
Foreword

This book is the second volume in the Academic Press Electromagnetism
Series, written by Professor Alain Bossavit, one of the most active
researchers in the area of electromagnetic field calculations.  Professor
Bossavit is well known and highly regarded in the electromagnetic
community for his seminal contributions to the field of computational
electromagnetics. In particular, he has pioneered and strongly advocated
the use of edge elements in field calculations.  These elements, which are
now widely accepted by engineers, have become indispensable tools in
numerical analysis of electromagnetic fields.  His work on the use of
symmetry in numerical calculations, computational implementation of
complementarity, and evaluation of electromagnetic forces have also been
extremely important for the development of the field.

This book reflects the unique expertise and extensive experience of the
author.  It is written with a strong emphasis on comprehensive and critical
analysis of the foundations of numerical techniques used in field
calculations.  As a result, the book provides many valuable insights into
the nature of these techniques.  It contains information hardly available
in other sources and no doubt will enrich the reader with new ideas and a
better conceptual understanding of computational electromagnetics. The
material presented in the book can be expected to contribute to the
development of new and more sophisticated software for electromagnetic
field analysis.

The book is distinctly unique in its original style of exposition, its
emphasis, and its conceptual depth.  For this reason, it will be a valuable
reference for both experts and beginners in the field.  Researchers as well
as practitioners will find this book challenging, stimulating, and
rewarding.

v

Isaak Mayergoyz, Series Editor
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