  W3, and is thus mesh-wise constant,  the best we can do is to
request

(12) ∫T div bi = ∫T µ h m · grad χi   ∀ T ∈ T,

for all indices  i.  Besides that, we also want  b i  as close as possible, in
energy, to  χi µh m, hence

(13) bi = arginf{∫D µ−1 |b' – µχi h m|2 :  b' ∈ IBi( hm)} ,

where  IBi( hm)  is an ad-hoc and provisional notation for the set of  b is  in
IBF

m  that satisfy the constraints (12).  Intuitively (and we’ll soon confirm
this), computing  bi  is a l oca l procedure.  (Notice that  div b = div(∑ i b

i) =
0, by summing (12) over  i.)  This is the principle.

For its formal application, now, let us call  T 
i  the set of tetrahedra

whose intersection with  supp(χi)  has a nonzero measure,  Di  their set
union, and  F 

i  the collection of all faces of such tetrahedra except those
contained in the boundary  ∂Di  (but not in  Sh, cf. Fig. C.1).  In (13),
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µ χ
i h m = 0  outside  D i, so we may search  bi  among the restricted set of

fields that vanish outside  Di, which means (since by normal continuity of
bi, its normal component on  ∂Di  must be null) those of the form
∑ f ∈ F i  bf wf.  Let us therefore introduce the notation

W2
m(Di) = {b ∈ W2

m(D) :  b = ∑ f ∈ F  i  bf wf} ,

and redefine  IBi( hm)  as

IBi( hm) = {b ∈ IBF
m ∩ W2

m(Di) :  ∫T div bi = ∫T µh m · grad χi  ∀ T ∈ T 
 
i} .

The  bis  are given by

(14) bi = arginf{∫Di µ−1 |b' – µχih m|2 :  b' ∈ IBi( hm)} ,

which differs from (13) only by the integration domain being  D i  instead
of  D.
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FIGURE C.1.  Two examples showing the relation between  supp(χi)  (shaded) and
T 

i.  Faces of  Fi  (appearing as edges in this 2D drawing) are those not marked
with a  0.

Before going further, let us point to an easily overlooked difficulty:
If  Di  does not encounter  Sh  (we call  Jh  the subset of  J  for which this
happens), then  ∫Di div bi = 0.  So unless

(15) ∫Di µh m · grad χi = 0   ∀ i ∈ Jh ,

some of the affine sets  IBi( hm)  may well be empty!  Fortunately, there are
easy ways to enforce condition (15).  One is to use the barycentric functions
as partition of unity, and then  Jh  coincides with  N h, so (15) is equivalent
to (8), which is indeed satisfied if  hm  was computed by the  ϕ-method.
More generally, if all the  χis  are linear combinations of the  λns, which
we shall assume from now on, (15) holds, and we are clear.
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C.2  SOLVING PROBLEM (14)

The previous remark sheds some light on the algebraic structure of Problem
(14), which determines  bi.  The number of unknowns is the number of faces
in  F i ,  say  Fi.  There are  Ti  tetrahedra in  T 

i, hence  T i  constraints, but
only  T i – 1  of those are independent, owing to (15), in the general case
where  i ∈ Jh.  This leaves  F i – Ti + 1  face DoFs with respect to which to
minimize the energy error in (14).  In the case of connected simply connected
regions  Di, one has

Ni – Ei + Fi – Ti = – 1,

where  Ni  and  Ei  are the numbers of inner nodes and edges in  Di  (those
not on  ∂Di), so the number of independent DoFs is  Ei – Ni.

To go further in the identification of these DoFs, let  bi( hm)  be some
member of  IBi( hm), constructed by a procedure, the description of which
we defer for an instant.  Then  div b i = div bi( hm)  in  Di, hence  bi = b i( hm) +
rot ai, with

(16) a i = ∑ e ∈ Ei a i
e we ,

a linear combination of edge elements, indexed over the  Ei  inner edges of
Di.  The  ais  which are gradients yield  rot ai = 0, and the dimension of the
subspace they span is  N i, so we have indeed  Ei – Ni  independent degrees
of freedom, as far as  bi  is concerned.  (One might use the  Ni  loose ones to
“gauge”  ai.  But this is not necessary, as stressed in Chapter 6.)

Let us now rewrite problem (14) in terms of  ai.  We have

(17) a i ∈ arginf{∫Di µ−1 |rot a' + bi( hm) – µχih m|2 :  a' ∈ Ai} ,

where  Ai  is the set of fields of the form (16).  When  χi = λi, the barycentric
function of node number  i, this simplifies a little, for

∫Di µ−1 |rot a' + bi( hm) – µλih m|2 = ∫Di µ−1 |rot a' + bi( hm)|2

                 + ∫Di µ |λih m|2 – 2 ∫Di λi rot a' · hm,

and the latter term is  1
2  ∫Di rot a' . hm ≡ 0, because both  rot a'  and  hm  are

piecewise constant, and the average value of  λi  is  1/4  over all tetrahedra.

2This is actually true in all cases when the  χis  are linear combinations of the  λns.

The term to be minimized is then2  ∫Di µ−1 |rot a' + bi( hm)|2.
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This only leaves the problem of determining  bi( hm).  Refer back to
(12), which says, equivalently, that

∫∂T  n · bi = ∫ ∂T µ χi n · hm   ∀ T ∈ T 
 i.

Select  Ti – 1  faces in such a way that no more than three of them belong to
the same tetrahedron, and attribute to them the DoF

(18) bi
f = 1

2  ∑ T ∈ T  i ∫ f µ χi n · Th m ,

where  Th m  is the value of  hm  over  T.  (Only two tetrahedra give nonzero
contributions to the sum, those sharing  f, so  bi

f  is the average flux through
f.)  Other DoFs will be determined from the linear relations (12), now in
the right number.

i

FIGURE C.2.  A cluster of 20 tetrahedra around node  i, with opaque inner faces
and transparent surface faces.  There are 12 inner edges, as many surface nodes,
and 30 inner faces, in one-to-one correspondence with surface edges (Ei = 12,
Fi = 30,  Ti = 20).

As for the selection of faces, we shall describe this process only in the
case where  J ≡ N  and  χi ≡ λi.  Then  Ni = 1, and  D i  is the cluster3 of
tetrahedra around node number  i  (cf. Fig. C.2).  Its surface is a polyhedron
with  E  i  nodes (the number of inner edges),  F  i  edges (for each inner face
corresponds to a boundary edge) and  T 

i  faces (the number of tetrahedra in
the cluster).  By Euler–Poincaré,  E i – F  i + T  

i = 2  (don’t be confused by the
notational shift), and since each boundary face has three edges,  F 

i =
3T i/2.  One has thus  T  

i = 2Ei – 4  (typically  20, on the average, if we
assume 5 tetrahedra per node) and  F  

i = 3Ei – 6  (typically,  30).  (This fits:
T 

i – 1  independent constraints,  Ei – 1  “genuine” edge-DoFs, and 19 + 11 =
30.)  We must select  T  i – 1  edges (out of  F  i ), leaving out  E  i – 1.  This is
done by extracting a spanning tree from the graph, the nodes of which are

3French readers, please use a French name, “grappe” or “agrégat”, to translate cluster.

the faces of  ∂Di  (not the surface nodes!) with the surface edges as edges
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of the graph.  I suppose a drawing could help:  cf. Fig. C.3.  Co-edges of
the spanning tree point to the faces for which the computation (18) will
be done (those which cut the surface along the thick lines of Fig. C.3).

FIGURE C.3.  Complementary spanning trees on the surface of an icosahedron, as
seen in perspective view (left) and in stereographic projection from the center of
the back face (right).  The latter view shows only 19 faces, three of them with
some distortion, as if one was peering inside the icosahedron from a point near the
center of face 20 (the rear one on the left view), which thus corresponds to the
outer region of the plane in the stereographic projection.  The spanning tree of the
face-to-edges graph of the text is in thin lines.  Co-edges of this tree are in dotted
lines;  they intersect the thick-drawn edges of the polyhedron.  Note that these
edges themselves constitute a spanning tree for the node-to-edges tree on the
surface.  (This “complementarity” of the trees of both kinds is a general fact on
closed simply connected surfaces;  cf. Remark C.3.)

After this, Problem (17) amounts to solving a linear system of order
Ei, with twice as many off-diagonal terms as there are edges on the surface
of the cluster, that is,  2Fi = 2(3Ei – 6), typically  72.  There are about  N
such problems (more precisely,  Nh, the number of nodes in  N h) , so if we
regroup them in a single large matrix, the latter will be block-diagonal
(about  N  blocks), and contain about  60 N  off-diagonal terms.  This
compares favorably with the  90 N  we found in Chapter 6 for this typical

4With  T/N ~ 6, as in Note 1, typical figures are  Ei = 12,  F i = 36,  Ti = 24.  One has then
72 N  off-diagonal terms vs the  108 N  computed in Note 1—the same ratio.

mesh,4 to say nothing of the intrinsic parallelism of the method.
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Remark C.2.  All this cries out for some symmetrization:  Suppose  bm  has
been obtained by the  a-method.  Could a local correction to  µ–1h m  be
built, quite similarly, which would yield a curl-free companion to  bm?
Indeed, this is straightforward, and the reader will easily do it by
imitating all we have been doing up to now, systematically transposing  h
for  b,  rot  for  grad, etc.  Economy is no more a factor there, since the
global  ϕ-method is likely to be cheaper than all alternatives, but the
need for local corrections may arise in mesh-refinement procedures the
same way.  And in this respect, even though the  a-method is not the
preferred one in magnetostatics, due to its intrinsically high cost, we may
hope a method elaborated in this context will transpose to the more general
one of eddy-current problems, in which edge-elements and the  curl-curl
equation are natural ingredients, and the scalar potential method is not
an option.  A mesh-refinement procedure based on the present ideas would
then take all its value.  ◊
Remark C.3.   Let’s explain the intriguing “tree-complementarity” of Fig.
C.3.  (This will illustrate what was said in 5.3.3 about the relevance of
graph-theoretical concepts.)  Start from a spanning tree of the so-called
“primal” graph, nodes to edges.  Across each co-edge, there is a line joining
the two nearby triangles.  These lines form a subgraph of the “dual” graph
(the faces-to-edges one).  This “co-edge subgraph” visits all triangles,
because no triangle can have all its edges in the spanning tree, since that
would make a loop.  It’s connected, because the complement of the spanning
tree is.  It has no loops, because a loop would disconnect the primal spanning
tree.  (On other surfaces than spheres, the situation is completely different,
as we observed in Section 5.3, Fig. 5.9.)  ◊

C.3  CONCLUSION AND SPECULATIONS

We achieved our objective, which was to find some  b, divergence-free,
and close to  µh, with moderate computational effort.  In practice, one
will thus solve for the scalar magnetic potential  ϕ, hence  h = grad ϕ, and
compute  b  by the above procedure.  Then everything one may wish to
know about the error relative to this mesh is told by the estimator

(19) E(b, h) = ∑ T ∈ T  ∫T  µ–1
 |b – µ h|2,

which can be used to get bilateral bounds on the reluctance, or to map the
local error in constitutive law.  The approximation error with t h i s mesh
is therefore well documented.  If it is found too large, a mesh refinement,
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by appropriate subdivision of the “guilty” elements and their neighbors,
cannot fail to improve the result.

But the estimator (19) could, conceivably, fail to register this fact
when recomputed on the refined mesh.  Let’s call  m'   the new mesh, and
denote by   m' < m  the fact that  m'  is a refinement of  m.  That  hm'  is
“better” than  hm  is no proof that  E(bm' , hm') < E(bm , hm), if  bm  is
computed by local correction, since the partition of unity has changed with
the mesh.  On the other hand, this equality would hold if  bm  was computed
by the “expensive”, nonlocal edge-element procedure.  We shall denote by
bL

m  and  bG
m  (for “local” and “global”) these two approximations.

Hence the following question:  Does the approximation  b L
m   converge,

like  bG
m, towards the true  b?  The answer is likely to be yes, but the issue

is not yet settled.
To make progress in this direction, let us establish two lemmas (useful

by themselves):
Lemma C.1.  One has  ∑ i ∈ N vol(Di) = 4 vol(D), w h e r e  vol  denotes the
volume.

Proof.  ∑ i ∈ N  vol(Di) = ∑ i ∈ N  ∑ T ∈ T (i) vol(T) = ∑ T ∈ T(i)  ∑ i ∈ N  vol(T)

                        = 4 ∑ T ∈ T (i)  vol(T) = 4 vol(D),

since each tetrahedron has four nodes.  ◊
Lemma C.2.  Let  k  b e the maximum number of edges adjacent to a node.
Then, for a given vector field  u,

(20) ∫D |u|2 ≤ (k + 1) ∑ i ∈ N ∫D |λi
 u|2.

Proof.  Let us set  ui = λiu.  Then, for any definite node ordering,

∫D |u|2 = ∫D |∑ i ∈ N  λ
i u|2 = ∑ i ∈ N ∫D | u

i|2 + ∑i  ≠ j ∫D  u
i . uj

               ≤ ∑ i ∈ N  ∫D | u
i|2 + ∑i  < j ∫D (|ui|2 + |uj|2)

               ≤ (k + 1) ∑ i ∈ N  ∫D | u
i|2,

hence (20).  ◊

Now call  γ (m)  the grain of the mesh.  Recall the standard result of
Chapter 4,

E(bG
m , hm) ≤ C1 γ (m)2,
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where the constant  C1  (like all similar ones to come) depends on  D  and
the data, but not on the mesh.  If one can prove that

(21) ∫Di  µ−1
 | bi – µχih m|2 ≤ C2  vol(Di) γ (m)2,

it will follow from this and the lemmas that

E(bL
m , hm) ≤ C3 γ (m)2,

a quite nice prospect, since the convergence speed would be the same, with
less computation, than with the global complementarity method, only of
course with a larger multiplicative factor in the error estimate.

So all depends on (21) being true, which seems likely, but I have no
proof.

Another legitimate question is, could the local correction be obtained
in a more straightforward way?  After all, we know  µh  in  Di, so we have
a fair estimate of the fluxes of  b  through faces of  ∂D i.  Why not just look
for the  b  in  W2(Di), with these fluxes as Dirichlet data, that is closest
to  µh  in energy?  What we get this way is a local  b  directly, not something
like the earlier  bi, which was only the local contribution to  b = ∑i b

i.  It’s
much better, in a way, since if we are interested in  b  around specified
isolated nodes, one computation, instead of about 13 to 15, will be required
for each of these.

But while this may be all right if all we want is some local divergence-
free correction of  µh, in order to make good-looking, flux-preserving
displays, for instance, such a procedure is not able to yield a global ly
valid  b:  Even if we implement it on a family of  Dis  which pave  D, and
try patching the results together, the  b  thus obtained will not be  div-
conformal (and hence, not divergence-free over  D), because the boundary
fluxes taken as data on any given face differ for the two computations in
the domains  Di  and  Dj  adjacent to that face.  (The variant in which the
fluxes are used as Neumann data instead has the same drawback, and
more degrees of freedom.)  This procedure, therefore, is of no value as
regards error bounds.


