
CHAPTER 7

 Infinite Domains

In Chapter 2, we managed to reduce the problem to a bounded region.  This
is not always possible.  We shall address here a typical magnetostatics
modelling, for which the computational domain is a priori the whole
space.  This will be an opportunity to introduce the technique of “finite
elements and boundary elements in association”, which is essential to the
treatment of all “open space” problems, static or not, and will be applied
to eddy-currents modelling in Chapter 8.

7.1  ANOTHER MODEL PROBLEM

Figure 7.1 describes the configuration we shall study:  an electromagnet,
with its load.
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FIGURE 7.1.  Left:  Electromagnet, with its ferromagnetic core  M1, its coil  C, and
a load  M 2.  When a continuous current  j  is fed into  C, the load is attracted
upwards.  Right:  Typical flux lines, in a vertical cross-section.

The working principle of such devices is well known:  A direct current
creates a permanent magnetic field.  Channeled by an almost closed
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magnetic circuit, the induction flux closes through a ferromagnetic piece



194 CHAPTER 7  Infinite Domains

(here  M2), to which the load is attached.  Force lines (cf. Fig. 7.1, right)
“tend to shorten”, and the load is thus lifted towards the poles of the
electromagnet, upwards in the present case, whatever the sense of the
current.

This “shortening of field lines” is of course a very naive explanation,
but a useful one all the same, and rigorous analysis does support it, as
follows.  Suppose for definiteness the electromagnet is fixed, the load  M2
being free to move vertically.  Let  u  denote its position on the vertical
axis (oriented upwards).  For a given  u, some field  {h, b}  settles, the
magnetic coenergy1 of which is  W u(h) = 1

2 ∫ µ |h|2.  Thanks to the virtual
work principle, one may prove that the lifting force upon  M2  is2  f =
∂uW .  Now, let us verify that  W u(h)  increases with  u  (whence the sign
of  f), by the reasoning that follows.

First,  µ  is large in  M.  Let us take it as infinite.  In that case,  h = 0  in
M.  By Ampère’s theorem, the circulation of  h  along a field line is equal
to the intensity in the coil, call it  I.  If  H  is the magnitude of the field in
the air gap, of width  d, one thus has  Hd ~ I, since only the part of the
field line contained in the air gap contributes to the circulation.  The air
gap volume being proportional to  d, the coenergy is thus proportional to
µ0H

2 d/2, that is  µ0 I
2/2d, so it increases when  d  decreases.  Hence the

direction of the force:  upwards, indeed.
This reasoning is quite useful, and moreover, it suggests how to pass

from qualitative to quantitative statements:  If one is able to compute the
field with enough accuracy to plot  W   as a function of  u, one will have
the force as a function of  u  by simple differentiation3.  So, if the mechanical

1As already pointed out (Remark 2.6), one should carefully distinguish between a function
of the field which, by its evaluation, yields the energy, and the numerical result of such an
evaluation (the real number one refers to when one speaks of the energy stored in the field).
Energy can be obtained in two different ways, by evaluating either the function  b → V(b) ≡ 

1
2  ∫ µ−1|b|2  or the function  h → W(h) ≡ 

1
2  ∫ µ  |h|2, and to tell them apart, one calls them

energy and coenergy function(al)s respectively.  Making this distinction is essential, because the
results of both evaluations coincide in the linear case only (and otherwise the correct value of
the energy is obtained by computing  V, not  W).  In problems with motion,  V  and  W  are
parameterized by the configuration of the system, here denoted by  u.

2Force is also given by  f = − ∂uV, as can be seen by differentiating with respect to  u  the
equality  Vu(bu) + Wu(hu) = ∫ bu · h u , which holds when  b u  and  hu  are the induction and
the field that effectively settle in configuration  u.

3A better, more sophisticated approach, is available [Co], by which  ∂uW  instead of  Wu
is obtained via a finite-element computation.  It consists essentially of differentiating the
elementary matrices with respect to  u  before proceeding to their assembly, and solving the
linear system thus obtained.

characteristics of the system are known (masses, inertia tensors, restoring
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forces, etc.), one may study its dynamics.  This opens the way to a whole
realm of applications:  electromagnets, of course, but also electromagnetic
“actuators” of various kinds (motors, linear or rotatory, launchers, etc.).

The underlying problem, in all such applications, is thus:  Knowing
the geometry of the system at hand, and the values of  µ, compute the
magnetic field, with its coenergy (or its energy) as a by-product.  The
principal difficulty then comes from the nonlinearity of the  b–h  relation
(to say nothing of hysteresis).

Without really addressing this difficulty, let us only recall that
nonlinear problems are generally solved by successive approximations,
Newton–Raphson style, and thus imply the solution of a sequence of linear
problems.  In the present case, each of these problems assumes the form

(1) rot h = j,                                                            (2)         div b = 0,

(3)                                       b = µ h ,

in all space, with  µ = µ0  outside  M, and  µ  function of the position  x  (via
the values of the field at this point at the previous iterations) inside  M.
This points to (1–3), the  magnetostatics model in all space, as the basic
problem.

Apart from this spatial variation of  µ, and the explicit presence of
the source-term  j, the problem is quite alike the “Bath cube” one of Chapter
2.  The only really new element is the non-boundedness of the domain,
which will allow us to concentrate on that.

7.2  FORMULATION

According to the functional point of view, we look for a precise formulation
of (1–3):  f ind  h  and  b  in  . . . such that  .  . . , etc.  The first item on the
agenda is thus to delimit the field of investigation:  exactly in which
functional space are we looking for  b  and  h ?  Once these spaces of
“admissible fields” are identified, one realizes that Problem (1–3) has a
variat ional formulation, which means it can be expressed in the form f ind
h  and  b  which minimize, etc.  All that is left to do is then to replace
spaces of admissible fields by “large enough” f inite dimensional subspaces
in order to obtain approximate formulations open to algebraic treatment
on a computer.  Let us thus try to find this “variational framework”, as
one says, in which problem (1–3) makes sense.
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7.2.1  Functional spaces

First, set  IH = IL2
rot(E3)  and  IB = IL2

div(E3), and put irrotational and solenoidal
fields apart:

(4) IH0 = {h ∈ IH :  rot h = 0},      IB0 = {b ∈ IB :  div b = 0}.

Then,
Proposition 7.1.   Subspaces   IH0  and  IB0  are ortho-complementary
in  IL2(E3) :

(5) IL2(E3) = IH0 ⊕ IB0.

In other words, any vector  u  of  IL2(E3)  can be written, in a unique way, as
u = h + b, with  rot h = 0,  div b = 0, and  ∫E3

 h · b = 0.
Proof.  First, let  u  be a smooth field with bounded support, form  div u
and  rot u, and set

ϕ(x) = – 
4π
1 (div u)(y)

|x – y|∫
E3

 dy,    a(x) = 
4π
1 (rot u)(y)

|x – y|∫E3
 dy.

Then, differentiating under the integral signs, and applying the formula
rot rot = grad div – ∆ , one obtains that

(6) u = grad ϕ + rot a,

which is called the Helmhol tz4 decomposition of  u, a standard result.
(Beware, neither  ϕ  nor  a  has bounded support.)  Setting  h = grad ϕ  and
b = rot a, one sees that  ∫E3

 b · h = 0, as announced.  If instead of considering a
single field  u  we look at functional spaces wholesale, (6) is equivalent to

(6') C0
∞(E3) = – grad(div(C0

∞(E3))) ⊕ rot(rot(C0
∞(E3))),

which we can write  C0
∞(E3) = H 0 ⊕ B 0, where  H  

0  and  B0  are subspaces
—not closed subspaces—of  IL2(E3)  composed of smooth curl-free and
divergence-free fields, respectively.  Now call  IH0  and  IB0  the closures in
IL2(E3)  of  H 0  and  B0.  For each pair  h ∈ IH0  and  b ∈ IB0, we thus have
sequences of smooth fields  {hn ∈ H 0 :  n ∈ IN}  and  {bn ∈ B0 :  n ∈ IN}  which
converge towards  h  and  b, while satisfying  rot hn = 0,  div bn = 0, and
∫ bn · hn = 0.  All these properties “pass to the limit” by continuity.  For
instance (to do it only once),  div bn = 0  means  ∫ bn · grad ϕ = 0  for all  ϕ  in
C0

∞(E3), hence, by continuity of the scalar product,  ∫ b · grad ϕ = 0  for all

4Due to  Stokes (1849), actually, according to [Hu], p. 147.

these test functions, which is weak solenoidality, and which we are writing
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div b = 0  since we decided to adopt the “weak” interpretation for
differential operators in Chapter 5.  Last step:  Since  C0

∞(E3)  is dense in
IL2(E3)  by construction of the latter,  IH0 ⊕ IB0  fills out all  IL2(E3) ,
hence (5).  ◊

But can one go further and have (6) for all, not only smooth, square-
integrable fields?  Yes, if one accepts having  ϕ  and  a  in the right functional
spaces, those obtained by completion.  Take  h ∈ IH0.  By the foregoing,
there is a sequence  ϕn ∈ C0

∞(E3)  such that  grad ϕn  converges to  h.  Thus,
the sequence  {ϕn}  is Cauchy with respect to the norm  ||ϕ|| =
[∫E3

 |grad ϕ|2]1/2.  Now  complete  C 0
∞(E3)  with respect to this norm:  There

comes a complete space, which we shall denote  Φ, an extension-by-
continuity of  grad  (called, again, 5 the w e a k gradient), and we do have
h = grad ϕ, with  ϕ ∈ Φ.

A sleight of hand?  Yes, in a sense, since elements of  Φ  are abstract
objects (equivalence classes of Cauchy sequences of functions), but not really,
because one can identify this space  Φ  with a subspace 6 of a functional
space, the Sobolev space  L6(E3).  This is an immediate consequence of the
inequality  ∫E3 |ϕ|6 ≤ C ∫E3 |grad ϕ|2, a proof of which (not simple) can be
found in [Br], p. 162.  So as regards irrotational fields, we have  IH0 =
grad Φ, where  Φ  is a well-defined functional space.  This is the Beppo
Levi space alluded to in Chapter 3, Note 5.  

The representation (6) of a field  u, now with  ϕ ∈ Φ  and  a ∈ A,
extends the Helmholtz decomposition, just as the Poincaré lemma was
extended in Chapter 5.  (Note that  a  is not unique, but  ϕ  is, because  ||ϕ||
is a norm, since there are no constants in  C0

∞(E3) .)
Let now  j ∈ IL2(E3)  be given, with bounded support, and  div j = 0.  The

field  hj = rot aj, where  aj  is given by the integral

a j(x) =
4π

j(y)

|x – y|E∫ 3

1  dy,

5In spite of its domain being larger than the closure of the strong gradient in
L2(E3) × IL2(E3).  No Poincaré inequality is available in the present case;  hence the two
methods of extension of the differential operators examined in Subsection 5.1.2 are no longer
equivalent.

6There is a more precise characterization of  Φ  as the space of functions  ϕ  such that
grad ϕ ∈ IL2(E3)  and  ∫ (1 + |x|2)–1/2 |ϕ(x)|2 dx < ∞.

7This is not totally obvious, and  j  having a bounded support (or at least, a support of
finite volume) plays a decisive role there.  (Show that  rot rot aj = j, then compute
∫ rot aj · rot aj = ∫ rot rot aj · aj, etc.)

is in7  IL2
rot(E3)  and satisfies  rot hj = j.  Let us set  IHj = hj + IH0.
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7.2.2  Variational formulations
Now we have all the ingredients required to make the problem “well
posed”:
Proposition 7.2.   Let there be given  j ∈ IL2(E3), with bounded support and
div j = 0, and a  function  µ  such that  µ1 ≥ µ(x) ≥ µ0  a.e. in  E3.  The problem
find  h ∈ IHj  and  b ∈ IB0  such that8

(7) ∫E3
 µ−1

 |b − µh|2 ≤ ∫E3
 µ−1

 |b' − µh'|2   ∀ h' ∈ IHj,   ∀ b' ∈ IB0,

has a unique solution, which satisfies (1–3).
Proof.  If  h' ∈ IHj, then  h' − h j ∈ IH0.  Thus,  ∫E3

 h' · b' = ∫E3
 h j ·  b'  for each

pair  {h', b'} ∈ IHj × IB0, after (5), and therefore,

∫E3
 µ−1

 |b' − µ h'|2 = ∫E3
 µ−1

 |b'|2 + ∫E3
 µ |h'|2 − 2 ∫E3

 hj ·  b',

so that Problem (7) is equivalent to the following pair of independent
optimization problems, taken together:

(8)   f ind  h ∈ IHj  such that  W(h) ≤ W (h')   ∀ h' ∈ IHj,

where  W (h) = 1
2  ∫E3

 µ |h|2  is the magnetic coenergy introduced earlier,
and

            f ind  b ∈ IB0  such that

(9)              V(b) − ∫E3
 hj ⋅ b ≤ V(b') − ∫E3

 hj ⋅ b'   ∀ b' ∈ IB0,

where  V(b) = 1
2  ∫E3

 µ−1 |b|2  is the magnetic energy.  These functionals
being continuous on  IL2(E3), with coercive9 quadratic parts, both (8) and
(9) have a unique solution.  The Euler equations of (8) and (9) being

(10) f ind  h ∈ IHj  such that  ∫E3
 µ h · h' = 0   ∀ h' ∈ IH0,

(11) f ind  b ∈ IB0  such that  ∫E3
 µ−1

 b · b' = ∫E3
 hj ⋅ b'   ∀ b' ∈ IB0,

8The quantity on the right-hand side of (7) is again the “error in constitutive law” of
Chapter 6.  It measures the failure of the pair  {h', b'}  to satisfy the behavior law  b' = µh', and
to minimize it over  IH j × IB0  amounts to looking, among the pairs which obey other equations
(here,  rot h = j  and  div b = 0), for the one that, by minimizing the error (and actually,
cancelling it), best obeys (and actually, exactly obeys) the constitutive law.

9This is said (cf. A.4.3) of a quadratic functional  u → (Au, u)  over a Hilbert space  U  for
which exists  α > 0  such that  (Au, u) ≥ α | |u| |2  for all  u.  By the Lax–Milgram lemma, the
equation  Au = f  has then a unique solution, which is the minimizer of the functional
u → 

1
2  (Au, u) – (f, u).

the pair  {h, b}  thus found satisfies  ∫E3
 µ |h|2 = ∫E3

 µ h · hj  and  ∫E3
 µ−1 |b|2 =
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∫E3
 hj ⋅ b  (set  h' = h − hj  and  b' = b), whence

∫E3
 µ−1

 |b − µh|2 = ∫E3
 µ−1

 |b|2 + ∫E3
 µ |h|2 − 2 ∫E3

 hj ⋅ b = 0,

and therefore  b = µh.  ◊
Problems (10) and (11) are of the now-familiar kind of “constrained

linear problems”, and it is natural to try to solve them via “unconstrained”
representations of the affine spaces  IHj  and  IB0.  Since, as we saw earlier,

(12) IHj = hj + grad Φ,        IB0 = rot A,

(8) and (9) amount to

(13)   f ind  ϕ ∈ Φ  such that  W (ϕ) ≤ W(ϕ')   ∀ ϕ' ∈ Φ,

where  W(ϕ) = 1
2  ∫E3

 µ |hj + grad ϕ|2  (magnetic coenergy again, but now
considered as a function of  ϕ, as signaled by the slight notational variation),
and

(14) f ind  a ∈ A  such that  V(a) − ∫E3
 j · a ≤ V(a') − ∫E3

 j · a'   ∀ a' ∈ A,

where  V(a) = 1
2  ∫E3

 µ−1
 |rot a|2  (magnetic energy, as a function of  a).  The

Euler equations of (13) and (14) are

(15) f ind  ϕ ∈ Φ  such that  ∫E3
 µ ( hj + grad ϕ) · grad ϕ' = 0   ∀ ϕ' ∈ Φ,

(16) f ind  a ∈ A  such that  ∫E3
 µ−1

 rot a · rot a' = ∫E3
 j · a'   ∀ a' ∈ A.

Being assured of existence and uniqueness for  h  and  b  solutions of (8)
and (9), we know that (15) has a unique solution  ϕ  (the only  ϕ ∈ Φ  such
that  h j + grad ϕ = h) and that (16) has a family of solutions all of which
verify  rot a = b.  One might as well, of course, study (15) and (16) ab
initio:  The mapping  ϕ' → ∫E3

 µ h
j · grad ϕ'  is continuous on  Φ  (since  hj  is

IL2, and  µ  is bounded), therefore (15) has a unique solution, by the
Lax–Milgram lemma.  (For (16), it’s less direct, because one must apply
the lemma to the quotient of  A  by the kernel of  rot.)

7.3  DISCRETIZATION

Whatever the selected formulation, the problem concerns the whole space,
which cannot be meshed with a f inite number of bounded elements.  There
are essentially three ways to deal with this difficulty.  I shall be very
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brief and allusive about the first two, but this should not imply that they
are less important.

7.3.1  First method:  “artificial boundary, at a distance”

Start from a mesh  {N , E, F, T } of a bounded region of space  DÓ, bounded
by surface  S Ó.  Denote by  N( SÓ), etc., as before, the sets of nodes, etc.,
contained in  S Ó.  Then consider a smooth injective mapping  u, called a
placement of  D Ó  in  E3, built in such a way that the image  D = u(DÓ) ,
bounded by  S = u(SÓ), cover the region of interest as well as “enough” space
around it (Fig. 7.2).  Define “u-adapted” Whitney elements by setting
uwn(x) = wn(u

−1(x))  for node  n, then  uwe(x) = uwm(x) ∇ uwn(x) −
uwn(x) ∇ uwm(x)  for edge  e = {m, n}, etc.10  Then set

W0
m = {ϕ :  ϕ = ∑ n ∈ N − N (SÓ) ϕϕϕϕn 

uwn } ,

W1
m = {h :  h = ∑ e ∈ E − E (SÓ) h e 

uwe } ,

etc., where the  ϕϕϕϕn,  h e , etc., assume real values.  (The notation  m  now
refers to both the mesh and its placement.)

u

D̂ D

FIGURE 7.2.  Illustrating the idea of “placement” of a reference mesh, for a
problem similar to the one of Fig. 7.1.  What we see is actually a 3D “macro-mesh”,
the “bricks” of which, once placed in order to accommodate the material interfaces,

10This is the precise definition of finite elements on “curved tetrahedra”, informally
introduced in Chapter 3.  In all generality,  uf  defined by  uf(x) = f(u(x))  is the push-forward
of  f  by  u, and  f  is the pull-back of  uf.  So  uwn  comes from  wn  by push-forward.

will be subdivided as required.
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With only tiny variations, we may carry on with the former notational
system:   ϕϕϕϕ,  h , etc., are the vectors of degrees of freedom,  ΦΦΦΦ = IRN − N(SÓ),  A =
IRE − E(SÓ ), etc., are the spaces they generate (isomorphic to  W0

m,  W1
m, etc.),

and the incidence matrices  G , etc., are such that  h  = G ϕϕϕϕ  if  h = grad ϕ,
etc.  Observe that  W 0

m ⊂ Φ  and  W 1
m ⊂ A, thanks to our having set to zero

the degrees of freedom of surface nodes and edges.  The intersections  Φm =
W0

m ∩ Φ  and  Am = W1
m ∩ A  are thus Galerkin approximation subspaces

for  Φ  and  A.  The approximations of (15) and (16) determined by  m  and
u  are then

(17)  f ind  ϕm ∈ Φm  such that  ∫D µ ( hj + grad ϕm) · grad ϕ' = 0   ∀ ϕ' ∈ Φm,

(18)      f ind  am ∈ Am  such that  ∫D µ−1
 rot am · rot a' = ∫D j · a'   ∀ a' ∈ Am.

In order to set these linear systems in standard form, let us redefine the
“mass matrices” of Chapter 5 as follows (p  is the dimension of the
simplices):

(Mp(α) )s s' = ∫D α uws · 
uws'     if  p = 1  or  2,

                 = ∫D α  uws  
uws'     if  p = 0  or  3,

the indices  s  and  s'  being restricted to the sets of “internal” simplices
(those not in  SÓ).  Then (17) and (18) can be rewritten as

(19) GtM1(µ) (G ϕϕϕϕ + h j) = 0,                         (20)          RtM2(µ
−1)R a = j,

where vectors  h j  and  j  are defined by  h j
e = ∫e τ · hj  and  jf = ∫f  n · j.

7.3.2  Second method:  “infinite elements”

This method makes use of a more sophisticated placement  u, but otherwise
coincides with the first one.  The difference is that here  u  maps  DÓ  onto
the whole space  E 3, all points of the boundary  SÓ  being sent to infinity.
The elements of the mesh which are immediately under  S Ó  are then sent
onto regions of infinite volume, called infinite elements.  See, e.g., [BM]
for a construction of such a mapping.  It is often convenient, in this respect,
to use a geometric inversion with respect to some point [IM, LS].

The literature on infinite elements is huge.  For a bibliography and a
comparative study, from a practical viewpoint, cf. C. Emson’s contribution
(in English . . . ) to [B &].
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7.3.3  Third method:  “finite elements and integral method in
           association”

There, in contrast,  D  is made as small as possible, including the region of
interest while still having a boundary of simple shape.  Applying the
first method would then amount to neglecting the field outside  D, which
is not acceptable.  However, the far field is not of primary interest by
itself:  All that matters is its contribution to the energy or the coenergy, as
the following informal approach will suggest.

Let  D, bounded by surface  S, be such that  µ ≡ µ0  outside  D.  Then11

inf{W ( hj + grad ϕ) :  ϕ ∈ Φ}

           = inf{ 1
2  ∫D µ |hj + grad ϕ|2 + W ext(j, ϕ|S) :  ϕ ∈ Φ} ,

where, by way of definition,

(21) Wext(j, ϕS) = inf{ 1
2  ∫E3 − D µ0 |hj + grad ϕ|2 :  ϕ ∈ Φ,  ϕ|S = ϕS} .

This “exterior coenergy” term only depends on the boundary values of the
potential  ϕ.  So, in order to be able to solve Problem (15) by meshing
region  D  only, it would be sufficient to know some approximation of
W ext(j, ϕS)  as a function of nodal values of  ϕ  on  S  (which are not set to  0
here, in contrast with the first method).  For the same reason, having an
approximation of the functional  Vext(a) − ∫E3 − D j · a  (where  Vext(a) =
1
2  ∫E3 − D  µ0

−1|rot a|2) in terms of the circulations of  a  along edges of  S
would allow one to solve (16) without having to mesh the outer region.

Now let  ϕ  be the potential (outside  D) that minimizes (21).  One has
ϕ|S = ϕS  and

∫E3 − D µ0 (h
j + grad ϕ) · grad ϕ' = 0   ∀ ϕ' ∈ Φ  such that  ϕ'|S = 0.

So  div(hj + grad ϕ) = 0  outside  D.  Since  div h j = 0, by construction,  ∆ϕ = 0
outside  D, thus  ϕ  is solution to the “exterior Dirichlet problem”:

∆ϕ = 0   outside  D,   ϕ|S = ϕS.

On the other hand, thanks to the integration by parts formula,

    Wext(j, ϕS) = 1
2  ∫E3 − D µ0 |hj + grad ϕ|2  = 1

2  µ0 ∫S  n · (hj + grad ϕ)  ϕS

11For a while, we need to distinguish  ϕ|S, the restriction of  ϕ  to  S, and  ϕS, which will
denote some function defined on  S.  

                     = 1
2  µ0 ∫S (n · hj + PϕS)  ϕS ,
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where the normal  n  is oriented towards  D  (beware!) and  P  the operator
that maps  ϕS  to the normal derivative  n · grad ϕ.  So the problem would
be solved if  P  was known, or at least if one could compute an approximation
of  ∫S P ϕS ϕS  in terms of the DoF  ϕϕϕϕn, where  n  spans  N(S).  We shall
therefore look for a matrix approximation of this “Dirichlet-to-Neumann”
operator (also called “Poincaré–Steklov” operator [AL], or else “capacity”
[DL], because of its interpretation in electrostatics).  This operator is a
quite delicate object to handle, and we’ll have to spend some time on its
precise definition and its properties.  The reader who feels the foregoing
overview was enough (despite, or perhaps thanks to, many abuses) may
skip what follows and proceed to Subsection 7.4.4.

7.4  THE “DIRICHLET-TO-NEUMANN” MAP

So let  D  be a regular bounded domain, inside a closed surface  S.  We
shall denote by  O  (for “outside”) the complement of  D ∪ S, which is also
the interior of  E3 − D.  Domains  D  and  O  have
S  as common boundary, and the field of normals
to  S  is taken as outgoing from  O  (not from  D).

7.4.1  The functional space of “traces”

The theory, unfortunately, is more demanding
than anything we have done up to now, and the
time has come to introduce something which could be evaded till this
point:  traces of functions in  L2

grad, and the Sobolev space of traces,  H1/2(S).
Smooth functions  ϕ  over  D  have restrictions  ϕ|S  to  S, which are

piecewise smooth functions.  Let us denote by  γ   the mapping  ϕ → ϕ|S.  We
shall base our approach on the following lemma:
Lemma 7.1.  There exists a constant  C(D), depending only on  D, such that,
for all functions  ϕ  smooth over  D,

(22) ∫S |γ  ϕ|2 ≤ C(D)  [∫D|ϕ|2 + ∫D |grad ϕ|2].

This is technical, but not overly difficult if one accepts cutting a few corners,
and Exer. 7.6 will suggest an approach to this result.  Our purpose is to
extend to  L2

grad(D)  this operator  γ , by using the prolongation principle
of A.4.1.

S  .

O   .

D  .

n(x)   .

x      .
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Pick some  ϕ ∈ L2
grad(D).  By definition of the latter space, there exists

a Cauchy sequence of smooth functions  ϕn ∈ C0
∞(E3)  which, once restricted

to  D, converge towards  ϕ  in the sense of  L2
grad(D), and thus  {ϕn}  and

{grad ϕn}  are Cauchy sequences in  L2(D)  and  IL2(D), respectively.  Then,
by an immediate corollary of (22),  {γ  ϕn}  also is a Cauchy sequence and
therefore converges towards a limit in  L2(S), which we define as  γ  ϕ  and
call the trace of  ϕ.  By (22),  γ   is a continuous linear map from  L2

grad(D)
into  L2(S).

Its image, however, has no reason to be all of  L 2(S), and constitutes
only a dense12 subspace, which we shall call  T(S).  Let us provide  T(S)
with the so-called quotient norm, as follows.  Pick some  ϕS  in  T(S).  There
is, by definition of  T(S), at least one function  ϕ  the trace of which is  ϕS,
so the pre-image of  ϕS  is a non-empty affine space, that we may denote
ΦD(ϕS).  Now, let us set

(23) [|ϕS|] = inf{ [∫D |ϕ|2 + ∫D |grad ϕ|2]1/2 :  ϕ ∈ ΦD(ϕS) }.

This defines a norm  [|  |]  on  T(S), with respect to which  γ   keeps being
continuous, since   [|γ ϕ|] = [|ϕS|] ≤  |||ϕ|||, where  |||  |||   denotes the  L2

grad(D)-norm.
Now,
Definition 7.1.  The normed space  {T(S),  [|  |]}  is denoted  H1/2(S).
Why this name, that we shall explain, but let’s just accept this notation
for the moment.  More importantly,

Proposition 7.3.  H1/2(S)  is a Hilbert space.

Proof.  Note that  ΦD(ϕS)  is closed in  L2
grad(D), as the pre-image of  ϕS  by

the continuous map  γ .  Since  L2
grad(D)  is complete by definition, the infimum

in (23) is reached at a (unique) point  ϕ, which is the projection of  0  on
ΦD(ϕS).  Let us call  π(ϕS)  this special element, and remark that  π  γ  ϕ = ϕ
and  γ  π  ϕS = ϕS  (operator  π  is called a “lifting” from  S  to  D).  Now let us
set  [(ϕS, ψS)] = ∫D πϕS πψS + ∫D grad πϕS · grad πψS , thus defining a scalar
product on  T(S).  Since the norm associated with this scalar product is
precisely  [|  |], the norm of  H1/2(S), the latter is pre-Hilbertian, and since
its Cauchy sequences lift to Cauchy sequences of  L2

grad(D), which is complete,
they converge, so  H1/2(S)  is complete, and thus a Hilbert space.  ◊

Note that, after (22),  ||ϕS|| ≤ [|ϕS|], where  ||  ||   denotes the  L2(S)-norm.
Therefore, sequences which converge for  [|  |]  also converge for  ||  ||, and
the identity mapping  ϕS → ϕS  is continuous from  H1/2(S)  into  L2(S).  One

12Because it contains the restrictions of smooth functions, which are dense in  L2(S).

says that the new norm  [|  |]  is stronger13 than  ||  ||, and that there is
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“topological inclusion” of  H1/2(S)  into  L 2(S), not only the mere “algebraic”
inclusion of a set (here  T(S)) into another set (here  L2(S)).  Note that the
norm couldn’t be made any stronger (authorize fewer converging sequences)
without breaching the continuity of  γ  :  It’s the strongest norm with respect
to which  γ   stays continuous.

Now why this name,  H 1/2 ?  This notation pertains to the theory of
Sobolev spaces [Ad, Br, Yo]:  On any “measured differentiable manifold”
X, which  S  is, there exists a whole family of functional spaces, denoted
Hs(X), which includes  L 2(X)  for  s = 0, and the one I have been calling
here  L2

grad(X), for the sake of notational consistency,  for  s = 1.  They form
a kind of ladder,  Hs  being topologically included in  H t, for  t < s.  It
happens that our trace space is midway from  L2(S) ≡ H 0(S)  to  H 1(S)  in
this hierarchy, hence its name.  Giving sense to “midway” and proving
the point is not easy, but not important either, since we know, having
provided a definition , what  H1/2(S)  is.  So let’s just accept the name as a
dedicated symbol.
Remark 7.1.  Now that we have a linear continuous map  γ   from  L2

grad(D)
to  H1/2(S), which is by construction surjective, but certainly not injective,
since functions supported inside  D  map to 0, a natural question arises:
What is  ker(γ ) ?  This closed subspace, which is traditionally denoted
H1

0(D), obviously contains  C0
∞(D).  Less obviously, and we’ll admit this

result [LM],  ker(γ ) ≡ H1
0(D)  is the closure of  C0

∞(D)  in  L2
grad(D).  ◊

Exercise 7.1.  Remember that  C 0
∞(D)  is dense in  L2(D), which is its

completion.  How can the closure of  C0
∞(D)  then be smaller than  L2

grad(D),
which is already smaller than  L2(D) ?

7.4.2  The interior Dirichlet-to-Neumann map

Next step, let’s have a closer look at the lifting  π.  Finding the minimizer
in (23) is a variational problem, which has an associated Euler equation.
The latter is f ind  ϕ ∈ ΦD(ϕS)  such t h a t

(24) ∫D ϕ ϕ' + ∫D grad ϕ · grad ϕ' = 0   ∀ ϕ' ∈ ker(γ ) ,

since  ker(γ )  is the vector subspace parallel to  ΦD(ϕS).  This implies, by
specializing to smooth test functions,

13Because it is “more demanding”, letting fewer sequences converge, having more closed
sets or open sets (all these things are equivalent).

∫D ϕ ϕ' + ∫D grad ϕ · grad ϕ' = 0   ∀ ϕ' ∈ C0
∞(D),
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which means that  div(grad ϕ) = ϕ  in the weak sense.  So (24) is the weak
formulation of a boundary value problem, find  ϕ  such t h a t

(25) – ∆ϕ + ϕ = 0,    γ  ϕ = ϕS,

which gives a nice14 interpretation of the lifting:  π  maps the Dirichlet
data  ϕS  to the solution of (25).

Now in case this solution is smooth over 15  D, let us denote by  P  the
“Dirichlet-to-Neumann” linear map  ϕS → ∂nϕ.  The divergence integration
by parts formula gives

(26) ∫D ϕ ψ + ∫D grad ϕ · grad ψ = ∫S ∂nϕ ψ = ∫S  PϕS ψ

for any smooth function  ψ, and hence an explicit formula for the scalar
product in  H1/2(S),

(27)  [(ϕS , ψS )] = ∫S PϕS ψS ,

when  ϕS  is smooth enough for  P  to make sense.  Here,  PϕS  is a function,
defined on  S.  But from the point of view which we have so often adopted,
a function is known by its effect on test functions, so we may identify  PϕS
and the linear map  ψS → ∫S P ϕS ψS.  The latter map, in turn, being continuous
on  H1/2(S), constitutes an element of the space dual to  H1/2(S), which is
denoted by  H–1/2(S)  (again the question “why  – 1/2 ?” arises and will be
answered, to some extent, in a moment).  Now, (27) shows that the map
ϕS → (ψS → [(ϕS , ψS )]), which sends  ϕS ∈ H1/2(S)  to an element of  H–1/2(S),
is an extension, a prolongation of the operator  P.  Quite naturally, we
denote by  P  this extended map, and call it the Dirichlet-to-Neumann
operator, even though the image  PϕS  may fail to be a function.

All these identifications suggest some notational conventions.  It is
customary to denote  <f, v>  the scalar which results from applying an
element  f  of the dual space  V'  to an element  v  of  V.  (In case of
ambiguities, the more precise notation  <f, v>V', V   may help.)  We then
have

(28)  [(ϕS, ψS)] = <PϕS, ψS> = ∫S PϕS ψS = ∫S ∂n(πϕS) ψS

14And useful:  This is the paradigm of a classical approach to boundary-value problems by
Hilbertian methods [LM].

15Smoothness inside  D  is assured by a variant of this Weyl lemma we mentioned in
Chapter 2.  But smoothness over  D, in the sense of Chapter 2, Subsection 2.2.1, is not
warranted, even if  S  and  ϕ S  are piecewise smooth.
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when the latter terms make sense.  So we shall abuse the notation and use
whichever form is most convenient.

Note that  sup{|<PϕS, ψS>|/[|ψS|] :  ψS ∈ Η1/2(S)} = [|ϕS|]  after (28).
Thus,  P  is isometric.  Moreover, its restriction to  L 2(S)  is self-adjoint
(since  ∫S PϕS ψS = ∫S ϕS PψS) and positive definite (for  ∫S PϕS ϕS ≥ 0, with
equality for  ϕS = 0  only).

As for the terminology,  H–1/2(S)  is of course one of the Sobolev spaces,
which one proves is isomorphic to the dual of  H1/2(S).  It is made of
distributions, not of functions, and contains  L2(S).  It may come as a surprise
that  H 1/2(S)  can be, like all Hilbert spaces, isomorphic with its dual
H–1/2(S), and at the same time, can be identified with a subspace of it, via
a continuous injection.  But the latter is not b i-continuous (continuous in
both directions), so there is no contradiction in that.

7.4.3  The exterior Dirichlet-to-Neumann map

For the exterior region, the approach is strictly the same, except for the
basic functional space and for the absence of the term  ϕ  in the analogue of
(25).  We’ll go much faster, directing attention only to the differences
with respect to the previous case.

So let  ΦO  be the space 16 of restrictions to  O ≡ E3 − D  of elements of  Φ.
Fitted with the norm  ϕ → ( ∫O |grad ϕ|2)1/2  (which i s a norm, since  O  is
connected), it becomes a Hilbert space (larger than  L2

grad(O), this time;
it’s one of these small but irreducible technical differences that force one
to do the same work twice, as we are doing here).  We denote by  ΦO(ϕS)
the affine subspaces of  ΦO  of the form  {ϕ ∈ ΦO :  γ  ϕ = ϕS}, where  ϕS  is a
given function belonging to  H 1/2(S).  The subspaces  ΦO(ϕS)  are not empty
(there exists a function of  L2

grad(E3), thus of  ΦO , the trace of which is  ϕS) ,
and are closed by continuity of the trace mapping.
Proposition 7.4.   Let  ϕS ∈ H 1/2(S)  be given.  There exists   ϕ ∈ ΦO(ϕS) ,
unique, such that

(29) ∫O |grad ϕ|2 ≤ ∫O |grad ϕ'|2   ∀ ϕ' ∈ ΦO(ϕS).

Proof.  This specifies  ϕ  as the projection of the origin on the affine subspace
ΦO(ϕS), which is non-empty and closed, hence existence and uniqueness
for  ϕ.  ◊

16It can be defined, alternatively, as the completion of  C0
∞(E3)  with respect to the norm

ϕ → (∫O |grad ϕ|2)1/2.

We note that the Euler equation of the variational problem (29) is
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(30) ∫O grad ϕ · grad ϕ' = 0   ∀ ϕ' ∈ ΦO(0).

Hence, taking smooth compactly supported test functions and integrating
by parts,  ∆ϕ = 0  in  O.  The function  ϕ  is thus the harmonic continuation
of  ϕS  to  O, i.e., the solution of the “exterior Dirichlet problem”:

∆ϕ = 0  in  O,     ϕ|S = ϕS.

(A “condition at infinity” is implicitly provided by the inclusion  ϕ ∈ Φ :
Although functions of  Φ  do not necessarily vanish at infinity (Exercise
7.2:  Find such a freak), smooth functions of  Φ  do.)  Consider now the
normal derivative  ∂nϕ  of  ϕ  on  S, and denote by  P  the linear operator  ϕ
→ ∂nϕ.  By the same arguments as before,  P  extends to an isometry from
H1/2(S)  to its dual  H−1/2(S).  Only the scalar product differs, and

(31) <PϕS, ψS> = ∫S ∂nϕ ψS = ∫O grad ϕ · grad ψ,

where  ψ  is the harmonic continuation of  ψS, hence self-adjointness and
positivity.  Note that both operators, exterior and interior, realize
isometries between  H1/2(S)  and its dual, but for different norms on  H1/2(S).

7.4.4  Integral representation

We now explain how the knowledge of  P  is equivalent to solving a
particular integral equation on surface  S.  Subsection 7.4.5 will deal with
the discretization of this equation.  This will give us a linear system, to
be solved as a prelude to solving the magnetostatics problem, to which we
shall return in Section 7.5.

S

x R

n(x)

ξ

y

d

FIGURE 7.3.  Notations.  SR(x), or  SR(ξ), is the disk of radius  R  drawn on  S.
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Let us introduce some notation:  ξ  will denote a point in space, and  x(ξ), or
simply  x, its projection on  S  (Fig. 7.3).  If  S  is regular, the mapping  ξ → x
is well defined in some neighborhood of  S.  Let  d = |ξ − x|  and  SR(ξ) =
{y ∈ S :  |y − x(ξ)| < R}.  One has (this is trivial, but important):

(32) ∫SR(ξ) |ξ − y|−1 dy ≤ C R,

where  dy  is the measure of areas on  S, and  C  a constant depending on  S
but not on  ξ.  Last, we denote by  n(ξ)  the vector at  ξ  parallel to  n(x).
One thus obtains in the neighborhood of  S  a vector field, still denoted by
n, which extends the field of normals.  (Field lines of  n  are orthogonal
to  S.)
Remark 7.2.  If  S  is only piecewise smooth, as we assumed from the
beginning, the properties to be established below stay valid at all points
of regularity of the surface (those in the neighborhood of which  S  has a
tangent plane, and bounded principal curvatures).  ◊

Now let  q  be a function defined on  S, taken as smooth in a first
approach (continuous is enough), and let us consider its potential  ϕ:

(33) ϕ(x) = 1
4π∫S

q(y)

|x – y|
 dy.

One may interpret  q  as an auxiliary magnetic charge density and  ϕ  as a
magnetic potential (called “single layer potential”), from which derives
a magnetic field  h = grad ϕ.  If  x ∉ S, the integral converges in an obvious
way.  But moreover,  q  being bounded, it also converges when  x ∈ S  (study
the contribution to the integral of a small disk centered at  x, and invoke
(32)).  Finally, the function  ϕ  is continuous (thanks to the uniform bound
(32), again), null at infinity, and harmonic outside  S.  Let us call  K  the
operator  q → ϕ|S  .

Next we study the field  h = grad ϕ.  By differentiation under the
summation sign, one finds

grad ϕ = x → 1
4π∫S  q(y) 

|x – y|3

y – x
 dy,

and this time the convergence of the integral when  x ∈ S  is by no means
certain.  On the other hand, the real-valued integral

(34)    (Hq)(x) = 1
4π∫S q(y) n(x) · 

|x – y|3

y – x   dy

does converge when  x ∈ S :  For if  x  is a point of regularity of  S,  R  a
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positive real value, and  |q |R  an upper bound
for  q(y)  on the set  SR(x), the contribution of
SR(x)  to the integral is bounded by

(35)
|q|
4π

R  ∫ SR(x)  n(x) · 
|x – y|3

y – x
 dy,

a quantity which tends to  0  when  R  tends to
0  (take polar coordinates originating at  x, remark by looking at the inset
that  |x − y| ~ r  and  n(x) · (y − x) ~ r2).  Hence another integral operator
H, of the same type as  K.

The form of  Hq  could suggest that it is the restriction to  S  of the
function  n · grad ϕ  (compact notation for  ξ → n(ξ) · grad ϕ(ξ)) .  But this is
not so, for  n · grad ϕ, contrary to  ϕ, is not continuous across  S, but has a
jump, equal to  q, as we presently see.  (Recall the definition of the jump as

 [n · grad ϕ]S = n+ · (grad ϕ)+ + n– · (grad ϕ)– ,

with the notation of Fig. 7.4.  This can be denoted by  [∂ϕ/∂n]S, or better,
[∂nϕ]S. )

+

–
n+

S

D

n

n

– O

FIGURE 7.4.  Notations for Proposition 7.5.

Proposition 7.5.  Let  ϕ  be the function defined in (33).  One has

[n · grad ϕ]S ≡ n+ · (grad ϕ)+ + n– · (grad ϕ)– = q,

n+ · (grad ϕ)+ − n– · (grad ϕ)– = Hq.

Proof.  All these are well-defined functions, for  ϕ  is  C∞  outside  S.  Let  d
and  R  be fixed.  Let us sit at  point  ξ = x + α d n(x), where  α  is meant to
eventually converge to  0, and let  β = |α|1/2.  The contribution of the set
S − SβR(x)  to the integral

n(x)   .

x        .

y   .

r                      .
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n(ξ) · (grad ϕ) (ξ) = (4π)−1 ∫S dy q(y) |x − y|−3 n(ξ) · (y − ξ)

has a well-defined limit (namely,  (Hq)(x)) when  ξ  tends to  x.  So let us
examine, according to a standard technique in singular integral computa-
tions, the contribution of  SβR(x), whose limit will depend on the sign of  α.
Up to terms in  o(α), this is

 (4π)–1 q(x) n(x) · ∫SβR
 dy q(y) |ξ − y|−3 (y − ξ) ≈

            (4π)–1 q(x) α d  ∫0
β R 2π r dr (r2 + α2d2)–3/2 .

Studying this integral is a classical exercise: 17  Its limit is  ± q(x)/2
according to whether  α  tends to  0  from above or from below.  The limit of
n(ξ), in the same circumstances, is  n+  or  n −.  Thus  n± · (grad ϕ)± = q/2 ± Hq.
Hence, by addition and subtraction, the announced equalities.  ◊

Here follows a first implication of Prop. 7.5.  Let  q'  be another charge
density, and  ϕ'  its potential.  According to the divergence integration by
parts formula, one has

(36) ∫E3
 grad ϕ · grad ϕ' = ∫D grad ϕ · grad ϕ' + ∫O  grad ϕ · grad ϕ'

                                 = ∫S ϕ [∂nϕ] = ∫S ϕ q' = ∫S Kq q',

and in particular,  ∫E3 |grad ϕ|2 = ∫S Kq q.  The operator  K  is thus self-adjoint
and (strictly) positive definite on its domain, which we restricted up to
now to regular functions.  Note the formal similarity with  P, exterior or
interior:  K  is a bilateral Dirichlet-to-Neumann operator, so to speak.

This suggests the following extension of the definition of  K, which is
a variant of the “extension by continuity” of A.4.1.  Suppose  q ∈ H −1/2(S)
given.  The problem f ind  ϕ ∈ Φ  such that

∫E3
 grad ϕ · grad ϕ' = ∫S q ϕ'   ∀ ϕ' ∈ Φ

is well posed, since  ϕ' ∈ H1/2(S), with continuity of the trace mapping,
and the map  q → ϕS  is therefore continuous from  H−1/2(S)  into  H1/2(S).
As it constitutes an extension of  K, it is only natural to also denote it by
K.  (The  K  thus extended is an isometry between  H −1/2(S)  and  H1/2(S),
again for a different norm than in the previous two cases.)  Then,
after (36),

17This is the same computation one does in electrostatics when studying the field due to
a uniform plane layer of electric charge.

∫E3
 grad ϕ · grad ϕ' = <q, Kq'>,
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hence  ∫E3
 grad ϕ · grad ϕ' = ∫S q Kq'  when  q ∈ L2(S), so that  K, now

considered as an operator from  L2(S)  into itself, is self-adjoint and positive
definite.

A second implication is the following formula, which explicitly gives
the normal derivative of  ϕ  in terms of the charge  q:

        ∂nϕ(x) ≡ (n · grad ϕ)(x) = 1
2

 q(x) + 1
4π∫S  q(y) n(x) · 

|x – y|3

y – x
 dy,

that is,

(37) ∂nϕ = (1/2 + H) q.

Since the mapping  q → ∂nϕ  is linear continuous from  H −1/2(S)  into itself,
and since  Hq = ∂nϕ − q/2  when  q  is regular, after (37), we may extend the
operator  H  to  H−1/2(S)  in the present case, too.

We may now, at last, give an explicit form to the operator  P.  (Let’s
revert to our usual convention that  ϕS  denotes the trace of  ϕ.)  Since  ∂nϕ =
PϕS, by definition, and  ϕS = Kq, one has  PK = 1/2 + H, after (37), hence
the result we were after:

(38) P = (1/2 + H) K−1.

Yet we are not through, far from it, for (38) must be discretized, and this
cannot be done simply by replacing the operators  H  and  K  by their
matrix equivalents  H  and  K, whatever they are (we’ll soon give them):
The matrix  (1/2 + H) K−1  thus obtained would not be symmetrical, contrary
to our wishes.

7.4.5  Discretization

In this subsection, we simply write  ϕ  for  ϕS, and  Φ  for the space  H1/2(S).
Let  Q  denote the space  H−1/2(S)  where  q  lives.  After (38), written in
weak form, operator  P  is such that

(39) <Pϕ, ϕ'> = <q, ϕ'>/2 + <Hq, ϕ'>   ∀ ϕ' ∈ Φ

for each couple  {ϕ, q}  linked by the relation

(40) <ϕ, q'> = <Kq, q'>   ∀ q' ∈ Q.

A mesh  m  of  D, and thus of  S, being defined, let us denote by  Φm  and  Qm
mesh-dependent approximation spaces for  Φ  and  Q  , to be constructed.
We have a natural choice for  Φm  already:  the trace on  S  of  W0

m(D).
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The choice of  Qm, for which we have no obvious rationale yet,  is deferred
for a while.

On the sight of (39) and (40), a discretization principle suggests itself:
We look for  Pm, an operator of type  W 0

m(S) → W0
m(S), that should be

symmetrical like  P  and such that

(41) <Pmϕ, ϕ'> = <q, ϕ'>/2 + <Hq, ϕ'>   ∀ ϕ' ∈ Φm

for all couples  {ϕ, q} ∈ Φm × Qm  linked by the relation

(42) <ϕ, q'> = <Kq, q'>   ∀ q' ∈ Qm.

The representations  ϕ = ∑ n ∈ N (S) ϕϕϕϕn wn  and  q = ∑ i ∈ J qi ζi  (where the set  J
and the basis functions  ζi  have not yet been described), define isomorphisms
between the spaces  Φm  and  Qm  and the corresponding spaces  ΦΦΦΦ  and  Q  of
vectors of DoFs.  Let us denote by  B, H, K  the matrices defined as follows,
which correspond to the various brackets in (41) and (42):

(43) Bn i = ∫S dx wn(x) ζi(x),

(44) Ki j = (4π)−1  ∫∫S dx dy (|y − x|)−1 ζi(x) ζj(y),

(45) Hn i =  (4π)−1 ∫∫S dx dy  (|y − x|)−3 n(x) · (y − x) ζi(y) wn(x).

According to the foregoing discretization principle, we look for the
symmetric matrix  P  (of order  N(S), the number of nodes of the mesh on
S), such that

(46) (P ϕϕϕϕ, ϕϕϕϕ')))) = (B q , ϕϕϕϕ')))) /2 + ((((H  q , ϕϕϕϕ')      ∀ ϕϕϕϕ' ∈ ΦΦΦΦ,

for all couples  {ϕϕϕϕ, q} ∈ ΦΦΦΦ × Q  linked by

(47) (Bt ϕϕϕϕ, q') = (K q , q')                          ∀ q' ∈ Q

(the bold parentheses denote scalar products in finite dimension, as in 
4.1.1).  Since (47) amounts to  q = K−1Bt ϕϕϕϕ, we have

(48) P = sym((B/2 + H) K−1 Bt )

after (46), with  t  for “transpose” and  sym  for “symmetric part”.
This leaves the selection of “basis charge distributions”  ζi  to be

performed.  An obvious criterion for such a choice is the eventual simplicity
of the computation of double integrals in (43–45), and from this point of
view, taking  ζi  constant on each triangle is natural:  thus  J  will be the
set of surface triangles, and one will define  ζi  for  i ∈ J  as the characteristic
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function of triangle  i  (equal to one over it and to  0  elsewhere), divided
by the area.  This was the solution retained for the Trifou eddy-current
code (cf. p. 225), and although not totally satisfactory (cf. Exer. 7.3), it
does make the computation of double integrals simple.

Simple does not mean trivial however, and care is required for terms
of  K, which are of the form

KTT' =
1
4π  ∫T dy ∫T ' dx |x – y|–1,

where  T  and  T'  are two non-intersecting triangles in generic position in
3-space.  The internal integral is computed analytically, and the outer
one is approximated by a quadrature formula, whose sophistication must
increase when triangles  T  and  T'  are close to each other.  Any programmer
with experience on integral or semi-integral methods of some kind has
had, at least once in her life, to implement this computation, and knows
it’s a tough task.  Unfortunately, the details of such implementations are
rarely published (more out of modesty than a desire to protect shop secrets).
Some indications can be gleaned from [AR, Cl, R&].
Remark 7.3.  As anticipated earlier, the “naive” discretization of (38),
yielding  P = (1/2 + H)K−1, would be inconsistent (the dimension of  K  is
not what is expected for  P, that is,  N(S)).  But the more sophisticated
expression  (B/2 + H) K−1 Bt  would not do, either, since this matrix is not
symmetric, and the symmetrization in (48), to which we were led in a
natural way, is mandatory.  ◊
Exercise 7.3.   Show, by a counter-example, that matrix  P  may happen to
be singular with the above choice for the  ζi.

7.5  BACK TO MAGNETOSTATICS

We may now finalize the description of the “finite elements and integral
method in association” method of 7.3.3, in the case when the unknown is
the scalar potential.  Let  Φ(D)  be the space of restrictions to  D  of the
scalar potentials in space  Φ.  We denote again by  ϕS  the trace of  ϕ  on  S.
Thanks to the operator  P, the Euler equation (15) is equivalent to the
following problem:  f ind  ϕ ∈ Φ(D)  such that

(49) ∫D µ ( hj + grad ϕ) · grad ϕ' + µ0 ∫S (n · hj + PϕS) ϕ' S = 0   ∀ ϕ' ∈ Φ(D).

Let  m  be a mesh of  D.  Then  Φm(D) = {ϕ :  ϕ = ∑ n ∈ N  ϕϕϕϕn wn}  is the natural
approximation space for  Φ(D).  Hence the following approximation of
(49), f ind  ϕ ∈ Φm(D)  such that, for all  ϕ' ∈ Φm(D),
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(50) ∫D µ ( hj + grad ϕ) · grad ϕ' + µ0 ∫S (n · hj + PϕS) ϕ' S = 0.

Let  ϕϕϕϕ  be the vector of degrees of freedom (one for each node, including
this time those contained in  S), and  ΦΦΦΦ = IRN  (there are  N  nodes).  We
denote

ηηηηj
n = ∫D µ h

j · grad wn + µ0 ∫S n · hj  wn ,

ηηηηj = {ηηηηj
n :  n ∈ N }, and let  G,  R,  M1(µ)  be the same matrices as in Chapter

5.  Still denoting by  P  the extension to  ΦΦΦΦ  (obtained by filling-in with
zeroes) of the matrix  P  of (48), we finally get the following approximation
for (50):

(51) (GtM1(µ)G + P)ϕϕϕϕ + ηηηηj = 0.

Although the matrix  P  of (38) is full, the linear system (51) is reasonably
sparse, because  P  only concerns the “S  part” of vector  ϕϕϕϕ.
Remark 7.4.  The linear system is indeed an approximation of (50), and not
its interpretation in terms of degrees of freedom, for  (Pϕϕϕϕ, ϕϕϕϕ')  is just an
approximation of  ∫S PϕS ϕ' S  on the subspace  Φm(D), not its restriction, as in
the Galerkin method.  (This is another example of “variational
crime”.)  ◊
Remark 7.5.  There are other routes to the discretization of  P.  Still using
magnetic charges (which is a classic approach, cf. [Tz]), one could place
them differently, not on  S  but inside  D  [MW].  One might, for example
[Ma], locate a point charge just beneath each node of  S.  (The link between
q  and  ϕϕϕϕ  would then be established by collocation, that is to say, by
enforcing the equality between  ϕ  and the potential of  q  at nodes.18)
Another approach [B2] stems from the remark that interior and exterior
Dirichlet-to-Neumann maps (call them  P int  and  P ext) add to something
which is easily obtained in discrete form, because of the relation
(Pint + P ext)ϕ = q = K−1 ϕ.  Since, in the present context, we must mesh  D
anyway, a natural discretization  Pint  of  P int  is available, thanks to the
“static condensation” trick of Exer. 4.8:  One minimizes the quantity
∫D |grad(∑ n ∈ N (D) ϕn wn)|

2 with respect to the inner node values  ϕϕϕϕn, hence a
quadratic form with respect to the vector  ϕϕϕϕ  (of surface node DoFs), the
matrix of which is  Pint.  A reasoning similar to the one we did around
(46–47) then suggests  B K

−1 Bt  as the correct discretization of  K −1, hence
finally  P ≡ Pext = B K

−1 Bt − Pint  (which ensures the symmetry of  Pext, but

18See, e.g., [KP, ZK].  These authors’ method does provide a symmetric  P, but has other
drawbacks.  Cf. [B2] for a discussion of this point.

does not eliminate the difficulty evoked in Exer. 7.3).  And (lest we
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forget . . . ) for some simple shapes of  S  (the sphere, for example),  P  is
known in closed form, as the sum of a series.  ◊

A similar theory can be developed “on the curl side” [B2, B3]:  Start
from problem (16), introduce the exterior energy  1

2  ∫E3 − D µ−1
 |rot a|2, then

the operator  IP = aS → n × rot a, where  a  satisfies  rot rot a  = 0  outside  D.
Instead ot the auxiliary charge  q, one has an auxiliary current density
borne by  S.  See [RR] for an application of this technique.

EXERCISES

Exercises 7.1 to 7.3 are on pp. 205, 208, and 214, respectively.
Exercise 7.4.  Show that (in spite of Exer. 7.3) the matrix of system (51) is
regular.
Exercise 7.5.  Given a smooth function  q  with bounded support, its Newtonian
potential  ϕ  is

ϕ(x) = 
4π

q(y)

|x – y|E∫ 3

1 dy.

Show that  – ∆ϕ = q.
Exercise 7.6.  Prove (22).  Show that one can reduce the problem to the case
where  D  is a half-space and  S  a plane, with  ϕ  compactly supported.
Take Cartesian coordinates for which  D = {x :  x1 ≥ 0}, and use Fubini to
show that the problem can be reduced to studying functions of one real
variable  t  (here  x 1)  with values in a functional space  X  (here,  L2(E2)) .
Work on functions  u ∈ C1([0, 1] ; X)  and bound  ||u(0)||2  by   ∫0

1 ||u(t)||2 dt +
∫0

1 ||∂tu(t)||2 dt, using Cauchy–Schwarz.

HINTS

7.1.  This is a poorly wrapped paradox, almost a mere play on words:
Make sure you understand that “closure” means different things in the
text of the exercise and in the sentence just before.  (My apologies if you
felt insulted.)
7.2.  Take a sequence of points  xn  in  E3  tending to infinity, and have  ϕ
supported by small neighborhoods of these points.  It’s easy to enforce
∫E3

 |grad ϕ|2 < ∞, although  ϕ(x)  does not tend to zero when  |x|  tends to
infinity, by construction.
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7.5.  Since differential operators commute with the convolution product,
the problem reduces to showing that  – ∆(x → 1/|x|) = 4πδ0, where  δ0  is
the Dirac mass at the origin.  Half of it was solved with Exer. 4.9.  The
delicate point is the computation of the divergence in the sense of
distributions of the field  x → – x/|x|3  (refer to A.1.9 for the arrowed
notation).

SOLUTIONS

7.1.  C0
∞(D), which is dense in  L2(D)  with respect to the  L2-norm, is

indeed dense also in the subspace  L2
grad(D), with respect to this same norm.

But with respect to the stronger norm put on  L2
grad(D), which is the point,

it’s not, simply because there are f ewer Cauchy sequences for this norm, so
their limits form a smaller space, namely,  H1

0(D).  In short, the stronger
the norm, the smaller the closure.
7.2.  Let  ϕn = y → n (1 – n4 |y – x n|

+), where  +  denotes the positive part of
an expression.  Then  ∫|grad ϕn|

2  is in  n–2, so  ϕ = ∑ n ϕn  is in the Beppo Levi
space, but  ϕ(xn) = n  for  n  large enough, and doesn’t vanish at infinity.
7.3.  See Ref. [CC].
7.5.  The same computation as in Exer. 4.9 would give

( * )  div(x → x/|x|3) = x → 3/|x|3 – 3 x · x/|x|5 ≡ 0,

if it were not for the singularity at the origin.  What was obtained there
is only the “function part” of the distribution  div(x → x/|x|3), which is
therefore concentrated at the origin.  To find it, apply Ostrogradskii to a
sphere of radius  r  centered at the origin, which gives the correct result,
div(x → x/|x| 3) = – 4π δ0.  Then, denoting by  χ  the kernel  x → 1/(4π|x|),
one has  ϕ = χ ∗ q, and hence,  – ∆ϕ = – ∆(χ ∗ q) = (– ∆χ) ∗ q = δ0 ∗ q = q.
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