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(2): Network constitutive laws

Where we stand

Our objective, in this series, is to solve the
Maxwell equations in a closed cavity, in pres-
ence of a given current density, starting from no
field at time zero. What we aim at is a numer-
ical scheme, an algorithm, so that the numbers
issued by the number-cruncher as the computa-
tion proceeds can be converted into usable in-
formation about the evolution of the field. This
task is what one calls, in common parlance, the
“discretization” of the equations.

In this respect, what we achieved so far is
a “spatial” discretization of the Faraday and
Ampère relations,

�tb� de � �� ��t�d� d�h � ���

in the form of a system of differential equations
(eqs. (9) and (11) in the previous issue):

��� �tb � Re � �� ��� � �td̃ � Rth̃ � �̃

There, e and b, d̃ and h̃, are “DoF-arrays”: ar-
rays of real numbers, the so-called “degrees of
freedom”, associated each with a specific ge-
ometrical element (edge or facet) of two in-
terlocked “cellular pavings”. Figure 1 reminds
this association: assuming, here, tetrahedra as
primal cells, and a barycentric construction of
the dual paving, we assign the degrees of free-
dom ee and bf to the edge labelled e and to the
facet labelled f , while h̃f and d̃e are affixed
to the “dual edge” �f and to the “dual facet” �e.
Single letters with bold face, like for instance
b, denote arrays such as fbf 	 f � Fg, indexed
over sets of so-called “p-cells”, like here the set
F of primal facets (p � �). Same interpretation
for ˜� f̃e 	 e � Eg� indexed over edges, except
that ˜ is not a DoF-array but an array of data,
the intensities across the dual facets. These are
easily computed from the current density, which
we considered as a given function of time, in
the model problem we have in view.

Figure 1. A few typical cells, in the case of what we
called last time the “star construction” of a dual mesh,
based on a simplicial primal mesh. Each primal edge
or facet has its own inner orientation, which induces
an outer orientation of its dual associate: for instance,
the forward direction along edge e is taken as “crossing
direction” of the dual facet �e, etc.

These DoFs are what will eventually be
known about the fields, once the computation is
over: ee will be the electromotive force� along
edge e, d̃e will be the flux of displacement cur-
rent across the dual facet �e, etc.

As we saw last time, the “network equations”
(1) and (2) are not enough to determine e, b,
h̃, and d̃. They need to be complemented by
“network constitutive laws”, that would relate
e to d̃ and b to h̃. Finding such laws, i.e.,
discretizing the constitutive laws

b � � �� �h� �d � � �� e�

is the order of the day.

2.1 A generalized Yee scheme
Let’s write these desired discrete relations as
follows:

�
� b � ���h̃� ��� d̃ � ���e�

� or rather, the best estimate of this voltage that we can
achieve by using these meshes. Of course, some error
occurs, and we shall not avoid the issue. We pointed out
last time that everything one wants to know about the
field can be obtained from the degrees of freedom, and
that pointwise values of the field have secondary interest.
Yet, one may have need for them, so we shall not dodge
this issue either.
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Here, ��� and ��� denote square matrices, of
respective dimensions F and E (the numbers of
active primal facets and edges�), which stand as
finite-dimensional approximations of the above
� �� and � ��. Building them is our objective, but
we shall carry on for a while as if we knew
them. This will point to a number of desirable
properties of the discrete Hodges, and thus help
in their construction.

The first, fairly obvious, requirement is that
��� and ��� should be regular matrices. If so,
eqs. (1)–(4) can be rewritten as

�tb � R��
��
� d̃ � �� ��td̃ � Rt ��

��
� b � �̃

a system of ODE’s in terms of b and d̃. This,
plus the initial conditions b��� � � and d̃��� �
� at time t � �, constitutes a discretization
“in space” of the original equations, to which
we have thus substituted a finite-dimensional
dynamical system. Obvious equivalent forms
of this system will come to mind, since there
are four ways to eliminate one variable out of
two in each group, e–d̃ and b–h̃. For instance,
the following:

�tb � Re � �� ��t ���e � Rt ��
��
� b � �̃

which we shall adopt for definiteness.
The next step is a discretization “in time”.

Introducing a time-step �t 	 �, let’s approxi-
mate the time-dependent DoF array b by lin-
ear interpolation between successive values at
times tk � k�t, which we denote by bk,
with k � �� �� � � �. This way, the quotient
�bk���bk�
�t constitutes a natural approxima-
tion of the time-derivative �tb at time tk���� �
�k��
���t, which instructs us to approximate e
by linear interpolation between values at such
“half-integer times”. These values we denote
by ek����. The obvious thing to do, now, is
to let the bks and ek����s satisfy the following
system of equalities,

b� � �� e���� � ��

���
ek���� � ek����

�t
� ��

��
� �Rt ��

��
� bk �˜k��

� This difference in dimensions explains why we have
��� and ��� instead of ��� and ���. There is no single
discrete Hodge operator ��, but one discrete Hodge for
each constitutive law. In fact, we should also replace � ��
and � �� by ��� and ��� in the case of anisotropic materials,
as discussed earlier (JSAEM, 6, 4, 1998, p. 325).

�
�
bk�� � bk

�t
� Rek���� � ��

for successive values k � �� �� � � �, of the “dis-
crete time” parameter. Clearly, this “leapfrog
scheme” is an algorithm to solve eqs. (1)(4):
it produces the bks and ek����s, step by step,
when fed with the succession of known values
of k̃. These, of course, are obtained by taking
the flux of the known current density ���t� at
time tk across dual facets.

Note that we start with k � �, so the first
required value of ˜ is �̃, which as a rule will
be zero, but may not be: the algorithm can
cope with sudden jumps of the current density
(unphysical as these may be). More interest-
ingly, let’s remark that if ���t� was a succes-
sion of steps, with ���t� equal to some steady
current density between times �k � �
���t and
�k � �
���t, the solution of (1)–(4) would be
exactly what one obtains by linear interpolation
in time between the successive bks and ek����s,
as output by the numerical scheme, namely,

b�t�t� � ��tk � t�bk�� � �t� tk���b
k�
�t

for t � �tk��� tk�. This, though not making a
proof, strongly suggests that the time-varying
DoF arrays b�t and e�t thus built do converge
towards the solution� ft � b�t�� t � e�t�g of
(1)–(4) when �t tends to zero.

This property is a well-known feature (see.,
e.g., [MS]) of the classical Yee scheme [Ye],
also known as the “finite difference in time-
domain (FDTD) method”, to which (5)(6) re-
duces when both pavings are made of brick-
shaped cells, with facets parallel to the coordi-
nate planes of an orthogonal Cartesian frame.
Figure 2 is a reminder of the way vector com-
ponents were assigned to grid-points in Yee’s
approach, 30 years ago, in the simplified 2D
framework one had to assume in this age of
limited computer resources.� (We consider

� I seize this pretext to recall that “t� f�t�” means “the
function that maps t to the value f�t�”. (Cf. (JSAEM, 6,
2, 1998, p. 119.) This notation often helps to lift some
ambiguities, as in the present case, where b, e, and their
approximations b�t and e�t are not conceived as DoF-
arrays, but as functions of time, whose instant values are
DoF-arrays.

� A fully 3D modern avatar is the Mafia code [W&],
which can handle millions of DoFs on staggered cellular
grids. (The “Finite Integration Technique” of [W&] is
what we described last time when deriving eqs. (1) and
(2).)
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here the case of a horizontal electric field E
= fEx�Eyg and of a vertical magnetic induc-
tion, whose single scalar component is denoted
B.)

Figure 2. Assignment of field components to grid-points,
in a 2D “transverse electric” Yee scheme. (We assume a
uniform primal grid. Then all 2-cells have the same size,
�x � �y .)

It takes little imagination to see the relation
between these components and our edge- and
facet-based degrees of freedom. (It may be
slightly easier in three dimensions, cf. Fig. 3,
which corresponds to Fig. 1 in [Ye].) Yee’s
staggered grids are an instance of what we
called last time the “orthogonal construction”,
with the additional feature that edges pierce
their associated facets in their exact middles,
and are divided by them into equal parts. All
primal edges are oriented along the coordinate
axes. All facets are oriented according to the
usual conventions, so that for instance, facet f
of Fig. 3, which lies in a horizontal plane, has
the standard counterclockwise orientation.

There is an inessential difference, however:
The degree of freedom bf of facet f (cf. the
caption of Fig. 3) is not the component Bz at f ’s
center, i.e., at point fi��
�� j��
�� k��g, but
corresponds to the flux �x�yBz, and ee is �zEz.
Thus taking the vector-proxy components as
DoFs makes the analogue of our network equa-
tions a bit cumbersome, because of the appear-
ance of the edge-lengths �i in formulas, and of
the heavy labelling (e.g., our bf for facet fi �
�
�� j � �
�� k � �g is �x�yBz

i�����j�����k����

In compensation, network constitutive laws are
most natural in Yee’s scheme: Just set

��� Bz
i�����j�����k�� � �Hz

i�����j�����k���

and so forth.

Figure 3. Connection with the present approach, in
3D. One face f and its dual �f are highlighted, as well
as one edge e and a part of its dual facet �e. It’s
convenient, with such grids, to label primal nodes with
integer triples fi� j� kg, hence a natural labelling for
all cells: For instance, the f of this figure is facet
fi� ���� j � ���� k� �g (the label that one would stick
to its center), edge e is fi� �� j� k � ���g, etc.

Since �x�y is the area of f and �z the length
of its dual edge �f , we may rewrite (7) in our
notation as follows:

��� bf � �
area�f�

length��f�
h̃f �

So, we have with (5)(6) a generalization of
Yee’s scheme, which only differs from it in
details,� mostly notational, as far as the net-
work equations are concerned. But—and here
lies, from the point of view adopted here,
Yee’s achievement—both instances of the dis-
crete Hodge operator take on an ideally simple
form, in FDTD, thanks to the adoption of a sys-
tem of staggered uniform grids. They are ex-
pressed by diagonal matrices ��� and ���, whose
entries are given by simple formulas� such as
(8).

Looking back at (5), we may appreciate how
essential to the efficiency of the scheme this
property of diagonality can be. Because of
well-known concerns about stability on which
we soon return, �t has to be small. Having to
solve one or two linear systems at each time

� Among these: In [Ye], E was evaluated at integer times,
and B at half-integer times.

� If � is non-uniform but smooth, just replace it in (8) by
�i�����j�����k��, with obvious notation. We shall return
on the case when point fi� ���� j � ���� k��g happens
to be at a material interface. Note, on the other hand, that
anisotropic tensors � and � can be accommodated if their
principal directions go along coordinate axes.
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step, as (5) may seem to require, would there-
fore make the computation too slow. Thanks
to diagonality of the Hodges, Yee’s scheme is
explicit, not requiring any linear system solu-
tion. Diagonality of ��� and ��� is thus, we see,
highly desirable.

Yet, we can be content with less, for the main
point is to keep the number of arithmetic oper-
ations in steps (5) and (6) as low as possible.
In (6), we have to multiply the E-dimensional
vector ek���� by a sparse matrix R, anyway.
A similar multiplication, by Rt, intervenes in
(5). So if both matrices ��

��
� and ��

��
� can be

made sparse to a comparable degree, it will be
an acceptable state of affairs. This should be
achievable, since the operators these matrices
are meant to approach, the inverses of � �� and
� ��, have a local character.

2.2 Wedge product, energy

So, a regular matrix which purports to approxi-
mate a Hodge operator should, if not diagonal,
at least be sparse, or have a sparse inverse. A
connection with the notion of energy of the field
will suggest that it should be symmetric, too.

This is the place to go deeper into the no-
tion of wedge product of forms, that was only
treated incidentally up to now. Let � and 

be a p-covector and a q-covector. We shall de-
fine a new covector, of degree p � q, denoted
� � 
, and call it their wedge product, or exter-
nal product. The notion of wedge product for
p- and q-forms, i.e., for fields of covectors, will
then follow naturally.

Recall that a p-covector � was conceived
as a machine with p slots, in which p vec-
tors fv�� � � � � vpg can be inserted, in a definite
order. The machine then outputs a real num-
ber, which linearly depends on all factors (� is
a “multilinear” map), and changes sign if two
of them are interchanged (“alternating” map).
Now, have two machines of this kind, with
p and q slots respectively, and a sequence of
p � q vectors, fv�� � � � � vp� vp��� � � � � vp�qg, to
process. As these arrive, we may assign them
to one or the other machine, so that p of them
go to the first machine and the remaining q to
the other one. Hence two numbers, of which
we take the product. This satisfies the multi-
linearity condition. But since there is no cri-
terion to allot vectors to one machine or the
other, we must consider all ways to do that, and

add the results, with appropriate sign changes
in order to satisfy the alternation condition. For
instance, if p � q � �, this suggests the follow-
ing, which we already know,

��� ���
��v�� v�� � ��v��
�v�����v��
�v���

as definition of �. If p � � and q � �, the same
idea leads to

���� �� � 
��v�� v�� v�� � ��v��
�v�� v��

���v��
�v�� v�� � ��v��
�v�� v���

To comfortably generalize that, let’s denote
by � a map from the set of integers ��� � � � � p�
into the larger set ��� � � � � p�q�, such that ��i� �
��i � �� for all i � p. The set of positions
not occupied in ��� � � � � p� q� determines in an
obvious way (Fig. 4) a complementary map �
with similar properties. Now, we define

���� �� � 
��v�� � � � � vp�q� �

X
�

sgn�����v�	�
� � � � � v�	p
� 
�v�	�
� � � � � v�	q
��

where sgn��� � ��, as explained on Fig. 4,
the sum being taken with respect to all possible
�s. (Note there are as many such �s as ways
to choose p integers out of p� q.)

Figure 4. An increasing injection � from ��� � � � � p� into
��� � � � � p � q� and its complement 	 . We call signature
of � (or of 	), denoted sgn, the parity of the number of
swaps between black and white spots that will bring all
the white ones to the left (or all the black ones to the
right). Here, this takes 7 swaps, so sgn��� = sgn�	� =
�� in this example.

We won’t really use this formula, given here
for the sake of completeness. It’s enough
to know that covectors can thus be wedge-
multiplied two by two,� and hence, differen-
tial forms, which are fields of covectors, have
wedge-products, too. One or the factors, or

� The operation is associative. As for commutativity, one
has 
�� 	 ����pq ��
, as detailed examination of (11)
will show.
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both, can be a twisted covector (JSAEM, 6, 2,
1998, p. 123). Rules to this effect are obvious,
and tedious.�

As an immediate application of this remark,
it makes sense to wedge-multiply the electric
field e, a 1-form, by the current-density ��, a
twisted 2-form, thus obtaining a 3-form e � ��
which, being a twisted form, can be integrated
over 3D space, irrespective of ambient orienta-
tion. As our previous discussion of the Lorentz
force should make clear, the number thus ob-
tained is, up to sign, the rate of work involved
in moving electric charges in the antenna the
prescribed way, which entails working against
the electric field created by these very charges.
With correct sign,

R
e � �� is the power yielded

by the electromagnetic field to the rest of the
world.

Rather than offer a proof of this, which would
lead us astray, let’s cash in on our knowledge
that the density of such power is the dot product
E � J. So it’s a matter of proving that, if E and
J are the vector proxies of a covector e and a
2-covector j, one has e � j � E � J vol, where
vol is the 3D volume form, vol�v�� v�� v�� �
v� � �v� � v���

Indeed, let’s apply (10) to e and j, know-
ing that e�v� � E � v and j�v� w� = J � v � w
= vol�J� v� w�, by the very definition of vector
proxies. What comes out is �e�j��v�� v�� v�� =
E �v�vol�J� v�� v��� � � �, with circular permuta-
tion, an expression in which one will recognize
E � J times vol�v�� v�� v��. In compact form,
using the notation introduced in JSAEM, 6, 3
(1998), p. 233,

�E � �J � ��E � J��

The case p � q � � is even easier: Applying
(9) to e � �E and h � �H, we get �e�h��v� w�
= �E � v��H � w� � �E � w��H � v�, equal to
�E � H� � �v � w�, by a well-known formula.
So

�E � �H � ��E � H��

Hail to thee, Poynting vector!! Indeed, taking
account of the orientation issues neglected in

� For instance, if the pair f��Org represents the twisted
covector ��, its wedge product by the straight 
 is the
twisted covector represented by the pair f� � 
�Org.
The product with �
 = (the class of) f
�Or�g is (the class
of) f� � 
�Or Or�g. Observe that the product of two
twisted covectors is straight.

what precedes, what plays the role of “Poynting
field” in the geometric approach is the twisted
2-form e � �h, whose integral over a closed
surface (outer-oriented from inside to outside)
is the exiting power.

Now let us consider a product such as B �
H, which is, up to a factor 2, the density of
magnetic energy. We see that ��B �H� = b� �h,
and since b � � ���h, this density is the twisted
3-form �
� ���h � �h. One may verify, as an easy
exercise,
 the Poynting theorem:

���� dtW��e� �h� �
Z
��

e � �h � �
Z
�
�� � e�

where W��e� �h� =
R
���
� ��

�h� �h� �
� ��e� e� is
the part of the field energy ascribed to region
�. This expresses energy conservation.

The equality b � �h = ��B �H� has something
else to tell us. Replace �h by a different field �h�,
and set b � � ���h. Then � ���h � �h� = ���H �H��,
a symmetrical expression. Hence something we
didn’t pay attention to so far: the symmetry
of the Hodge operator acting on forms, as ex-
pressed by

R
� ���h��h� =

R
� ���h���h for all �h� �h�.

Moreover,��
R
����h � �h =

R
�H � H 	 � for �h

not identically 0, so �� is positive definite. The
matrices ��� and ��� by which we purport to ap-
proximate � �� and � �� should, consistently, be
symmetric and strictly positive definite, too.

2.3 “Discrete” energy, and stability
To discuss the implications of this remark,
let’s introduce a notation for such sums asP

f�F bf h̃f � which one might construe as a dot
product between two vectors, b and h̃, of com-
mon dimension F . Rather than using a dot,
however, we shall denote this�� by

hb� h̃i �
X
f�F

bf h̃f �


 Start from (1) and (2), wedge-multiply by �h and �e,
add, and integrate over 
, using Stokes and the formula
d�e � �h� 	 de � �h� e � d�h.

�� The integral concerns the whole region of space under
consideration, i.e., the whole domain D in our model
problem. Note (as a follow-up to a previous remark,
JSAEM, 7, 2, 1999, p. 154) that

R
� ���h � �h� can now be

understood as a scalar product on the functional space
of (twisted) 1-forms, which can thereby be turned into a
Hilbert space.

�� Because this bra–ket notation traditionally connotes
duality products between objects of different types, as
was the case for instance in h�� vi, which we used
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Similarly, h̃� ei is defined as
P

e�E ẽ ee� One
checks that

hRe� h̃i �
X
e�f

Refeeh̃f � he�Rth̃i�

a key formula in what follows.
Next, let’s do what was suggested in Note

9, but applied to the dynamical system (1)–(4)
instead of to the original equations: Take the
h � i-product of (1) with h̃, of (2) with �e, add,
apply the previous formula, replace b by ���h̃
and d̃ by ���e. What results,

dt��
�h���e� ei� �
�h���h̃� h̃i� � �h̃� ei

looks so much like (12)�� that we can’t avoid
calling �
�h���e� ei and �
�h���h̃� h̃i the electric
and magnetic discrete energy, respectively, and
h̃� ei the discrete power leaving the system. But
of course (don’t forget we have no explicit def-
inition of ��� and ��� yet!), this has no justifica-
tion till we establish some link between discrete
and continuous energy or power (for instance
by proving that discrete power and energy con-
verge, in an appropriate sense, towards their
continuous counterparts).

Now what about the time-discretized dynam-
ical system (5)(6)? Would it conserve discrete
energy too? No such luck. Start from (5)(6),
where we suppose all k̃s = 0, to simplify a lit-
tle. (In compensation, suppose a nonzero initial
situation fb�� e����g.) Use h̃ for ��

��
� b. Right-

multiply (5) by ek����, (6) by h̃k, subtract to
check that

h����ek�����ek����� ek����i�h����h̃k���h̃k� h̃ki

vanishes, repeat this with k changed to k�� in
(6), add the results, to finally obtain

h���ek����� ek����i� h���h̃k��� h̃ki �

earlier, whereas the two arguments in a dot product are
of the same type. Here, indeed, b and h̃ don’t belong to
the same type, due to their respective associations with
inner- and outer-oriented cells, and we don’t consider
an expression such as hb�bi as legitimate. Dimensional
analysis makes this plain: While h̃� ei is a sum of factors
expressed in ampères � volts, and hence a power, hb�bi
would be in “squared webers”, a preposterous unit.

�� There is no analogue of a surface term because, when
defining the incidence matrices, we deleted from the
boundary S of the domain all cells which, a priori,
bear a null DoF, owing to boundary conditions. One
might extend the theory in order to have such a “discrete
Poynting flux”.

h���ek����� ek����i� h���h̃k� h̃k��i�

So it’s not discrete energy which is conserved.
Only a quantity which looks like it (imagine �t
tending to 0) happens not to depend on k.

The computation could have been done dif-
ferently, keeping the same value of k in (6) and
changing it in (5), this time showing the con-
servation of

h���ek����� ek����i� h���h̃k� h̃ki

(which actually can be proved equal to the
previous quantity). Setting ek = �ek�� � ek�
�
and h̃k���� = �h̃k � h̃k���
�, we see that what
is conserved is the more symmetrical-looking

h���ek� ek����i� h���h̃k� h̃k����i�

but � � � so what? If k � �
�, there, could be
replaced by k, we would conclude that the
algorithm is stable,�� under the condition of
positive definiteness of the matrices ��� and ���.
But this little difference voids the argument of
any value.

So let’s try harder. Take (6), with b written
as ���h̃, substitute k� � for k, subtract the two
equalities thus obtained, and use (5) (again, no
k̃ at the righ-hand side) to eliminate e, hence

����h̃k�� � �h̃k � h̃k��� � �t� R��
��
� Rth̃k � ��

The question is: can h̃k, defined by this recur-
rence, blow up for some initial conditions?

The modal analysis technique to answer it is
well known. Let’s use the generalized eigen-
modes f�j � w̃jg, solutions of

��
� R��
��
� Rt w̃ � �� ��� w̃�

with � � � real, as a basis for the E-dimens-
ional space to which h̃ belongs. If both ���

and ��� are symmetric and strictly positive def-
inite, as we assume, there is such a basis (in-
cluding all w̃js for which �j � �, which span
the nullspace, i.e., the kernel of Rt), made
of “h� i�-orthogonal” vectors, in the sense that
h���w̃i� w̃ji = 0 for i 	� j. One can then write
h̃k =

P
j h

k
j w̃j , bring that into the recurrence

�� To check stability for linear systems of difference equa-
tions, one looks whether an initial state gets amplified in
the absence of right-hand side, so it was all right to dis-
miss .̃
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relation, and obtain that hk��
j = rjh

k
j , where rj

is a root of the characteristic equation

���� r� � ��� ��j�t
��r � � � ��

So it’s all right (no blow up) if both solutions,
whose product is 1, lie on the unit circle, which
happens (cf. Fig. 5) when

�j�t � � for all j�

This is the condition for stability of the gener-
alized Yee scheme (5)(6).

Figure 5. Why the �
t � � condition. (The white spot
lies at the sum of roots, i.e., � � ��
t�. When it passes
left to ��, as 
t increases, the roots become real, one of
them exiting the unit circle.)

In the case of the original Yee scheme, eigen-
values could explicitly be found, hence the
well-know relation [Ye] between the maximum
possible value of �t and the lengths of the cell
sides. For general grids, we have no explicit
formulas, but the thumbrule is the same: �t
should be small enough for a signal travelling at
the speed of light (in the medium under study)
not to cross more than one cell during this lapse
of time.

A contrario, having one of the matrices ��� or
��� not positive definite would destroy stability.
Suppose this happens to ��� alone. Then, (13)
will have imaginary solutions �j , for which
�� ���t� 	 � whatever �t, hence instability.

The conclusion is neat: a good discrete
Hodge operator is a symmetric, nearly diago-
nal, positive-definite one. It’s time we show
this can be achieved.

2.4 A diagonal, positive-definite Hodge

The idea (which has been independently devel-
oped by many people) is bold and simple: Use
the orthogonal construction, and apply formula
(8), the same as in FDTD. So diagonal entries
of ��� are

���� ��
ff
� � �f

area�f�

length��f�
�

where f is a primal facet, �f its dual edge (Fig.
6), and �f the value of � at the meeting point,
if well defined. (More below on this. For the
moment, let us assume a uniform �.) All other

entries ��
ff �

� are set to zero. By the virtues of
the orthogonal construction, this is a diagonal
positive definite matrix, the ideal situation. The
construction of ��� is similar.

But why should they be good as approxi-
mations of � �� and � ��? After all, one could

imagine multiplying the above number ��
ff
� by

any arbitrary positive factor, and still satisfy the
requirements. But let’s consider a uniform field
H, and abuse the notation by also calling f the
vectorial area of f , and �f the vector along �f ,
which allows us to write

f �
area�f�

length��f�
�f�

thanks to the orthogonality property. Then bf

= B �f , and h̃f = H � �f . Since B � �H, the ratio

bf
h̃f is ��
ff
� whatever H, so (15) is the right

coefficient for uniform fields. This is the main
point in favor of the orthogonal construction.

Figure 6. A piece of the pavings, in the case of the
orthogonal construction (to be imagined in dimension 3).
Essential features are that each dual edge �f is orthogonal
to its associated primal facet f , does meet it, and that dual
nodes are inside primal cells. Under these conditions, �f
has positive length.

Since all smooth fields will appear uniform
at the scale of a cell when the meshes are
refined, one may imagine building on this an
argument [To] that would lead to a comparison
between discrete energy and energy. (Try it: the
volume “controlled by” f and �f is area�f� �
length��f�

, the average projection of H onto
a random unitary vector squares to jHj�

 � � � )
But we are still far from that, which will require
a serious convergence proof.

Finally, let’s consider the case (Fig. 7) when
two adjacent primal volumes t� and t�, with
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common facet f , have permeabilities �� and
��, different. Call �f� and �f� the vectors along
both parts of �f . Then, instead of (15),

��
ff
� �

�� �� area�f�

�� length��f�� � �� length��f��
�

This is easily justified: let u and v be arbitrary
vectors, normal and tangent to f respectively,
and let H� � u � v in t�. Transmission
conditions across f determine a unique uniform
field B� � ��u���v in t�. Then bf � �� f �u,
and ��h̃f � �� �f� � u � �� �f� � u. As f , �f�, and
�f� are collinear, u disappears from the quotient,
as before.

Figure 7. The case of a discontinuous permeability.

WHAT NEXT?

With this realization of the discrete Hodge op-
erator, all elements of the theory have now

a discrete counterpart, hence a “discrete Maxwell
house”. But is it safe to inhabit? This is the
question of convergence. Before that, however,
the main practical concern is, “can orthogonal
meshes easily be produced?”, and the answer,
unfortunately, is “no, not always”. So there
is a need for alternatives. We’ll see that the
Galerkin method, which implies the use of fi-
nite elements as ways to reconstruct fields from
DoF arrays, offers one. Finite elements will
also be instrumental as regards convergence.
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