
CHAPTER 5

Whitney Elements

We now leave the first part of this book, devoted to the study of the
“div-side” of the modelling of Chapter 2, and will turn to the “curl-side”.
As we need a more encompassing viewpoint to survey this enlarged
landscape, we shall use more sophisticated mathematical tools.  Hence
this transition chapter.  First, we enlarge the mathematical framework,
studying the three fundamental operators  grad,  rot,  div, from the
functional point of view, thus making visible a rich structure, which
happens to be the right functional framework for Maxwell’s equations.
Then, we present a family of geometrical objects introduced around 1957
by Whitney (Hassler Whitney, 1907–1989, one of the masters of
differential geometry), known as “Whitney (differential) forms” [W h].
They constitute a discrete realization of the previous structure, and
therefore, the right framework in which to develop a finite element
discretization of electromagnetic theory.  (This is why I call them
“Whitney elements” here, rather than “Whitney forms”.)  Finally, now-
popular “tree and cotree” techniques are addressed.

5.1  A FUNCTIONAL FRAMEWORK

In Section 3.2, when we had to complete the space of potentials, we saw a
connection between the physically natural idea of “generalized solution”
of an equation  Ax = b, and the prolongation of operator  A  beyond its
initial domain of definition.  This will now be systematized, and applied
to the classical differential operators  grad,  rot, and  div.  The idea is
extremely simple:  We take the closures of the graphs of all operators in
sight, thus finding extensions of them with good properties.  But the proofs
along the way can be quite involved, so they are placed in such positions
as to make it easy to ignore them at first reading.  Familiarity with the
Hilbert spaces  L2(D)  and  IL2(D)  is now assumed.  (Cf. 3.2.3 and
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Appendix A, Section A.4.)



126 CHAPTER 5  Whitney Elements

5.1.1  The “weak” grad,  rot, and  div

Let  D  be a regular bounded domain of  E3  and denote, as in Chapter 2,
C∞(D‹)  and  C∞(D‹)  the spaces of restrictions to  D  of smooth functions or
fields with compact support in  E3.  All three components of a smooth field
b  have partial derivatives at all points of  D  and its boundary, hence a
function  f = div b  that belongs to  C∞(D‹), and hence a linear operator,
denoted  div, the standard, or “strong“ one.

We found it not so convenient a tool, back in Chapter 2.  For instance,
if  {b n}  is a sequence of smooth solenoidal vector fields of finite energy
which converge in energy toward a field  b, we expect  b  to be solenoidal
as well.  And yet, we would have “no right“ to say that, because “div b =
0” doesn’t make sense if  b  is not smooth!  A silly situation, from which
we escaped thanks to the notion of weak formulation, but there is a more
direct approach, as suggested by the very idea of completion, as follows.
Set  fn = div bn, not necessarily zero for more generality.  Suppose that
limn → ∞bn = b  and  limn → ∞ fn = f  in  IL2(D)  and  L2(D)  respectively.  Why
not decree that  div b  does exist, as a scalar field, and is equal to  f, thus
enlarging the domain of  div?  This is quite in the spirit of generalized
solutions.  By doing that for all similar sequences, we may expect the
extension1 of  div  thus obtained to be free of the inadequacies of the
strong divergence.

So let us denote by  DIV  the graph in  IL2(D) × L2(D)  of the strong
divergence, i.e., the set of pairs  {b, f} ∈ C∞(D‹) × C∞(D‹)  such that  div b =
f.  The recipe just described—enlarge the graph in order to include limits
of related pairs  {bn, f n} —simply consists in taking its closure, denoted
D ‹I ‹V ‹, in  IL2(D) × L2(D).  Hence a new operator, that we shall provisionally
denote  wdiv  and call the w e a k divergence, for reasons which will be
obvious in a moment.

But . . . does this subset  D‹I ‹V ‹  define a function?  Is it a functional
graph?  Conceivably, two sequences  {b n, fn}  and  {bŸn, f Ÿn}  could converge
toward the same  b  but different  f’s, hence a multivalued extension of
div.  We say that a linear operator (or, for that matter, any function) is
closable if such mishaps cannot occur, i.e., if the closure of its graph is
functional.2  And indeed,
Proposition 5.1.  D‹I ‹V ‹  is a functional graph.

1See Appendix A, Subsection A.1.2, for the basic notions about relations, functional or
not, their graphs, their restrictions, their extensions, etc., and A.3.2 for metric-related notions.

2Of course, closed operators are those with a closed graph.  Cf. A.4.4.

Proof.  Otherwise, there would exist a nonzero  f  such that  {0, f}  be in the
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closure of  DIV.  Let then  {bn, fn} ∈ DIV  go to  {0, f}  in the sense of the
IL2(D) × L2(D)  norm.  For all test functions  ϕ' ∈ C0

∞(D), one would have

(1) ∫D bn · grad ϕ' = – ∫D div bn  ϕ' ,

and since the two sides tend to 0 and  ∫D f ϕ'  respectively, by continuity of
the scalar product, this implies  ∫D f ϕ' = 0  ∀ ϕ' ∈ C0

∞(D), hence  f = 0  by
density of  C0

∞(D)  in  L2(D)  (cf. A.2.3), which proves the point.  ◊
The relation of this procedure with the weak formulation of the

equation  div b = f  is now patent, which stirs us to try and prove the
following clincher result:

Proposition 5.2.  The closure of   DIV  coincides with the set  wDIV  of pairs
{b, f}  in  IL2(D) × L2(D)  such that

(2) ∫D b · grad ϕ' + ∫D f  ϕ' = 0   ∀ ϕ' ∈ C0
∞(D).

The proof will qualify  wdiv  as the proper generalization of the “weak
divergence” of Eq. (2.11).  (The residual and a bit awkward restriction to
“piecewise smooth” fields, more or less forced upon us in Chapter 2, has
now been lifted for good.)  However, it’s surprisingly difficult, so let me
postpone it for a moment, in order to keep the main ideas in focus.

So—provisionally accepting Prop. 5.2 as valid—what we called
earlier “weak solenoidality” corresponds to  wdiv b = 0, the fact for a
field to have a null weak divergence in the present sense, and this justifies
the terminology.

Let's generalize.  First,  give names to the graphs of the strong operators:

GRAD, the graph of  grad :  C∞(D‹) → C∞(D‹)  in  L2(D) × IL2(D),

ROT, the graph of  rot :  C∞(D‹) → C∞(D‹)  in  IL2(D) × IL2(D),

DIV, the graph of  div :  C∞(D‹) → C∞(D‹)  in  IL2(D) × L2(D),

then define the weak operators  wgrad,  wrot,  and  wdiv  via their graphs,
which are the closures G‹R ‹A‹D ‹,  R ‹O‹T‹, and  D‹I ‹V ‹  of the former ones.
(Exercise 5.1:  Imitate the proof of Prop. 5.1 to show that G‹R ‹A‹D ‹  and
R ‹O‹T‹  are functional.)   Note that functions may have a weak gradient
without being differentiable in the classical sense (Exercise 5.2 :  Provide
examples), and fields have a weak curl or a weak divergence in spite of
their components not being differentiable at places.

We shall denote the domains of these weak operators  by  L2
grad(D),

IL2
rot(D), and  IL2

div(D).  You may see them defined as follows, in the
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literature:

L2
grad(D) = {ϕ ∈ L2(D) :  grad ϕ ∈ IL2(D)},

IL2
rot(D) = {u ∈ IL2(D) :  rot u ∈ IL2(D)},

IL2
div(D) = {u ∈ IL2(D) :  div u ∈ L2(D)}.

In such cases,  grad, rot, and  div  are understood in the weak sense;  they
are actually what we denote here  wgrad,  wrot,  wdiv.  Thus stretching the
scope of the notation is so convenient that we'll practice it systematically:
From now on, when   grad,  rot,  div  appear somewhere, it will be understood
that their weak extensions  wgrad,  wrot,  wdiv  are meant.

5.1.2  New functional spaces:  L2
grad,  IL2

rot,  IL
2

div

Up to this point,  L2
grad(D),  IL2

rot(D), and  IL2
div(D)  have been mere subspaces

of  L2(D),  IL2(D), and  IL2(D).  Beware, they are not closed, contrary to the
graphs!  They are dense in  L2  or  IL2, actually, since they contain all
smooth functions or fields.  So they are not complete with respect to the
scalar product of  L2  or  IL2.  We can turn them into Hilbert spaces on their
own right by endowing them with new scalar products, as follows:

( (ϕ, ϕ')) = ∫D ϕ · ϕ' + ∫D grad ϕ · grad ϕ'     for  L2
grad(D),

((u, u')) = ∫D u · u' + ∫D rot u · rot u'            for  IL2
rot(D),

((u, u')) = ∫D u · u' + ∫D div u  div u'           for  IL2
div(D),

where of course  grad,  rot, and  div are the weak ones.
Let us then set, for instance (the two other lines can be treated in

parallel fashion)

(3) |||ϕ||| = (∫D |grad ϕ|2 + ∫D |ϕ|2)1/2

(we reserve the notation  ||  ||  for the  L2  norm).  This is called the graph
norm, because (cf. A.1.2) it combines the norms of both elements of the pair
{ϕ, grad ϕ}, which spans  G‹R ‹A‹D ‹.  With this norm,  L2

grad(D)  is complete,
and hence a Hilbert space, since its Cauchy sequences  {ϕn}  are in one-to-one
correspondence with sequences  {ϕn, grad ϕn}  belonging to the graph.
Moreover,  grad  is continuous from the new normed space to  IL2(D), since
||grad ϕ|| ≤ |||ϕ|||  by construction.

This can be seen as the real achievement of the whole procedure:  B y
putting the graph norms on the domains of the weak operators   wgrad,
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wrot,  wdiv, we obtain Hilbert spaces on which these operators are
continuous.  From now on,  L2

grad(D),  IL2
rot(D),  IL2

div(D)  will thus be understood
as these Hilbert spaces, duly furnished with the graph norm.
Remark 5.1.   The Hilbert space  {L2

grad(D), |||  |||}  is the Sobolev space
usually denoted  H1(D).  We shun this standard notation here for the sake
of uniform treatment of  grad,  rot, and  div, which is reason enough to so
depart from tradition.3  ◊

This graph closing is quite similar to the “hole plugging” of Chapter
3, where we invoked completion the first time.  However, the link between
the foregoing procedure and completion is much stronger than a mere
analogy.  There is a way in which what we have just done i s completion
of a space, followed by an application of the principle of extension by
continuity of A.4.1.

Let’s show this by discussing the case of  grad.  Start from the space
C∞(D‹), and put on it the norm (3).  Now, the strong  grad  is continuous from
the new normed space  {C∞(D ‹), |||  |||}  into  IL2(D).  Let us take the completion
of  C∞(D‹)  with respect to the  |||  |||  norm.  Limits of Cauchy sequences of
pairs belonging to  GRAD  span its closure,  G ‹R ‹A‹D ‹, so there is no problem
this time in identifying this completion with a functional space:  The
completion is in one-to-one correspondence with  G ‹R ‹A‹D ‹, and
therefore—since the latter is a functional graph, as we know (Exer.
5.1)—with its projection on  L2(D).  The completion is thus (identifiable
with) a subspace of  L2(D), which is the classical  H1(D) —our  L2

grad(D).
By construction,  C∞(D‹)  is dense in  H1(D), so we are in a position to

apply this principle of extension by continuity of Appendix A (Theorem
A.4):  A uniformly continuous mapping  fU  from a metric space  X  to a
complete metric space  Y, the domain of which is not all of  X  but only a
dense subset  U, can be extended by continuity to a map from all  X  to  Y.
Here,  fU  is the strong gradient,  U  and  X  are  C∞(D‹)  and  H1(D), and  Y
is  IL2(D).  The extension of the strong gradient thus obtained, on the one
hand, and the weak gradient, on the other hand, are the same operator,
because their graphs coincide, by construction.

Let us now update these integration by parts formulas which were so
useful up to now.  This will essentially rely on the fact that  L2

grad(D), etc.,
are complete spaces, and justify the work invested in various completions
up to this point.

3Some Sobolev diehards insist that  IL2
rot(D)  and  IL2

div(D)  be denoted  H(rot; D)  and
H(div; D)  respectively, which would be just fine .  . .  if only they also used  H(grad; D)   for
H1(D).

First, over all space, the formulas
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∫E3
 div u  ϕ = − ∫E3

 u · grad ϕ   ∀ ϕ ∈ L2
grad(E3),  u ∈ IL2

div(E3) ,

∫E3
 rot u · v = ∫E3

 u · rot v   ∀ u,  v ∈ IL2
rot(E3) ,

are valid.  We know they are when  ϕ  is in  C0
∞(E3)  and  u  and  v  both in

C 0
∞(E3).  So if  {un}  and  {vn}  are Cauchy sequences converging to  u  and  v,

then  ∫ rot un · vm = ∫ un · rot vm  for all  n  and  m, and one may pass to the
limit, first with respect to  n, then to  m, by continuity (that is, if one
insists on rigor, by applying the principle of extension by continuity to the
linear continuous maps thus defined).

When  D  is not all  E3, however, there are surface terms in these
formulas, for smooth fields:

(4) ∫D div u  ϕ = −  ∫D u · grad ϕ + ∫S n · u  ϕ,

(5) ∫D rot u · v = ∫D u · rot v + ∫S n × u · v,

and the extension by continuity becomes a very delicate affair because of
the difficulty to give sense to the limits of the restrictions to the boundary
of fields or functions that form a Cauchy sequence.  Cf. A.4.2 for a glimpse
of this problem of “traces”.  We shall go in painful detail over only a part
of it in Chapter 7.  But one can do much mileage with the following idea,
which borrows from the “distribution” point of view.  Suppose  u  has a
weak divergence in  L 2(D).  Then, for a smooth  ϕ, the expression  Nu(ϕ) =
∫D div u  ϕ + ∫D u · grad ϕ  makes sense and vanishes for  ϕ ∈ C0

∞(D).  It
means4 that, for a smooth  ϕ  that doesn’t necessarily vanish on  S, the
values of  Nu(ϕ)  depend on the boundary values of  ϕ  only.  Therefore, we
have there a linear map,  ϕ → N u(ϕ), which actually depends on the
restriction  ϕS  of  ϕ  to  S.  In other words, this is a distribution defined on
S  (the required sequential continuity is obvious, in the case of a smooth
surface).  If  u  is smooth,  n · u  makes sense, and this distribution is seen to
be the map  ϕ → ∫S n · u ϕ, so we are entitled to identify it with  the
function  n · u.  Now, moving backwards, we def ine  n · u, for  u  in  IL2

div(D),
as precisely this distribution.  A similar approach gives sense to  n × u
in (5).

It’s in this sense that fields of  IL2
rot(D)  and  IL2

div(D)  have well-defined
tangential parts and normal parts, respectively, on the boundary, which
may fail to be functions or fields in the usual sense of these words, but
make sense as distributions, and reduce to the standard interpretation of
n × u  and  n · u  in case of regularity (of  u  and of  S, of course).  Note that,

4Some cheating occurs here.  See [LM] for a genuine proof.

in contrast,  n × u  and  n · u  don’t make sense for  u ∈ IL2(D)  if  u  has no more
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regularity than that:  Square-summable fields have no traces on
boundaries!

Although I cut a few corners, I hope the foregoing was reason enough
for you to use formulas (4) and (5), in both directions, without undue
apprehension, provided of course  ϕ ∈ L2

grad(D)  and  u ∈ IL2
div(D), as regards

(4), and both  u  and  v  belong in  IL2
rot(D), as regards (5).  For extra security,

however, note that we can always decide that, by definition,  n · u = 0
means  “ ∫D div u  ϕ = −  ∫D u · grad ϕ  for all  ϕ  in  L 2

grad(D)”.  This doesn’t go
further than the weak formulation we adopted in Chapter 3:  There it
was for all  ϕ  in  C∞(D ‹), but since the latter is dense in  L2(D), the present
interpretation is simply the application of the principle of extension by
continuity.  Same remark for  n × u, so from now on, we’ll agree that

 n · u = 0  on  S  ⇔  ∫D div u  ϕ +  ∫D u · grad ϕ = 0   ∀ ϕ ∈ L2
grad(D),

n × u = 0  on  S  ⇔  ∫D rot u · v – ∫D u · rot v = 0   ∀ v ∈ IL2
rot(D),

with obvious adaptations in case we want such equalities on a part of  S
only.
Exercise 5.3.   Show that the subspace  {b ∈ IL2

div(D) :  div b = 0}  is closed,
not only with respect to the graph norm (which is trivial) but in the  IL2

norm as well.  Same thing for  {h ∈ IL2
rot(D) :  rot h = 0}.  Same question for

{b ∈ IL2
div(D) :   n · b = 0}  and for  {h ∈ IL2

rot(D) :  n × h = 0}.

5.1.3  Proof of Proposition 5.2

Before moving on, let’s give the deferred proof.
By (1),  wDIV  contains  DIV, and is closed, as the orthogonal of the

subspace  {{grad ϕ', ϕ'} :  ϕ' ∈ C0
∞(D)}.  So if it were strictly larger than

D ‹I ‹V ‹, there would exist 5 a pair  {b, f}  in  IL2(D) × L2(D)  satisfying both
(2) (p. 127) and

(6) ∫D b · b' + ∫D f  div b' = 0   ∀ b' ∈ C∞(D‹) ,

which expresses orthogonality to  DIV.  Taking  b' = grad ϕ'  in (6), the
same  ϕ'  as in (2), we see that  ∫D f (ϕ' – ∆ϕ') = 0  ∀ ϕ' ∈ C0

∞(D).  I f  f  was
smooth, this would imply  f = ∆f  in  D, and therefore,  0 = ∫D (f – ∆f) f =
∫D |f|2 + ∫D |∇f|2, hence  f = 0, then  b = 0  by (6) and density.  The idea of

5By the projection theorem of A.4.3, applied in the Hilbert space  X = wDIV  (with the
scalar product induced by  IL2(D) × L2(D))  in the case where  C  is the closure of  DIV.

the proof is to smooth out  f  by convolution before applying this trick.  So
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let  fn = ρn ∗ f, where  ρn  is a sequence of mollifiers, as in A.2.3, but let’s not
restrict the  fns  to  D  yet.  Set  δn = sup(|x| :  ρn(x) ≠ 0)  and  Dn =
{x ∈ D :  d(x, E3 – D) > δn}.  Notice that  δn  tends to zero, so the domain  Dn
grows as  n  increases, to eventually fill  D.  Now select a fixed  ϕ'  with
support inside  Dn, and note that  ρn ∗ ϕ'   has its support in  D, so  ϕ' n =
ρn ∗ ϕ'   belongs to  C0

∞(D).  After this preparation, we have, by using the
Fubini theorem and the possibility of permuting  ∗  and  ∆ ,

∫E3
 fn (ϕ' – ∆ϕ') = ∫E3

 (f ∗ ρn) (ϕ' – ∆ϕ') = ∫E3
 f (ρn∗ (ϕ' – ∆ϕ' ) )

                         = ∫E3
 f (ϕ' n – ∆ϕ' n) = ∫D f (ϕ' n – ∆ϕ' n) = 0,

which shows that  fn = ∆fn  in  Dn, and hence, fn = 0  in  Dn  by the previous
argument.  The limit  f  of the  fns  must therefore be  0.  ◊

5.1.4  Extending the Poincaré lemma

The three differential operators  grad,  rot, and  div  should not only be
treated in parallel, but also as an integrated whole, which as one knows
has a strong structure:  curls of gradients vanish, curls are divergence-free,
and to some extent, these properties have reciprocals.  It’s important to
check whether such structure persists when we pass to the weak extensions.

To be more precise, we’ll say that a domain of  E3  is contractible if it
is simply connected with a connected boundary.6  A classical result of
Poincaré (cf.  A.3.3) asserts that, in such a domain, a smooth curl-free [resp.
div-free] field is a gradient [resp.  a curl].  Is that still true if we replace
the strong operators by the weak ones?

To better discuss such issues, let us introduce some vocabulary.  A family
of vector spaces  X0, . . . , X

n  (all on the same scalar field) and of linear
maps  Ap  from  Xp − 1  to  X p,  p = 1, . . . , d, forms an exact sequence at the
level of  X p  if  cod(Ap) = ker(Ap + 1)  in case  1 ≤ p ≤ d – 1, if  A1  is injective
in case  p = 0, and if  A d  is surjective in case  p = d.  An exact sequence is one
which is exact at all levels.  It’s customary to discuss sequences with help
of diagrams of this form:

6Because it can then be contracted onto one of its points by continuous deformation.
“Connected” means in one piece, “simply connected” that any closed path can be contracted
to a point by continuous deformation.  (This is not the case, for instance, for the inside of a
torus, which is connected but not simply connected.  On the other hand, the space between
two nested spheres forms a simply connected domain, but one whose boundary is not
connected.)
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                               A1            A2                                  Ad

{0}    →   X0   →   X1   → . . .  →   Xd – 1   →   Xd    →   {0},

where  {0}  is the space of dimension  0.  In such diagrams, arrows are
labeled with operators and the image, by any of these operators, of the
space left to its arrow, is in the kernel of the next operator on the right.

The Poincaré lemma  just evoked can then be stated as follows:  For a
contractible domain, the sequence

                                 grad                 rot                  div

{0}  →  C∞(D‹)  →  C∞(D‹)  →  C∞(D‹)  →  C∞(D‹)  →  {0}

is exact at levels 1 and 2 (at all levels7 from  1  to  d – 1, in dimension  d).
For a regular bounded8 contractible domain, we expect the following
sequence, where  grad,  rot, and  div  are now the weak operators, to have
the same structural property:

                     grad                    rot                      div

(7) {0}  →  L2
grad(D)  →  IL2

rot(D)  →  IL2
div(D)  →  L2(D)  →  {0}.

This is true, but the proof calls on some difficult technical results.  Let
us sketch it for level  1.  By definition of the strong curl,

ker(rot ;  C∞(D‹)) = {h :  ∫D h · rot a' = 0   ∀ a' ∈ C0
∞(D)} .

If  D  is contractible, the left-hand side is  grad(C∞(D‹)), by the Poincaré
lemma, so

grad(C∞(D‹)) = C∞(D‹) ∩ (rot(C0
∞(D))⊥.

Taking the closures of both sides, we find that

grad(C∞(D‹)) = ker(rot ;  IL2
rot(D)).

It means that if  rot h = 0  in the weak sense, there is a sequence of functions
ϕn, smooth over  D, such that  h = limn → ∞ grad ϕn.  Now suppose  D

7At level 0,  grad  ϕ = 0  does not imply   ϕ = 0  but only  ϕ  equal to some constant, unless
D = Ed.  At level  d, and if  D = Ed  this time,  div u = f  implies  ∫ f = 0, so not all  f’s qualify.

8One should be cautious with unbounded domains.  For instance, as we shall have to
worry about in Chapter 7, the image  grad(L 2

grad(E3))  is not closed, and thus does not fill out
the kernel of  rot.  The closure of this image is  ker(rot), however, which is enough for the
purposes of cohomology (see infra).

bounded.  One may impose  ∫D ϕn = 0, and by a variant of the Poincaré
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inequality (see Exercises 5.11 and 5.12, at the end of the chapter), one has
then  ||ϕn|| ≤ c(D) ||grad ϕn||, where  c(D)  only depends on  D.  The  ϕn’s  thus
form a Cauchy sequence.  Let  ϕ  be its limit.  Then  h = grad ϕ, since  grad
is closed.  Hence the result:  ker(rot ;  IL2

rot) = grad(L2
grad).  For a similar

proof at level 2, aiming at  ker(div ;  IL2
div) = rot(IL2

rot), begin with Exercise
5.13, and use the “Coulomb gauge” (div a = 0).

As one sees, all this is difficult to establish with rigor, but the
foundations are solid, and the results are easily summarized:  At least in
the case of bounded regular domains, all structural properties of the
sequence of operators   grad → rot → div  carry over to their weak extensions.

5.1.5  “Maxwell’s house”

We'll take this remark quite seriously and base further study of models
derived from Maxwell equations on the systematic exploitation of these
structural properties  (an ambitious working program, to which the present
book can only begin to contribute).  Figure 5.1 should help convey the idea.
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FIGURE 5.1.  The functional framework for Maxwell’s equations.  Note how Ohm’s
law spoils the otherwise perfect symmetry of the structure.

The structure depicted by Fig. 5.1 is made of four copies of the sequence
(7), placed vertically.  The two on the left go downwards, the two on the
right go upwards, which reflects the symmetry of the Maxwell equations.
We need two such “pillars” on each side, linked by the time-derivative,
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to account for time-dependence.  The four pillars are connected by horizontal
beams, which link entities related by constitutive laws.  This is like a
building, in which as we’ll see Maxwell’s equations are well at home:
“Maxwell’s house”, let’s say.

Joints between pillars and beams make as many niches for
electromagnetic-related entities.  For instance, magnetic field, being
associated with lines (dimension 1) is at level 1 on the right, whereas  b,
associated with surfaces (dimension 2), is at level 2 on the left, at the
right position to be in front of  h.  Note how the equations can be read off
the diagram.  Ampère’s relation, for instance, is obtained by gathering at
level 2, right, back, the outcomes of the arrow actions on nearby fields:
– ∂td  comes from the front and  rot h  from downstairs, and they add up to
j.  All aspects of the diagram shoud be as easy to understand, except the
leftmost and rightmost columns.  These concern the finite dimensional
spaces  Wp  of Whitney elements announced in the introduction, which we
now address.

5.2  THE WHITNEY COMPLEX

Let us start back from the notion of finite element mesh of Chapter 3:
Given a regular bounded domain  D ⊂ E3, with a piecewise smooth boundary
S, a simplicial mesh is a tessellation of  D  by tetrahedra, subject to the
condition that any two of them may intersect along a common face, edge or
node, but in no other way.  We denote by  N , E, F, T  (nodes, edges, faces,
and tetrahedra, respectively) the sets of simplices of dimension  0  to  3
thus obtained, 9 and by  m  the mesh itself.  (The possibility of having
curved tetrahedra is recalled, but will not be used explicitly in this section,
which means that  D  is assumed to be a polyhedron.)

Besides the list of nodes and of their positions, the mesh data structure
also contains incidence matrices,  saying which node belongs to which edge,
which edge bounds which face, and so on.  Moreover, there is a notion of
orientation of the simplices, which was downplayed up to now.  In short,
an edge, face, etc., is not only a two-node, three-node, etc., subset of  N ,
but such a set plus an orientation of the simplex it subtends.  Let’s define
these concepts (cf. A.2.5 for more details).

9Note that if a simplex  s  belongs to the mesh, all simplices that form the boundary  ∂s
also belong.  Moreover, each simplex appears only once.  (This restriction may be lifted to
advantage in some circumstances, for instance when “doubling” nodes or edges, as we’ll do
without formality in Chapter 6.)  The structure thus defined is called a simplicial complex.
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5.2.1  Oriented simplices

An edge  {m, n}  of the mesh is oriented when, standing at a point of  e, one
knows which way is “forward” and which way is “backward”.  This
amounts to distinguishing two classes of vectors along the line that supports
e, and to select one of these classes as the “forward”
(or positively oriented) one.  To denote the orien-
tation without too much fuss, we’ll make the
convention that edge  e = {m, n}  is oriented from
m  to  n.  All edges of the mesh are oriented, and
the opposite edge  {n, m}  is not supposed to belong to  E  if  e  does.

Now we define the so-called incidence numbers  Ge n  = 1,  Ge m = – 1, and
Ge k = 0  for nodes  k  other than  n  and  m.  They form a rectangular matrix
G, with  N  and  E  as column set and row set, which describes how edges
connect to nodes.  (See A.2.2 for the use of boldface.)

Faces also are oriented, and we shall adopt a similar convention to
give the list of nodes that define one and its orientation, all in one stroke:
A face  f = {l, m, n}  has three vertices, which are nodes  l,  m,  and  n;  we
regard even permutations of nodes,  {m, n, l}  and  {n, l, m}, as being the
same face, and odd permutations as defining the oppositely oriented face,
which is not supposed to belong to  F  if  f  does.  This does orient the face,
for when sitting at a point of  f, one knows what it means to “turn left”
(i.e., clockwise) or to “turn right”.  In more precise terms, vectors  lm  and
ln, for instance, form a reference frame in the plane supporting  f.  Given
two independent vectors  v 1  and  v2  at a point of the face, lying in its
plane, one may form the determinant of their coordinates with respect to
this basis.  Its sign, + or  –, tells whether  v2  is to the left or to the right
with respect to  v1.  Observe that  v1  and  v2  also form a frame, so this sign
comparison defines an equivalence relation with two classes, posit ive ly
oriented and negatively oriented  frames.  The
positive ones include  {lm, ln}, and also of course
{mn, ml}  and  {nl, nm}.

An orientation of  f  induces an orientation of
its boundary:  A tangent vector  τ  along the boundary
is positively oriented if  {ν , τ}  is a direct frame,
where  ν   is any outgoing vector10 in the plane of  f,
originating from the same point as  τ  (inset).  Thus,

10No ambiguity on that:  In the plane of  f, the boundary is a closed curve that separates
two regions of the plane, so “outwards” is well defined.  Same remark for the surface of a
tetrahedron (Fig. 5.2).

with respect to the orientation of the face, an edge may “run along”, like

l

ν
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n

m       a

n  
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e = {m, n},  when its orientation matches the orientation of the boundary,
or “run counter” when it doesn’t.

We can now define the incidence number  Rf e :   it’s  + 1  if  e  runs along
the boundary,  –1  otherwise, and of course  0  if  e  is not one of the edges of
f.  Hence a matrix  R, indexed over  E  and  F.

A matrix  D, indexed over  F  and  T, is similarly defined:  DT f = ± 1  if
face  f  bounds tetrahedron  T, the sign depending on whether the orientations
of  f  and of the boundary of  T  match or not.  This makes sense only after
the tetrahedron  T  itself has been oriented, and our convention will be
that if  T = {k, l, m, n}, the vectors  kl,  km,  and  kn, in this order, define a
positive frame.  (Beware:  {l, m, n, k}  has the opposite orientation, so it
does not belong to  T    if  T  does.)  The orientation of  T  may or may not
match the usual orientation of space (as given by the corkscrew rule):
these are independent things (Fig. 5.2).

l
m

n

k

ν

l

k

n

x
y

z

D{k, l, m, n}, {l, k, n} = – 1

FIGURE 5.2.  Left:  Standard orientation of space.  Right:  The tetrahedron  T =
{k, l, m, n}, “placed” this way in  E 3, has “counter-corkscrew” orientation.  See
how, thanks to the existence of a canonical “crossing direction” (here inside-out,
materialized by the outgoing vector  ν), this orientation induces one on the boundary
of the tetrahedron, which here happens to be opposite to the orientation of  f =
{k, n, l}.  Concepts and graphic conventions come from [VW] and [Sc], via [Bu].

Remark 5.2.  The orientation of faces is often casually defined by providing
each face with its own normal vector, which is what we did earlier when
we had to consider crossing directions.  This is all right if the ambient
space  E3  has been oriented, which is what we assume as a rule (the
standard orientation is that of Fig. 5.2, left).  In that case, the normal
vector and the ambient orientation join forces to orient the face.  But there
are two distinct concepts of orientation here.  What we have described
above is inner orientation, which is intrinsic and does not depend on the
simplex being embedded in a larger space.  In contrast, giving a crossing
direction11 for a surface is outer, or external orientation.  More generally,
when a manifold (line, surface, .  . . ) is immersed in a space of higher
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dimension, an outer orientation of the tangent
space at a point is by definition an inner
orientation of its complement.  (Outer orienting
a line is thus the same as giving a way to turn
around it, cf. the inset.)  So i f the encompassing
space is oriented, outer orientation of the tangent
space at a point of the manifold determines its
inner orientation, and the other way around.  (Cf. A.2.2 for more detail.)
It’s better not to depend on the orientation of  E3, however, so let it be
clear that faces have inner orientations, like edges and tetrahedra.  ◊

Remark 5.3.  For consistency, one is now tempted to attribute an orientation
to nodes as well, which is easy to do:  just assign a sign,  + 1 or – 1, to each
node, and for each node  n  with “orientation”  – 1, change the sign of all
entries of column  n  in the above  G.  Implicitly, we have been orienting
all nodes the same way (+ 1) up to now, and we’ll continue to do so, but all
proofs below are easily adapted to the general case.  ◊

e

f

g

e

f

g
D

T f
D

T g= – 

R f e R g e=

D
T f

D
T g=

R f e R g e= –

FIGURE 5.3.  Opposition of incidence numbers, leading to  DR = 0, whatever the
orientations.

Next point:
Proposition 5.3.  One has  DR = 0,  RG = 0.  (Does that ring a bell?)
Proof.  For  e ∈ E  and  T ∈ T, the  {T, e}-entry of  DR  is  ∑  f ∈ F DT f Rf e.  The
only nonzero terms are for faces that both contain  e  and bound  T, which
means that  e  is an edge of  T, and there are exactly two faces  f  and  g   of
T  hinging on  e  (Fig. 5.3).  If  D

 T g
 = D

 T f 
, their boundaries are oriented in

such a way that  e  must run along one and counter the other, so  R g  e =
– R

 f e , and the sum is zero.  If  D
 T g

 = – D
 T f 

, the opposite happens,  R g e =

11Which doesn’t require a normal vector, for any outgoing vector will do;  cf. Fig. 5.2,
middle.

R
 f e , with the same final result.  The proof of  RG = 0  is similar.  ◊
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Let us finally mention some facts about the dual mesh  m*  of 4.1.2,
obtained by barycentric subdivision and reassembly (although we shall
not make use of it as such).  Each dual cell  s*  inherits from  s  an outer
orientation (and hence, an inner one if space  E 3  is oriented).  Incidence
relations between dual cells are described by the same matrices  G,  R,  D,
only transposed:  R

 f e ≠ 0, for instance, means that the bent edge  f*  is part
of the boundary of the skew face  e*  (cf. Fig. 4.4), and so on.

5.2.2  Whitney elements

Now, we assign a function or a vector field to all simplices of the mesh.
For definiteness, assume the ususal orientation of space, although concepts
and results do not actually depend on it.

For notational consistency, we make a change with respect to Chapter
3, which consists of denoting by  wn  the continuous, piecewise affine function,
equal to  1  at  n  and to  0  at other nodes, that was there called  λn.  The  w
stands for “Whitney”, and as we shall see, the hat function  λn, now  wn ,
is the Whitney element of lowest “degree”, this word referring not to the
degree of  wn 

 as a polynomial, but to the dimension of the simplices it is
associated with (the nodes).  We shall have Whitney elements associated
with edges, faces, and tetrahedra as well, and the notation for them, as
uniform as we can manage, will be  we ,  wf , and  wT .  Recall the identity

(8) ∑ n ∈ N  wn = 1

over  D.  We shall denote by  W0  the span of the  wns  (that was, in
Chapter 3, space  Φm).  Finite-dimensional spaces  Wp  will presently be
defined also, for  p = 1, 2, 3.  They all depend on  m, and should therefore
rather be denoted by  W0(m), or  W 0

m , but the index  m  can safely be
understood and is omitted in what follows.

Next, degree, 1.  To edge  e = {m, n}, let us associate the vector field

(9) we = wm ∇wn − wn ∇wm

(cf. Fig. 5.4, left), and denote by  W 1  the finite-dimensional space generated
by the  w es.  Similarly,  W2  will be the span of the  wfs, one per face  f =
{l, m, n}, with

(10) wf = 2(w
l
 ∇wm × ∇wn + wm ∇wn × ∇w

l
+ wn ∇w

l
 × ∇wm)

(cf. Fig. 5.4, right).  Last,  W3  is generated by functions  w T , one for each



140 CHAPTER 5  Whitney Elements

tetrahedron  T, equal to  1/vol(T)  on  T  and  0  elsewhere.  (Its analytical
expression in the style of (9) and (10), which one may guess as an exercise,
is of little importance.)

n

e

m
m

n

l

k

x

f

FIGURE 5.4.  Left:  The “edge element”, or Whitney element of degree  1  associated
with edge  e = {m, n}, here shown on a single tetrahedron with  e  as one of its
edges.  Right:  The “face element”, or Whitney element of degree  2  associated
with face  f = {l, m, n},  here shown on a single tetrahedron with  f  as one of its
faces.  The arrows suggest how the vector fields  we  and  w f, as defined in (9)
and (10), behave.  At point  m  on the left, for instance,  we = ∇wn , after (9), and
this vector is orthogonal to the face opposite  m.  At point  m  on the right,  w f =
∇wn × ∇wl, after (10);  this vector is orthogonal to both  ∇wn  and  ∇wl, and
hence parallel to the planes that support faces  {l, m, k}  and  {k, m, n},  that is, to
their intersection, which is edge  {k, m}.

Thus, to each simplex  s  is attached a field, scalar- or vector-valued.
These fields are the Whitney elements.  (The proper name is “Whitney
forms” in the context in which they were introduced [Wh].)  We’ll review
their main properties, all easy to prove.  First,

-  The value of  wn  at node  n  is  1  (and  0  at other nodes),

-  The circulation of  we  along edge  e  is  1,

-  The flux of  wf  across face  f  is  1,

-  The integral of  wT  over tetrahedron  T  is  1,

(and also, in each case,  0  for other simplices).
For degree 0, we already knew that, and for degree 3, it it so by way

of definition.  Let us prove the point for degree  1, i.e., about the circulation
of  we.  Since the tangent vector  τ  is equal to  mn/|mn|, one has, with
help of Lemma 4.1,

∫e τ · (wm ∇wn) = mn · ∇wn (∫e wm)/|mn| = (∫e wm)/|mn|,
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and hence

∫e τ · we = ∫e τ · (wm ∇wn − wn ∇wm) = ∫e(wm + wn)/|mn| = 1,

since  wm + wn = 1  on edge  {m, n}.
The reader will easily treat the case of faces.  (Doing Exercise 5.4

before may help.)  Note the convoluted way in which orientation of the
ambient space intervenes (in the definition of both the cross product and
the crossing direction), without influencing the final result, in spite of
what one may have feared.

Exercise 5.4.  Review Exer. 3.9, showing that the volume of a tetrahedron
T = {k, l, m, n}  is  vol(T) = 4 ∫Τ wn.  Show that the area of face  {k, l, m}  is  3
vol(T) |∇wn|, the length of vector  {k, l}  is  6 vol(T) |∇wm × ∇wn|, and
that  6 vol(T) det(∇wk, ∇w

l
, ∇wm) = 1.

Exercise 5.5.   Compute  ∫T we · we' , according to the respective positions of
edges  e  and  e', in terms of the scalar products  ∇wn · ∇wm.

Exercise 5.6.  Show that field (9) is of the form  x → a  × x + b  in a given
tetrahedron, where  a  and  b  are three-component vectors, vector  a  being
parallel to the edge opposite  {m, n}.  Show that the field (10) is of the
form  x → α x + b  (where now  α ∈ IR) .

A second group of properties concerns the continuity, or lack thereof,
of the  w’s  across faces of the mesh.  Function  wn  is continuous.  For the
field  we , it’s more involved.  Let us consider two tetrahedra with face
{l, m, n}  in common, and let  x  be a point of this face.  Then the vector
field  ∇wn  is not continuous at  x, since  w n  is not differentiable.  But on the
other hand, the tangential part (cf. Fig. 2.5) of  ∇wn  on face  {l, m, n}
changes in a continuous way when one crosses the face from one tetrahedron
to its neighbor;  indeed, it only depends on the values of  w n  on this face,
whatever the tetrahedron one considers.  As this goes the same for  ∇wm,
and for all faces of the mesh, one may conclude that the tangential part
of  we  is continuous across faces.  Similar reasoning shows that the normal
part of  wf  is continuous across faces.  As for  wT, it is just discontinuous.

Thanks to these continuity properties,  W0  is contained in  L 2
grad,  W1

in  IL2
rot, and  W2  in  IL2

div.  The  Wp  are of finite dimension.  They can
therefore play the role of Galerkin approximation spaces  for the latter
functional spaces.  We knew that as far as  W0  is concerned.  For  p = 1  or
2, however, this calls for an unconventional interpretation of the degrees
of freedom.  Take  h  in  W1, for instance.  Then, by definition,
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(11) h = ∑ e ∈ E h e we,

where each  h e  (set in boldface) is a scalar coefficient.  As the circulation
of  we  is  1  along edge  e  and  0  along others, the circulation of  h  along
edge  e  is the degree of freedom  h e.  So the DoFs are associated with
edges of the mesh, not with nodes, which is the main novelty with respect
to classical finite elements.  In the same way, if  b ∈ W2, one has  b =
∑ f ∈ F  bf wf, and the  bfs  are the fluxes of  b  through faces.  So in this case,
degrees of freedom sit at faces.  Last, there is one DoF for each tetrahedron
in the case of functions belonging to  W3.
Remark 5.4.  So the  wes  (as well as other Whitney elements) are linearly
independent, for  h = 0  in (11) implies  h e = 0  for all  e  (cf. Exer. 3.8).  ◊

The convergence properties of Whitney elements are quite similar to
those we already know as regards  W0.  Let  ϕ  be a smooth function, and
set  ϕm = ∑ n ∈ N  ϕϕϕϕn wn, where  ϕϕϕϕn  is the value of  ϕ  at node  n.  (This is the
m-interpolate of Subsection 4.3.1, with adapted notation.)  When the mesh
is refined, so that the grain tends to zero, while avoiding “asymptotic
flattening” of the simplices,  ϕm  converges towards  ϕ  in  L2

grad(D), as we
proved in Chapter 4.  In the same way, if  h  is a smooth vector field, if  h e
is the circulation of  h  along edge  e, and if one sets  hm = rm h =
∑ e ∈ E  h e we , then  hm  converges to  h  in  IL2

rot(D).  Same thing for  bm =
∑ f ∈ F bf wf , where  bf  is the flux of  b  through  f, with convergence with
respect to the norm of  IL2

div(D).  See [Do] for proofs.

5.2.3  Combinatorial properties of the complex

The properties we have noticed (nature of the degrees of freedom,
continuity, convergence) concerned spaces  Wp  as taken one by one, for
different values of  p.  But there is more:  properties of the structure made
by all the  Wps  when taken together, or “Whitney complex”, which are
even more remarkable.  These structural properties are what makes possible
a discretization of the structure of Fig. 5.1 as a whole.  First:
Proposition 5.4.  The following inclusions hold:

(12)  grad(W0) ⊂ W1,  rot(W1) ⊂ W2,  div(W2) ⊂ W3.

Proof.  Let us consider node  m.  If  Ge n ≠ 0, either  e = {m, n}  or  e = {n, m},
but in both cases,  Ge m we = wn ∇wm − wm ∇wn, by definition of the incidence
numbers  Ge n.  Therefore,
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∑ e ∈ E  Ge m we = ∑ n ∈ N (wn∇wm − wm∇wn)

                        = (∑ n ∈ N  wn) ∇wm − wm ∇(∑ n ∈ N  wn) ≡ ∇wm

since  ∑ n ∈ N  wn ≡ 1, hence  grad wm ∈ W 1, and hence the first inclusion by
linearity.  Similarly, for  e = {m, n}, one has  rot w e = 2 ∇wm × ∇wn =
∑ f ∈ F R f e  wf , hence  rot we ∈ W2, and  div wf = ∑

 T ∈ T  DT f  wT , that is
to say,  div wf ∈ W3  (Exercise 5.7:  prove all this).  Hence (12).  ◊

This result has the following important implication.  If one sets  h =
grad ϕ, where  ϕ = ∑ n ∈ N ϕϕϕϕn wn  is an element of  W 0, this field  h  can also
be expressed as in (11), the edge DoF being  h {m, n} = ϕϕϕϕn − ϕϕϕϕm.  Let  h   be the
vector of the  h es  (of length  E, the number of edges), and  ϕϕϕϕ  the vector of
the  ϕϕϕϕns  (of length  N, the number of nodes).  Then  h  = G ϕϕϕϕ, where  G  is the
above  E × N  incidence matrix, which thus appears as a discrete analogue
of the gradient operator, via the correspondence between the potential  ϕ
[resp.  the field  h]  and the associated vector12 of DoFs  ϕϕϕϕ  [resp.  h].

fe
1

e3 e2

j   = h   – h   – h   
f 1 2 3

FIGURE 5.5.  Computing  jf  (flux through face  f  of field  j = rot h), from the DoFs
of  h.  Here,  hi  is the circulation of  h  along edge  e  i, the orientation of the  eis
with respect to  f  is indicated by the arrows, and the terms of the incidence
matrix  R  are  Rf e1 = 1,  Rf e2 = Rf e3 = − 1.

Similarly (Fig. 5.5), if  h = ∑ e ∈ E h e we , then  j ≡ rot h = ∑ f ∈ F jf wf ,
where the  jf s  form the components of vector  j = Rh, of dimension  F  (the
number of faces).  Last, one has  div b = ∑T ∈ T ψψψψT wT , where  ψψψψ = D b,  when
b = ∑ f ∈ F bf wf .  Matrices  R  and  D, of respective dimensions  F × E  and
T × F  (where  T  is the number of tetrahedra), thus correspond to the curl
and the divergence.  We now understand the equalities  D R = 0  and  R G =
0 :  They are the discrete counterparts of the differential relations

12See A.2.2 about this use of boldface for DoF-vectors.  This is only an attention-catching
device, which will not be used throughout.

div(rot .) = 0  and  rot(grad .) = 0.
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We’ll denote by  Wp,  p = 0  to  3, the spaces  IRN, IRE, IRF, IRT, isomorphic
to the Cartesian products  IRN, IRE, etc.  These spaces are isomorphic, for a
given  m, to the  Wp

m , but conceptually distinct from them.  We can
summarize all our findings by the following sketch, called a commutative
diagram,13 which describes the structure of Whitney element spaces:

          grad               rot                 div
W0      →       W1      →        W2      →      W3

(13)                                                                            .
W 0      →       W 1      →       W 2      →       W 3

              G                     R                     D

Graphic conventions should be obvious, once it is understood that vertical
arrows denote isomorphisms.

Whether the top and bottom sequences in (13) are exact is then a natural
question.  The answer depends on the topology of  D.

Proposition 5.5.  If the set–union of all tetrahedra in the mesh is
contractible, one has the following identities:

W1 ∩ ker(rot) = grad W0,      W2 ∩ ker(div) = rot W1,

in addition to (12).

Proof.  Let  h  be an element of  W1  such that  rot h = 0.  Then (D  being
simply connected) there exists a function  ϕ  such that  h = grad ϕ.  The  ϕϕϕϕns
being the values of  ϕ  at nodes, let us form  k = grad(∑ n ∈ N ϕϕϕϕn wn).  Then
k ∈ W1  by the first inclusion of Prop. 5.4, and its DoFs are those of  h  by
construction, so  h = k ∈ grad W 0.  As for the second equality, take an
element  b  of  W2  such that  div b = 0.  There exists14 a vector field  a  such
that  b = rot a.  The  a es  being the circulations of  a  along the edges,  let us
form  c = rot(∑ e ∈ E a e we).  Then  c ∈ W2  by the second inclusion, and its

13In practice, it means that, by following a path on the diagram, and by composing the
operators encountered along the way, the operator thus obtained depends only on the points
of departure and arrival.  Allowed paths are along the arrows (in the direction indicated) and
along unarrowed segments (in both directions).

14Beware, “D  simply connected” is not enough for that, and the hypothesis “S  connected”
cannot be forgotten.  For instance, if  D = {x ∈ E3 :  1 < |x| < 2}, the field  grad(x → 1/|x|)  is
divergence-free, since the function  x → 1/|x|   is harmonic, but is not a curl, since its flux
across the closed surface  {x :  |x| = 1}  does not vanish.

DoFs are those of  b  by construction, hence  b ≡ c ∈ rot W1.  ◊



5.2  THE WHITNEY COMPLEX 145

So the image fills the kernel at both middle positions of diagram (13)
if  D  is topologically trivial, i.e., contractible.  But things are more
interesting the other way around, for if the sequences in (13) f a i l to be
exact at one of these positions or both, this tells something about the
topology of  D.  For instance, the existence of curl-free fields that are not
gradients implies the presence of one or more “loops” in the domain (as for
a torus, which has one such loop).  Solenoidal fields which are not curls
can’t exist unless there is a “hole”, as when  D  is the volume between two
nested spheres.  The sequences are thus an algebraic tool by which the
topology of  D  can be explored (and this of course was Whitney’s concern).
Although topological difficulties are avoided in this book as a rule, the
reader may be interested by the information on all this contained in the
next subsection.

The main interest of the Whitney complex from our point of view lies
elsewhere, however.  Propositions 5.4 and 5.5 justify the replacement of
each pillar of Maxwell’s house, Fig. 5.1, by one of the isomorphic sequences
of (13).  Hence, for a given mesh, a “discrete” building, or
“Maxwell–Whitney house”, in which we’ll try to embed any problem at
hand, thus obtaining a modelling in finite terms.  It is already clear that
the two “vertical” equations,  – ∂ td + rot h = j  and  ∂ tb + rot e = 0, will be
discretized as  – ∂ td + R h  = j  and  ∂tb + R e = 0.  The difficulty, therefore,
lies in the discretization of the constitutive laws.  This will be our main
concern in Chapters 6 to 9.

5.2.4  Topological properties of the complex

(This subsection is independent, and can be skipped.)  In the case of a
contractible domain, we just proved the sequence

                              grad                rot                div

{0}   →   W0    →    W1    →    W2    →    W3    →    {0}

exact at all levels except  0.  As we knew beforehand, the following sequence
has the same property, in the case of a regular bounded domain:

                     grad                 rot                 div

(14) {0}    →    L2
grad      →    IL2

rot      →    IL2
div    →    L2    →    {0}.

This is no coincidence, as we shall verify for two particular cases where
D  is not contractible.
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1
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FIGURE 5.6.  Steps in the construction of a “simplicial torus”:  Join three tetrahedra
around a triangle (1), add a pyramid (2), then two others (3), in order to form a
solid ring, then cut each pyramid in two tetrahedra (4).  The toric polyhedron
thus obtained comprises 9 tetrahedra, 27 faces, 27 edges, and 9 vertices  (χ = 0).
In (5), how to assign DoFs to edges in order to get a curl-free field in  W 1  which is
not a gradient.

Let’s first consider the case of the mesh15 of a torus, Fig. 5.6.  Let us
assign the DoF  h e = 0  to all edges, except the six shown in Fig. 5.6, for
which  h e = 1  (the arrows mark orientation).  One obtains this way an
element  h  of  W1  which is curl-free (this can be checked by summing the
h es  along the perimeters of all faces, hence  R h  = 0), but is certainly not a
gradient, since its circulation does not vanish along some closed circuits,
such as the one formed by the boundary of the empty central triangle, for
instance.

So  grad W 0  is strictly contained in  ker(rot ;  W1).  The quotient16

ker(rot ;  W1)/grad(W0)  then does not reduce to  0, and it’s easy to see its
dimension is 1 in the present case.  In the general case, this dimension is
called the Betti number of dimension 1 of the mesh.  This number measures
the lack of exactitude at level 1 of the Whitney sequence.  Let’s denote it
b1(m), or just  b1.

Now, if one considers the sequence (14) relative to this toric volume,
one sees the same lack of exactitude.  Indeed, curl-free fields in this torus

15A very coarse mesh, but this doesn’t matter:  Properties proved this way are mesh-
independent.

16This notion is discussed in A.1.6 and A.2.2.

which are not gradients can all be obtained by adding some gradient to a
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multiple of the just constructed special field.  The dimension of the quotient
ker(rot ;  IL2

rot)  /grad(L2
grad)  is therefore equal to 1.

1
2

3
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d
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f

4

FIGURE 5.7.  Steps in the construction of a “hollow tetrahedron”:  To the faces of
a regular tetrahedron (1), stick four tetrahedral spikes (2–3), then six tetrahedra
that share an edge with the central one (4), and finally the four tetrahedra
necessary to fill up the flanks.  Remove the central tetrahedron.  The hollow solid
that remains comprises 14 tetrahedra, 32 faces, 24 edges, and 8 vertices  (χ = 2).

A similar phenomenon can be observed in the case of the hollow
tetrahedron of Fig. 5.7.  By assigning the DoF  0  to all faces except
{a, c, e},   {a, d, e}, and  {d, e, f}, which are given the DoF  1, one obtains a
solenoidal field  b  in  W 2  (add fluxes through faces for all tetrahedra,
hence  D b = 0), but not the  curl  of any field, since its flux through some
closed surfaces, such as for instance the boundary of the inner tetrahedron,
does not vanish.  This time,  rot W1  is strictly contained in  ker(div ; W2) ,
and the dimension of the quotient   ker(div ; W2)/rot(W1)  is  1.  In the
general case, this dimension is called the Betti number of dimension 2 of
the mesh (denoted  b2) and measures the lack of exactitude of the sequence
at level  2.

These departures from exactitude thus appear as  global topological
properties of the meshed domain.  From what precedes, one can guess that
the Betti numbers  b1  and  b2  are respectively the numbers of “loops” and
“holes” in  D, and do not depend on the mesh.  The foregoing observations
thus suggest that the Whitney sequence is a tool of algebraic and
combinatorial nature that is able to convey topological information.

Indeed, this sequence is one of the constructions of algebraic topology,
the part of mathematics that is concerned with associating algebraic objects
(invariant by homeomorphism) to topological spaces, in order to study
topology by the methods of algebra.  Thus, for instance, what we said
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about loops and holes actually goes the other way:  These intuitive notions
receive a proper definition by considering basis elements of some quotient
spaces, the dimensions of which are the Betti numbers, as in the two
foregoing examples.  Algebraic topology offers several constructions of this
kind.  One is homology, which we used extensively up to now without
being formal about it (but see next subsection).  Another is cohomology,
which roughly speaking consists in setting up sequences similar to (13) or
(14).  For instance, the  grad–rot–div  sequence is the three-dimensional
case of de Rham’s cohomology  (for which, as we saw, it’s unimportant
whether strong or weak operators are meant, at least for regular bounded
domains).  The Whitney sequence thus appears as a kind of discretized
cohomology, lending itself to (combinatorial) computations, a definite
advantage over de Rham’s one, and this is why it was developed [Wh].

Though following this direction would be of the utmost interest, this
is not the place, and anyway, the only result of topology we really need
is the following one.  Having defined the Betti numbers by  bp =
dim(ker(d ;  Wp)/dWp − 1) ,  p = 1  to  3, where  d  stands for  grad,  rot,  div,
according to the value of  p, and  b 0  as the dimension of the kernel  ker(grad)
in  W0  (equal to the number of connected components of  D), one proves
these numbers are topological invariants,  meaning they depend on  D  up
to homeomorphism, but not on the mesh.  The integer  χ = b 0 – b 1 + b2 – b 3
is called the  Euler–Poincaré constant of the domain.  By the very definition
of the  bps, one has the already met Euler–Poincaré formula:

(15) N – E + F – T = χ(D),

where  N, E, F, T  are the numbers of simplices of all kinds, as previously
defined.  The constant  χ  is typically equal to  0, 1 or  2  (cf. Figs. 5.6 and
5.7).  When the meshed region is bounded and contractible,  χ = 1 .  A
similar formula holds of course in all dimensions (we had use for the  two-
dimensional one already), and not only for domains of  Ed , but for all
topological spaces that admit of simplicial meshes.
Exercise 5.8.  In dimension 2, prove by direct counting that  N – E + F  is the
same for meshes  m  and  m/2  (Subsection 4.1.2).

5.2.5  Metric properties of the complex

All that precedes was of combinatorial character.  Matrices  G, R, D
encompass all the knowledge on the topology of the mesh, but say nothing
of metric properties:  lengths, angles, areas, etc.  To take these into account,
we introduce the following “mass matrices”.
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Let  α  be a function over  D, strictly positive.  (For our needs here, it
will be one of the coefficients  ε,  µ, etc., or its inverse.)  We denote by
M p (α) ,  p = 0, 1, 2, 3, the square matrices of size  N × N,  E × E,  F × F,
T × T, whose entries are

(16) (Mp(α) )s s' = ∫D α ws · ws'     if  p = 1  or  2,

                                     = ∫D α  ws  ws'     if  p = 0  or  3,

where  s  and  s'  are two simplices of dimension  p.  The  Mps  are called
mass matrices because one of them (M1) is found in the same position as
the mass matrix of a vibrating mechanical system when one sets up the
numerical scheme for computing the modes of a resonating cavity, as we’ll
see in Chapter 9.

Note that in the first line, the coefficient  α  can be replaced by a
symmetrical tensor of Cartesian components  α i j :

(M p(α) )s s' = ∫D ∑i, j = 1, 2, 3 α ij  w
i
s w

j
s' .

This makes possible the consideration of anisotropic materials.

5.3  TREES AND COTREES

In the practice of computation, the need arises to sort out the curl-free
fields among fields in  W1  and (though less often) the solenoidal fields
among fields in  W2.

Why is that a problem?  Aren’t curl-free fields sufficiently character-
ized, in terms of the  DoF vector  h , by  Rh = 0?  They are, but this is an
implicit characterization, by algebraic constraints on  h .  That such vectors
be of the form  h  = Gϕϕϕϕ, at least in the contractible case, often helps, because
there are no constraints on  ϕϕϕϕ.  (It d i d help in Chapters 2 and 3, where we
treated the equation  rot h = 0  by the introduction of a magnetic potential.)
But one may ask for more and better:  an explicit representation of the
subspace  {h  ∈ W 1 :  Rh = 0}  by way of a basis for it, that is, some family
{h1, h2, .  . . , hN – 1 }  of independent DoF vectors17 that would generate
ker(R).  A similar problem arises in relation with gauging:  One may wish
to select a basis of independent vectors  {a 1, .  . . , a

A}  in  W 1  the span of

17It should be clear that their number will be  N – 1  (where  N  in the number of nodes),
in the contractible case.

which is the codomain  RW1  (equal to  {b ∈ W 2:  Db = 0}   in the contractible
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case), for this singles out a unique  a ∈ W1  such that  b = rot a,  given a
solenoidal  b  in  W2.  This is what “trees” and “cotrees” are about.
Exercise 5.9.  Show that, if  D  is contractible, the dimension  A  of  ker(D)
is  E – N + 1.

In Chapters 6 and 8, and in Appendix C, we shall have several examples
of use of such techniques, which are popular nowadays [AR, Fu, GT, Ke,
PR, RR, T&, . . . ].  Alas, due to their origins in circuit–graphs theory [Ha],
their intimate connection with homology is generally overlooked, which
is a pity.  So this may be the right time to disclose a few elements of
homology, at least those necessary to understand trees and cotrees.

5.3.1  Homology
The basic concept is that of “chain”.  Call  Sp  the sets of  p-simplices of
the mesh.  A  p-chain  c  is then simply the assignment to each  s ∈ Sp  of a
number  cs , i.e., a family of numbers indexed on  Sp.  This is conveniently
denoted by  c = ∑ s ∈ Sp

 cs s.  (Note, as usual, the one-to-one correspondence
between the chain  c  and the vector  c = {cs :  s ∈ Sp} .)

This may sound more abstract than it really is:  Think for instance—in
connection with our model problem—about a path of edges of the mesh,
going from  Sh

0  to  Sh
1.  It’s an oriented line, so each edge runs either

“along” or “counter” this orientation (cf. p. 137), hence a number  ce = ± 1 for
each edge of the path.  Assigning the number  0  to all other edges of the
mesh, we do have a  1-chain.  This makes precise the fuzzy notion of
“circuit” by which, obviously, we mean more than the supporting line:  A
circuit is a line plus a way to run along it;  so when the line is made of
oriented edges, we need to tell the proper direction along each edge, which
is precisely what the chain coefficients do.

In dimension 2, the concept is just as useful to make precise the notion
of “polyhedral surface composed of faces of the mesh” that we repeatedly
invoked.  (Think about it.)  What we had to call up to now, in a rather
clumsy way,  m*-lines and  m*-surfaces, are just chains over the dual
simplices, with  p = 1  or  2.

Note that chains encompass more than that.  Rendering the concept of
a circuit “run  k  times”, for instance, is obvious:  a  1-chain with coefficients
± k.  A collection of  m-paths (“open circuits” composed of edges of the
mesh), not necessarily connected, also is a chain, and so on.  Non-integer
coefficients make less intuitive sense, of course (although one can think of
various useful interpretations in electromagnetism).  Indeed, there are
several versions of homology, depending on which kind of numbers the
coefficients  cs  are allowed to be.  Most often, they are taken as relative
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integers.  But there is some gain in simplicity in assuming real-valued
coefficients, as we shall do here.

One can add chains (c + c'  is the chain  ∑ s ∈ S (cs + c' s) s) and multiply a
chain by a scalar.  The set of all  p-chains, that we shall denote by18

Wp(D), is thus a vector space.19

Next concept:  The boundary operator  ∂.  This is a linear map, which
assigns a  (p – 1)-chain  ∂c  to any  p-chain  c.  By linearity,  ∂c ≡
∂(∑ s ∈ S cs s) = ∑ s ∈ S cs ∂s.  To fully specify  ∂, therefore, we need only state
what the boundary  ∂s  is for any single simplex  s.  By definition,

∂e = ∑ n ∈ N G e n n,   ∂f = ∑ e ∈ E R f e e,     ∂T = ∑ f ∈ F D T f f .

This makes perfect sense:  The boundary of  e = {m, n}, for instance, is thus
the chain  n – m  (assuming all nodes have orientation  + 1), or if one
prefers, the  0-chain  c  with  cn = 1,  cm = – 1,  and  ck = 0  for other  nodes.
The  ∂  of  a  0-chain we can define for thoroughness as a special (and
unique)  “(–1)-chain” denoted  0.  (It doesn’t matter much.)  Be aware that
a boundary is more than the topological boundary, just as a chain is more
than the set–union of simplices supporting it.

We’ll say a chain  c  is closed if  ∂c = 0.  (One often says, a bit improperly,
that its boundary is “empty”.)  Closed chains are rather called cycles, in
standard texts, but the word “closed” is convenient to make contact with
our observations of Chapter 4 (cf. Fig. 4.6).  Notice that  ∂  is represented
by a matrix:  Gt, Rt, Dt, depending on the dimension  p.  Observe also how
the contents of Proposition 5.3 (cf. Fig. 5.3) can now elegantly be summarized:
∂∂ = 0, “the boundary of a boundary is empty”.

A  p-chain  c  is a boundary if there is a  (p + 1)-chain  γ   such that  c =
∂σ.  Boundaries are cycles, of course.  But not all cycles are boundaries . . .
and from there we might go into topology again.  See a specialized book
(e.g., [HW]) for the way Betti numbers can be redefined, as dimensions of

18It should rather be  W p(Sp(D)), where  Sp(D)  denotes the set of  p-simplices of the
mesh  m  of  D, but this is too heavy notation, and I hope the few abuses of this kind that
follow will be harmless.

19If the case of  Û-valued chain-coefficients,  W p(D), more classically denoted by  Cp(D)
in algebraic topology, is only what algebraists call a module (the structure which is to a ring,
here  Û, what a vector space is to a field).

20Two  p-chains  c  and  c'  are homologous modulo  ∆  if  ∂(c – c')  is a chain on  ∆, i.e.,
∂(c – c') ∈ Wp(∆).  The classes of this equivalence relation are called [relative] homology classes
mod ∆.  These are the formal definitions of the notions evoked in Exercises 2.5 and 2.6, at least
for paths and surfaces made of simplices of the mesh.  (Lifting this restriction is not difficult;
this is the concern of singular homology [GH].)

the quotients20  ker(∂ ;  Wp)/∂Wp + 1.  That this technique and the foregoing
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one, based on Whitney fields and the  d  operator, thus yield the same
topological information, is one of the great dual i ty features of algebraic
topology.  Rather than being formal about that, let’s just point to the
following fact:  fields and  1-chains of  W 1  and  W1  are in duality via the
formula

(17) <h, c> = ∑ e ∈ E  h e ce ≡ ( h, c),

which stems from the basic property of edge elements,  ∫ e τ · w ε = δe ε.
(Observe how (17) generalizes the concept of circulation of  h  along a
path  c.)  What is meant by “in duality” is that  <h, c> = 0  ∀  c  implies  h
= 0  and the other way around.  One should understand from this how the
concepts of “curl-free field which is not a gradient” and “1-cycle which is
not a 1-boundary” are dual, and be able to generalize to  p > 1.  It’s also
illuminating to think of the Stokes theorem as the statement  <dh, c> =
<h, ∂c>  for all  h ∈ Wp  and  c ∈ Wp + 1, and to remark that the matrix
representations of  d  and  ∂  are transposed of each other.  The duality
(17) is also the key to an explanation of why the Whitney elements have
the form they have ((9) and (10));  see [B1] on this.

To be really useful, all these notions need to be “relativized”, the
same concepts being redefined “modulo something”, as follows.  Suppose
our simplices are those of the mesh of a domain  D, and let  ∆   be a closed
part of  D  which is itself a union of simplices of the mesh.  (Often,  ∆
will be the surface of the domain, or a part of it, but it’s not the only
possibility;  ∆   might correspond, in some magnetostatics problems, to
regions inside  D  occupied by bodies of high permeability, taken as infinite
in the modelling.)  Let us denote by  Wp(∆)  the set of chains over  ∆  :  all
p-chains over  D  whose coefficients are all  0, except for  p-simplices
belonging to  ∆ .  Now we say that a chain  c ∈ W p(D)  is closed  mod ∆   if
∂c ∈ W p(∆).  A  p-chain  c  bounds  mod ∆   if there exists a  (p + 1)-chain  γ
such that  c – ∂γ  ∈ Wp(∆).  (Rather than puzzling over these definitions,
look again at Fig. 4.6, take  ∆   as  Sb  or  Sh  as the case may be, and imagine
the various paths and surfaces as made of edges and faces of the mesh.)
Chains closed  mod ∆ , or boundaries  mod ∆ , are also called re la t ive cycles
or boundaries (meaning, relative to  ∆) .

5.3.2  Trees, co-edges

Now we have enough to introduce trees.  To well understand the two
definitions that follow, ignore the bracketed parts first, then think again
about the “relative” version:
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Definition 5.1.  A set  ST  o f  p-simplices of the mesh  m  such that  Wp(ST)
does not contain any cycle [mod ∆], except the null one, is called a tree o f
dimension  p, or  p-tree [mod ∆].

Definition 5.2.   A  p-tree is a spanning tree [mod ∆] if there is no strictly
larger  p-tree [mod  ∆] containing it.  The set of all left-over simplices [not
belonging to  ∆] is called the associated tree complement [mod ∆], or cotree
[mod ∆].  Its elements are the co-simplices with respect to this tree.

To grasp this, take  p = 1  and an empty  ∆ .  Then  ∂c = 0  means that
vector  Gtc, of length  N, which is a linear combination of rows of the
matrix  G, vanishes.  Algebraically, therefore, extracting  a spanning tree
is equivalent to finding a maximal set of independent rows of  G  (or  R, or
D), which amounts to looking for a submatrix of maximal rank21—a
standard problem in linear algebra, all the more easy than matrix entries
are integers.  When  ∆  ≠ ∅, re la t ive trees are obtained by the same procedure,
but after removal of all rows and columns corresponding to simplices that
belong to  ∆ .

Other rows, those corresponding to co-edges, are thus expressible as
linear combinations of the previous ones, and form a basis for  ker(Gt) .
Co-edges thus furnish a basis for  1-cycles, in the sense that, given a co-edge
e, there is a unique way to assign an integer  cε  to each edge  ε  of the tree
in order to get a closed  1-chain:  ∂(e + ∑  ε ∈ ET cε ε ) = 0, where  ET  denotes
the set of tree edges.  In less formal language, one says that each co-edge
“closes a circuit” in conjunction with edges of the tree.

In the general case  ∆  ≠ ∅, we have only  ∂(e + ∑ ε ∈ ET cε ε ) ∈ W 0(∆) ,
still with uniqueness of the  cεs.  In words, the co-edge  e  closes a circuit, in
conjunction with edges of the tree, if passage through  ∆   is allowed.  (The
part of the circuit within  ∆   is not uniquely determined.)

Figure 5.8, which shows a spanning tree in a two-dimensional mesh,
relative to a part of it, should help understand all this. Three kinds of
co-edges are shown, each with its associated circuit.  For co-edges like  a,
the circuit doesn’t pass through  ∆ , contrary to what happens for co-edges
of the same type as  b.  Co-edges like  c  are special in that the cycles they
generate do not bound, which reveals the existence of a loop in the  meshed
region.  (All of this is valid in three dimensions, too.)

These notions, here explained for  p = 1, have obvious counterparts for
all simplex dimensions.  For  p = 2, a tree would be a maximal set of faces

21And hence, spanning the same range as the original matrix.  We’ll return to the graph-
theoretical origin of the expression “spanning tree” in a moment.

that doesn’t generate closed surfaces (2-cycles).  Again, any extra face
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would generate one, and this surface may not bound, owing to the presence
of a hole in  D.

D

a

c c

a

b

b

∆

FIGURE 5.8.  Notions of relative tree and co-edge.  The tree on the left, with thick
edges, is relative to the shaded region,  ∆.  On the right, closed chains  mod ∆
generated by three typical co-edges  a,  b,  c.

How to use trees and cotrees will be explained by way of examples in
Chapter 8 and Appendix C, but a few general indications can be given at
this stage.

Suppose  D  contractible, and let  ET  be a spanning tree of edges.  For
each co-edge  e, let us build a DoF-vector  a e  by setting  ae

ε = 0 for all edges
ε ≠ e  and  a e

e = 1.  These (independent) vectors form a basis for  ker(Gt) .
We know already what  Gtae = 0  means for the corresponding vector fields
ae ∈ W1:  m-weak sinusoidality.  So this is a kind of “discrete Coulomb
gauge” imposed on the vector fields  {ae :  e ∈ E – ET}, the curls of which
will span  ker(div ; W 2).  On the other hand, thanks to the general algebraic
relation  W 1 = cod(G) ⊕ ker(Gt)  (cf. Appendix B), the DoF-vectors  h e

such that  h e
ε = 0  for all edges  ε ≠ e  and  h e

e = 1  form a basis for  GW0, and
hence the corresponding vector fields form a basis for  grad W0.  Spanning
trees of edges thus resolve the two problems mentioned at the beginning of
this section.

In the general case, however, this will not work satisfactorily:  We
may not get enough  h es  to span  ker(rot), if there exist curl-free fields
which are not gradients, and too many  a es, for there can exist nonzero
fields in  W1  which are simultaneously curl-free and  m-weakly sinusoidal.
Providing a solution to this problem in its full generality exceeds the scope
of this book, but what to do is intuitively obvious.  Look at Fig. 5.8.  To
obtain all curl-free fields, one should add to the tree one (because there is
one loop in this case) of the co-edges of the same class as  c, the circuit of



5.3  TREES AND COTREES 155

which doesn’t bound.  The augmented tree we get this way can be called22

a “belted tree”, the “belt” being this non-bounding circuit, 23 and the loop
co-edge acting as the belt “fastener”.  Note that, thanks to this added
edge, the circuits of all remaining co-edges do bound.  (The circuits of other
co-edges homologous to  c  pass by the belt fastener.)

5.3.3  Trees and graphs

If  p = 1, and if  ∆   is empty, we may consider nodes and edges as forming a
graph;  a spanning tree then appears to be a maximal subgraph “without
loops”.  (As one easily sees, maximality implies that such a tree must
“visit” all nodes, hence “spanning”.)  But the distinction between closed
chains and boundaries is lost in the graph-theoretic context, so there is no
straightforward way to build a belted tree via graph-oriented algorithms,
whereas this problem is easily solved in algebraic terms.  In the case of
edges, for example, the belted tree corresponds to a basis of  cod(Rt), and
the tree to a basis of  ker(Gt), which both are found by the same kind of
algebraic manipulations (extract a matrix of maximal rank).

The other case where graphs are relevant is when  p = d – 1, where  d
is the dimension of space.  For instance, if  d = 3, a spanning tree of faces,
in the sense of Def. 5.2, can be described as a spanning tree of the graph
the nodes of which are tetrahedra (beware!), and the arrows, the faces of
the mesh.  This is easy to understand, by duality, for this graph is nothing
else than the standard nodes-to-edges graph of the dual mesh, the
incidence matrix of which is  Dt.  Otherwise, the case  1 < p < d – 1  is not
explainable in terms of graphs.24

However,  d = 2  in many applications, which partly explains why
the irrelevance of graph theory may have been overlooked.  (The esthetic
appeal of graphs also probably played a role.)  In dimension 2, some
problems about belted trees can even be solved in terms of graphs.

Figure 5.9 offers an example.  Start from a spanning tree (in the graph-

22Of course this “belted tree” is no longer a tree in the strict sense, so this is doubtful
teminology.  But we face a dilemma here.  The right concepts are those of homology, not of
graph theory, but the vocabulary of the latter has already prevailed, and it’s too late to go
against the grain.  The oxymoron “belted tree” is a compromise, trying at once to refer to the
familiar concept of tree and to mark its inadequacy.

23The received name for a belt is homology cycle of dimension 1.
24Even if  p = 1  or  d, the (indispensable) notion of relative tree is quite awkward in a

graph-theoretic framework.

theoretic sense) on the surface of a torus.  Form the dual subgraph, by
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joining all centers between adjacent triangles which are not separated by
an edge of the primal graph.  The dual subgraph is not a tree, only a
“bounding-circuit free” maximal subgraph, that is, a belted tree, for it
contains two circuits that do not bound, or belts.  Now, the two co-edges of
the “primal” spanning tree which are crossed by the dual belt-fasteners
are special in that the circuits they close do not bound on the torus (they
are representative of the two homology classes of cycles, i.e., classes of
cycles that don’t bound, cf. Notes 20 and 23).  So if we add them to the
primal tree, as belt fasteners, we do have a belted tree.

a b

f

a

b

f f

f

f '

'
FIGURE 5.9.  Spanning tree on the surface of a torus (in thick lines) and its dual,
which is no more a genuine tree but a “belted tree” (co-edges not drawn).  Points
a  and  b  should help make the correspondence between the spatial view and
the plane diagram (which is an unfolding of the torus surface, after suitable
cutting ;  nodes on opposite sides should be identified).  The two “belt fasteners”
f  and  f '  are drawn in thick lines (f '  can’t be seen in the top view).

Techniques of this kind are useful for problems of eddy-currents on
thin conductive sheets [B2, T&].  But the nice illustrations by graphs should
not hide their essentially algebraic nature:  Tree and cotree methods really
belong to homology.



EXERCISES 157

EXERCISES

Exercises 5.1 and 5.2 are on p. 127, Exer. 5.3 on p. 131.  Exercises 5.4 to 5.6 are
on p. 141, Exer. 5.7 p. 143, Exer. 5.8 p. 148, and Exer. 5.9 p. 150.
Exercise 5.10.  Compute all the terms of  M p, as defined in (16),  when  α =
1, for all  p.
Exercise 5.11.   Inquire about the “Poincaré inequality” (and preferably,
devise your own proof):  If  D  is  a bounded domain of  Ed, there exists a
constant  c(D)  such that

 ∫D |ϕ|2 ≤ c(D) ∫D |grad ϕ|2

for all functions  ϕ ∈ C0
∞(D).

Exercise 5.12.   In the previous exercise, the point of having  ϕ  vanish on
the boundary is to provide a "reference value" for  ϕ, to which one might
otherwise add any constant (and hence, give an arbitrary large norm)
without changing the gradient.  This reference value may as well be the
average of  ϕ  over the domain, that is,  ϕ‰ =  ( ∫D ϕ)/vol(D).  So prove the
existence of a constant  c(D)  such that

 (∫D |ϕ – ϕ‰|2)1/2 ≤ c(D) (∫D |grad ϕ|2)1/2

for all functions   ϕ ∈ C∞(D‹).  (This is the “Poincaré–Friedrichs (or
Poincaré–Wirtinger) inequality”.)
Exercise 5.13.  Show that, for a smooth field  a = {a1, a2, a3} ,

rot rot a = grad div a – ∆a ,

where  ∆a = {∆a1, ∆a2, ∆a3}.  Use this to prove that, if  a  has bounded
support,

(18) ∫ (div a)2 + ∫ |rot a|2 = ∑ i = 1, 2, 3 ∫ |grad ai|2.

where integrals are over all space.

HINTS

5.2.  In dimension  d = 1, for  D = ]  – 1, 1[, the function  x → 1 – |x|.  For  d > 1
and  D = {x :  |x| < 1}, aim at a function of  |x|  with a singularity at  0,
and not too fast growth there.  Case  d = 2  will appear special.
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5.3.  Of course the kernels are closed in the stronger norm, as pre-images of
the closed set  {0}, but one cannot employ this argument about the  IL2

norm, in which  rot  and  div  are not continuous, only closed.  Use (2), and
its analogue for  rot.
5.4.  See the cotangent formula of 3.3.4 and Lemma 4.1.  The latter is espe-
cially useful (if applied with a measure of creative laziness).
5.5.  In terms of the nodes-to-edges incidence matrix elements, one has

we = Gm e wm ∇wn + Gn e wn ∇wm.

Develop, and use Exer. 3.10.  Set  gij = ∇wi · ∇wj .  (The analogy with the
metric coefficients  gij  of Riemannian geometry is not accidental.)
5.6.  First show that  x · ∇wn – w n(x)  is a constant inside each tetrahedron
(Lemma 4.1).  Then develop  (∇wm × ∇wn) × x.
5.8.  Look at Fig. 4.3 and express the numbers  N', E', F'  relative to the
refined mesh in terms of  N, E, F.
5.9.  Use Proposition 5.5, second part first, then first part.
5.11.  Begin with  d = 1.  Then  D = ]a, b[, and  ϕ(x) = ∫a

x ∂ϕ(ξ) dξ.  Use
Cauchy-Schwarz, then sum with respect to  x.  For  d > 1, note that, in the
arrowed notation where  “X → Y”  means “all functions from  X  to  Y”, the
functional space  IR × . . . [d times] . . . × IR → IR  can be identified with
IR → (IR × . . . [d − 1  times] . . . × IR → IR).
5.12.  In dimension 1 first,  ϕ(y) – ϕ(x) = ∫x

y ∂ϕ(ξ) dξ, hence  ϕ(x) – ϕ(y) ≤
C ||∂ϕ||, for all pairs of points  {x, y}  in  [a, b].  Integrate with respect to  y
to get  ϕ(x) – ϕ‰ ≤ C ||∂ϕ||, then invoke Cauchy-Schwarz.  Adapt this to  d
dimensions as in the previous case.
5.13.  In Cartesian coordinates,  (rot rot a) i = ∑j ∂ j(∂ia

j – ∂ ja
i).  For (18),

integrate by parts.

SOLUTIONS

5.1.  If  {0, u}  is in the closure of  GRAD, i.e., is the limit of some sequence
{ψn, grad ψn}  the terms of which belong to  GRAD, then  ∫D ψn div j' =
– ∫D grad ψn · j'  for all  j'  in  C0

∞(D), hence  ∫D u · j' = 0   ∀  j' ∈ C0
∞(D)  at the

limit, and hence  u = 0.   If  {0, u}  is in the closure of  ROT, i.e., the limit of
some  {an, rot an}  of  ROT, then  ∫D a n · rot h' = – ∫D rot a n · h '  for all  h'  in
C0

∞(D), hence  ∫D u · h' = 0   ∀ h' ∈ C0
∞(D)  at the limit, and  u = 0.
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5.2.  On  D = {x :  |x| < 1}, functions of the form  x → |x| –α  foot the bill, if
α > 0  (in order to have a singularity at  0),  ∫0

1 r–2α dr < ∞  (for the function
to be square-summable) and  ∫0

1 rd – 1 – 2(1 + α) dr < ∞  (for its gradient to be
square-summable).  This happens for  0 < α <  1/2  and  1 + α < d/2, the
latter constraint being redundant if  d > 2.  For  d = 2, look at the function
x → |x| log|x|.
5.3.  After (2),  “ ∫D b · grad ϕ' = 0   ∀ ϕ' ∈ C0

∞(D)”  characterizes elements of
ker(div), and if a sequence of fields  {bn}  which all satisfy this predicate
converges to some  b  in  IL2 (D), this also holds for  b, by continuity of the
scalar product.  Same argument for fields  b  such that  n · b = 0, since they
are characterized by  ∫D div b  ϕ' +  ∫D b · grad ϕ' = 0  ∀ ϕ' ∈ L2

grad(D), and for
fields such that  n × h = 0, by using the similar formula in  rot.
5.4.  Let  h  be the height of node  n  above the plane of  f  (observe how
“above” makes sense if space is oriented, as well as  f).  Then  vol(T) =
h area({k, l, m})/3 = area({k, l, m})/(3|∇wn|).  There are many ways to
derive these relations, but the most illuminating is to remark that  3 × 3
matrices such as  (∇wk, ∇w

l
, ∇wm)  and  (nk, nl, nm)  are inverses, by

Lemma 4.1, and that  vol(T) = det(nk, nl, nm)/6, that  area({k, l, m}) =
det(kl, km)/2, etc.
5.5.  Up to obvious sign changes, there are only three cases:

(a ) e = e' = {m, n}:                  (12 vol(T)/5! ) (gnn + gmm – gnm} ,

(b) e = {m, n},  e' = {m, l } :    (6 vol(T)/5! )(2 gnl – gml – gnm + gmm) ,

(c)  e = {k, l},  e' = {m, n} :      (6 vol(T)/5! )(gln – gkn – glm + gkm) .

5.6.  (∇wm × ∇wn) × x = x · ∇wm ∇wn –  x · ∇wn ∇wm = wm ∇wn – wn ∇wm + b,
where  b  is some vector, hence  w{m, n} = (∇wm × ∇wn) × x + b.  Now, observe
(cf. 3.3.4 and Lemma 4.1) that

∇wm × ∇wn = (kn × kl) × ∇wn/6 vol(T) = kl/6 vol(T) .

Using this, one has the following  alternative form for the face element:

wf = 2(w
l
 kl + wm km + wn kn)/6 vol(T) ,

hence the desired result (place the origin at node  k).
5.7.  If  e = {m, n}  and  R  f e ≠ 0, then  f = {l, m, n}  or  {l, n, m}, for some  l.   In
both cases,

Rf e wf = wf = 2(w
l
 ∇wm × ∇wn + wm ∇wn × ∇w

l
+ wn ∇w

l
 × ∇wm) .

Therefore, summing over all faces,
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∑ f ∈ F  R f e wf = 2 ∑ l ∈ N  (wl
 ∇wm × ∇wn + . . . ) = 2 ∇wm × ∇wn.

For the divergence, just notice that  div w f = 2(∇w
l
 · ∇wm × ∇wn + .  . . ) =

6 det(∇w
l , ∇wm , ∇wn) = wT  if  T = {k, l, m, n}.  Two compensating changes

of sign occur if  T = {l, k, m, n}, the other orientation.
5.8.  F' = 4F,  E' = 2E + 3F,  N' = N + E, hence  N' – E' + F' = N + E – (2E + 3F)
+ 4F ≡ N – E + F.
5.9.  Since  ker(div ;  W2) = rot W1, its dimension is the dimension of  W1,
which is  E, minus the dimension of  ker(rot;  W1) ≡ grad W0.   The latter is
the dimension of  W0, i.e.,  N, minus the dimension of  ker(grad;  W0) ,
which is 1.  Project:  Practice with this in the general case, to see how the
Betti numbers come to slightly modify these dimensions (but not their
asymptotic behavior when the mesh is refined).
5.11.  Since  D  is bounded, it is contained in a set of the form  P =
]a, b[ × IR × . . . × IR.  Extending by 0, outside  D, the functions of  C0

∞(D), one
identifies the latter space with  C 0

∞(P), which is isomorphic to
C0

∞([a, b] ; C0
∞(IRd − 1) ).  Then, if  x = {x1, . . . , x

d} ∈ P, one has

ϕ(x) = ∫a
x1

 ∂1ϕ(ξ, x2, . . . , x
d) dξ,

where  ∂1ϕ  is the partial derivative with respect to the variable  x1.  By
the Cauchy-Schwarz inequality,

             |ϕ(x)|2 ≤ (x − a)1/2  ∫a
x1

|∂1ϕ(ξ, ...)|2 dξ ≤ (b − a)1/2 ∫a
b
 |∇ϕ(ξ, ...)|2 dξ,

and hence, by Fubini,

 ∫ P |ϕ(x)|2 dx ≤ (b − a)1/2 ∫ P dx1 . . . dxd ∫a
b
 |∇ϕ(ξ , . . . )|

2 dξ

                        = (b − a)1/2 ∫a
b dx1 ∫P |∇ϕ(ξ , . . . )|

2 dξ dx2 . . . dxd,

hence  c(D) ≤ (b − a) 3/2.  Of course, this is an upper bound, not the “best”
value of  c(D), which can be obtained, but by very different methods.
5.13.  First,

(rot rot a – grad div a)i = ∑j [∂j(∂ia
j – ∂ja

i) – ∂i(∂ja
j)]

                                         = ∑j [∂j(∂ia
j – ∂ja

i) – ∂j(∂ia
j)] = –∑j ∂ j j a

i.

Then  ∫ (div a)2 + ∫ |rot a|2 = ∑  i ∫ – ∆ai ai =  ∑  i ∫ |grad ai|2.  (Further study:
What of a domain  D  with surface  S?  Try to cast the surface terms that
then appear in coordinate-free form, by using adequate curvature
operators.)
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