APPENDIX B

LDL' Factorization and
Constrained Linear Systems

Although the standard variational approach to magnetostatics led to a
standard linear system of the form Ax =b, with A symmetric regular
and positive definite, we had to realize that discrete models do not
automatically come in this form, but rather constitute what we called
“constrained linear systems”. So there is a gap, however small, between
equations as they emerge from the modelling and numerical methods as
proposed by textbooks and software packages. Whether this gap is
negligible or not, and how to bridge it in the latter case, are important
issues. This appendix is an approach to this problem from the side of
direct methods, based on Gaussian factorization, such as LDL'. Some facts
about the LDL' method and its programming are recalled, and we find
the adaptation to constrained linear systems feasible, if not totally
straightforward.

B.1 NONNEGATIVE DEFINITE MATRICES

A standard result about the factorization of matrices is: A positive definite
matrix A (see Def. B.1 below), not necessarily symmetric, has an LDM"
decomposition, i.e., one can express A as the product LDM', where D is
diagonal, with strictly positive entries, and L and M are unit lower
triangular (i.e., with all diagonal entries equal to 1). See for instance
[GL], p. 86, for a proof. A corollary is Gauss’s LU decomposition: A =LU,
obtained by setting U = DM".

There is a need, however, for an analogous result that would hold
under the weaker assumption of semi-positive or nonnegative definiteness
(Def. B.2 below): Several times, and notoriously in the case of the rot-rot
equation, we found the system’s matrix nonnegative definite, but not
regular, because of the non-uniqueness of potentials representing the same

319

320 APPENDIX B LDL! Factorization and Constrained Linear Systems

field. Our matrices were also symmetric, so we shall make this assumption,
although this is not strictly necessary. Then, M = L. As we shall see, the
LDL' factorization is an effective tool for the treatment of constrained
linear systems of this category. The reason for this lies in a mathematical
result, which we shall prove: Non-negative definite symmetric matrices
are the LDL'—fuctorizable matrices with D =0 (i.e., all entries of D
nonnegative).

As in the main text, we denote by V the real vector space of dimension
n, but the boldface convention, pointless here, is shunned, and the scalar
product is denoted either by (x, y) or by x'y, where the superscript t
stands for “transpose”. Observe that xy' isan nx v matrix, called the
dyadic product of x by y.

Forany n x n matrix A, we set ker(A) ={x€V_: Ax=0} and cod(A)
={Ax: x €V}, i.e, the image of V_ under the action of A, also called
the range of A. Let us recall that ker(A) and cod(A') are mutually
orthogonal complementary subspaces of V, a fact which is expressed as

(1) V= ker(A) @ cod(A") = ker(A") ® cod(A).

Definition B.1. An n x n matrix A (with real entries) is said to be
positive definite i f

(2) X Ax>0 VxeV, , x=0.
Definition B.2. Matrix A is nonnegative definite i f
(3) x'Ax=0 VxeV,.

A positive definite matrix must be regular. Beware, a regular non-
definite matrix may fail to satisfy x'A x = 0: for instance, matrix 1=
{{0, 1}, {-1, 0}} is regular, but also skew-symmetric, and hence x'Ix=0
for all x. However,

Proposition B.1. Among symmetric matrices, positive definite matrices
are the regular nonnegative definite matrices.

Proof. It's the same proof we did in Section 3.1. Assume (3), and suppose
x'Ax=0 forsome x=0. Then A cannot be regular, because forall y €V,
and all A €IR,

Os(x+y)tA(x+y):2thAx+7\2ytAy,

hence y' Ax=0 Vy (divide by A, and let it go to 0), and hence Ax = 0.
Thus, (3) and regularity, taken together, imply (2) in the case of symmetric
matrices.

B.1 NONNEGATIVE DEFINITE MATRICES 321

From this point on, let us restrict ourselves to symmetric matrices. Let
us recall the following:

Definition B.3. An nxn matrix A is Cholesky-factorizable if there
exists an upper triangular nxn matrix S such that A=S'S.

Such a matrix is symmetric and, obviously, nonnegative definite.
Conversely,

Proposition B.2. Nonnegative definite, symmetric matrices are Cholesky-
factorizable.

Proof. The proof is by recurrence on the order n. Let us write A, by rows of
blocks, as A = {{c, b}, {b, C}}, where C is of order n -1, and look for its

factorization in the form
c b a d

b C d TIlo T

where T is lower triangular of order n - 1. If (3) holds, then, for any
(n - 1)-vector y and any scalar z,

A=

a 0
=SS,

(4) y' Cy+2y'bz+cz’=0.

If ¢ =0, this shows that y'b=0 forall yeV, ,, hence b=0. Then a=0
and d =0, and since C is symmetric and nonnegative definite (take x =
{0, y} in(3)), we dohave C=TT"' by the recurrence hypothesis. Therefore,
S =1{{0, 0}, {0, T}} (by rows of blocks). If ¢>0, set a= V¢, which forces d =
b/a, and requires C = ¢ 'bb' + TT', so all we have to do is show that
C-c'bb' is nonnegative definite. This again results from (4), by setting z

=c'bly. ¢
Remark B.1. A priori, ker(A) contains ker(S). Butif A x =0, then S

belongs to ker(S), hence S'x L cod(S') after (1), which implies S'x L S'x,
and therefore S =0. So ker(S') = ker(A). ¢

Remark B.2. Diagonal terms of S are all nonnegative, with the foregoing
choice of a. Note that whenever one of them vanishes, the whole column
below it must vanish, too. ¢

Remark B.3. The proof works just as well if entries are complex (note that
A is not Hermitian, then), provided Re{x'A x*] = 0 for all complex
vectors x. Bisymmetric matrices (matrices such that both real and
imaginary parts are symmetric) are thus LDL'-factorizable under this
hypothesis. This is relevant to the eddy-current problem of Chapter 8. ¢

Now what about the LDL" factorization? Thanks to Remark B.2, we
obtain it by the following sequence of assignments, where s, £, and 1,

322 APPENDIX B LDL! Factorization and Constrained Linear Systems

denote the ith column of S, L, and the unit matrix respectively, p is
real, and the ith component of some vector v is v':

forall i€[1,n] do

| p::sii;dizzp*p;

I £ :=if p>0 thens/pelse 1
This yields a diagonal matrix D, with nonnegative entries d' and a unit
lower triangular matrix L. Clearly, A = LDL".

Remark B.4. A straightforward adaptation of the proof would lead us to
the result that nonnegative definite matrices are the LDM'-factorizable
matrices.)

One may then solve Ax =b, provided b is in the range of A. First,
compute y =L'b, then execute the code
forall i€[1,n] do
I z:=if d'=0 then y'/d' else 0,

and finally, solve L'x = z. If b (E cod(A), one must have yI =0 if d'=0.
The choice z' =0 in such cases is arbitrary: It selects one of the solutions
of Ax =Db, and thus constitutes a gauging procedure. By referring to p. 182,
one will see how this applies to the rot-rot equation.

Let us now face the question of how to turn these results into a practical
algorithm. The problem is, of course, imperfect arithmetic: In spite of
the theoretical proof that successive “pivots”, i.e., the values of p, will
all be nonnegative, there is no guarantee that small negative values or
(perhaps worse, because the trouble is harder to spot and to cure) very
small positive but non-zero values, will not appear.

B.2 A DIGRESSION ABOUT PROGRAMMING

The question belongs to the immense realm of program correctness in presence
of floating-point computations [CC]. Some notions on program construction
will help in the discussion.

Let’s adhere to the discipline of object-oriented programming [Me].
We deal with abstract data types called INTEGER, REAL, VECTOR,
MATRIX, etc. (a construct such as m : MATRIX, for instance, means that
m is a program object of type MATRIX) and with operations such as

order : MATRIX — INTEGER,
column : MATRIX x INTEGER — VECTOR,
row : MATRIX x INTEGER — VECTOR,

B.2 A DIGRESSION ABOUT PROGRAMMING 323

component : VECTOR x INTEGER — REAL,
length : VECTOR — INTEGER,

and so forth. The idea is to program in terms of such operations exclusively.
(Their practical implementation, of course, may require operations of lower
level, those that are available in the target programming language.)

The formal definition of the universe of types and operations we need
is quite a large job, and I don’t attempt it. Let us just agree upon a few
notational conventions: componeni(v, i) is abbreviated as v', len Qth(v)
as |vl, column(a,j) as a, row(a, i) as a, etc. This way, a].i refers to the
entry on row i and column j of matrix a. We also have the ordinary
multiplication #, which can be considered as acting either on a SCALAR
and a VECTOR, or on a pair of VECTORs, this way:

*: SCALARx VECTOR — VECTOR,
*: VECTOR x VECTOR — VECTOR,

and is defined as one may guess: A = v is the vector of components A * v,
that is, formally, (A = v)' = A V), and for two vectors u and v,
(u#v)=uv.

Just for practice (and also in order to introduce without too much fuss
some syntactical conventions about programs), let us code a matrix-vector
multiplication within this universe of types:

program mat—-mul-vec (in a: MATRIX, x: VECTOR {order(a)
I =length(x)}, out y: VECTOR)

| local n: INTEGER, n:=length(x) ;

I forj:=1tondo
— j
I I y=y+xX*a

Note the assertion between curly brackets (the program is not supposed to
work if this input assertion is not satisfied). Mere comments also come
within such brackets.

Once mat—mul—vec has thus been written, one may denote by a * x the
returned vector y. This overloading of * is harmless and can be reiterated
after the eventual construction of other similar programs like
mat-mul-mat, etc. Along with other obvious operations, like diag :
VECTOR — MATRIX, transp : MATRIX — MATRIX, etc., all these
operations contribute to the step-by-step construction of an algebra, i.e., a
consistent and organized universe in which to program [Ba].

324 APPENDIX B LDL! Factorization and Constrained Linear Systems

Actually, the word “algebra” has connotations which suggest a little
more. An algebra of types should be “complete”, meaning that when the
inverse of some operation can be defined, it is included in the algebra.
(Stating this formally is difficult, and I shall not attempt it.) For instance,
if mat—-mul-vec is there to allow multiplication of a matrix a by a
vector X, yielding vector y, there should also be something to get x from
a and y, say,

solve(in a: MATRIX, y: VECTOR, out x: VECTOR {y =a * x}),

for which the appropriate syntax' might be x :=a\y. As one knows,
this is not a primitive operation, and it requires stepping stones like
triangular solvers and (for instance) the LDL' factorization. Let us
therefore return to this.

B.3 THE LDL' FACTORIZATION

Let us introduce the outer product (or dyadic product) of vectors,
x: VECTOR x VECTOR — MATRIX,

defined by

(ux V)i]. =u'v.

We are looking for a vector d and a lower triangular matrix £ such that
£'=1 and € = diag(d) * transp(f) = a. This specification can be rewritten
as

2.:1,“”n8].x (dj*«p,j):a,

]

which immediately suggests an algorithm, on the model of the proof of
Prop. B.2:

program LDLT(in a: MATRIX, out £: MATRIX,
I d: VECTOR) {a is nonnegative definite}
| local c: MATRIX ; c:=a;

I for j:=1to order(a) do

| | d:= cjj; 8]. =c;

This is the syntax of MATLAB [MW]. Obviously, a package such as MATLAB is the
implementation of an algebra, in the above sense, and its writing has required at some stage
the kind of abstract programming suggested here.

B.3 THE LDL' FACTORIZATION 325

| | if d>0 then {if d'=0 then ¢,=0)
I I I b=t/d;

I I I C:=c—€jx(d’*€j) {g;=0}

I I else Ej]:zl {I),j:lj};

| | {C].=0}

I He=0; a={+diag(d) = transp(f)}

This is the way it works in perfect arithmetic: The crucial assertion
if d'=0 then ¢ =0 is a consequence of the hypothesis on nonnegative
definiteness. (Check this point before reading on, if necessary, by rferring
to the proof of Prop. B.2.) Note how column j of £ happens to be equal to
1, when the jth pivot is null.

Now, still with perfect arithmetic, we can do this exactly in the same
way for any entry a, provided the assertions, now not automatically true,
are enforced when necessary. Hence the following program, which does
the same thing as the previous one when a is nonnegative definite, but
still does something when this precondition is not satisfied:

program LDLT(in a: MATRIX, out £ : MATRIX, d: VECTOR)
I local c: MATRIX; c:=a;
I for j:=1to order(a) do
I I d ::cjj,' 8]. =c;
| | it d>0 then
I I I Ej = E} /d;
I I I C:=c—€jx(dj*€j)
I I else £.:=1
)]

But the question now is: Could this algorithm fail to be stable? Since
we may have to divide by arbitrary small pivots d’, should we fear
uncontrolled growth of some terms, and eventual overflow?

The answer seems to be 1o, provided the standard precaution is taken
of implementing the test (if d >0) as if 1.+ d > 1. This way, the
smallest possible pivot will be the machine-epsilon ¢, i.e., the number
such that 1 + ¢ is the machine number next to 1 in the (finite) system of
numbers the machine offers as an approximation to the ideal REAL type.
Since the algorithm is a variant of Cholesky, the classical error analysis
by Wilkinson should be relevant, and give similar results (cf. [GL], p. 89).
Giving a formal proof of this, however, looks like a tough challenge.

326 APPENDIX B LDL! Factorization and Constrained Linear Systems

In a further attempt to extend the scope of this program, one may
replace the clause if d'>0 by if d'=0,and else £,:=1 by a loop exit.
What we get then is a program that, when it doesn’t encounter a null
pivot, returns an LDL' factorization with terms of both signs in D. Then
A =LDL' is regular. Such a program may be a useful tool,” but be aware
that regularity of A is no guarantee that it will work to the end without
falling on a zero pivot: A simple counter-example is given by A =
{{o, 1}, {1, 0}} (by rows).

The reader is invited to complete the coding of solve (p. 324) by writing
out the triangular solvers, and the division by D. Note how this object-
oriented style automatically provides "vectorized" programs [Bo].

B.4 APPLICATION TO CONSTRAINED LINEAR SYSTEMS

If working with potentials leads to nonnegative definite system matrices,
working with fields directly generates constrained linear systems, as we
have seen. Actually, such systems are rather the rule than the exception
in numerical modelling. Let us recall the paradigm: Given a symmetric,
nonnegative definite matrix A of order N, an N-vector b, a rectangular
matrix B, and a vector ¢ of same height, find x such that (Ax, x) -
2(b, x) be minimized over the affine subspace {x: Bx = c}. By introducing
a Lagrange multiplier A, this problem is transformed into a linear system
of the form

A B
B 0

X

i
A

C

(5)

If ker(A) N ker(B) = {0}, which we assume, x is unique. There is no loss of
generality if we also assume that B is surjective (i.e., ker(B) =0), in
which case A is unique too. The large block-matrix at the left-hand side
of (5), M say, is thus regular,even when A is not.

However, standard off-the-shelf packages will not, in general, be able
to factor M, in order to solve (5). Though regular, M is certainly not
positive definite or even semi-positive definite, so Cholesky is out. The
existence of an LDL'-factorization, on the other hand, is not ruled out a
priori, provided both signs are allowed for the entries of D. If A is
regular, the modified version of LDLT, which accpets negative pivots,

’In particular, according to Sylvester’s “law of inertia” [Kn], the number of positive
entries of D is the number of positive eigenvalues of A. Running the program on A -o1
thus allows one to count the eigenvalues larger than 0... when the algorithm succeeds.

B.4 APPLICATION TO CONSTRAINED LINEAR SYSTEMS 327

will work. But otherwise it can fail, as the counter-example
A ={{1, 0}, {0, 0}} and B ={0, 1} will show: Though regular, the matrix
{{1, 0, 0}, {0, 0, 1}, {0, 1, 0}} hasno LDL' factorization.

So what is to be done? Remark that A + B'B is (strictly) positive
definite, for ((A + B'B)x, x) =0 implies (Ax, x) =0 and Bx = 0, therefore
x € ker(A) N ker(B). And since Bx = ¢ if x is solution, (5) and the
following system are equivalent:

b+B'c

C

X

(6) N

‘ A+BB B
B 0

But now the new (augmented) matrix M is LDL “factorizable. Working
by blocks to begin with, we get

(7)

7

‘ A+BB B

‘1 0 |A+B'B O‘ ‘l B!
B ol |8 1‘

0 1

0 -y

with B=B(A+B'B)" and y =B(A+B'B)"'B'. Assuming the programming
environment is an LDL' package (even the standard one, that assumes
D >0, will do), complete with its factorizer and downward and upward
triangular solvers, the essential task consists in factorizing A + B'B and
y =B(A +B'B)'B', which are both positive definite, since we have assumed
ker(B') = 0. The factorization of y is necessary in order to get A, by
solving

B(A + BB)'B'A=B(A +BB) (b +B'c)—¢,
and that of A + BB to obtain x, by solving
(A+B'B)x=b+B'(c-1),

hence a solution in two steps. Since these factorizations allow passing
from the block form (7) to the full-fledged LDL' factorization of the
augmented M, we may do it all in one stroke by applying the LDL' package
to system (5), provided the program lets negative pivots pass.

Remark B.5. The Lagrangian of (5) was L(x, A) = (Ax, x) + 2(A, Bx) -
2(b, x), and although strictly convex when x is restricted to ker(B), it
was not strictly convex in x. The “augmented” Lagrangian of (6), £ (x, A)
=(Ax, X) + IBx|?+2 (A, Bx) - 2(b, x), is. (Note that one may search for its
saddle point {x, A} by some iterative method, such as the
Arrow-Hurwicz-Uzawa algorithm [AH]. We don’t discuss this
alternative here, having direct methods in view.) One may think of a

328 APPENDIX B LDL! Factorization and Constrained Linear Systems

more general, possibly better form for it: L (x, A) = (Ax, x) + p IBx 1? +
2(n, Bx) - 2(b, x), where p is a positive constant, the optimal value of
which depends of course on how B has been built. Note that p=0 is
allowed if A is regular, the easy case. {

Remark B.6. It has been proposed [Ve] that (1) be replaced by the obviously
equivalent system

1 B 1(|u |c
(8) B A B | x = b|,

1 B -11IA C

that is, two Lagrange multipliers instead of one. The matrix of (6) is
indeed LDL'-factorizable, under the above hypotheses:

1 B 1 1 -1 1 B -1
B' A B=-B' 1 A+B'B 128,
1 B 11 -1 28 1 —dy 1

with the same B and y as above. So one can solve (1) this way, by
running an LDL' package on (8). But the numerical effort involved is no
less than was required by the above method (a bit more, actually, since
some arithmetic is wasted on numerically retrieving the first column block
of L, thatis {1, — B, - 1}, which is already known). As the heuristic
leading from (5) to (8) is quite obscure, in comparison with the easily
motivated passage from (5) to (6), this “double-multiplier” approach is
more of a curiosity than a real alternative. ¢

REFERENCES

[AH] K. Arrow, L. Hurwicz, H. Uzawa: Studies in Nonlinear Programming, Stanford
U.P. (Stanford), 1958.

[BA] J.Backus: “Can Programming be Liberated from the Von Neumann Style? A Functional
Style and its Algebra of Programs”, Comm. ACM, 21, 8 (1978), pp. 613-641.

[CC] F. Chaitin-Chatelin, V. Fraysse: Lectures on Finite Precision Computation, SIAM
(Philadelphia), 1996.

[GL] G.H. Golub, C.F. Van Loan: Matrix Computations, North Oxford Academic (Oxford)
& Johns Hopkins U.P. (Baltimore), 1983.

[Kn] D.E.Knuth: “A permanent inequality”, Amer. Math. Monthly, 88 (1981), pp. 731-740.

[MW] MATLAB™ for Macintosh Computers, User’s Guide, The MathWorks, Inc. (Natick,
Ma, USA), 1991.

[Me] B.Meyer: Object-oriented Software Construction, Prentice Hall (New York), 1988.

[Ve] Int. report by M. Verpeaux, CEA-DEMT, Saclay. Cf.]. Pellet: Dualisation des
conditions aux limites, Document ASTER R3.03.01 (EdF, Clamart), 27 11 91.

