
CHAPTER 1

Introduction:
Maxwell Equations

1.1  FIELD EQUATIONS

Computational electromagnetism is concerned with the numerical study of
Maxwell equations,

(1) − ∂t d + rot h = j,                              (2)        ∂t b + rot e = 0,

(3)     d = ε0 e + p,                                   (4)           b = µ0 (h + m),

completed by constitutive laws, in order to account for the presence of matter
and for the field-matter interaction.  This introductory chapter will
explain the symbols, discuss constitutive laws, and indicate how a variety
of mathematical models derive from this basic one.

The vector fields  e,  h,  d,  b  are called electric field, 1 magnetic
field, magnetic induction, and electric induction, respectively.  These four2

vector fields, taken together, should be construed as the mathematical
representation of a physical phenomenon, that we shall call the
electromagnetic field.  The distinction thus made between the physical
reality one wants to model, on the one hand, and the mathematical structure
thanks to which this modelling is done, on the other hand, is essential.

1

1Italics, besides their standard use for emphasis, signal notions which are implicitly defined
by the context.

2Two should be enough, after (3) and (4).  Reasons for this redundancy will come.
3The structure, in this case, is made of the equations and of the framework in which they

make mathematical sense:  Euclidean three-dimensional space, and time-dependent entities,
like scalar or vector fields, living there.  There are other possible frameworks:  the algebra of
differential forms ([Mi], Chapter 4), Clifford algebra [Hs, Ja, Sa], etc.  As Fig. 1.1 may suggest,
Maxwell’s theory, as a physical theory, should not be confused with any of its mathematical
descriptions (which are historically transient;  see [Cr, Sp]).

We define a model as such a mathematical structure,3 able to account,
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within some reasonably definite limits, for a class of concrete physical
situations.  To get a quick start, no attempt is made here either to justify
the present model, on physical grounds, or to eva luate it, in comparison
with others.  (In time, we’ll have to pay for this haste.)
 The current density  j, polarization  p, and magnetization4  m  are the
source-terms in the equations.  Each contributes its own part, as we shall
see, to the description of electric charges, at rest or in motion, whose presence
is the physical cause of the field.  Given  j,  p, and  m, as well as initial
values (at time  t = 0, for instance) for  e  and  h, Eqs. (1–4) determine  e, h,
d, b  for  t ≥ 0.  (This is no trivial statement, but we shall accept it without
proof.)  Maxwell’s model (1–4) thus accounts for situations where  j,  p, and
m  are known in advance and independent of the field.  This is not always
so, obviously, and (1–4) is only the head of a series of models, derived
from it by adding features and making specific simplifications, some of
which will be described at the end of this chapter.

  4πC = V·∇H,   C = CE + DË,   B = V·∇U,   E = V·RËB – U Ë – ∇Ψ,
                                               B = µH,                      D = (4π)–1 KE,                

                        dF = 0,   G = ∗F,   dG = J

FIGURE 1.1.  Maxwell equations:  as they appear in [Ma], Art. 619 (top box), and in
modern differential geometric notation (bottom box).  Maxwell’s formalism, still
influenced by quaternionism (∇  is the operator  i d/dx +  j d/dy + k d/dz, and the
V  means “vector part” of a quaternionic product), is not so remote from today’s
standard vector notation, once the symbols have been identified (Ψ  and  U  are
scalar and vector potential,  RË  is material velocity).  In this book’s notation, and
apart from factors 4π, the upper line would read  rot h = C = σe + ∂td,  b = rot a,
emat = v × b – ∂ta – ∇ψ, where  emat  is the electric field in the comoving frame of
reference.

You may be intrigued, if not put off, by the notation.  The choice of
symbols goes against recommendations of the committees in charge of such
matters, which promote the use of  E, H, D, B, capital and boldface.  Using
e, h, d, b  instead is the result of a compromise between the desire to keep
the (spoken) names of the symbols as close as possible to accepted practice
and the notational habits of mathematics, capitals for functional spaces

4Magnetization could more symmetrically be defined as  m  such that  b = µ0h + m.  The
present convention conforms to the dominant usage.

and lower case for their elements, according to a hierarchy which reflects
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the functional point of  view adopted in this book.  (Explanations on this
fundamental point will recur.)  Boldface, still employed in the Preface for
3D vectors, according to the standard convention due to Heaviside [Sp],
will from now on be reserved for another use (see p. 71).  I should also
perhaps call attention to the use of the  ∂  symbol:  If  b  is a time-dependent
vector field,  ∂tb  is the field obtained by differentiating  b  with respect to
time.  Having thus  ∂ tb  instead of  ∂b/∂t  is more than a mere ink-saving
device:  It’s a way to establish the status of  ∂ t  as an operator, on the same
footing as  grad,  div, and  rot  (this will denote the  curl  operator) which
all, similarly, yield a field (scalar- or vector-valued, as the case may be)
when acting on a field—the functional viewpoint, again.  Other idiosyn-
crasies include the use of constructs such as  exp(iω t)  for  e i ω t  and, as seen
here, of  i  for the square root of  –1, instead of  j.5

This being said, let’s return to our description.  Equation (1) is Ampère’s
theorem.  Equation (2) is  Faraday’s law .  The term  ∂td, whose introduction
by Maxwell 6 was the crowning achievement of electromagnetic theory,
is called displacement current.   One defines electric charge  (expressed in
coulombs per cubic meter) by

(5) q = div d,

a scalar field.  According to (1), one has thus

(6) ∂tq + div j = 0,

with  j  expressed in ampères per square meter.  Notice that if  j  is given,
from the origin of times to the present, one gets the charge by integration
with respect to time:  assuming  j  and  q  were both null before time  0, then
q(t, x) = − ∫0

t  (div j)(s, x) ds.
If the local differential relation (6) is integrated by applying the

Ostrogradskii (Gauss) theorem to a regular7 spatial domain  D  bounded

5The shift from  i  to  j  was motivated by the desire, at a time when the power of
complex numbers in alternating currents theory began to be realized, to denote intensities
with the  i  symbol.  Since almost everybody calls “jay” the current density vector, notwith-
standing, it makes little sense to perpetuate the dual use of  j  as the square root of  –1.  (This
remark is respectfully brought to the attention of the above-mentioned Committees.)

6Around 1860, and 1873 saw the first edition of his treatise.  The classic version we read
nowadays [Ma] is the third edition.

7“Domain” has a technical meaning:  an open set in one piece.  Cf. A.2.3.  “Regular”
means that  D  is enclosed by one or several surfaces, themselves smooth at all points, with the
possible exception of a finite number of corners and edges (Fig. 1.2).

by some surface  S  (Fig. 1.2), one finds that
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(7)  d
dt  ∫D q + ∫S n · j = 0,

where  n  denotes the field of normal vectors, of length 1 and outwardly
directed with respect to  D, on surface  S.8  The first term in this equality
is the increase, per unit of time, of the charge contained in  D, whereas
the second term is the outgoing flux of charge.  They balance, after (7), so
(6) is the local expression of charge conservation.

D

S
n

D' D"

SD"

n

FIGURE 1.2.  Notion of regular domain (D, on the left), and notations (cf. Note 7).  In
spite of singularities,  D'  can still pass as regular (edges and corners form a negligible
set), but domain  D"  on the right (shown in cut view) doesn’t qualify, because  D"
is “on both sides” of a part of its boundary.  This geometrical idealization is still
useful in the case of small air gaps, cracks, etc., but some care must then be
exercised in regard to formulas like (7).

Quite similarly, Eqs. (1) and (2) can be integrated by using the Stokes
theorem, hence global (integral) expressions which express flux and current
conservation.  For instance, the integral form of
Faraday’s law is

 d
dt  ∫S n · b + ∫∂S τ · e = 0,

where  S  is a surface,  ∂S  its boundary, and  τ  a

8See Appendix A, Subsection A.4.2, for the notions of flux  ∫ n · j  and circulation  ∫ τ  · e,
and justification of this notation.  When necessary, I denote by  dx  the volume element, or
the area element, according to whether the integral is over a volume or a surface, but each
time this does not foster confusion, I’ll omit this symbol:  ∫ f  rather than  ∫ f(x) dx.  If you do
that, don’t stop half-way:  never  ∫ f(x)  alone, without the  dx.  The symbol  x  in  dx  is meant
to match with the  x  in  f(x), as demonstrated by the fact that you may substitute at both
places some other letter, say  y, without changing the meaning.  Avoid also constructs such as
∫S f  dS  (although one could make a case for them):  it is understood that the integration is
with respect to the measure of areas that exists on  S, and thus  dS  is superfluous.  The
construct  ∫S f  makes perfect sense by itself (cf. A.4.2):  It’s the effect on  f  and  S, taken as a
pair, of the integration operator.

field of unitary tangent vectors on  ∂S  (inset), τ  .

∂S  .

n  .

S   .
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oriented with respect to  n  as prescribed by Ampère’s rule.  Historically,
such integral formulations came first and are arguably more germane to
physics.  Indeed, we shall have to spend some time on correcting some
drawbacks of the local differential formulation (or rather, of a too literal
interpretation of this formulation).
 Treatises on electromagnetism often add two equations to (1–4), namely
(5) and  div b = 0.  But the latter stems from Faraday’s law (2), if one
assumes a null  b  (or even just a null  div b) before initial time, and (5) is
here a definition.  So there would be little justification in according to
these relations the same status as (1) and (2).

A (rightful) concern for formal symmetry might suggest writing (2) as
∂t b + rot e  = −  k, where  k  would be a given field, the magnetic current,
and defining magnetic charge, expressed in webers per cubic meter, as  qm =
div b  (electric charge  q  would then be denoted by  qe), hence the equation
∂t qm + div k = 0, which would express magnetic charge conservation.  But
since  k  and  qm  are null in all known physical situations,9 this
generalization seems pointless.

Now, let us address Eqs. (3) and (4).  As the next Section will make
clear, the (mathematical) fields  e  and  b  suffice to describe the effect of
the (physical) electromagnetic field on the rest of the world, in particular
on charged particles, whose motion is described by  j,  p,  m, and which in
turn constitute the source of the field.  The electromagnetic field is thus
kinematically10 characterized by the pair  {e, b} , and fields  d  and  h  are
auxiliaries in its dynamic description.  Moreover, there is some leeway in
the very definition of  d  and  h, because the bookkeeping on charge motion
can be shared between  j,  p, and  m  in different ways.

Exercise 1.1. 11  Rewrite (1–4) by eliminating  d  and  h.  Discuss the
interchangeability of  j,  p, and  m.

Equations (3) and (4) thus seem to define redundant entities, and indeed,

9Magnetic monopoles, the density of which would be the above  q m , “should exist”
[GT], according to theoreticians, but have not been observed yet.  (Reports of such observations
have been made [Ca, P&], but were not confirmed.)  It is comforting to know that the
discovery of such particles would not jeopardize Maxwell’s theory.

10Kinematics is about description:  which mathematical entities depict the system’s state at
any instant.  Dynamics is about evolution laws:  how the state will change under external
influences.

11Texts of exercises are either at the end of each chapter or, when short enough, given on
the spot, in which case Exercise is in boldface.  Look for the “Hints” and “Solutions” sections
at the end of each chapter.

many classical presentations of electromagnetism make do with two vector



6 CHAPTER 1   Introduction:  Maxwell Equations

fields12 instead of four.  The main advantage of their presence, which
explains why this formalism is popular in the computational
electromagnetics community, is the possibility this offers to express
material properties in a simple way, via “constitutive laws” which relate
j,  p, and  m  to the electromagnetic field they generate.

The vacuum, in particular, and more generally, matter that does not
react to the field, is characterized by  p = 0  and  m = 0, and thus by the
coefficients  ε0  and  µ0.  In the MKSA system,  µ0 = 4π 10 −7 H/m  and  ε0 =
1/(µ0c

2) F/m, where  c  is the speed of light  (H  for henry and  F  for
f a r a d).  These values reflect two things:  A fundamental one, which is the
very existence of this constant  c, and a more contingent one, which is the
body of conventions by which historically established units for electric
and magnetic fields and forces have been harmonized, once the unity of
electromagnetic phenomena was established.
 Let us now review these constitutive laws, which we will see are a
condensed account ot the laws of charge–matter interaction in specific cases.

1.2  CONSTITUTIVE LAWS

In all concrete problems, one deals with composite systems, analyzable
into subsystems, or compartments:  electromagnetical, mechanical, thermal,
chemical, etc.  Where to put the boundaries between such subsystems is a
modelling decision, open to some arbitrariness:  elastic forces, for instance,
can sensibly be described as electromagnetic forces, at a small enough scale.
Each compartment is subject to its own equations (partial differential
equations, most often), whose right-hand sides are obtained by solving
equations relative to other compartments.  For instance, Eqs. (1–4) govern
the electromagnetic compartment, and we’ll soon see how  j,  p, and  m  are
provided by others.  If one had to deal with all compartments at once, and
thus with coupled systems of partial differential equations of considerable
complexity, numerical simulation would be very difficult.  Constitutive
l aws, in general, are the device that helps bypass this necessity:  They
are an approximate but simple summary of a very complex interaction
between the compartment of main interest and secondary ones, detailed
modelling of which can then be avoided.

12As a rule,  e  and  b, but there are dissidents.  In Chu’s formulation [FC, PH], for
instance,  e  and  h  are the basic entities.
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1.2.1  Dynamics of free charges:  the Vlasov–Maxwell model

A concrete example will illustrate this point.  Let’s discuss the problem of
a population of charged particles moving in an electromagnetic field which
they significantly contribute to produce.  Coupled problems of this kind
occur in astrophysics, in plasma physics, in the study of electronic tubes,
and so forth.  To analyze such a physical system, we may consider it as
made of two compartments (Fig. 1.3):  the electromagnetic one (EM), and
the “charge motion” compartment (CM), which both require a kinematical
description, and influence each other’s dynamics, in a circular way.

Let’s enter this circle at, for instance,  CM.  A common way to describe
its kinematics is to treat charge carriers as a fluid, characterized by its
charge density “in configuration space”, a function  qŸ(t, x, v)  of time,
position, and (vector-valued) velocity.  The actual charge density and
current density are then obtained by summing up with respect to  v:

(8) q(t, x) = ∫ qŸ(t, x, v) dv,           j(t, x) = ∫ qŸ(t, x, v) v dv,

where  dv  is the volume element in the three-dimensional space of
velocities.  CM  thus influences  EM  by providing a source  {q,  j}  for it.
(Later we’ll see that  q  is redundant, (6) being satisfied.)

EM (Maxwell)

{e, b}

CM (Vlasov)

{q}

j

f

f = q(e + v × b)

j = ∫ v q(v) dv F

I

~ ~

~

FIGURE 1.3.  A typical example of coupling between compartments:  the
“Vlasov–Maxwell” model.  “Vlasov” rules the behavior of a fluid of non-interacting
free charges (a “collisionless plasma”, for instance).  “Maxwell” governs the electro-
magnetic field.  Each compartment influences the other’s behavior.  External
influences (such as, in the present case, the forces  F, of non-electromagnetic
origin) will in general intervene, and such “input” can then be seen as cause for
the coupled system’s evolution.  Symmetrically, a global parameter (here some
macroscopic intensity  I) can be designated as “output”, and the whole system
(here, with its  I—F  dynamics) can become one compartment in some higher-level
description.
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The influence of  EM  on  CM  is via “Lorentz force”.  Recall that the
force exerted by the field on a point charge  Q  passing at point  x  at time  t
with the (vector-valued) speed  v  is  Q  times the vector  e(t, x) +
v × b(t, x).  (The part independent of celerity, that is  Q  e(t, x), is “Coulomb
force”.)  Here we deal with a continuum of charge carriers, so let us introduce,
and denote by  f Ÿ, the density of force in configuration space:
f Ÿ(t, x, v) dx dv  is thus the force exerted on the packet of charges which
are in volume  dx  around  x, and whose speeds are contained in the volume
dv  of velocity space around  v, all that at time  t.  So we have, in condensed
notation,13

(9) f Ÿ = qŸ (e + v × b).

These forces do work:  We note for further use that the power density  π
thus communicated from  EM  to  CM  is what is obtained by integrating
with respect to  v:

(10) π(t, x) = ∫ qŸ (t, x, v) (e(t, x) + v × b(t, x)) · v dv

               = ∫ qŸ (t, x, v) e(t, x) · v  dv = j(t, x) · e(t, x),

after (8).

The circle around Fig. 1.3 will be closed once we know about the dynamics
of  CM.  Let’s suppose (which is a huge, but often acceptable over-
simplification) that particles do not exchange momentum by collision or
other non-electromagnetic interaction.  One may as well suppose, in that
case, that there is a single species of charge carriers (only electrons, for
instance), since otherwise their effects will just add, in all respects, and
can be computed separately.  Let us call  Qc  (specific charge of carrier  c)
the charge-to-mass ratio14 of these particles.  Charge conservation (or
equivalently, mass conservation) then implies the Vlasov equation,

(11) ∂tqŸ +  v · ∇xqŸ + Qc (e + v × b) · ∇vqŸ = 0,

where  ∇x  and  ∇v  denote partial gradients with respect to position and
speed.  Exercises 1.2 to 1.5, at the end of this chapter, suggest a road to
this result.  Exercise 1.6 will then invite you to prove that (6) holds for  q
and  j  as given by (8), when (11) is satisfied.

13The notation makes sense if  v  in (9) is understood as a vector field, the value of which
is  v  at point  {x, v}  of configuration space.  Then  v × b  is a field of the same kind.

14For electrons, therefore,  Qe = – 1.602 × 10–19/9.109 ×10–31 C/kg.
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So this is a typical example of a coupled system:  Given  j, and assuming
p = 0  and  m = 0, since all charges are accounted for by  j, system (1–4)
determines  e  and  b, hence the forces by (9), to which one adds other
known causative forces, symbolized by  F  in Fig. 1.3, hence the movement
of charge carriers (more generally, of charged matter), hence  j  again,
which must be the same we started from.  From a mathematical viewpoint,
this is a “fixed point condition”, which translates into an equation in terms
of  j, which will in general have a unique solution.  One may then get the
field by solving (1–4) with the  j  just found as source.15  This can serve as a
model for other multi-compartment situations:  In general, the coupled
problem may be proven, by a similar reasoning, to be well-posed, 16 though
overwhelmingly difficult to solve.

With this, we may now elaborate on the notion of constitutive laws as
summaries of interactions, or more bluntly, proxies which can take the
place of secondary compartments in a modelling.  For instance, in Fig. 1.3,
it would be nice to have an explicit dependence of  j  on  e  and  b, allowing
us to bypass consideration of the “charge motion” compartment.  A
constitutive law is such a direct, more or less complex, dependence (of course,
with limited and conditional validity).

1.2.2  Dynamics of conduction charges:  Ohm’s law

And indeed there are cases in which the “dynamics” part of the problem
is especially simple to solve, at least approximately and accurately enough
as far  as the main compartment  is concerned.  Two such cases are especially
important:  conductors and generators.

Conductors (metals, etc.) are those bodies where exists a population of
electric charges which are not bound to atoms, but still tightly interact
with matter.  Stirred by the field, the carriers accelerate for a while, but
soon are stopped by collision, and the energy and momentum they acquired
via Lorentz force are then transferred to the supporting matter, hence

15This is how the coupled problem is showed to be “well-posed” (see next note), not the
way it is solved numerically.  The favored technique for that is the “particle-in-cell” method
used in “particle pusher” codes [BL, HE], which simulates the electron cloud with a finite
family of particles and alternates between determining the motion of charge in a constant
known field for one time-step, and updating the field values.

16Well-posed has a technical meaning:  It refers to a problem of which one can prove it has
a solution and a unique one, with, moreover, continuity of this solution with respect to the
data.  (The notion is due to Hadamard [Hd].)

heating and also, possibly, movement of the conductor.  Carriers move
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anyway by thermal agitation, and at speeds of much higher magnitude
than the additional velocity gained from electromagnetic action.  But
whereas thermal speeds cancel on the average at macroscopic scales, such
is not the case of the motions due to Lorentz force.  Their nonzero average
is the so-called drift velocity  (see, e.g., [Fe], II, Sections 32–36, or [We]).
This slow17 but collective motion, which can easily be detected and
measured [Kl], results in a macroscopic current density.

This picture of the phenomenon is relatively complex, and one can
simplify it as follows:  Imagine the carrier population as a fluid, moving
at the speed at which Lorentz force is balanced by all “friction-like” forces
which tend to slow it down.  Friction forces are in general, and are here
found to be, proportional to the drift velocity.  Since the current density
due to a particular kind of carriers (ions, electrons, “holes” .  . . ) is propor-
tional to their speed, one may conclude to a proportionality between  e
and the current density:

(12) j = σ e,

where  σ, the conductivity,18 depends on the material.  This is Ohm’s
l a w.19  One has  σ ≥ 0, and  σ = 0  in insulators (dry air, vacuum, etc.).

The law itself is subject to experimental verification and holds with
excellent accuracy in many cases, but the explanation behind it was, let’s
be candid, a m y t h:  an explanation of rational appearance, relevant and
reasonably consistent, but which openly glosses over fine points of physics,
and whose main merit is to get rapidly to the point.  (Indeed, the consistency
of the foregoing explanation, in spite of its relevance to Ohm’s law, can be
challenged:  cf. Exer. 1.11.)

As for generators, they are by definition these regions of space where
the current density (then denoted by  jg,  g  for “given”) can be considered as
imposed, independently of the local electromagnetic field, and where,

17In Cu, about 0.6 mm/s for 10 A/mm2.  The direction of the drift with respect to the
field tells about the sign of the carriers, which are most often electrons, but can also be “holes”
[Kl].

18Conductivity is measured in siemens per meter.  (The siemens, or mho, Ω–1, is the unit
of conductance, and the dimension of  σ  is  (Ω m)−1.)  Fe :  5 to 10 × 106,  Al :  36 × 106,  Cu :  58
× 106.  Living tissues:  ~ 0.1.

19This, in the case of nonmoving conductors.  The  v  in (9) is sum of the speed of the free
charge with respect to the conductor and of the latter’s own speed,  V.  In case  V ≠ 0, one
will have  j = σ (e + V × b)  instead of (12).  Problems involving moving conductors will not be
addressed in this book (with the advantage of always working within a unique reference
frame).

therefore, Ohm’s law (12) doesn’t apply.  It is then convenient to set  σ = 0
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in such regions20 and to write a generalized Ohm’s law, valid for generators,
conductors, and insulators alike (and thus, most often, uniformly valid in
all space):

(13) j = σ e + jg.

It all goes then as if the charge dynamics problem had been solved in
advance, the result being given by (13).  One often calls passive conductors
those ruled by (12), generators being then dubbed act ive.

One may then append (13) to (1–4), with  p = 0  and  m = 0.  The system
of equations thus obtained (or “Maxwell’s model with linear conductors”)
embodies the theory of nonmoving (cf. Note 19) active and passive
conductors which are neither polarizable nor magnetizable (cf. next
section).  It deals with a two-compartment system,  EM  and  CM  again,
but the theory we have accepted for the latter is so simple, being all
contained in (13), that one may easily overlook the coupled nature of the
whole system.  (One should not.)

1.2.3  Dynamics of bound charges:  dielectric polarization

Now, another case of two-compartment system for which the same
approach leads to a specific constitutive law.  It deals with polarizable
materials, in which charges are too strongly bound to separate from their
original sites, but loose enough to be pulled a little off their equilibrium
position by Coulomb forces, when the material is subject to a macroscopic
electric field.  This polarization phenomenon is important for some
materials, dubbed dielectric.  The simple reasoning (or myth . . . ) that
follows shows how to account for it, by a simple relation between  e  and
the  p  of (3).

Despite its electrical neutrality at a macroscopic scale, matter contains
positive and negative charges (+  and  –  for brevity) which we may imagine
as being attached by pairs at certain material sites.  Suppose the density
of  + charges is equal to  q+ , a function of position  x.  In the absence of any
macroscopic electric field, the density of  – charges must equal  − q +, by
electric neutrality.  Now, a field  e  being applied, let’s represent by a
vector field  u  the separation of charged pairs that results, as follows:  A
+ charge [resp.  a  – charge] that was at point  x  is now at  x + u(x)/2  [resp.

20This amounts to neglecting the internal resistance of the generator.  In some modellings,
having a nonzero  σ  there can be useful.  Note this wouldn’t change the form of (13).

at  x − u(x)/2].  To easily compute the new charge density  qp  due to this
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change in localization, let us treat it as a mathematical distribution,21

that is, as the mapping  ψ → ∫ q p ψ, where  ψ  denotes a so-called “test
function”.  Expanding  ψ  to first order and integrating by parts, we have

∫ qp ψ = ∫ q+(x) [ψ(x + u(x)/2) − ψ(x − u(x)/2)] dx

      ~ ∫ q+ u · grad ψ ≡ ∫ −  div(q+ u) ψ,

hence  qp = − div p, where  p = q+ u.  This field  p, soon to be identified
with the one in (3), is the polarization of the dielectric.

Exercise 1.7.   Try to do the same computation “the other way around”, by
starting from  ∫ qp ψ = ∫ q +(x – u(x)/2)  ψ(x), etc.  Why does it go wrong this
way?

The macroscopic manifestation of this local charge splitting is thus
the appearance of a distribution of charges in what was initially an
electrically neutral medium.  Moreover, if the polarization changes with
time, the motion of charges  +  and  −  in opposite directions amounts to a
current density  j p = ∂t(qu) = ∂t p.  (Note that  ∂t qp + div jp = 0, as it
should be.)

We might treat this current density on the same footing as  j, and
replace the polarized matter by vacuum plus polarization current.  Then
d = ε0e, and Eqs. (1) and (3) would combine to give

(14) − ∂t(ε0 e) + rot h = j + ∂t p.

Instead, we use our option (cf. Exer. 1.1) to charge  ∂ t p  on the account of Eq.
(3), by setting  d = ε0 e + p, hence  − ∂td + rot h = − ∂t(ε0 e + p) + rot h = j + ∂t p

21In the theory of distributions [Sc], functions are not defined by their values at points of
their domain of definition, but via their effect on other functions, called test functions.  So,
typically, a function  f  over some domain  D  is known if one is given all integrals  ∫D f ψ, for all
smooth  ψ  supported in  D.  It is thus allowable to identify  f  with the linear mapping  ψ →
∫D f ψ.  (The arrowed notation for maps is discussed in A.1.9.)  This has the advantage of
making functions appear as special cases of such linear TEST_FUNCTION → REAL_NUMBER
mappings, hence a useful generalization of the notion of function:  One calls such maps
distributions, provided they satisfy some reasonable continuity requirements.  For instance, the
map  ψ → ψ(a), where  a  is some point inside  D, is a distribution (“Dirac’s mass” at point  a,
denoted  δa).  The generalization is genuine, since there is no function  fa  such that  ψ(a) =
∫D faψ  for all  ψ.  It is useful, because some theories, such as Fourier transformation, work
much better in this framework.  The Fourier tranform of the constant  1, for instance, is not
defined as a function, but makes perfect sense as a distribution:  It’s  (2π)d/2  times a Dirac
mass at the origin, i.e.  (2π)d/2 δ0, in spatial dimension  d.

– ∂t p ≡ j, leaving  e  unchanged.  This separates macroscopic  currents  j,
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which continue to appear on the right-hand side of the expression of
Faraday’s law, and microscopic (polarization) currents  j P = ∂ t p, now hidden
from view in the constitutive law.  Notice that  div d = q, where  q  is the
macroscopic charge, and  div(ε0e) = q + q p.

All this shuffling, however, leaves the polarization current to be
determined.  The “(coupled) problem of bound charges” would consist in
simultaneously computing  p  and the electromagnetic field, while taking
into account specific laws about the way charges are anchored to material
sites.  Just as above about conduction, one makes do with a simple—and
empirically well confirmed—solution to this problem, which consists in
pretending  (by invoking a “myth”, again) that  p  and  e  are proportional:
p = χe, as would be the case if charges were elastically bound, with a
restoring force proportional to  e, and without any inertia.22  Now, let us
set  ε = ε0 + χ.  Then, Eqs. (1) and (3) become

(1’) − ∂td + rot h = j,                           (3')             d = εe.

The coefficient  ε  in (3') (called permittivity, or dielectric constant of the
medium23) thus appears as the simple summary of a complex, but
microscopic-scale interaction, which one doesn’t wish to know about at
the macroscopic scale of interest.

Another, simpler solution of the coupled problem obtains when one
may consider the field  p, then called permanent polarization, as
independent of  e.  The corresponding behavior law,  d = ε0e + p  with fixed
p, is well obeyed by a class of media called electrets.  Of course one may
superpose the two behaviors (one part of the polarization being permanent,
the other one proportional to  e), whence the law  d = εe + p  instead of (3),
with a fixed  p.

1.2.4  Magnetization

It is tempting to follow up with a similar presentation of magnetization,
where a proportionality between  m  and  h  would be made plausible by a
simple myth about the interaction of magnetic moments (due to the
electrons’ spins, mainly) with the magnetic field.  This would be a little

22The latter hypothesis will be reconsidered in the case of high frequencies.  Note that  χ
can be a tensor, to account for anisotropy.

23Terminology wavers here.  Many authors call “permittivity” the ratio between  ε  and
ε0, and speak of “dielectric constant” when it comes to  ε, or even to its real part in the case
when  ε  is complex (see below).  Note that  ε  may be a tensor.

artificial, however, because too remote from the real physics of magnetism
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(cf., e.g., [OZ]), and the point is already made anyway:  Constitutive laws
substitute for a detailed analysis of the interaction, when such analysis is
either impossible or unproductive.  So let us just review typical constitutive
laws about magnetization.

Apart from amagnetic materials (m = 0), a simple case is that of
paramagnetic or diamagnetic materials , characterized by the linear law
m = χh  (whence  b = µh, with  µ = (1 + χ)µ0), where the magnetic suscepti-
b i l i ty  χ  is of positive or negative sign, respectively.  It can be a tensor, in
the case of anisotropic materials.  For most bodies,  χ  is too small to
matter in numerical simulations, the accuracy of which rarely exceeds
1 %  (χ ~ 10−4  for  Al  or  Cu).

Ferromagnetic metals (Fe,  Co,  Ni) and their alloys are the exception,
with susceptibilities up to 105, but also with a nonlinear (and hysteretic24)
behavior beyond some threshold.  In practice, one often accepts the linear
law  b = µh  as valid as far as the modulus of  b  does not exceed 1 tesla.25

For permanent magnets  [La, Li] a convenient law is  m = χh + h m, where
h m  is a vector field independent of  h  and of time, supported by the
magnet (that is, zero-valued outside it), with  χ  roughly independent of
h, too, and on the order of  1  to  4, in general [La].  This law’s validity,
however, is limited to the normal working conditions of magnets, that is,
for  h  and  b  of opposite signs, and not too large.  The characteristic  b =
µh + µ0h m  is then called the “first order reversal curve”.

1.2.5  Summing up:  Linear materials

Hysteresis, and nonlinearity in general, are beyond our scope, and we shall
restrict to the “Maxwell model of memoryless linear materials with Ohm’s
law”:

24Hysteresis occurs when the value of  b  at time  t  depends not only on  h(t), but on past
values.  Linearity does not preclude hysteresis, for it just means that if two field histories are
physically possible, their superposition is possible too.  This does not forbid behavior laws “with
memory”, but only allows “convolution laws” of the form  b(t) = ∫ t M(t – s) h(s) ds .  As we
shall see in Section 1.4, this amounts to  B = µH, in Fourier space, with a complex and
frequency-dependent  µ.

25The unit for  b  is the tesla (T), or  weber (Wb) per square meter.  (One tesla is 10 000
gauss, the cgs unit still in use, alas.)  The field  h  is measured in ampères per meter (A/m).
An ordinary magnet creates an induction on the order of  .1  to  1 T.  The Earth field is about
0.4 × 10−4 tesla.
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(15) − ∂t d + rot h = j ≡ jg + σe,                      (16)      ∂t b + rot e = 0,

(17)         d = εe,                                                     (18)        b = µh ,

plus occasionally some constant term on the right of (17) or (18), in order to
model electrets or permanent magnets.  In most modellings, these equations
correctly describe what we shall from now on call “the electromagnetic
compartment” (and still denote by  EM, although it has been slightly
enlarged).  But let’s not forget the complexity of field-matter interactions
that are thus hidden beyond a neat façade, and the relative arbitrariness
with which compartment boundaries have been moved in order to
incorporate microscopic interactions in (15–18), leaving only macroscopic
interactions with other compartments to describe.  We now turn to this.

1.3  MACROSCOPIC INTERACTIONS

Most engineering applications have to do with power conversion.  In this
respect, what we have established in (10) has general validity:
Proposition 1.1.   The power density yielded by the electromagnetic
compartment of a system to other compartments is given by  π(t, x) =
j(t, x) · e(t, x), that is, as an equality between scalar fields,

(19) π = j · e,

at all times.  (Be aware that  j  is the total current,  j = σe + jg. )
In the case of a passive and immobile conductor,  j · e = σ |e|2, so this is

Joule loss, and therefore, thermal power.  In the case of generators,
– π(t, x)  is the density of power needed to push charges up the electric
field (and thus given to the  EM  compartment).  In the case of moving
conductors,  j · e  is in part Joule heating, and for the other part mechanical
work.  In all cases, the total yielded power is thus26  Π = ∫E3

 π(x) dx, that
is,  Π = ∫E3

 j · e.  This is the bottom-line figure in the inter-compartment
trade balance.

26See Appendix A, Subsections A.2.4 and A.2.5, for  E3.  This symbol stands for “oriented
three-dimensional Euclidean affine space”:  ordinary space, equipped with a notion of
orientation (i.e., a way to distinguish direct and skew reference frames, cf. A.2.5), and with
the dot-product here denoted by “ · ”, which gives sense to the notions of distance, area,
volume, etc.
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1.3.1  Energy balance

Compartmentalization, however, is not limited to physically distinct
subsystems, and may concern distinct regions of space too.  In this respect,
energetical exchanges through spatial boundaries are important.  Let thus
a closed surface  S  separate a domain  D  from the rest of space.  Take the
scalar product of both sides of (1) and (2) by  – e  and  h, respectively, add,
and integrate over  D:

∫D (h · ∂tb + e · ∂td) + ∫D (h · rot e – e · rot h) = – ∫D j · e.

The result is then transformed by the following integration by parts
formula, to which we shall return in the next chapter:

(20) ∫D h · rot e = ∫D e · rot h – ∫D (n × h) · e,

and by setting

WD(t) = 1
2  ∫D (µ |h(t)|2 + ε  |e(t)|2) ,

hence

(21) ∂tWD + ∫S  n · (e × h) = – ∫D j · e.

A special case of this27 is when  D  is all space:

(22) ∂tW = – Π,

where  W(t) = WE3
(t), a quantity that may thus legitimately be called

electromagnetic energy:  indeed, (22) points to it as being the energy stored
in the electromagnetic compartment28 of the system.

So if we turn to (21), its interpretation in similar terms is immediate:
The “subcompartment  EM-D” cedes the power  ∫D j · e  to  D-based subsidiaries
of all non-EM compartments, and exports  ∫S  n · (e × h)  to other regions of
the  EM  compartment, which themselves, of course, may trade with non-EM
entities in their own domain.  The vector field  e × h, which records these

27One has  ∫E3 h · rot e  = ∫E3 e · rot h  (no “surface term at infinity”) provided  e  and  h
both belong to the functional space  IL2

rot(E3), to be studied in more detail in Chapter 5,
where this assertion will be proved.  Its physical content is just that  h  and  e   decrease fast
enough at infinity;  hence the absence of the boundary term when  S  recedes to infinity, and
this we can accept without qualms for the moment.

28In the extended sense in which we now understand “electromagnetic” compartment.
If  ε ≠ ε0, for instance, part of this energy is in dipole vibration.

trans-boundary exchanges, is Poynting’s vector.29
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Note that, by applying Ostrogradskii’s formula to (21),

(23) ∂tw + j · e + div(e × h) = 0,

where  w  is the scalar field  x → 1
2  (µ |h(x)|2 + ε  |e(x)|2).  Just as (6)

expressed “local” charge conservation, (23) is the local expression of energy
conservation, the integrated or “global” form of which is (21).  It is tempting
to call  w  the (electromagnetic) energy density, and we shall do that.
See, however, Remark 1.1 below.

As an illustration, let us mention thermal exchanges (induction heating,
direct heating, microwave heating, welding . . .).  The “thermal
compartment” (TM) of a system is governed by the heat equation, in all its
guises, the best known of which, valid when most thermal exchanges are
by conduction and diffusion, is

(24) ∂t(c θ) − div(κ grad θ) = π,

where  θ  (a scalar field) stands for the temperature,  c  for the volumic
heat,  κ  for the thermal conductivity, and  π  for the injected power density.
When this power is Joule loss, one has  π(x) = σ(x) |e(x)| 2.  Since  σ, as
well as coefficients  ε  and  µ  for that matter, may depend on temperature,
studying electrothermal interactions amounts to studying the coupled
system (15–18)(24).

Most often, there is a natural division into subcompartments.  In
induction heating, for instance, if the workpiece (the passive conductor)
occupies domain  D,  TM  will be restricted to  D, with of course adequate
boundary conditions for (24) on its boundary  S.  A partition of  EM  into  D
and  E3 – D  is then the obvious thing to do, especially at low frequencies,
where the equations in the non-conducting region take a simple form, as
we shall see in Chapter 8.  The flux of  e × h  through  S  is then the
heating power, and thus of particular significance.

Remark 1.1.  Just as  WE3
  is the energy of EM, we may def ine  WD  as “the

energy of  EM-D”.  But to say that this energy is inside  D, which amounts
to saying that  w(x) dx  is the energy “effectively present” in volume  dx,
goes much further, since it asserts that energy is loca l ized, as a substance
can be, and this is controversial.  Some authors, comparing this with

29An instance of this appalling habit many physicists have to call “vector” what is actually
a vector field.  Such sloppiness about the type (cf. A.1.2) of the entities one deals with,
harmless as it may be in the present case, should not be condoned.  Vector fields are objects of
type  A3 → V3, in the notation of A.2.2 and A.2.4, vectors being elements of  V3.

localizing the beauty of a painting at specific parts of it, protest they “do
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not believe that ‘Where?’ is a fair or sensible question to ask concerning
energy.  Energy is a function of configuration, just as ( . . . ) beauty (.  . . )”.
(Cf. [MW], pp. 266–267.)  The problem is inherent in field theory, and not
special to electromagnetism [KB].  ◊
Remark 1.2.   The Poynting vector field also is a bone of contention.  There
are totally static situations in which the energy flux  e × h  is not zero
(Exercise 1.8:   find one).  It all goes then as if energy was perpetually
flowing in circles.  The idea may seem unattractive, and alternatives have
been proposed, based on the fact that the flux of a curl through a closed
surface is always zero, so one may add to  e × h  the curl of any vector field
u  one fancies, without changing any power flux, whatever the domain of
interest.  (This is clear on the local expression (23), since  div(rot u)  = 0.)
Slepian [Sl] thus could list no fewer than eight plausible expressions for
the energy-flow vector, including Poynting’s.  The debate rebounds regularly
[Ly, Lo, He].  There is an old argument ([Bi], discussed in [Ro]) to the effect
that if  rot u  is to be a function of  e  and  b  only, then  rot u  is a constant, so
Poynting’s vector is the natural choice (the “gauge invariant” one) among
these alternatives.  But this leaves some unconvinced [BS].  ◊

1.3.2  Momentum balance

Even more controversial30 is the question of momentum:  One century ago,
Abraham and Minkowski disagreed about the correct expression of the
linear momentum of the electromagnetic field [Cs].  The question is still
debated, and what follows will not resolve it.  But having discussed energy,
we cannot elude momentum, since they are two observer-dependent
aspects of one and the same objective entity (the four-dimensional
energy–momentum, or “momenergy” [TW]).  Moreover, the expression of
forces exerted by  EM  on conductors and polarized or magnetized matter
derives from momentum conservation, and forces are an often-desired output
in computations, even those restricted to immobile bodies, to which we
limit consideration here.

First let us introduce a notation (local to this section):  if  v  is a vector
field and  ϕ  a scalar field,  ∇vϕ  may conveniently denote the scalar field
v · grad ϕ, so that  ∇vϕ(x)  is “the derivative of  ϕ  in the direction of  v”,
at point  x.  Now if  u  is another vector field, one can form  ∇vu

i  for its
three Cartesian coordinates  u i, hence the three scalar components of a

30See R.H. Romer:  “Question #26:  Electromagnetic field momentum”, Am. J. Phys., 63, 9
(1995), pp. 777–779, and the answers provided in Am. J. Phys., 64, 1 (1996), pp. 15–16.

vector, which will be denoted  ∇vu.  Next move, please, is yours:
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Exercise 1.9.  Show that  ∫D ∇vu = – ∫D u  div v + ∫S n · v  u  (with  D,  S, and  n
as usual, cf. Fig. 1.2).

Exercise 1.10.  Show that, in case  v = α u, where  α  is a scalar field,

(25) ∫D v × rot u = – ∫D ∇vu + 1
2  ∫S u · v  n – 1

2  ∫D |u|2 ∇α.

We can then do the following calculation.  Starting from (15) and (16),
take the cross product (from the left) of both sides by  b  and  d, respectively,
add, and integrate.  This gives

∂t ∫D d × b + ∫D b × rot h + ∫D d × rot e = – ∫D j × b.

Now apply (25) and Exer. 1.9 to  d  and  e, with  α = ε :

            ∫D d × rot e = – ∫S  n · d  e + ∫D e  div d + 1
2  ∫ S d · e  n – 1

2  ∫D |e|2 ∇ε

(recall that  div d = q), then to  b  and  h, quite similarly, and gather the
results to get

(26) ∂t ∫D d × b + ∫S (
1
2  b · h  n –  n · b  h) + ∫S (

1
2  d · e  n –  n · d  e) =

              – ∫D [j × b + q e – 1
2 |h|2 ∇µ – 1

2 |e|2 ∇ε].

This (to be compared with (21), which had the same structure) is the
momentum balance:  ∫D d × b  is the momentum “of” (same caveats as above)
subcompartment  EM-D, its flux is governed by the so-called “Maxwell
stress tensor”, here31  M = 1

2  b · h – b ⊗ h + 1
2  d · e – d ⊗ e, and the

right-hand side of (26) is, up to sign, the resultant of body forces. 32  Note
the unexpected gradients, which should be interpreted in the sense of
distributions when  ε  or  µ  are discontinuous.

The local version of (26), quite similar to (23), is

(27) ∂t [d × b] + j × b + q e – 1
2  |h|2 ∇µ – 1

2  |e|2 ∇ε + div M = 0.

But the global version (26) is more popular:  A standard way to obtain the
total force on some object (in a time-independent situation) is to compute
the flux of  M  through some boundary  S  enclosing it.

31This tensor product symbol  ⊗  will not be used again.  Owing to our sign conventions,
M  is actually minus the Maxwell tensor of tradition.

32No proof has been offered here as to the validity of these interpretations.  But if one
accepts the expression of body-force density (which is standard, cf. e.g., [Rb]), the rest follows.
See [Bo] for a direct derivation of the body force expression.
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When studying the dynamics of moving conductors, one should take
into account the momentum of the moving bodies and the momentum of the
field in the expression of momentum conservation.33  In an interaction
between two solids, for instance, momentum lost by one of them may
temporarily be stored in the field, before being restituted to the other
body.  Thus, action and reaction may seem not to balance, in apparent
violation of Newton’s third law [Ke].  See for instance [Co], [Ho], and the
abundant literature on Feynman’s “disk paradox”, a situation in which a
disk, initially at rest in a static field, can acquire angular momentum
without any mechanical action, just because of a change in the
electromagnetic environment [Lm].

Remark 1.3.  So there are static configurations in which  ∫ d × b ≠ 0:  Surprising
as this may appear, a static electromagnetic field can possess linear
momentum.  (Cf. R.H. Romer, Am. J. Phys., 62, 6 (1994), p. 489.  See
also [PP].)  ◊

Remark 1.4.   The cross product is an orientation-dependent operation:  its
very definition requires a rule for orienting ambient space.  Yet we see it
appear in expressions such as  e × h  or  d × b, which account for energy or
momentum flux, physical quantities which obviously do not depend on
orientation conventions.  How come?  It must be that some of the vector
fields  e,  d,  b,  h  themselves depend on orientation.  No surprise in that:
The mathemat ica l entities by which the physical field is represented
may depend on the structures of Euclidean space, whereas the objective
phenomena do not.  The question is further discussed in Section A.3 of
Appendix A.  ◊

1.4  DERIVED MODELS

Concrete problems in electromagnetism rarely require the solution of
Maxwell equations in full generality, because of various simplifications
due to the smallness of some terms.  The displacement currents term  ε  ∂te,
for instance, is often negligible;  hence an important submodel,  eddy-currents
theory, which we shall later study in its own right:

(28) ∂tb + rot e = 0,   rot h = j,     j = σe + jg,

33Many papers in which this commonsense rule is neglected get published,
notwithstanding, in refereed Journals.  It has been asserted, for example, that the operation of
a railgun cannot be explained in terms of classical electrodynamics.  See a refutation of this
crankish claim in [AJ].
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with in particular, in passive conductors (where one may eliminate  e
from (28) after division by  σ),  ∂t(µh) + rot (σ−1 rot h) = 0.

Another frequent simplification is the passage to complex numbers
representations.  If the source current  jg  is sinusoidal in time,34 that is, of
the form  jg(t, x) = Re[J

g(x) exp(iω  t)], where  J
g  is a complex-valued vector

field, and i f all constitutive laws are linear, one may35 look for the
electromagnetic field in similar form,  h(x) = Re[H(x) exp(iω t)], etc., the
unknowns now being the complex fields  H ,  E ,  etc., independent of time.
Maxwell’s model with Ohm’s law (15–18) then assumes the following form:

(29) − iω  D + rot H = Jg + σ E,   iω  B + rot E = 0,   D = ε  E,     B = µ H.

It is convenient there to redefine  ε  by assigning to this symbol the complex
value  ε + σ/(iω ), which allows the incorporation of the term  σ E  into  iω
D, whence the model

(29') − iω  D + rot H = Jg,    iω  B + rot E = 0,    D = ε  E,    B = µ H,

which is, with appropriate boundary conditions, the microwave oven
problem.  In (29'),  ε  is now complex, and one often writes it as  ε = ε' – iε" ,
where the real coefficients  ε'  and  ε", of same physical dimension as  ε0,
are nonnegative.  (They often depend on temperature, and are measured
and tabulated for a large array of products, foodstuffs in particular.  Cf.
eg., [FS, S t, Jo].  Figure 1.4 gives an idea of this dependence.)

Nothing forbids accepting complex  µ’s  as well, and not only for the
sake of symmetry.  This really occurs with ferrites36 [La, Li], and also in
some modellings, a bit simplistic37 perhaps, of hysteresis.

34One often says “harmonic”, but be wary of this use, not always free of ambiguity.
35This procedure is valid, a priori, each time one is certain about the uniqueness of the

solution of the problem “in the time domain”, for if one finds a solution, by whatever method,
it’s bound to be the right one.  But it’s the linearity of constitutive laws (cf. Note 24) that
makes the procedure effective.  Moreover, linearity allows one to extend the method to
non-periodic cases, thanks to Laplace transform (then one has  p, complex-valued, in lieu of
iω).  The passage to complex numbers is in principle  of no use in nonlinear cases (for instance,
when iron or steel is present), and the notion of “equivalent (complex) permeability”, often
invoked in applications to induction heating, is not theoretically grounded.  (Its possible
empirical value is another question, to be considered in each particular instance.)

36One refers to linear behavior there, and this complex permeability is not of the same
nature as the one of the previous note.

37Because of their essentially linear nature.  Law  B = (µ' – iµ")H  amounts to  µ" ∂th =
ω(µ' h – b)  in the time domain.
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An even more drastic simplification obtains when one may consider
the phenomena as independent of time (steady direct current at the
terminals, or current with slow enough variations).  Let us review these
models, dubbed stationary, derived from Maxwell’s model by assuming
that all fields are independent of time.
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0 40– 40

"/   'ε ε
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FIGURE 1.4.  Typical curves for  ε'  and  ε"  as functions of temperature, for a stuff
with high water content.  The ratio  ε"/ε', shown on the right, is often denoted by
tan δ.

In this case, one has in particular  ∂tb = 0, and thus  rot e = 0.  So, after
(5) and (17),

(30) rot e = 0,   d = εe,   div d = q,

and this is enough to determine  e  and  d  in all space, if the electric
charge  q  is known:  Setting  e = − grad ψ, where  ψ  is the electric potential,
one has indeed  − div(ε grad ψ) = q, a Poisson problem which is, as one
knows, well posed.  In the case where  ε = ε0  all over, the solution is given
by

ψ(x) = 
0ε4π

1 q(y)
|x – y|E∫ 3

 dy,

as one will check (cf. Exers. 4.9 and 7.5) by differentiating under the
summation sign in order to compute  ∆ψ.  Model (30) is the core of linear
electrostatics.

In a similar way, one has  rot h = j, after (1), whence, taking into
account  div b = 0  and (18), the model of linear magnetostatics:

(31) rot h = j,   b = µh,   div b = 0,

and this determines  b  and  h  in all space when  j  is given.  If  µ = µ0  all
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over, the solution is obtained in closed form by introducing the vector field

a(x) = 0µ
4π

j(y)
|x – y|E

∫
3

 dy,

called magnetic vector potential,  and by setting  b = rot a.  (By
differentiating inside the integral, one will find Biot and Savart’s formula,
which directly gives  h  in integral form:

(32) h(x) = 
34π E
∫1 j(y) × (x – y)

|x – y|3  dy.)

When, as in the case of ferromagnetic materials, constitutive laws more
involved than  b = µ h  occur, problem (31) appears as an intermediate in
calculations (one step in an iterative process, for instance), with then in
general a position-dependent  µ.  An important variant is the magnetostatics
problem for a given distribution of currents and magnets, the latter being
modelled by  b = µh + µ0h m   with known  µ  and (vector-valued)  hm.38

Setting  h m = 0  in the air, one gets

rot h = j,   b = µh + µ0h m,   div b = 0.

An analogous situation may present itself in electrostatics:  d = εe + p,
with  p  given, as we saw earlier.

Still under the hypothesis of stationarity, one has  ∂tq = 0, and thus
div j = 0, after (6), hence

(33) rot e = 0,   j = σe,   div j = 0,

in passive conductors.  This is the conduction or electrokinetics model .  In
contrast to the previous ones, it does not usually concern the whole space,
and thus requires boundary conditions, at the air-conductor interfaces, in
order to be properly posed.

The formal similarity between these static models is obvious, and we

38A legitimate question, at this stage, would be, “How does one know  hm, for a given
permanent magnet?”.  Giving a rigorous answer would require the knowledge of the conditions
under which the material has been magnetized, as well as the details of its hysteretic response,
and a feasible simulation method of this process.  In practice, most often, a uniform magnetization
field parallel to one of the edges of the magnets is a fair representation.  However, as more
and more complex magnetization patterns are created nowadays, the problem may arise to
find  hm  from measurements of  b  by a computation (solving an inverse problem).

need examine only one in detail to master the others.  We’ll focus on
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magnetostatics in this book, with only a few indications about the other
models in Chapters 8 and 9.  This disproportion is to some extent mitigated
by the paradigmatic character of the magnetostatics model.  As pointed
out in the Preface, the difficulties encountered in computational electro-
magnetism in the 1970s, when one tried to extend then well-established
finite element or boundary integral 2D methods to three-dimensional
situations, appear in retrospect to be due not to the increased dimensionality
per se, but to the essential difference between the “curl–curl” operator and
the “div–grad” operator to which it reduces in two dimensions, and
fortunately, all essential points about the curl–curl operator can be
understood in the simple, limited, and well-defined framework of linear
magnetostatics.

EXERCISES

The text for Exer. 1.1 is on p. 5.
Exercise 1.2.  Let  X  be an affine space and  V  the associated vector space,
f :  IR × X × V → IR  a repartition function,  interpreted as the time-dependent
density of some fluid in configuration space  X × V.  Let  γ (t, x)   be the
acceleration imparted at time  t  to particles passing at  x  at this instant,
by some given external force field.  Show that

(34) ∂tf +  v · ∇x  f + γ  · ∇vf = 0

expresses mass conservation  of this fluid.  What if  γ , instead of being a
data, depended on velocity?

Exercise 1.3.   What is the divergence of the field  x → a × x, of type
E3 → V 3, where  a  is a fixed vector?  Its curl?  Same questions for  x → x.
(Cf. Subsection A.1.2 for the notion of type, and the notational convention,
already evoked in Note 13, and Note 29.)

Exercise 1.4.  In the context of Exer. 1.2, what is the divergence of the field
v → e + v × b ?

Exercise 1.5.  Establish Vlasov’s equation (11).

Exercise 1.6.   Prove, using (11), that charge and current as given by (8) do
satisfy the charge conservation relation (6).
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See p. 12 for Exer. 1.7, pp. 18 and 19 for Exers. 1.8 to 1.10.

Exercise 1.11.   Show that, in a region of a conductor where  σ  is not constant
(due to variations in temperature, or in the composition of an alloy, etc.),
q = div d  may not be zero, and that this can happen in stationary situations
(continuous current).  Thus, there can exist a permanent charge imbalance
at some places in the conductor.  But Lorentz force acts on this charge packet.
Why doesn’t it move?

HINTS

1.1.  Don’t worry about differentiability issues:  Assume all fields are
smooth.
1.2.  Imitate the classical computation about the convective derivative in
fluid dynamics (which is very close to our treatment of charge conservation,
p. 4) .

1.3.  For  x → a × x, divergence:  0,  curl:  2a.  For  x → x, curl-free, the
divergence is the constant scalar field  x → 3.

1.4.  Mind the trap.  Contrary to  e  and  b, this field does not live in 3D
Euclidean space!  The t y p e of the map will tell you unambiguously what
“divergence” means.

1.5.  Apply Exer. 1.2, acceleration being  Qe(e + v × b).  By Exer. 1.4, there is
no extra term.

1.6.  Ostrogradskii on  {t, x} × V.  Ensure suitable boundary conditions by
assuming, for instance, an upper bound for the velocity of charges.
1.7.  A careless attempt, like39  q +(x – u(x)/2)  ψ(x) *= – 1

2  ∇q+ · u, would
seem to lead to  – ∫ q+ div(ψu), and hence to a different result than above if
div u ≠ 0.  This is the key:  Why does this divergence matter?

1.8.  A bar magnet between the plates of a condenser.

1.9.  This is an extension of the integration by parts formula (2.9)40 of the

39The star in  *=  serves as a warning that the assertion should not be believed blindly.
40As a rule, we'll refer to "Eq. (n)" inside a chapter, and to "Eq. (X.n)" for the equation

labelled (n) in Chapter  X.

next chapter,  ∫D v · grad ui = – ∫D ui div v + ∫S n . v  u
i,   i = 1, 2, 3.
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1.10.  The simplest way is probably to work in Cartesian coordinates,
starting from

(∫D v × rot u)i = ∑ j ∫D vj (∂iu
j – ∂ju

i),   i = 1, 2, 3.

Then the last term is  – ∫D ∇vu, and  ∫D v j ∂ iu
j = ∫D α  u

j ∂ iu
j = 1

2  ∫D α  ∂i|uj|2 =
1
2  ∫D ∂i(α|uj|2) – 1

2  ∫D |uj|2 ∂iα.

1.11.  It doesn’t move, but t h e y do:  Charge carriers may very well pass
through the region of charge imbalance, being accelerated by the electric
field and slowed down by the invoked “friction” along the way, and leave
the apparent net charge constant.  But how does the charge dynamics account
for this behavior?  Imagine two kinds of carriers, positive and negative
but identical in all other respects, and argue against the logical consistency
of the myth we used to justify Ohm’s law.  (This is more than a mere
exercise, rather a theme for reflection.  See the Int. Compumag Society
Newsletter, 3, 3 (1996), p. 14.)

SOLUTIONS

1.1.  Eliminate  h  and  d:  Then  ∂tb + rot e = 0, unchanged, and

– ε0 ∂te + rot(µ0
–1 b) = j + ∂tp + rot m,

so  j  can “absorb” p  and  m  at leisure.  Alternatively,  p  can assume the
totality of charge fluxes (integrate  j + rot m  in  t).  But one can’t put all of
them in  rot m, since  j + ∂ tp  may not be divergence-free.  One calls  rot m
the density of Amperian currents.
1.2.  Consider a domain  D  in configuration space (Fig. 1.5).  The decrease
of the mass it contains, which is  –  ∫D ∂tf, equals outgoing mass.  The latter
is the flux through the boundary  S  of the vector field  {v, γ } f, which is
the speed, not of a particle in physical space, but of the representative
point  {x, v}  in configuration space.  By Ostrogradskii,  ∂tf + div({v, γ } f) =
0.  Since  γ   does not depend on  v,  div({v, γ }) = 0.  So  div({v, γ } f) =
{v, γ } · ∇f ≡ v · ∇x f + γ  · ∇vf.  (Be wary of the wavering meaning of the dot,
which stands for the dot-product in  V × V  left to the  ≡  sign, but for the
one in  V  right to it.)  If  γ   depends on  v, an additional term  f divvγ    will
appear on the left-hand side of (34).  (Here,  divvγ   is the divergence of  γ
considered as a field on  V, the  x–coordinates being mere parameters.)
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FIGURE 1.5.  Notations for Exer. 1.2.  The open curve is the trajectory of  {x, v}  in
configuration space.

1.4.  Let  X  be  E3,  V  the associated vector space (denoted  V3  in A.2.2) .
With  v → e + v × b, we are dealing with a  V-valued function, the domain41

of which is all or part of the vector space  V, considered with its affine
structure, and position  x  and time  t  (which are what  e  and  b  may
depend on) are parameters.  (This is an illustration of the notion of section,
cf. A.1.1:  section by  {x, t}  of the function  {t, x, v} → e(t, x) + v × b(t, x). )
Now,  e  does not depend on  v, and since this is also the case for  b, one has
div(v → v × b) = 0, after the result of Exercise 1.3.

1.6.  Last term in (11) is  div(v → Qc (e + v × b) q Ÿ), the integral of which
over  V  (with  t  and  x  as parameters) is zero if  q Ÿ  vanishes fast enough.
And by (8),  ∂ tq + div j = ∫V [∂tqŸ + div(v qŸ)] = ∫V (∂tqŸ +  v · ∇x q Ÿ), thus  0
after (11).

1.7.  The density  qp  does not transform like a function in the change of
reference frame defined by  x → x + u(x)/2, because the volume element
also changes, unless  div u = 0, which characterizes volume-preserving
deformations.  A correct computation must therefore explicitly take into
account the Jacobian of the mapping  x → x + u(x)/2.  Hence a more involved
computation in the case when  div u ≠ 0, for of course the same final result.

1.11.  Let  ρ = 1/σ  be the conductivity.  Assume steady currents.  Then  div j
= 0  by (1),  e = ρj  if Ohm’s law is valid, and  q = div(ε0 e) = ε0 e · ∇ρ,
nonzero if  ρ  varies with position.  This result clashes with the predictions
of the simple-minded model in which there would be two symmetrical,

41Be aware that “domain” has a dual meaning, open connected set as in Note 7, or
domain of definition of a map, as here.  Cf. Appendix A for precise definitions.

but oppositely charged, kinds of carriers.  Charges of opposite signs moving
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in opposite directions yield a net nonzero current, but a zero macroscopic
charge.  Under the basic assumption of the myth (speed proportional to
electric field), the symmetry between the two kinds of charge is total,
and hence  q = 0.  This is enough to show there is a problem.  See the Int.
Compumag Society Newsletter, 4, 1 (1997), pp. 13–18, for a discussion,
including my own answer (the inertia of charge carriers plays a role in
suppressing what would be otherwise a logical conundrum) and two other
approaches [Cp], [Ni].
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