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(3): Convergence

Where we stand

Trying to discretize the Maxwell equations by
using a pair of interlocked meshes, we have
obtained a system of ordinary differential equa-
tions

(1) �tb + Re = 0� ��t�̃�e + Rt
�̃
�1
� b = j̃�

There, e and b are arrays of degrees of freedom,
meant to approximate the emf’s and magnetic
fluxes associated with edges and facets of the
primal mesh, and R is the edge-to-facets inci-
dence matrix. Intensities through dual facets,
which compose the array j̃, are supposed to be
known, as functions of time. Symbols �̃� and
�̃� denote square symmetric positive-definite
matrices which encode the constitutive laws in
“discrete” form.

We chose such strange-looking symbols in
order to emphasize the connection with the
Hodge operator �̃ of differential geometry, which
appears in the “continuous” form of the consti-
tutive laws,

b = � �̃ h̃� d̃ = � �̃ e�

We shall rewrite this as b = �̃�h̃ and d̃ = �̃�e
from now on, to stress the parallel between the
compound operators �̃� = ��̃ and �̃� = ��̃ and
the “discrete Hodges” �̃� and �̃�.

The form (1) of the discrete equations was
practically forced on us—as soon as we decided
to use meshes in duality, that is. But what �̃�

and �̃� should be, in detail, was left to our
choice. We found several criteria about what
constitutes a “good discrete Hodge”. In the case
of mutually orthogonal meshes (the “orthogonal
construction” of Part 1, cf. JSAEM, 7, 2, 1999,
pp. 150-9), a likely candidate was identified: a
diagonal discrete Hodge, which in the case of
�̃� had the following diagonal entries (indexed

over facets f of the primal mesh):

(2) �̃
ff
� = �

area(f )

length(f̃ )
�

where f̃ is the edge dual to f in the dual mesh
(Fig. 1). Similarly, �̃ee

� = � area(ẽ)�length(e).
Let’s immediately emphasize that there are
other ways to build a discrete Hodge, and we’ll
consider a few of them later. But this one, being
particularly simple, should be a good test of the
validity of the whole approach: Can we prove
that, when the meshes are refined in some well-
specified way, the solution of (1) converges, in
some reasonable sense, towards the solution of
the Maxwell equations? This is the subject of
the present installment.

Figure 1. A facet f and its dual edge f̃ in the orthogonal
construction (ṽ and ṽ� are the dual nodes which lie inside
the volumes v and v� just above and just below f ).
From ṽ, all boundary facets of v can directly be seen
at right angle, but we don’t require more: ṽ is neither
v’s barycenter nor the center of its circumscribed sphere,
if there is such a sphere.

3.1 The static case

Obviously, the discrete Hodge of (2) would
have no virtue if it didn’t work satisfactorily in
static situations. So let’s begin with that, which
will take the major part of this paper. Then we
shall briefly return to the full Maxwell system.

Magnetostatics, in the context of our orig-
inal model problem, is this: Given a time-
independent current density J in the bounded
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domain of Fig. 2, find B and H such that

(3�)
div B = 0� B =�H� rot H = J�

� � B = 0 on Se� � �H = 0 on Sh�

which our geometric language of differential
forms expresses as

(3)
db = 0� b =�̃�h̃� dh̃ = 	̃�

tb = 0 on Se� th̃ = 0 on Sh�

The corresponding network equations are

(4) Db = 0� b = �̃�h̃� Rth̃ = j̃�

with b = fbf : f � Fg and h̃ = fh̃f : f � Fg
indexed over the set F of “active” facets, i.e.,
all of them except those lying in Se. We might
establish (4) from first priciples, as we did for
the network equations (1). But since we have
these already, let’s rather derive (4) from (1), as
the steady-state equations for infinite t, under
the hypothesis that j̃ does not depend on time.
For this, we let the facets-to-volumes incidence
matrix D act on the first eq. (1): since DR = 0,
�t(Db) = 0, hence Db = 0 at all times, since b
was null at time zero.

Figure 2 (to be imagined in dimension 3). A reminder
of our notations: Domain D, bounded by S, stands for
the left half of the cavity. D is paved by the primal cells.
The dual cells pave a slightly different domain D̃. Dual
(n � p)-cells and primal p-cells are orthogonal, two by
two. Primal cells in the electric boundary Se, as well as
dual cells in the magnetic boundary S̃h, are discarded,
because degrees of freedom they would bear are a priori
zero. (The primal and dual pavings are “closed modulo”
Se and S̃h, cf. JSAEM, 7, 2, 1999, p. 155.) The � of
(3�) is the field of outgoing normals.

Our first concern is whether (4) determines a
unique pair fb� h̃g. Let’s denote by N�E� F� V
the numbers of active primal nodes, edges,
facets, and volumes. (Again, active nodes and
edges are those not in Se.) In (4), we count
2F unknowns, the components of b and h̃� and

V + E + F equations, for D has V rows (one
per volume), R has E columns, indexed over
the set E of active edges, and b = �̃�h̃ pro-
vides F equations. By a basic result of topol-
ogy, the Euler–Poincaré formula, we know
that, whichever way the primal mesh was con-
structed,

(5) N � E + F � V = 
�

where 
 is a constant (equal to 0 in the case we
consider) which only depends on the topology
of D, Se, and Sh. This leaves us with V +E +
F � N + 2F equations for 2F unknowns. So
it’s not so obvious that (4) has a unique solution.

However, there are precisely N constraints
on the data j̃, owing to current conservation:
For each dual volume, that is, for each active
primal node n, currents entering this volume
should cancel out, hence N relations on the
j̃es, of the form

P
e�E Gen j̃e = 0, where G

denotes the (primal, and active) nodes-to-edges
incidence matrix. They can simultaneously be
expressed as Gtj̃ = 0. (We could as well have
derived this necessary condition from the last
eq. (4), since GtRt = 0, by transposing the
combinatorial relation RG = 0.)

So by the removal of N redundant data, and
of the corresponding equations, we could fall
back on a square system, which we should
still prove regular. This can be done, but
the following indirect approach will be more
instructive: We shall construct a linear system
equivalent to (4), the regularity of which will
be obvious.

Let’s recall that, with the simple topology we
assume here, not only RG = 0 and DR = 0, but
the kernels ker(R) and ker(D) coincide with the
ranges of G and R. By transposition, ker(Gt) is
the range of Rt, and ker(Rt) is the range of Dt.
So if Gtj̃ = 0, there exists an F-indexed array
h̃j such that Rth̃j = j̃. (It’s not unique, and need
not be explicitly constructed, though that would
be a trivial task. That there be one is enough
for our purpose.) Now, Rt(h̃� h̃j) = 0, so there
is a DoF-array �̃�, indexed over volumes, such
that h̃ = h̃j + Dt�̃�, and (4) reduces to

(6) D�̃�Dt�̃� = �D�̃�h̃j�

Now this is a square symmetric linear sys-
tem, with respect to �̃�, with a regular matrix,
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because �̃� is regular on the one hand, and
(this is the non-obvious part) ker(Dt) = f0g on
the other hand. Indeed, Dt�̃� = 0 means thatP

v Dvf �̃�v = 0 for all primal facets f . But for
each such f , there are at most two incident vol-
umes v and v�, one on each side of f , and their
incidence numbers Dvf and Dv�f have oppo-
site signs. Therefore, �̃�v = �̃�v� , and Dt�̃� = 0
implies that all components of �̃� are equal, as
soon as the paved domain is connected. More-
over (and now, this is a characteristic of the
present situation, where S̃h is not empty, not
an always valid property), there are facets f
with only one adjacent volume (Fig. 2), hence
this common value must be zero for all �̃�vs.
So �̃� = 0 in (6) if h̃j = 0.

Equation (6) thus appears as a way to solve
(4), with guaranteed existence and uniqueness:
having �̃�, we set h̃ = h̃j + Dt�̃�, and b = �̃�h̃.
This is known as the finite volume approach to
magnetostatics, with one degree of freedom per
volume of the (primal) mesh, which one may
of course interpret as the value of a magnetic
potential at the dual node. Many researchers
have analyzed the convergence of (6), for var-
ious mesh designs and various choices of �̃�.
(See, e.g., [2, 8, 10, 11, 14, 19].) Why then
not rely on their results? Because system (4),
with its symmetrical and balanced treatment of
b and h̃, will lend itself to a much simpler error
analysis than (6), and one which does the job
for several apparently distinct formulations, in
one stroke.

For there are other systems equivalent to (4),
that we shall indicate before carrying on, by
following up on this symmetry idea. Since
ker(D) is the range of R, one may look for b,
which has to be in it, in the form b = Ra, where
the DoF-array a is indexed over E . Then (4)
is equivalent to the following linear system, in
terms of a,

(7) Rt
�̃
�1
� Ra = j̃�

No uniqueness, this time,1 because ker(R) does
not reduce to 0, but there are solutions, thanks

1 Whether to “gauge” a in this method, that is, to im-
pose a condition such as Gta = 0 that would select a
unique solution, remains to these days a contentious is-
sue. It depends on which method is used to solve (7),

to the condition Gtj̃ = 0, which guarantees that
j̃ = 0 lies in the range of Rt, and b = Ra is
the same for all these solutions. So solving (7),
thus getting a unique b, and setting h̃ = �̃�1

� b,
is equivalent to solving (4).

This is not all. If we refrain to eliminate h̃ in
the reduction of (4) to (7), but still use b = Ra,
we get an intermediate two-equation system,

(8)

�
��̃� R

Rt 0

��
h̃

a

�
=

�
0

j̃

�
�

often called a mixed algebraic system. The
same manipulation in the other direction (elim-
inating h̃ by h̃ = h̃j + Dt�̃�, but keeping b) gives

(9)

�
��̃

�1
� Dt

D 0

��
b

�̃�

�
=

�
�h̃j

0

�
�

Systems (6), (7), (8), and (9) differ in size
and in sparsity, but give the same solution pair
fb� h̃g, so which one effectively to solve is a
matter of algorithmics that need not concern us
here.2 The important point is, the error analysis
we shall perform applies to all of them.

3.2 Consistency

A notational point, before going further. Last
time, we used M to denote the primal mesh.
We shall subscript by M, when necessary, all
mesh-related entities. For instance, the largest
diameter of all cells, primal and dual, will be
denoted 


M
(with a mild abuse, since it also

depends on the metric of the dual mesh, fM),
and called the “grain” of the pair of meshes.
The computed solution fb� h̃g will be fb

M
� h̃
M
g

when we wish to mark its dependence on the
mesh-pair. And so on.

Our purpose can informally be stated as
“study fb

M
� h̃
M
g when 


M
tends to 0”. Alas,

this lacks definiteness, because how the shape

and on how well the necessary condition Gt j̃ = 0 is im-
plemented. With iterative methods such as the conjugate
gradient and its variants, and if one takes care to set up
an array h̃j such that Rth̃j = j̃, and to use Rth̃j instead
of j̃ in (7), then it’s better not to gauge. See [18].

2 Assigning b to dual facets and h̃ to primal edges would
generate a similar family of equivalent systems, but
not equivalent to (6)–(9), thus yielding complementary
information. See [5], Chap. 6.
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of the cells changes in the process matters a
lot. In the case of triangular 2D meshes, for in-
stance, there are well-known counter-examples
[1] showing that, if one tolerates too much “flat-
tening” of the triangles as the grain tends to 0,
convergence may not occur. Hence the follow-
ing definition: A family M of (pairs of inter-
locked) meshes is uniform if there is a finite
catalogue of “model cells” such that any cell
in any M or fM of the family is similar to one
of them. The notation “M� 0” will then refer
to a sequence of meshes, all belonging to some
definite uniform family, and such that their 


M
s

tend to zero. Now we redefine our objective:
Show that the error, whatever one means by
that, incurred by taking fb

M
� h̃
M
g as a substi-

tute for the real field fb� h̃g, tends to zero when
M� 0.

Practical implications of achieving this are
as follows. If, for a given M, the computed
solution fb

M
� h̃
M
g is not deemed satisfactory,

one must refine the mesh and redo the compu-
tation, again and again. If the refinement rule
guarantees that all meshes such a process can
generate will belong to some definite uniform
family, then the convergence result means “you
may get as good an approximation as you wish
by refining this way”, a state of affairs we are
more or less happy to live with.3

Fortunately, such refinement rules do exist
(this is an active area of research [3, 4, 7,
15]). Given a pair of coarse meshes to start
with, there are ways to subdivide the cells so
as to keep bounded the number of different
cell-shapes that appear in the process, hence
a potential infinity of refined meshes, which
do constitute a uniform family. (A refinement
process for tetrahedra is illustrated by Fig. 3.
As one can see, at most five different shapes
can occur, for each tetrahedral shape present in
the original coarse mesh.)

3 Effective error bounds, for a givenM, would of course
be more satisfying. Such bounds can be obtained with
the complementarity methods alluded to in Note 2.

Figure 3. Subdivision rule for a tetrahedron t =
fk� l�m� ng. (Mid-edges are denoted kl� lm, etc., and
o is the barycenter.) A first halving of edges generates
four small tetrahedra and a core octahedron, which it-
self can be divided into eight “octants” such as o =
fo� kl� lm�mkg, of at most four different shapes. Now,
octants like o should be subdivided as follows: divide
the facet in front of o into four triangles, and join to
o, hence a tetrahedron similar to t, and three periph-
eral tetrahedra. These, in turn, are halved, as shown for
the one hanging from edge fo� lmg. Its two parts are
similar to o and to the neighbor octant fo� kn� kl�mkg
respectively.

Back to the comparison between fb
M
� h̃
M
g

and fb� h̃g, a natural idea is to compare the
computed DoF arrays, b

M
and h̃

M
, with arrays

of the same kind, r
M
b = f

R
f b : f � Fg and

r
M
h̃ = f

R
f̃ h̃ : f � Fg, composed of the fluxes

and mmf’s of the (unknown) solution of (3).
This implicitly defines two operators with the
same name, r

M
: one that acts on 2-forms, giving

an array of facet-fluxes, one that acts on twisted
1-forms, giving an array of dual-edge mmf’s.
(No risk of confusion, since the name of the
operand, b or h̃, reveals its nature.)

Since db = 0, the flux of b across the bound-
ary of any primal 3-cell v must vanish, hence
the sum of facet fluxes

P
f Dvf

R
f b must vanish

for all v. Similarly, dh̃ = 	̃ yields the relationP
f Rfe

R
f̃ h̃ =

R
ẽ 	̃, by integration over a dual

2-cell. In matrix form, all this becomes
(10) Dr

M
b = 0� Rtr

M
h̃ = j̃�

since the entries of j̃ are precisely the intensities
across the dual facets. Comparing with (4), we
obtain
(11) D(b

M
� r

M
b) = 0� Rt(h̃

M
� r

M
h̃) = 0�
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and

(12)
(b
M
� r

M
b)� �̃�(h̃

M
� r

M
h̃) =

(�̃�rM � r
M
�̃�)h̃ � �̃�(r

M
�̃� � �̃�rM)b�

(Here, of course, � and �̃� stand for the inverses
of � and �̃�, and �̃� for �̃�1

� . We have no more
use for � as a normal vector, so no confusion
should ensue.)

Now some algebra, which requires further
notation. Last time, we chose to denote by
hb� h̃i a sum such as

P
f�F bf h̃f . We shall use

the shorthands jjh̃jj� and jjbjj� for the square roots
of the quantities h�̃�h̃� h̃i and hb� �̃�bi, and call
them the “�-norm” and “�-norm” of these DoF
arrays. (Notice their connection with what we
called last time “discrete energy”.) We want to
compute the �-norm of both sides of (12).

Doing this, “square” and “rectangle” terms
appear, as usual. The rectangle term for the
left-hand side is 2hb

M
� r

M
b� h̃

M
� r

M
h̃i, but

since D(b
M
� r

M
b) = 0 implies the existence of

some a such that b
M
� r

M
b = Ra, we have

hb
M
� r

M
b� h̃

M
� r

M
h̃i = hRa� h̃

M
� r

M
h̃i

= ha�Rt(h̃
M
� r

M
h̃)i = 0�

after (11), by the same transposition trick as last
time. Only square terms remain, and we get

(13) jjb
M
� r

M
bjj2� + jjh̃

M
� r

M
hjj2�

= jj(�̃�rM � r
M
�̃�)bjj2� � jj(�̃�rM � r

M
�̃�)h̃jj2� �

which will be the cornerstone of the conver-
gence proof.

So at last we have found a plausible measure
for what we called earlier “the error incurred
by taking b

M
as a substitute for the real field

b”: the �-norm of b
M
� r

M
b. Components of

this array are what can be called the “residual
fluxes” bf �

R
f b, i.e., the difference between

the computed flux across face f and the genuine
(but unknown) flux

R
f b. It makes sense to try

and bound this norm. (Parallel considerations
apply to h̃, with mmf’s along f̃ instead of
fluxes.) So let’s focus on the right-hand side
of (13), for instance on its second expression,
in terms of h̃.

By definition of r
M

, the f -component of
r
M
�̃�h̃ is the flux of b = �̃�h̃ across f . On

the other hand, the flux-array �̃�rMh̃ is the re-
sult of applying the discrete Hodge operator to
the mmf-array r

M
h̃, so the compound operators

r
M
�̃� and �̃�rM will not be equal: they give dif-

ferent fluxes when applied to a generic h̃. This
contrasts with the equalities (Dr

M
� r

M
d)b = 0

and (Rtr
M
� r

M
d)h̃ = 0, which stem from the

Stokes theorem. The mathematical word to ex-
press such equalities is “conjugacy”: D and d
are conjugate via r

M
, and so are Rt and d, too.

Thus, �̃� and �̃� are not conjugate via r
M

—
and this is, of course, the reason why discretiz-
ing entails some error. Yet, in the case we
are examining (the diagonal Hodge defined by
(2)), r

M
�̃� and �̃�rM do coincide for some h̃s,

those that have piecewise constant vector prox-
ies, since this is how formula (2) was motivated.
Since all smooth fields look constant at a small
enough scale, we may expect “asymptotic con-
jugacy”, in the sense that the right-hand side of
(13) will tend to 0 with M, for a smooth b or
h̃. This property, which we rewrite informally
but suggestively as

(14)
�̃�rM � r

M
�̃� � 0 when M� 0�

�̃�rM � r
M
�̃� � 0 when M� 0

(two equivalent statements), is called consis-
tency of an approximation scheme in Numeri-
cal Analysis (approximation of �̃� and �̃� by �̃�

and �̃� , here). To prove it, we need to estimate
the right-hand side of (13).

This can be done by estimating the contribu-
tion of a single facet f , that is

(15) �̃
ff
� (�̃ff

�

Z
f̃
h̃�

Z
f
�̃�h̃)2�

and we may even pretend that f̃ is entirely
in the volume v to do so (cf. Fig. 1), since
there are two parts in the contribution of f ,
one for each adjacent volume. Then we may
assume a constant � inside v, and work in terms
of the vector proxies H and B = �H. Now
P �

R
f̃ h̃ is the circulation of H along f̃ and

Q �
R
f �̃�h̃ is � times the flux of H across f .

Since (15) vanishes for a constant H we may,
suppose that H = 0 vanishes at the intersection
f � f̃ (Fig. 1), and select this point as origin.
Then H(x) is bounded by C


M
over v, where

C is a constant which depends on H, but not
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on the mesh. (All such constants, whatever
their value, will uniformly be denoted by C
from now on.) A very crude4 bound for Q
is then C�


M
area(f ). Similarly, P is bounded

by C

M

length(f̃ ), and hence j�̃
ff
� P � Qj �

C�

M

area(f ), after (2). Now, to obtain the
desired estimate, square this, divide by �̃

ff
� ,

which gives C length(f̃ ) area(f )
2
M

, and finally,
sum over f , hence C
2

M
volume(D) as bound

for the right-hand side of (13). This proves
(14).

Going back to (13), we conclude that both
the �-norm of the residual flux-array and the
�-norm of the residual mmf-array tend to 0 as
fast as 


M
.

3.3 Stability

Although this is considered by many as suffi-
cient in practice, we can’t be satisfied with such
“discrete energy” estimates. To really prove
convergence, one should build from the DoF-
arrays b

M
and h̃

M
an approximation fb

M
� h̃
M
g of

the pair of differential forms fb� h̃g, and prove
that both the magnetic energy of the discrep-
ancy b

M
�b and the magnetic coenergy of h̃

M
�h̃

tend to 0 with M.
To deal with such things, let us denote by

jh̃j� and jbj� , on the model of the previous
jjh̃jj� and jjbjj� , the square roots of the quantitiesR
D �̃�h̃ 	 h̃ and

R
D b 	 �̃�b.

So we are after some map, that we shall
denote by p

M
, that would transform a flux-array

b into a 2-form p
M

b and an mmf-array h̃ into
a twisted 1-form p

M
h̃, and a satisfactory result

would be that both jb�p
M

b
M
j� and jh̃�p

M
h̃
M
j�

tend to 0 withM (convergence “in energy”). As
next paragraph will show, sufficient conditions
on p

M
to this effect are the obvious consistency

conditions:

(16)
p
M
r
M
b� b� in energy, when M� 0�

p
M
r
M
h̃� h̃� in energy, when M� 0�

4 Any known regularity of the mesh can be exploited, at
this level, to obtain sharper bounds. In particular, for
the kind of paving that Yee used, or generalizations of
it [13], not only the constant part but the linear part of
H gives a vanishing contribution. This accounts for a
higher order of convergence in FDTD (�2

M
rather than

�M, typically [16]) than what we find here.

and the following inequalities:

(17) �jp
M

bj� � jjbjj� � �jp
M

h̃j� � jjh̃jj�

for all b and h̃, where the constant � � 0 does
not depend on M. Since jjbjj� and jjh̃jj� depend
on the discrete Hodge, this is a property of the
approximation scheme, called stability.

Indeed, with both (14)(16) and (17), conver-
gence is straightforward, thanks to (13): First,
p
M

(b�r
M
b) � 0, by (17), then p

M
b � b, thanks

to (16), all that “in energy”. Same argument
about h̃. This is Lax’s celebrated folk theorem:
consistency + stability = convergence.

So what about p
M

? Later, we shall find a
systematic way to construct it, at least in the
case of a tetrahedral primal mesh, the so-called
Whitney map. If we don’t insist right now on
generality, there is an easy way to find this map
in the case of DoF arrays b that satisfy Db = 0,
and luckily, only these do matter. The idea is to
find a vector proxy B which be uniform inside
each tetrahedron and such that its flux across
each facet f be equal to bf . (Then, divB = 0
all over D.) This, which would not be possible
with cells of arbitrary shapes, can be done with
tetrahedra, for there are, for each tetrahedral
volume v, three unknowns (the components of
B) to four fluxes linked by one linear relation,P

f Dvfbf = 0, so the problem has a solution.
Hence p

M
b.

We do have p
M
r
M
b � b, then. This was

proved long ago [9], by an argument which
relies on mesh uniformity [17], and is very
close to the one we now invoke to establish
the stability condition (17). One has jp

M
bj2� =R

D ��1jBj2, which is obviously some quadratic
form with respect to the facet fluxes, which we
may therefore denote by hb�Nbi, with N some
square regular matrix. Now, suppose first a sin-
gle tetrahedron in the mesh M, and consider
the Rayleigh-like quotient hb� �̃�bi�hb�Nbi� Its
lower bound, strictly positive, depends only on
the shape of the tetrahedron, not on its size.
Uniformity of the family of meshes, then, al-
lows us to take for � in (17) the smallest of
these lower bounds, which is strictly positive
and independent of M. We may thereby con-
clude that p

M
b
M

converges towards b in energy.
No similar construction on the side of h̃ is
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available, but this is not such a handicap: if
p
M

b
M
� b, then �̃�pMb

M
� h̃. This amounts

to setting p
M

on the dual side equal to �̃�pM�̃�.
The problem with that is, p

M
h̃
M

fails to have
the continuity properties we expect from a mag-
netic field: its vector proxy H is not tangentially
continuous across facets, so one cannot take its
curl. (One says of such a p

M
that it constitutes

a “non-conformal” approximation.) But never
mind: In the case of a tetrahedral primal mesh,
we have succeeded in proving the convergence
in energy of b

M
and h̃

M
to b and h̃, which was

our objective. And no Sobolev space has been
invoked!

3.4 The dynamic case

Let us finish with a sketch of the convergence
proof for the generalized Yee scheme of last
issue.

First, linear interpolation in time between the
values of the DoF arrays, as output by the
Yee scheme, provides DoF-array-valued func-
tions of time which converge, when �t tends
to zero, towards the solution of the “spatially
discretized” equations (1). This is not difficult.

Next, linearity of the equations permits to
pass from the time domain to the frequency
domain, via a Laplace transformation. Instead
of studying (1), therefore, we may examine the
behavior of the solution of

(18) �p D̃ + Rt
H̃ = J̃� pB + RE = 0�

(19) D̃ = �̃�E� B = �̃�H̃�

when M� 0. Here, p = �+i�, with � � 0, and
small capitals denote Laplace transforms, which
are arrays of complex-valued DoFs. If one can
prove uniform convergence with respect to �
(which the requirement � � 0 makes possible),
convergence of the solution of (1) will ensue,
by inverse Laplace transformation. The main
problem, therefore, is to compare E� B, H̃� D̃,
as given by (18)(19), with r

M
e� r

M
b� r

M
h̃� r

M
d̃�

where small capitals, again, denote Laplace
transforms, but of differential forms this time.

The approach is similar to what we did in
statics. First establish that

(20)
p�̃�(H̃� r

M
h̃) + R(E� r

M
e)

= p(r
M
�̃� � �̃�rM)h̃�

(21)
�p�̃�(E� r

M
e) + Rt(H̃� r

M
h̃)

= �p(r
M
�̃� � �̃�rM)e�

Then, right-multiply (20) by (H̃ � r
M
h̃)� and

the conjugate of (21) by �(E � r
M
e)� add.

The middle terms (in R and Rt) cancel out,
and energy estimates follow. The similarity
between the right-hand sides of (12), on the
one hand, and (20)(21), on the other hand,
shows that no further consistency requirements
emerge. Stability, thanks to � � 0, holds there
if it held in statics. What is a good Hodge
discrete operator in statics, therefore, is a good
one in transient situations. We may tentatively
promote this remark as a heuristic principle:

As regards discrete constitutive laws, what
makes a convergent scheme for static problems
will, as a rule, make one for the Maxwell
evolution equations as well.

From the perspective of the present series
(“to build a finite-dimensional Maxwell house”),
this is noteworthy. The idea was to replace all
infinite-dimensional entities by finite-dimensional
ones in consistent fashion: differential forms
by DoF arrays, operator d by G, R, D and their
transposes, depending on the degree, and the �-
and �-related Hodge stars by appropriate square
symmetric, positive definite matrices. All that
in the hope that simple substitution of such
“discrete” objects to “continuous” ones in the
equations would generate valid approximation
schemes. This working programme has suc-
ceeded, to some extent: We have a consistent
diagonal discrete Hodge, at least for orthogonal
meshes, and a convergence proof for the Yee-
like scheme based on it, at least for tetrahedral
primal meshes.

But the weak spot in all that is now apparent:
We need a systematic way to pass from DoF
arrays to differential forms—the p

M
operator.

Not only to interpolate inside volumes (this
we could do without), but as a way to assess
stability, in the above sense. Whitney forms,
which will now enter the scene, provide this
mechanism.
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