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���� The �Galerkin hodge�

Where we stand

With the “Whitney map” of last issue, we have
a way to pass from degrees of freedom (DoF)
to fields, in the case of a simplicial mesh. In
particular, we may construct a vector field

��� E �
X
e�E

eeWe

from a DoF array e, edge-based, thanks to the
“edge element”

��� We � wmrwn � wnrwm�

In this formula, m and n are the endpoints of
edge e (cf. Fig. 1), and wn is the “hat func-
tion” of standard finite element theory (equal
to 1 at node n, 0 at other nodes, and linearly
interpolating in between). We is a rightful fi-
nite element for the electric field, because it has
tangential continuity across element interfaces,
thus automatically conferring to E this essential
physical property. Its circulation along edge e�

is 1 if e� � e, else 0, which ensures, thanks to
(1), that each DoF ee is indeed the circulation
of E along edge e.

Figure 1. The edge element. One has We�x� = kl �
kx��� vol�t��� which makes it easy to visualize the
field. Recall however that in spite of this apparently
metric-dependent expression, the edge element is an
affine object: We is just the vector proxy of the Whitney
form we � wmdwn � wndwm�

All this designates We as a suitable finite
element for vector-valued entities associated

with lines, such as the fields E and H. So
why not use it as such for problems involving
this kind of fields, by following the Galerkin
variational approach? That was indeed the
viewpoint 20 years ago, when the edge element
made possible the solution in dimension 3 of
eddy current problems, with H as unknown
field. But nowadays we tend to see things in
a different light: The Galerkin method using
edge elements can be interpreted as a way—
one among several possible ways—to build a
discrete Hodge operator, which is what will
occupy us in this installment of the series.

5.1 Model problem

The model problem this time, for a change,
will be electrostatics, in the same cavity as
usual (Fig. 2). Given a time-independent charge
density q, find D and E such that

����
div D � q� D � �E� rot E � ��

� � D � � on Sh� � � E � � on Se�

Figure 2. Position of the model problem: Same metal-
lic cavity as before (JSAEM, 7, 1999, p. 151), but a
steady cloud of electric charge where we formerly had
an antenna. Symmetry of the cavity, and of the charge
distribution, allow us to compute in domain D (the left
half), with the boundary condition � �D � � on the sym-
metry plane Sh, where � denotes the outward-directed
unit normal vector.

In differential geometric form, this is

���
d�d � �q� �d � ���e� de � ��

t�d � � on Sh� te � � on Se�
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where �q stands for the twisted 3-form the scalar
proxy of which is q.

We learned how to produce a discretization,
at least in the case when an orthogonal dual
mesh can be built. This gave us a diagonal
matrix ���, whose entries, indexed over the set
E of “active” edges (those not in Se), were
��
ee
� � � area��e��length�e�� where �e is the 2-cell

dual to e. Hence the numerical scheme:

�	� �Gtd̃ � q̃� d̃ � ���e� Re � ��

with e = fee 
 e � Eg and d̃ = fd̃e 
 e � Eg,
the electric fluxes across the �es. The data
q̃ � fq̃n 
 n � Ng is obtained by integration
of q over each dual 3-cell �n. All we need to
do, to get (4), is to replace each element of (��)
by its discrete counterpart: E by e, rot by R,
div by �Gt, etc., and � by the discrete Hodge
operator ���. Of course, one must have done
the practical work leading to ���.

The Ritz–Galerkin approach proceeds differ-
ently, and one certainly does not recognize it in
(4) at first glance. Yet, in depth, there are strong
homologies. To argue this point, I shall first
sketch a possible presentation of the Galerkin
method, using standard finite elements, to a
classroom of advanced students in computa-
tional electromagnetism. Then a crucial modi-
fication (cf. Prop. 1 below) will be introduced,
leading back to (4).

5.2 The Galerkin method, with node-based
scalar finite elements

The method is based on the so-called weak
formulation of the equation divD � q and (both
things in one stroke) the boundary condition
� � D � � on Sh:

�
Z
D

D � r�� �
Z
D
q �� for all�� in��

where � is a space of test functions, charac-
terized, in addition to a few technical require-
ments,� by the condition �� � � on Se. Us-

� They must belong to the Sobolev space L�
grad�D� of

square-summable functions whose grad, too, is in L��D�.
Then, r� belongs to the space L�

rot�D� that we briefly
encountered in the first column (JSAEM, 7, 1999, p. 152).
The necessary recourse, if one wants to be thorough,
to such difficult notions of functional analysis has acted
as a serious deterrent against the popularization of the
method.

ing the fact that the equations about E, i.e.,
rotE � � and � � E � � on Se, are equiva-
lent to “E � �r� for some � in �”, one is
led to find � in � such that

���
Z
D
�r� � r�� �

Z
D
q �� ��� � ��

This comprehensive weak formulation of the
original problem is equivalent, as one eas-
ily shows, to minimizing� over � the energy-
related quantity

W ���� �
Z
D
� jr��j� � �

Z
D
q ���

At this stage, one points out that a function
such as

�
� � �
X
n�N

��nw
n

does belong to �, since � � � at nodes of
Se, which have been excluded from the set
N . Such functions span a subspace of � of
finite dimension (equal to the number N of
active nodes), which we denote by �

M
, since

it depends on the mesh. When “M � �” (in
the precise sense introduced last time, including
uniformity of the family of meshes), �

M
“tends

to fill-out” �, which motivates the replacement
of (5) by the approximation find �

M
in �

M
such

that

���
Z
D
�r�

M
� r�� �

Z
D
q �� ��� � �

M
�

This—one then proceeds to show—is actu-
ally a linear system with respect to the N com-
ponents of the DoF array �� � f��n 
 n � Ng.
Indeed, introduce the matrix elements

��� Anm �
Z
D
�rwn � rwm

and the N -vector b, say (nothing to do with the
induction field), whose components are bm �

� This constitutes a variational principle, as so often met
in physics. If there is such a variational characterization
of the solution, one can derive a weak formulation from
it. But many important problems don’t correspond to
the minimization of anything, and still can be cast in
an appropriate weak form that makes them eligible to
application of the Galerkin method. This is why the
variational aspects of the method, although historically
decisive, are downplayed in the presentation suggested
here.
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D q wm� Then, using (6) and replacing �� by

the test function wm (eligible, when m � N ,
since it then belongs to �

M
), one derives from

(7) the N algebraic equations

���
X
n�N

Amn��n � bm for allm inN �

or A�� � b, in compact form. Matrix A,
obviously symmetric and positive definite, is
called the “stiffness matrix” of the problem, due
to a mechanical analogy of little concern for us.

Assuming one has already covered a ma-
trix algebra curriculum, including algorithms
to solve A�� � b, the last practical topic to
treat is the effective computation of the stiff-
ness matrix. This process, called “assembly”
of A, consists in first evaluating the “element
matrices” At defined, for each tetrahedron t,
by Anm

t
�

R
t
�rwn � rwm, then to form

A �
P
t At by looping over t. Each At is

easily computed. There are few nonzero Anm
t

s,
for one thing, and if � is taken uniform inside
t, then, after (8),

���� Anm
t

� �� cot��tkl� length�kl��


(Fig. 3), as some elementary geometry shows.

Figure 3. Notation for formula (10): �tkl is the dihedral
angle in front of edge e � fm�ng.

So the assembly problem is solved by for-
mulas (8) and (10). These, however, hide some
structural features of A which, though one can
ignore them in a first course, are of some inter-
est.

5.3 A reinterpretation

Let’s introduce, for two edges e and e� of the
mesh, the number

���� Mee� �
Z
D
�We � We� �

and call “mass matrix” (again, due to an anal-
ogy) the square (E�E)-matrix M����, abbrevi-

ated as M, as a rule, that these numbers form.�

Now, G being the nodes-to-edges incidence ma-
trix as usual,
Proposition 1. A � GtMG.
Proof. This is a consequence of a major struc-
tural property of the Whitney complex, which
appeared last time in the general form dp

M
�

p
M

d (JSAEM, 8, 2000, p. 109, formula (22)). Its
avatar of interest here is rwn �

P
e�E GenWe

(the gradient of a hat function is a linear combi-
nation of edge elements, those of the edges that
abut on the node, with weights �� according to
orientation). Bringing that into (8), we do get
Anm =

P
e�e� GenMee�Ge�m, thanks to (11). �

Let’s not misunderstand this result: The point
is not to compute A by first computing M, then
using Prop. 1. Standard assembly, using (10), is
cheaper. Here is the point: If we set e � �G��
and d̃ � Me, the equation GtMG�� � b is
equivalent to the system

���� �Gtd̃ � b� d̃ � Me� Re � ��

which looks very much like (4), and suggests
to interpret M as a discrete Hodge operator
similar to ���. Indeed, M has the right size
(the number of active edges), and e is the array
of edge-circulations of E, as we remarked in
the Introduction. But it’s not so obvious that
component d̃e of d̃ corresponds to the flux of
D through some dual cell associated with e. As
we shall see, this is indeed so, and d̃e �

R
�e D,

where �e is the “barycentric dual” of edge e.
There is also a sense in which the b of (12)
deserves to be denoted by q̃.

This will take some preparation (next Sec-
tions, 5.4 and 5.5). Meanwhile, let’s remark
that the mixed systems one can derive from the
symmetric formulation (12), that is,

����

�
�M Rt

R �

��
e

h̃

�
�

�
�d̃q

�

�

(where d̃q is a DoF array such that �Gtd̃ � b,
and h̃ a kind of electric vector potential), and

��	�

�
M�� G

Gt �

��
d̃

��

�
�

�
�

�b

�
�

� The subscript refers to the simplices’ dimension, 1 for
edges. Similarly, there is a mass matrix M���

���, with
entries

R
D
��� Wf � Wf �

�
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are less similar than their analogues in magneto-
statics were (see (8) and (9) in JSAEM, 7, 1999,
p. 403), because M�� is here a full matrix. For
the same reason, the facet-based “electric vector
potential” formulation, RM��Rth̃ = �RM��d̃q

(compare with eq. (6), same source) has little
appeal here.

5.4 A remarkable formula

We now introduce a new notion: “dyadic prod-
ucts”, or simply “dyads”. Remember the meta-
phor of a covector 	 as a machine with one slot,
in which one slips a vector v, to get in return a
real number, denoted h	� vi ? We generalized
that to p-covectors (machines with p slots, each
of them meant to receive one vector). Now,
our purpose is to define other similar machines,
whose slots can accept geometrical objects of
various types.

The simplest case is that of a machine with
two slots, one on the left that can receive a
covector, one on the right that can receive a
vector, and a central dial that displays a real
number, with the habitual linearity properties
with respect to both arguments. Denoting by M
the machine, we shall write the dial’s reading
in the form h	�M� vi.

What can be the inner structure of such a
machine? Note that if 	 stays permanently in
the left-hand slot, the machine behaves like a
covector “when operated, single-handedly, from
the right”, and vice-versa. Hence the idea
to build a machine of this kind by using as
inner components a fixed vector and a fixed
covector, w and 
 let’s say, and to make the
dial indicate h	�wih
� vi when 	 and v are
slipped into the slots, since this rule has the
required linearity properties. Let’s denote the
machine thus obtained by the symbol wih
, and
call that the dyadic product of w and 
. So if we
substitute wih
 for M in the above expression
h	�M� vi, we get this:

���� h	�wih
� vi � h	�wih
� vi �	� v�

which in spite of looking like a notational joke
is a bona-fide definition of wih
 ! It would
not be difficult to show that the structure of
the general machine—the right name for which,
by the way, is tensor—is M �

P
iwiih
i, but

we’ll dispense with the proof. (Hint: Take a
basis, represent M as a matrix, and think of its
decomposition as a sum of matrices of rank 1.)
We shall not insist either on the generalization
to dyadic products of p-vectors by q-covectors.

Among machines like M , one is special, the
unity, denoted by 1, and defined by h	� �� vi =
h	� vi for all 	 and v.

With this, we are ready for

Proposition 2.
P

e�E eihwe�x� � ��

where e is not only a label for edge e, but stands
for the vector along edge e, while we is the
associated Whitney form.

No proof is needed, for Prop. 2 is actually
what we obtained last time (JSAEM, 8, 2000,
p. 107): The Whitney forms we were con-
structed in such a way that a vector v anchored
at x (then denoted xy), be equal to the sumP

ehw
e�x�� vi e over edges of the mesh. This

equality between vectors is equivalent to

h	�
X
e
hwe�x�� vi ei � h	� v i

for any covector 	, and hence, by linearity, toX
e
h	� eihwe�x�� vi � h	� v i � 	� v

which after (15) is exactly what Prop. 2 says.
One may argue that the very definition of Whit-
ney 1-forms (edge elements) was engineered in
order to obtain Prop. 2.

Since similar considerations dictated the con-
struction of Whitney forms for simplices of
all dimensions, edges here have no privilege.
There is such a formula for simplices of all di-
mensions: For facets, one has

P
f�F fihwf �x� �

�, where f is interpreted as a 2-vector. For
nodes,

P
n�N nihwn�x� � �. This one, like all

formulas of the family, says two things: that
x �

P
nw

n�x�xn (formula (7) of last paper),
and that

P
nw

n�x� � �, whatever x, the “parti-
tion of unity” property of hat functions. That’s
what is so remarkable about the formula of
Prop. 2, and similar ones: They express the fact
that Whitney forms make a partition of unity, for
all degrees.

Remark. Some time ago (JSAEM, 6, 1998, pp.
121–ff), we discussed basis vectors �i and basis
covectors di, and noticed that h	� vi =

P
i 	iv

i,
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in terms of the components. With the dyadic
notation, we can rewrite this as

P
i�������n �iihd

i

= 1, where n is the space dimension. A partition
of unity, again, which makes Prop. 2 less sur-
prising, and points at a deep analogy between
“Cartesian frames” on the one hand, and the
(local) “barycentric frames” provided by a sim-
plicial mesh on the other hand. Pursuing this
would lead us too far astray. �

Dyadic products are affine objects, but the
idea of vector proxies also applies to them. For
instance, if H is the proxy for 
, the proxy for
the dyad wih
 is the so-called “vector dyadic
product” w	H, which we define by the formula

����� � � �w	H� � v � �� �w��H � v� ��� v�

where both � and v are vectors, this time. The
slot for � may be left empty, which results in
�w	H��v � �H�v� w for all v. Alternatively, v
may be left out. Note that if � is considered as
the proxy for covector 	, ����� is just an avatar
of (15). Prop. 2 translates as

P
e�E e	We�x� �

�� which amounts to

��
�
X
e�E

�We�x� � v� e � v � v�

It will be a bit easier for us to use that, rather
than the literal version of Prop. 2, for the com-
putations that follow.

5.5 Matrix M and the dual mesh

So in this section, we shall use a definite met-
ric (the one implicitly assumed here since the
beginning, for which the edge element has the
form (2)), and a definite orientation of ambient
space (the “right-hand rule” one).

The dual mesh in consideration will be the
one obtained by the barycentric construction
(Fig. 4). In line with our convention to use e
for the vector along edge e, we’ll make �e serve
not only as a label for the dual edge, but for its
vectorial area, that is, the vector orthogonal to
�e, pointing in the same general direction as e,
of length equal to the area of �e. Generalizing
that, we shall feel free to consider fk� l�mg,
for instance, not only as a label for the facet
spanned by these nodes, but as its vectorial area.
(The vector points in the direction specified by
the ordering of the nodes, in conjunction with
Ampère’s right-hand rule.)

Figure 4. Left: The facet �e dual to edge e, in the
barycentric construction. Labels such as mk, mkn,
etc., point to centers of primal edges and facets. The
tetrahedron’s center is o. Right: The area of �e is one
sixth that of fmn� k� lg. (All small triangles shown have
the same area.)

Now, let us set v � �We in (16). Replacing
the summation index e by e� to avoid confusion,
we getX

e��E

��We�x� � We��x�� e� � �We�x��

which can be integrated over D, yielding, if one
takes (11) into account,

X
e��E

Mee� e� �
Z
D
�We�

Be careful here that we integrate a vector-
valued function (the vector field �We), so the
result is a vector.

For the next step, let’s suppose � is the same
all over D, and thus can be factored out, a
simplifying hypothesis that we shall reconsider
later. First,

Lemma 1. The vector-valued integral of We

over tetrahedron t is equal to the vectorial area
of the part of �e contained in t.

Proof. Let hn be the length of the altitude
falling from node n onto the opposite facet
fk� l�mg. Since rwn is a constant vector
over t, of magnitude 1/hn, we have

R
t
rwn

= fk� l�mg��. The average of wm being 1/4,
we get

R
t

We = �fk� l�mg� fk� l� ng����. But
this is fmn� k� lg�
, which, as Fig. 4 shows, is
equal to the part of �e local to t. �

The result, obviously, does not depend on the
particular arrangement of nodes on the figure:
What counts is the fact that e and �e point
in the same direction. Therefore, by adding
contributions from all tetrahedra around edge
e, we get this, where �e is now the whole dual
facet:

39



    

Proposition 3.
R
D We = �e.

So when � is constant, we arrive at the follow-
ing relation:

����
X
e��E

Mee� e� � � �e�

Back to the general case, now. If � is uniform
in each individual tetrahedron, which we gen-
erally can assume, then

R
t
�We = �t �et, where

�et is the part of �e local to t. By adding con-
tributions of all tetrahedra, we still find (17),
provided � �e is understood as the sum

P
t �t �et,

which we may call the “�-related vectorial area”
of the dual facet �e.
Remark. This is not ad-hoc fancy. As repeat-
edly mentioned here, the coefficient � of ����
(which could as well be a tensor �ij) is just
a proxy for the Hodge operator ���. The con-
stitutive law �d � ���e, as expressed in terms
of differential forms, has an intrinsic charac-
ter which its equivalent in terms of the proxies,
Di �

P
j �ijEj , lacks. Change the metric, ���

stays the same, but �ij has to change. Could
therefore the metric be selected so as to make
�ij as simple as possible, that is, unity?

The answer to that is yes. This is the “Hodge
implies metric” result alluded to in JSAEM, 6,
1998, p. 325: Given a linear map ��� from 1-
forms to twisted 2-forms, with adequate prop-
erties of symmetry and positivity, one may con-
struct a metric the Hodge operator of which is
precisely ���. Let’s call that the “�-related” met-
ric. In this metric, vector proxies for �d and e
are D� and E�, different from D and E, and they
are linked by D� = E�. When one works out
the exercise on “what is the �-related vectorial
area of �e?”, one does find the above expres-
sion

P
t �t �et� where �t may be understood as

a tensor acting on the vector �et. �
Thus (17) has validity beyond the particular

metric we use. Comforted by that, let’s carry
on with this particular metric to see the impli-
cations of this formula.

5.6 The Galerkin-induced discrete hodge

Suppose now a piecewise uniform vector field
E (i.e., constant over each primal tetrahedron),
not necessarily the physical solution, but a field
which does have tangential continuity across

facets. It’s the proxy of some 1-form e. Let D =
�E, also piecewise uniform by our assumptions
about �, and the proxy of �d = �� e. Take the dot
product of both sides with E. Then the array
of circulations e = fE � e 
 e � Eg is what we
denoted r

M
e in recent issues. The left-hand side

thus yields the sum
P

e� Mee� ee� , i.e., �Mr
M
e�e.

On the right-hand side, we get the flux of D
through �e, that is, the component at edge e of
what we called r

M
�� e. We may therefore assert

that ���rMe � r
M
��e for any piecewise constant

1-form e when ��� is taken equal to M.
This, we know, is the essential property for

a would-be discrete hodge, which allows us
to conclude, after a process of local Taylor
expansion similar to what was done earlier,

���� ���rM � r
M
��� � � when M� ��

the consistency property for ��� 
 M���.
So now, we are justified to consider the

edge-element mass matrix M��� of (11) as a
realization of the discrete Hodge operator ���. It
links edge circulations with fluxes through dual
facets, indeed, provided the latter are taken as
the dual 2-cells in the barycentric construction
(Fig. 4).

This “Galerkin hodge” gives a convergent
scheme in statics, which is no news, but the
interesting point is that it can be proven along
the same lines as with the “orthogonal” hodge.
Let’s not go into this again. Note that stability
is here a built-in property, because the (up to
a factor 2) discrete energy jjejj�� = hMe� ei coin-
cides here with the continuous energy jp

M
ej�� =R

D �jEj�, by construction, hence jp
M

ej� � jjejj�
(cf. (17) p. 406 in JSAEM, 7, 1999). As we in-
voked mesh uniformity earlier in order to assess
stability, one may wonder whether uniformity
is necessary in the Galerkin approach. It is:
the convergence property p

M
r
M
e � e relies on

it, and will be lost for pathological refinement
methods [1].

For facets, the analogue of Prop. 3 is
R
D Wf

= �f . This has an unexpected application to the
interpetation of the standard “method of mo-
ments” [5] as a Galerkin method, for which I
must refer to [3]. The analogue for nodes is
worth looking at, too: it’s

R
D wn = vol(�n), with

the consequence that if q is piecewise constant,
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then
R
D q wn is the total electric charge con-

tained in the dual 3-cell �n. JUst what we needed
to identify the b of (12) and the q̃ of (4): this
is right when q is piecewise constant.

Remark. Be careful, it’s not true that
R
�e ���w

e�

=
R
�e� ���w

e. Therefore, simply taking the flux of
�We through the dual face �e� does not provide
a discrete Hodge operator. �

The analogue of (17) for facets, derived fromP
f�F �Wf �x� � v� f � v � v� is

����
X
f ��F

�M���
����ff

�

f � � ��� �f�

hence a Galerkin hodge that discretizes ����� .

5.7 Dynamics, again

Thus in possession of the two required hodges,
we may use them to solve the antenna problem,
with given current density. Substitute M���� for
��� and M���

��� for ��
��

� in eqs. (5) and (6),
p. 295 of JSAEM, 7, 1999, hence the following
scheme [6, 7]: Starting from b� � � and e����

= 0, find successive DoF arrays bk and ek����

such that, for k � �� �� � � �, etc.,

M����
ek���� � ek����


t
� RtM���

���bk �˜k�

����
bk�� � bk


t
� Rek���� � ��

This, which is the time-domain extension of
an earlier proposal to use edge elements for the
time-harmonic problem [2], has the advantage
of avoiding the sometimes problematic con-
struction of the orthogonal dual mesh. But the
incurred penalty is heavy: Since M���� is not
diagonal, the scheme is not explicit. Fortu-
nately [4],

Proposition 4. The diagonal matrix H, indexed
over edges, whose entries are, for each edge
e � fm�ng,

Hee � ��GtM����G�mn 
 �Amn

(the A of Prop. 1), verifies GtHG = GtM�G.

Proof. �GtHG�mn =
P

e�E GemHeeGen. The
only nonzero term in this sum obtains for edge
e joining m to n, if there is such an edge, and
then equals �Hee, since GemGen = ��. On

the other hand, �GtM�G�mn = 0 if m and n
are not joined by an edge. (Note this is special
to tetrahedral meshes. The proof would fail
otherwise.) �

Thus H can replace M in statics, giving
the same scheme. By a previously enunciated
heuristic principle, we may substitute this “di-
agonally lumped” hodge H for M���� in the
dynamic scheme (20), and expect convergence.
This works, as proven in [4].

Alas, there is a hitch: Nothing ensures that
Hee � �, which as we know is required for
stability in (20). As formula (8) shows, this
requires acute dihedral angles, a not so easily
met condition. Nothing comes free!
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