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(4): From degrees of freedom to fields

Where we stand

“Building a finite-dimensional ‘Maxwell’s
house’”, so was the subtitle of this series. The
goal is now in sight, as we have in hand a
systematic discretizing procedure for all equa-
tions derived from Maxwell’s. Solving the al-
gebraic system that results, we can find time-
dependent arrays of degrees of freedom (DoF
arrays), which give an approximate picture of
the fields by telling us about fluxes through
faces, about emf’s along edges, etc. What we
don’t know yet is how to “interpolate” from
DoF’s, i.e., how to reconstruct fields from com-
puted DoF arrays.

4.1 Why interpolants?

One may wonder, must this be done, really?
After all, as we argued earlier, all one can
hope to measure about the electromagnetic field
is, precisely, fluxes and circulations, so what’s
wrong with a method that would provide only
those? First answer: We may want them at
a much smaller scale than what the computa-
tional mesh provides, hence the necessity of in-
terpolation. Post-processing, in the same spirit,
may require the determination of the fields in-
side mesh cells. But these reasons are not the
most compelling ones. As we began to see last
time, field reconstruction is needed, basically,
to assess the validity of the numerical method.

To stress this point anew, let’s review the dis-
cretization process. Having built a mesh, with
its incidence matrices G, R, and D, we assign
unknowns to primal or dual cells, according to
their geometrical nature (Fig. 1), and replace
fields, in the equations, by arrays e, b, d̃, h̃, of
such DoF’s. We replace the operators rot and
div by R and D (or by Rt and Gt, according to
what Fig. 1 suggests), the time-derivatives by
finite differences (at

integer or half-integer time-steps), and the ma-
terial coefficients � and � by our so-called “dis-
crete Hodge operators”, the square matrices de-
noted �̃� and �̃� in past issues. Hence algebraic
equations, that a computer can solve for us.

Figure 1. A discretizing machine for Maxwell’s equa-
tions, showing where degrees of freedom sit (“�” is
short for “dual”) and which matrices link the various
DoF arrays. (Time discretization, not shown, is done
via the replacements �tb � (bk+1 � bk)��t and �td̃ �
(d̃k+1�2 � d̃k�1�2��t.) Compare with Fig. 6, p. 326,
JSAEM, 6, 4 (1998).

We realized that building these matrices �̃�

and �̃� is the central problem in this approach:
Assessing their quality mandates a convergence
proof. We argued that it was enough to have
one in the static case, and we identified two
steps in this proof: checking consistency, i.e.,

(1) �̃�rM � rM �̃� � 0 when M � 0

(and a similar thing about �̃�),1 and show-
ing stability, a property of the approximation

1 See JSAEM, 7, 4 (1999), for the notation. Let’s recall
that rM denotes the operator which maps a field to a
DoF array of the appropriate kind. For instance, in the
case of h̃, it maps to the array rM h̃ of mmf’s h̃f =

R
f̃
h̃

along dual edges, indexed over the set F of primal
faces. As b = �̃�h̃, the array rM �̃�h̃ contains the facet-
fluxes of b. This is not quite the same as �̃�rM h̃, hence
�̃�rM � rM �̃� �= 0. But we made sure, in defining �̃�,
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scheme which we wrote, in the case of b, as

(2) �jpM bj� � jjbjj� �

On the right, there,2 the “discrete energy” of
the DoF array b (up to squaring and halving).
On the left, the magnetic energy of the approx-
imation pM b to b that one can produce, given b,
thanks to the interpolation operator pM . We had,
last time, such an operator ready-made, thanks
to the fact that Db = 0.3 But that would not
work for volumes with more than four facets.
Besides, to go beyond magnetostatics, we need
(2) for other fields than b, for which such a
lucky accident as this relation Db = 0 will not
occur.

So, to sum up: For each kind of DoF array,
we need an operator, generically denoted by pM ,
which maps it to a differential form (DF) of the
appropriate kind: pM e, starting from an edge-
based DoF array e, should be a 1-form; pM b,
obtained from a facet-based b, should be a 2-
form, and so forth. We want the emf of pM e
along edge e, that is to say (rM pM e)e, to equal
ee, for each edge, therefore rM pM = 1 should
hold. On the other hand, if the array, u let’s say,
comes from a DF u by u = rM u (i.e., by taking
fluxes or circulations of u, as the case may
be), we don’t expect pM u to equal u, but the
difference should be small in the proper energy
norm, and the finer the mesh, the smaller it
should become. So pM should behave as follows
in relation with rM :

(3) rM pM = 1� pM rM � 1 when M � 0�

that they were the same when b is uniform, a condition
to which one tends, locally, when the mesh is refined;
hence the ease with which we proved (1) for the specific
discrete Hodge operator of last issue, the one with entries
� area(f )/length(f̃ ) on the diagonal. (�̃� is the inverse
of �̃�.)

2 Again, let’s recall that jjbjj� (with boldface vertical bars),
called the “�-norm” of b, is the square root of the energy-
related quantity hb� �̃�bi, where hb� h̃i stands for the sumP

f�F bf h̃f . The similar quantity jbj� was defined as the
square root of

R
D
��1jBj2, where B is the vector proxy

of b.

3 We simply took the proxy B uniform inside each tetra-
hedron, by adjusting three of its facet-fluxes to the given
bf s. The fourth DoF is automatically right, because of
the linear constraint Db = 0 (which also entails divB =
0).

As for the stability property (2), we saw last
time that it would automatically be satisfied in
the case of a uniform family of meshes, defined
as one in which only a finite number of cell-
shapes can exist, for both the primal and the
dual4 mesh. Our objective, therefore, is to
satisfy (3) when building pM for all possible
kinds of DoF arrays.

4.2 Interpolating from nodal values

We know a solution to this problem in the case
of (primal-) node�based DoF arrays, at least
for a simplicial primal mesh.5 Such arrays
correspond to straight DF’s of degree 0, i.e.,
to functions, and interpolating a function from
its nodal values is what �nite elements are
about, so we are on familiar ground there. To
capitalize on this knowledge, we shall need
to look at this kind of interpolation from an
unusual angle, however.

Figure 2. The weight �i(x) is the relative volume of the
tetrahedron fx� j� k� lg (cf. (5) below).

Let’s first consider a single tetrahedron in
3D space (Fig. 2), with nodes labelled i� j� k� l,
located at points xi� xj � xk� xl (not all of them
in the same plane). As one knows, there are
four functions, �i� �j � �k� �l, such that

(4)
X

n�fi�j�k�lg

�n(x) (x� xn) = 0

for all points x. Known as the barycen�

tric coordinates of x, they satisfy the equal-
ity
P

n �
n = 1, and have the familiar geometric

4 This implies that the centers of primal cells, as used
in the orthogonal construction, occupy the same relative
position within all cells of similar shape. This property
was used last time (JSAEM, 7, 4 (1999), p. 407) to show
that the 	 of (2) is 
 0, but I should have put more
emphasis on this important point.

5 The case of hexahedral 3-cells, also well understood,
won’t be discussed here for the sake of brevity.
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interpretation that Fig. 2 recalls:

(5) �i(x) =
vol(fx� j� k� lg)
vol(fi� j� k� lg)

�

Clearly, at least one �n(x) is negative for x
outside the tetrahedron.

Remark. There is a unique set of “barycentric
weights” �n(x) for which (4) holds, so (4) does
define the �ns, which are therefore a�ne ob-
jects. Formula (5), which needs the extraneous
notion of volume to make sense, is not their def-
inition but a consequence. There is no measure
of volumes in an affine space, yet ratios of vol-
umes are a meaningful affine concept. (Check
that the ratio (5) is invariant with respect to a
change of metric, i.e., the same for two different
dot products.) �

Remark. Actually, volume in an affine space
can be defined without a dot product in back-
ground. It suffices to introduce a reference
tetrahedron (a reference d-simplex, in dimen-
sion d), which by convention has volume 1.
Then, any tetrahedron t can be mapped onto
the reference one by some affine transforma-
tion, the determinant of which is, by definition,
vol(t). (It’s a signed number; take its absolute
value to get a positive volume; chop bodies of
more general shape into tetrahedra to extend
the notion of volume to them.) The mapping t

� vol(t) is called “a volume”. Possible vol-
umes, in this sense, differ by a multiplicative
constant. Note that giving a volume says noth-
ing about areas or lengths: In this respect, the
structure “affine space + volume” lies between
“(naked) affine space” and “Euclidean space”
(affine space + dot product). �

Since
P

n �
n(x) = 1 for all x, another way

to write (4) can be, with a very mild notational
abuse,

(4�) x =
X

n�fi�j�k�lg

�n(x)xn�

which represents x as the barycenter of the
vertices xn, with weights �n(x).

Next, if instead of a single tetrahedron we
have a tetrahedral paving of some domain D
(this will be our primal mesh, M ), then a
barycentric function �n

t
can be defined for each

node n and each tetrahedron t. Set6

(6) wn(x) = maxf�n
t
(x) : t � T g�

This is a piecewise affine function (i.e., affine
over each individual t), continuous in x, non-
negative all over D (contrary to the �n

t
s), and

positive inside the set-union of tetrahedra that
have n as one of their nodes. One will have
recognized the standard7 “hat function” of fi-
nite element theory.

On the model of (4�), we may write

(7) x =
X
n�N

wn(x)xn�

again a fairly legitimate abuse of notation: (7)
makes x appear as a weighted sum of all nodes
of the mesh, but with all weights null, except
for the nodes of the simplex that contains8 x.
This is a key observation, which we shall soon
exploit.

Hat functions do serve as interpolants, as one
knows: Starting from a node-based DoF array
f��n : n � Ng, one may set

(8) (pM ��)(x) =
X
n�N

wn(x)��n

to obtain a piecewise affine function whose
value at xn be ��n. Hence a pM for which
rM pM = 1 holds. On the other hand, if we
start from some continuous function �, and
set �� = rM �, that is, ��n = �(xn), we get an
approximation pM rM � to �, with the property
that

R
D jpM rM � � �j2 � 0 when M � 0.

(No need to prove this well-known fact here.
See [2] for a proof in line with the present
approach.)

6 Recall that we denote by N � E �F � T the sets of nodes,
edges, etc., of the primal mesh—all of them: the restric-
tion to “active” cells, introduced in previous columns, is
irrelevant this time.

7 Except for the unusual symbol w, that one may un-
derstand as a mnemonic for “weight”. Later, we’ll find
another interpretation.

8 It may be a p-simplex with p � 3. Remember that our
primal cells are not supposed to contain their boundaries,
unless p = 0. So if we say that “x belongs to edge e =
fm�ng”, for instance, we understand that wm(x) 
 0,
wn(x) 
 0, and wi(x) = 0 for all other nodes.
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Well, what have we done there, that could
show the way to generalization? Compare (8)
to (7). The value we attribute to pM �� at point
x is the weighted sum of the nodal values ��n,
the weights being the same as those by which

x is expressed as a sum of nodes. That’s our
clue: if we were somehow able to express a line
as a weighted sum of mesh-edges, a surface
as a weighted sum of mesh-facets, etc., we
could generate a 1-form from an edge-based
DoF array, a 2-form from a facet-based array,
and so on.

4.3 Chains

To see how, suppose for a moment that we have
(to be specific) a facet-based DoF array b, from
which we want to build a (straight) 2-form pM b.
Straight 2-forms map inner-oriented surfaces to
real numbers. So we will know pM b if we
know its integrals

R
S pM b for all inner-oriented

surfaces S. These we do know when S is one
of the primal facets (remember they have inner
orientation), since then,

R
f pM b = bf . (This

is what rM pM = 1 means in that case.) Now,
suppose we have a sensible way to represent S
as a sum of facets:

(9) S �
X
f�F

wf (S) f�

with appropriate weights wf (S) (compare with
(7)). Then, owing to the additivity of the
integral,
Z
S
pM b =

X
f�F

wf (S)
Z
f
pM b �

X
f�F

wf (S) bf �

so it’s just natural to set

(10)
Z
S
pM b =

X
f�F

wf (S) bf �

Thus our problem is solved if we can make
some sense out of formula (9).

Not an easy task, it seems, for the term on the
right in (9) has no obvious meaning, on the face
of it (what would be the result of “multiplying
a facet by a number”, and then, what would
it mean to “add” such objects?) This is why
we can’t use an equal sign, hence the “�”,
meaning “similar to”. Yet we can give status to
this expression

P
f�F wf (S) f , by considering

it as just another way to denote the array of real
values fwf (S) : f � Fg. Such an array (quite
alike a DoF array, but conceptually different) is
called a (simplicial) 2-chain. Needless to say,
there are p-chains for all dimensions p of the
underlying simplices.9

If c = fcf : f � Fg is such a 2-chain,
writing it as a formal sum, c =

P
f�F cf f , is a

convenient device, which makes chain addition,
for instance, defined as c1 + c2 =

P
f�F (cf1 +

cf2 ) f , look natural: just follow the rules of
algebra. Further evidence of its usefulness will
come.

So that’s what we have at the right-hand side
of (9): a 2-chain. Could S itself considered as
a 2-chain in some way?

This is not so unlikely. A single facet f
can be viewed as the chain with all weights
0, except cf , equal to 1. Therefore, an inner-
oriented surface which is made of an assembly
of facets can be viewed as a chain, too, that we
shall call the associate chain: its coefficients
are �1 for each facet of the assembly, with
sign + or � depending on whether orientations
match or not, and 0 for all other facets (Fig. 3).
For brevity, we shall call “M -surfaces” those
composed of such assemblies. (There is a
similar notion of “M -line”, and we’ll say “M -
manifold” to cover all cases, p = 0 to 3.) If
S in (9) is an M -surface, the pseudo equality
begins to make sense: on the right, we have
the 2-chain associated with S, with weights �1
or 0.

Figure 3. An M -line, oriented, embedded in a 2D-mesh,
and the coefficients of its 1-chain associate. (Arrows
indicate the orientation of each edge.) Imagine that for
p = 2 in dimension 3.

Yet the two concepts don’t coincide. Not all
surfaces are M -surfaces, and coefficients of an
arbitrary chain can take other values than 0 and

9 Chains make sense for all kinds of cell-pavings, not
only the simplicial ones to which we restrict here.
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�1. So it’s better to use distinct notation for
the M -surface S and for its associate: We shall
denote the latter by pt

M
S. (Why this symbol

will soon be clear.) Now we may rewrite (9) as
pt

M
S =

P
f w

f (S) f , with a legitimate equality,
and the task at hand becomes better defined: To
any inner-oriented surface S, made of mesh-
facets or not, associate a 2-chain pt

M
S. Then

use the coefficients of this chain as weights in
(10).

Before facing this task, a last concept relative
to chains: boundaries. Taking the boundary
of a chain is an algebraic operation, defined
in order to correspond, as closely as possible,
to taking the boundary of a manifold. The
boundary of a p-chain c is a (p � 1)-chain 		c,
with the following properties: First, linearity,
		(c1 + c2) = 		c1 + 		c2. Second, if M is an
M -manifold with boundary 	M , the boundary
of the chain associated with M is the chain
associated with the boundary of M � � � Oh well,
rather use symbols:

(11) pt
M

(	M ) = 		(pt
M
M )�

that is, pt
M
	 = 		pt

M
, another instance of conju�

gacy. Thanks to (11), 		 is known for all chains,
by linearity, if it is known for those associated
with simplices.

But this information is precisely what inci-
dence matrices convey: For instance, 		pt

M
(f )

=
P

e Rfee, where R is the edge-to-facets in-
cidence matrix. From this, the boundary of a
2-chain c is seen to be Rtc. Matrix represen-
tations of 		p, therefore, are Gt, Rt, Dt, for p
= 1, 2, 3. Remember that, as regards DoF ar-
rays, we had a generic operator dp, realized as
G, R, D, for p = 0, 1, 2. (JSAEM� �, p. 156.)
So 		p+1 = dt

p. More and more, chains appear
as dual objects with respect to what we have
called up to now DoF arrays.10

4.4 Interpolating from edge values

10 Indeed, the received name for DoF arrays is “cochains”.
The duality pairing between a 2-chain c and a 2-cochain
b yields the number

P
f�F bfcf � Eq. (10) says this will

coincide with
R
S
pM b when c = ptM S. Here we see

the rationale for the symbol ptM : in ad hoc notation,
hpM b� Si = hb� ptM Si —a transposition.

We know how to associate a 0-chain with a
point: that’s what formula (7) does, although
we should rewrite it, in full rigor, pt

M
x =P

n�N wn(x)xn if the right-hand side is seen
as a 0-chain, not as a barycenter. We won’t
bother with that, however, and drop the pt

M
in

what follows.

Next step is p = 1, curves. How on earth
can a curve c be expressed as a 1-chain?
Easy: Chop it into small parts, replace them by
straight segments, assign chains to these, sum
all these chains, and go to the limit. So it boils
down to being able to associate a 1-chain to any
oriented segment, going from point x to point y
(we shall write it xy). We may as well (Fig. 4)
suppose that x and y belong to the same tetra-
hedron, fi� j� k� lg say. (Otherwise, break xy
into subsegments.)

Figure 4. The weight of xy relative to xixj (see (13)
below).

We now indulge for a while in a heuristic
derivation (for which sloppy notation can be
tolerated). Since x =

P
n �

n(x)xn and y =P
n �

n(y)xn (where n spans fi� j� k� lg), one
has, by deliberately confusing oriented seg-
ments such as xy with vectors such as y � x,

y � x = y �
X
n

�n(x)xn =
X
n

�n(x) (y � xn)

(since
P

n �
n(x) = 1), hence

(12)

xy =
X
n

�n(x) (xn �
X
m

�m(y)xm)

=
X
n

�n(x)
X
m

�m(y) xmxn�

and that’s a step forward: we have the segment
xy as a weighted sum of segments which co-
incide with edges, but either with one or the
other orientation. So each of the relevant edges
(those marked by orientation arrows on Fig. 4)
appears twice, with opposite signs, in the above
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sum. Grouping these pairs of terms, we find

(13)
xy = (�i(x)�j(y)� �j(x)�i(y))xixj

+ � � � �

where the dots stand for five similar expressions
for the other edges—hence our weights, and the
1-chain which represents xy.

After (5), it’s a good bet that

�i(x)�j(y)� �j(x)�i(y) =
vol(fx� y� k� lg)
vol(fi� j� k� lg)

�

as suggested by Fig. 4. To check this, it will
be convenient to place the origin at xk, which
allows us to use the symbol x for the vector
x�xk, and thus to write x = �i(x)xi+�j(x)xi+
�l(x)xl. Let’s also introduce a metric, via a dot
product “	”, and an orientation, which makes a
cross product “
” available. The volume of
fx� y� k� lg is then 1
6(x
 y) 	 xl, i.e. (terms in
�lxl, which would contribute nothing, are left
out), one sixth of

((�i(x)xi+�j(x)xj)
 (�i(y)xi+�j(y)xj)) 	 xl

� (�i(x)�j(y)� �j(x)�i(y))(xi 
 xj) 	 xl�

which equals 6 vol(fi� j� k� lg) when x = xi
and y = xj , hence the above expression of the
weight as a ratio of volumes. Of course, this
result does not depend on the metric used.

Yet, while we have a metric, let’s use it to
express (13) a little differently. Since the gra-
dients r�n are uniform fields, one has �n(y)�
�n(x) = r�n 	 xy. Therefore,

�i(x)�j(y)� �j(x)�i(y) =

�i(x)(�j(y)� �j(x))� �j(x)(�i(y)� �i(x))

= (�i(x)r�j � �j(x)r�i) 	 xy�

also equal to (�i(y)r�j � �j(y)r�i) 	 xy, by
symmetry between x and y, and to

(�i(z)r�j � �j(z)r�i) 	 xy

for all z on the segment xy, thanks to the
affine character of the �ns. Averaging in z,
one sees that �i(x)�j(y) � �j(x)�i(y) equals
the circulation along xy of the vector field
�ir�j � �jr�i, in which one recognizes the
familiar form of the “edge element”.

Remark. Another useful form of it (easy to
check: just dot-product by xy) is

(�ir�j � �jr�i)(x) =
xxk 
 xxl

(xixk 
 xixl) 	 xixj
�

(The denominator is 6 vol(fi� j� k� lg), a con-
stant, but be careful with its sign, orientation-
dependent. In programming, the formula as
given is safer.) Note that xxk 
 xxl = (xk �
x) 
 (xl � x) = (xl � xk) 
 (x � xk)� hence
the Nedelec A + B 
 x representation [4] of a
vector field generated by edge elements,11 the
one used in early implementations [3]. �

Figure 5. Edges with nonzero weight (highlighted) in the
chain associated with c. The weight is null, for instance,
for edge e, since the support of its Whitney form (shaded)
is not traversed by c.

Back to where we started, a curve c inside D,
its weight, with respect to an edge e = fm�ng
which goes from node m to node n, is the
limit of the Riemann-like sum of contributions
of small segments analogous to xy in which c
is partitioned. So it’s the circulation we(c) =R
c � 	W

e along c (oriented by the choice of unit
tangent vectors � ) of the vector field

(14) We = wmrwn � wnrwm�

Only edges of the tetrahedra traversed by c
contribute, actually (Fig. 5), and we(c) only
depends on the part of c lying in the support of
We, i.e., in the cluster of tetrahedra that have
edge e in common.

11 Here, A and B denote 3D vectors, one pair for each
tetrahedron, hence 6 parameters to match the six edge
circulations. That was neat, at the time. But this
expression looked so much like the field of velocities in
the rotation of a solid (cf. a previous column, JSAEM, 6,
2 (1998), p. 115) that years were lost on this false track
before the affine nature of the edge element (cf. (15)
below) was recognized. Metric notions, such as “rigid-
motion fields” or “orthogonal subspaces”, though often
met in discussions of edge elements, are irrelevant.
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But we know better than resting with (14):
the weight we(c) must not depend on the metric.
What we have in (14) is just a vector proxy for
the real thing, the differential form

(15) we = wmdwn � wndwm�

whose integral
R
cw

e is the weight we(c). (Note
that

R
ewe = 1.) This is called a “Whitney form”,

and we have one for each edge. (In retrospect,
wn, a zero-form, was the Whitney form of
node n, so now we may expect each simplex,
whatever its dimension, to have a Whitney form
of its own.)

Thus we have solved the problem of associ-
ating a chain with c: the associate is

(16) pt
M
c =

X
e

we(c) e

(compare with (7)). Correlatively, we have
solved the problem of interpolating from edge
values: what interpolates from the edge-DoF
array a is the (straight) 1-form

(17) pM a =
X
e�E

aewe�

Note that
R
e� we = 0 for e� �= e, because both wn

and wm in (14) or (15) vanish on other edges
than e = fm�ng. This shows (integrate both
sides of (17) along e�) that rM pM = 1 holds,
again in this case. The convergence property,
pM rM � 1 when M � 0, also holds,12 under the
condition of mesh uniformity.

4.5 The complex of Whitney forms

How to associate a chain with a tiny triangle
xyz, and hence, how to interpolate from facet
values, is now an easy guess.

12 Refs [9] and [17] of last issue contain a general proof,
valid for all dimensions p. Let’s just sketch an elemen-
tary one for p = 1, using vector proxies. The task reduces
to evaluate

R
t
jA � AM j2, where A and AM are proxies

for a and pM rM a, for each tetrahedron t. There, one has
AM (x) = At + Bt � (x � xt), where xt is some point
inside t. The Taylor expansion of A � AM about xt
contains terms of degree 2 and higher, which contribute
to the integral a term in 
4

M vol(t) (where 
M is the grain
of the mesh), and the gradient of a quadratic function
which one may assume vanishing at nodes (by adjusting
At). Thanks to this, and to uniformity (necessary, as
the counter-example in [1] shows), its contribution is in

2

M vol(t), hence
R
D
jA � AM j2 � C(A)
M .

First, we notice a pattern in (4�) and (12),
which suggests

xyz =
X
m�n�q

�m(x)�n(y)�q(z)xmxnxq

as the next item in the sequence. Here, indices
m, n, and q span the set fi� j� k� lg indepen-
dently, so it makes 64 terms, but many of them,
like e.g., the term in xixixj , don’t correspond
to facets, and thus “count for nothing”. Others,
such as xixjxk, xjxkxi, xkxjxi, etc., corre-
spond to the same facet, but with both possible
orientations. Grouping them, we find that the
weight of xyz with respect to facet ijk is

�i(x)�j(y)�k(z) + � � � =
vol(fx� y� z� lg)
vol(fi� j� k� lg)

�

where the dots stand for 5 other terms, obtained
by index permutation and (for the three odd per-
mutations) sign-change. If this sounds like a
determinant, no surprise: indeed, vol(fx� y� z� lg)
is one sixth of the determinant of vectors xlx,
xly, xlz. The consistency, so far (Figs 2, 4, and
6), of these interpretations of weights as “rela-
tive volumes” shows that we have the general
rule, as summarized by Fig. 6.

Figure 6. Representing a “small” p-simplex (xyz, here,
p = 2) as a weighted sum of p-faces of the d-simplex
fi� j� k� l� � � �g (spatial dimension d = 3 here). Note how
the very ordering of points, x, y, z, inner-orients xyz.
Its weight with respect to fi� j� kg is the ratio of the
volumes of fx� y� z� l� � � �g and of fi� j� k� l� � � �g. (Recall
that volumes can be negative, and that a ratio of volumes
is a purely affine notion.)

Next, a manipulation similar13 to what led us
to the above form �ir�j��jr�i of the vector
proxy leads this time to

Wijk(x) = 2 (�i(x)r�j 
r�k + � � � + � � �)

13 but a bit too lengthy to be included; the trick is to
consider xyz as a vector (the vectorial area) and to
express it as half the cross product xy � xz.
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(two other terms, by circular permutation on
i� j� k), of which another form is

2xxl
(xixk 
 xixl) 	 xixj

�
xxl

3vol(fi� j� k� lg)
�

As above, the weight of a surface S with respect
to a facet f = fl�m� ng is then the flux wf (S) =R
S � 	Wf of the vector field

(18) Wf = 2(wlrwm 
rwn + � � � + � � �)

(again, two other terms, by circular permutation
on l�m� n). Of course, wf (f �) = 1 if f = f �, 0
otherwise.

Remark. Be warned that the unit normal vec-
tor � here is meant to inner-orient S, which it
does in cooperation with the assumed orienta-
tion of 3D space. It does not correspond to an
intrinsic, physically meaningful crossing direc-
tion. �

Finally, we infer the affine representation of
the facet element from its vector proxy (18):

(19) wf = 2(wldwm � dwn + � � � + � � �)�

and from this, we infer the structure of Whitney
forms in general: if s = fn0� n1� � � � � npg is a
p-simplex (whose inner orientation is implied
by the very order in which we list its nodes),
its Whitney form [5] is

ws = (�1)i p!
X

i=0�����p

wnidwn0 � ���hii���� dwnp�

where the hii means “omit the term dwni”. But
of course there is little use for such generality in
the applications we have in view. Already when
p = 3, in 3D, the “volume element” W t for
tetrahedron t is simply the function equal to 0
except on t, where it’s equal to 1/vol(t). (This
is the function proxy of a piecewise constant
3-form wt, totally determined by the simple
condition

R
t
� wt = 1 if t = t

�� else 0�)

Anyway, we have enough to see the whole
picture: To each primal p-simplex s (with p
= 0 to d in d-dimensional affine space), there
corresponds a Whitney form ws of degree p,
such that

R
sw

s = 1, and
R
s� w

s = 0 for other
p-simplices of the mesh. The prolongator of a
p-cochain u (the promised Whitney map) is

(20) pM u =
P

s usw
s�

the p-chain associate of a p-manifold M is

(21) pt
M
M =

X
s

(
Z
M
ws) s�

and (3) holds for a uniform family of meshes.
Last, transposing (11) yields

(22) dpM = pM d�

We shall adopt the notation W p(D) for the
finite dimensional space generated by Whitney
p-forms.

This quite satisfying uniformity of properties
does not exhaust the subject. Remember that
dp
dp�1 = 0 and, in the case of a contractible14

domain D, ker(dp) = cod(dp�1)� Combining
that with (22) we find, effortlessly, the follow-
ing structural property of the Whitney com-
plex of forms: for p = 1 to d,

(23) dW p�1 �W p� ker(d ;W p) = dW p�1�

We’ll see later how important this is (and
hence, how important (11) is). But the next im-
mediate task, now, is to use the above Whitney
map for Galerkin-style discretization. We’ll
find, with not too much surprise, that this is
just another way to derive discrete Hodge op-
erators.
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