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(1): Network equations

INTRODUCTION
In this new series,� we shall highlight some
benefits of a geometrical approach to the Maxwell
equations as regards their numerical treatment.

The first series, devoted to a discussion of
possible formalisms for the mathematical de-
scription of electromagnetism, focused on one
of them, in which the Maxwell equations ap-
pear as

��� �tb� de � �� ��� � �t�d� d�h � ���

�	� b � � �� �h� �
� �d � � �� e�

The meaning of this notation will soon be re-
called in detail. For the time being, it’s enough
to remember that the above equations are just,
thinly disguised, the familiar ones,

���� �tB� rot E � �� ���� ��tD� rot H � J�

�	�� B � �H� �
�� D � �E�

which hold for non-moving isotropic media and
a given current density J. We want to “dis-
cretize” these equations, which implies that
each field, at any instant, will be represented
by a finite number of real parameters, time-
dependent, and that ordinary differential equa-
tions, in equal number, will somehow be de-
rived for these “degrees of freedom” (DoF).

A key remark in this respect: the main equa-
tions (1)(2) or ��������, are “conservation laws”
of sorts. More precisely, (1) and (2) are local,
differential versions of the following integral

� Published in J. Japan Soc. Appl. Electromagn. &
Mech., 7 (1999), pp. 150-9 (no 1), pp. 294-301 (no 2),
pp. 401-8 (no 3), and 8 (2000), pp. 102-9 (no 4), 8 (2000),
pp. 203-9 (no 5), 8 (2000), pp. 372-7 (no 6). Some minor
corrections have been done for the present printout.

forms of the Faraday and Ampère laws,
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to be satisfied for all surfaces � or ��, inner- and
outer-oriented respectively. Equation �����, for
instance, says that the flux of the total current
�t�d � �� across �� matches the magnetomotive
force, relative to the rim � ��, of the magnetic
field �h, for all smooth surfaces ��. Such a con-
servation statement can be seen as one equa-
tion relative to �d and �h—one equation for each
surface—so we have an infinity of equations,
as befits unknown entities which have infinite
dimension.

This is enough to suggest a method: Instead
of requesting ����� and ����� for all surfaces, we
shall be content with enforcing these balance re-
lations over a finite set of surfaces, those gener-
ated by the facets of some finite-element mesh,
and we shall attribute one degree of freedom
to each “cell” (facet or edge, as the case may
be) of this mesh. “Network equations”, dis-
crete analogues to (1)(2), will thus be found—
forced on us, in fact. (Their analogy with the
Kirchhoff equations for ordinary networks will
be obvious.)

Appropriate relations between DoF’s will
also be needed in order to transcribe the consti-
tutive laws, (3)(4) or �	���
��. In other words,
some “discrete Hodge operator” will have to
be defined, leading to what one may call “net-
work constitutive laws”. There, in contrast,
we’ll have a large freedom of choice: There
are good and less good discrete Hodges, and
hence, choosing one will be the only really dif-
ficult part of the whole process.

This being done, the number of independent
equations will, as we shall see, automatically
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match the number of DoF’s, hence an “equiv-
alent network”, described by a system of ordi-
nary differential equations. The latter can be
solved by standard methods. (We shall con-
centrate on one of them, a simple “leapfrog
scheme”, on the model of the well-known Yee
scheme [Ye].) This will leave us with the fol-
lowing questions: (1) How do we recover the
fields, or rather, approximations of the exact
fields, from the computed degrees of freedom?
(2) How far are these approximate fields from
the true ones?

Such questions are the bread-and-butter of
numerical analysis. They arise for all meth-
ods. What is special here is the way the dis-
crete equations are derived: To a large extent,
finite elements are not needed for this. Equa-
tions are set up in a way which is quite remi-
niscent of the old “finite differences” approach
(or of its modern “finite volumes” avatar). Yet,
instead of being confined to hexahedral bricks,
we can use cells of complex shape, thus ac-
commodating bodies with curved or contorted
boundaries at will—best of both worlds. More-
over, the method can be explained to anyone:
No previous familiarity with finite elements
is required, to the point that a complete, ex-
plicit recipe—one that any competent program-
mer can implement—can be formulated without
ever mentioning finite elements!

This does not mean they are useless. But
their rôle is confined to, mainly, assessing the
value of the discrete Hodge operator by way
of error estimates, and, secondarily, helping to
reconstruct fields from their degrees of freedom,
in the post-processing phase.

This rapid description of the approach is
enough to perceive the benefits of our previous
geometrization. In standard theory of electrical
networks, there is a neat distinction between
what may be referred to as topology (the way
the network is connected, encoded in the co-
efficients of the so-called “node equations” and
“loop equations”) and what belongs to metric in
our sense, that is, the values of the impedances
of the network branches. One has all reasons in
the world to maintain such orderly distinctions,
for instance when branch impedances may vary
with time, whereas the structure of the network
doesn’t change. In the theory to be developed
here (which can be understood as the construc-
tion of two interlocked networks), a similar sep-

aration exists: Network equations, stemming
from the metric-free equations (1) and (2), only
depend on the combinatorial properties of the
underlying mesh(es), and network constitutive
laws, like the Hodge operator from which they
derive, encompass metric information, as well
as material properties.

So here is, in a few words, what we may ex-
pect: a unification of field theory with network
theory, via discretization methods. An enticing
goal, worth a long journey. Let’s take the first
steps of it.

1. NETWORK EQUATIONS
It’s a good thing to keep in mind a represen-
tative of the family of problems one wishes to
model. Here, we shall have wave-propagation
problems in view, and the following example is
typical.

1.1 A model problem
In a closed cavity with metallic walls (Fig. 1),
which has been free from any electromagnetic
field till time t = 0, suppose a flow of elec-
tric charge is created in an enclosed antenna
after this instant, by some unspecified agency.
An electromagnetic field then develops, propa-
gating at the speed of light towards the walls
which, as soon as they are reached by the wave-
front, begin to act as secondary antennas. Di-
electric parts inside the cavity, too, may scatter
waves. Hence a complex evolution, which one
may imagine simulating by numerical means.

Figure 1. Situation and notation (dimension 3). Region
D is the left half of the cavity. Its boundary S has a part
Se in the conductive wall and a part Sh in the symmetry
plane. Region A, the left “antenna”, is the support of the
given current density J (mirrored on the right), for which
some generator, not represented and not included in the
modelling, is responsible.

For the sake of generality, let’s assume a
symmetry plane, and a symmetrically distributed
current. The computation will thus be restricted
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to a spatial domain D coinciding with one half
of the cavity, on the left of the symmetry plane,
say. Calling S its surface (in two parts, Sh and
Se, as Fig. 1 shows) and � the outward di-
rected field of normal unit vectors on S, the
relevant equations, first expressed in standard
notation, are ����–�
�� above. Coefficients � and
� are real, constant in time, but not necessarily
equal to their vacuum values �� and ��, and
may therefore depend on variable x, which de-
notes the spatial position. (They could be ten-
sors, too, without any serious extra difficulty.)
The current density J is given, and assumed to
satisfy J�t� x� � �, at all points x in D for
t � �. Other fields, unknown, are also sup-
posed to be null before t � �, hence initial
conditions, E��� x� � � and H��� x� � � for all
x. At the boundary,

���� ��E � � on Se� �
�� ��H � � on Sh�

Condition ���� amounts to considering the cav-
ity walls as perfect conductors, and �
�� comes
from the mirror symmetry of J, which entails
the skew symmetry of H ([B3], p. 28).

The mathematical theory of ����–�
�� is not
our concern here. Suffice it to say that, un-
der reasonable assumptions about J, there is
a unique solution fE�Hg, that satisfies some
standard requirements, apparently of mathemat-
ical nature, but actually dictated by physics.
For instance, one wants the fields to have fi-
nite energy. This is translated, in mathematical
terms,� by “E, at any time, should belong to the
space, called L��D�, of square-summable vec-
tor fields over D”, i.e., those for which the inte-
gral

R
D jEj� is finite, and the same about H. For

similar reasons, one requires rot E and rot H to
be in L��D�, hence the convenience of the nota-
tion L�

rot�D� for square-summable vector fields
whose curl, too, is in L��D�. So both E and H
are sought for in L�

rot�D�, at all times. Fields
of this space happen to have a well-defined tan-
gential part (one says a tangential “trace”) on
smooth surfaces. This gives sense to ����–�
��,
and entails the tangential continuity of E and
H at material interfaces: Such “transmission

� There is no denying that mathematicians express things
this way, in part, for their own comfort, because “Hilbert
spaces”, of which L��D� is a well-known example, have
nice properties. Notwithstanding, the close adequation of
such abstractions to physics, often marvelled about [Wi],
is especially obvious in the case of Maxwell’s equations.

conditions”, often explicitly added to the set
of equations, are here automatically enforced
by the sole virtue of restricting the search to
L�
rot�D�.
Equations ���� and ���� then imply that both

D and B are in L��D� with a divergence also in
L��D�, and again the notation L�

div�D� for such
fields comes handy.� As a consequence, normal
continuity of D and B at interfaces is enforced.
Notice—it will be important later—that exact
enforcement of the equations is necessary for
this.

Now, assuming both J and div J in L��D�,
at all times, plus some smoothness of J with
respect to time (details on these side issues
can be found in [B1]), one can prove existence
and uniqueness of the fE�Hg pair. Notice that
div J � � is not assumed: some electric charge
may accumulate at places in the antenna, in ac-
cordance with the charge-conservation equation
�tq � div J � �, which results from (1) and
from the relation q � div D, where q denotes
charge density. This charge is not an indepen-
dent data, but derives from J by integration in
time, q�t� x� � � R t��div J��s� x�ds.

The relevance of ����–�
�� as a realistic model-
problem may be discussed, on several counts.
For one, a term 	E might be introduced at the
right-hand side of ���� in order to account for
the presence of conductive bodies inside the
cavity. We refrain from this easy generalization
for the sake of simplicity. Perhaps the assump-
tion of a given current density in the antenna
(which is routinely done) is a more serious is-
sue, because the antenna is not insensitive to
the reaction of its own radiated field, so we
can’t, in full rigor, know the antenna current in
advance.

This point is made in [SS] in a comment
on [UM]. Should one then feel compelled to
model the dynamics of whatever drives charges
in the antenna, including possibly the electri-
cal network in background, and why not the
whole universe? Authors of [UM] sensibly ar-
gue against that in their rejoinder [Um], and jus-
tify their informed guess of J. But even when
J cannot be guessed about in advance with
enough accuracy, ����–�
�� can be considered

� Note that the same symbol, L��D�, serves here for a
space of scalar fields and a space of vector fields, which
is tolerable abuse.

3



Σ

∂Σ

∂Σ
~

Σ
~

as part of a coupled problem, for which it’s le-
gitimate to adopt J as an “interface parameter”,
the solution of ����–�
�� thus becoming a sub-
routine in some higher-level iterative loop. All
things considered, our model problem appears
realistic enough, while being as simple as pos-
sible, as wave propagation problems go.

1.2 The model problem, in terms of differen-
tial forms
Next, let us translate this problem in the ge-
ometric language we acquired in the previous
columns. Instead of the “proxy” vector fields
E and H, we consider the differential forms e
and �h they stand for.

Figure 2. Inner- and outer-oriented surfaces � and ��,
with boundaries oriented in accordance.

Differential forms (DF’s), one will remem-
ber, come in two varieties: the straight ones,
like e and b, meant to be integrated over lines
and surfaces with inner orientation, and the
twisted ones, whose integrals make sense over
lines or surfaces equipped with an outer ori-
entation (a direction across the surface, in the
case of �d and ��, a “way to turn around” lines,
in the case of �h). Therefore, eqs. ����� and �����
should be satisfied for all inner oriented sur-
faces � and outer oriented surfaces �� respec-
tively (Fig. 2). As we know, these equations
are equivalent, thanks to the Stokes theorem,
to (1) and (2), themselves a translation of ����–
����. The nice thing about them is the absence
of any reference to metric concepts. The lat-
ter are isolated in (3) and (4), where the Hodge
operator ��, whose knowledge is equivalent to
knowing the scalar product, maps ordinary p-
forms to twisted �n � p�-forms and the other
way round, where n is the dimension of ambi-
ent space.

What precedes is enough to let us carry
on, and the rest of the present Section can be
skipped. A few points about the relationships
between DF’s and their proxies, however, may
be at their right place here.

In differential-geometric language, conditions
���� and �
�� can be expressed very compactly,

and without the recourse to metric (and orienta-
tion) that the “� ” symbol may seem to imply.
Starting from a 1-form e, consider the covec-
tors defined, at points x of S, by v � he�x�� vi
for only those vectors v at x which are tangent
to S. This defines a DF of degree 1, living on
S, called the trace of e, and denoted tSe, or
of course just te in non-ambiguous cases. Its
vector proxy is the tangential part of E, that
we shall denote by ES , equal to �� � �� �E�.
Same considerations about H. Conditions ����–
�
�� thus amount to

��� te � � on Se� �
� t�h � � on Sh�

This is more natural than ����–�
��, in fact.
Physically, it’s indeed ES that must vanish at a
perfect conductor’s boundary (and HS at “mag-
netic walls”, another case where �
�� would
hold). People use “� � E � �” as a way to
say “ES � �” without having to break pace
to introduce this notation, or to use the more
accurate but clumsy “�� � �� � E� � �”.

The trace tb of b is, similarly, the field of
2-covectors fv� wg � hb�x�� v� wi, defined for
tangent vectors v and w. As a 2-form living
on a 2-dimensional manifold, tb must have a
scalar proxy, which one easily identifies as � �B,
since hb�x�� v� wi = h�B� v� wi = B � v � w =
�� � B� � � �v � w�. Note the unification we
have achieved: tangential part of this, normal
part of that, are proxies for one and the same
thing actually, the trace of a form. Imposing
the trace of a form on a surface, as in (5) or
(6), is a generalization to DF’s of the “Dirichlet
boundary condition” for functions, and thus
deserves to be called that.

As an exercise, let us investigate the relations
between t and d, in the case of 1-forms. (It
goes the same way for higher degrees, and for
twisted forms.) Let e be the 1-form, and �
some surface. By the very definition of the
integral (cf. [B3], p. 235),

R
� t de =

R
� de. By

Stokes, this is
R
�� e, again equal, the way the

integral was defined, to
R
�� te, which is

R
� d te,

by Stokes again. Since this holds for all smooth
1-forms and surfaces, we conclude that

��� td � dt�

Applying this to (5), and t to (1), we find
(integrate in time and assume b � � at time
0) that tb � � on Se: A perfectly conductive
surface (te � �) is also a barrier to the magnetic
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flux (tb � �). A nice example of notational
tidying up!
Exercise. The reader is invited to work out
the concept of “Neumann boundary condition”,
i.e., to try and define the normal component of
a form on one side of a surface. (Hint: Play
with the expression ��t��.)

Although this is not crucial either to what fol-
lows, let’s take the time to say how a priori re-
strictions such as “E � L�

rot�D�”, and so forth,
are expressed in terms of DF’s. Taking the
wedge product of the 1-form e with the twisted
2-form ��e, we obtain a twisted 3-form e � ��e,
which can be integrated over the 3-dimensional
region D, hence a number

R
D e���e, the square

root of which is defined as the norm of the
1-form e. This works for all degrees (and of
course relies on the metric). Notation L��D�
then takes on a new meaning: it’s the Hilbert
space of square-integrable p-forms. One may
then define L�

d�D� as the space of p-forms 


in L��D� such that d
 � L��D�. This is iso-
morphic, by passing to the vector proxies, to
L�
rot�D� if p � �, and to L�

div�D� if p � �.
Having no existence proofs in view, we shall
not develop this, but it’s comforting to know
that all theorems, based on the Lax–Milgram
lemma and similar things, that one can prove
about vector-field solutions of Maxwell’s equa-
tions, have precise counterparts, often much
more compactly stated and proved, in terms of
differential forms.

1.3 Primal mesh
Let’s define what we shall call a “cellular
paving”. This is hardly different from a finite-
element mesh, just a bit more general, but we
need to be more fussy than usual about some
details. Let’s recall that Vn and An denote the
real vector space of dimension n and its affine
associate, and that when Vn is endowed with a
dot product, whence a norm jvj � p

v � v, the
distance this induces in An turns it into En,
Euclidean space. Of course n � 	 in the se-
quel. By A, we mean the closure of a set A
in En, i.e., the set formed of all points whose
distance to A is 0. Closed sets are those such
that A � A. Open sets are their complements,
and the largest open set contained in A is its
interior.

Start from the open unit ball Bp in Vp, that
is, all vectors v such that jvj � �. A cell
of dimension p, or p-cell, for � � p � n, is

the image of Bp in An under some mapping c,
piecewise smooth in both directions. (Notation
c may refer to the image of the ball, or to
the mapping itself, as convenient.) “Piecewise”
leaves room for some irregularity: a 1-cell can
well be a broken line, a 2-cell may have the
shape of a triangle, a 3-cell the shape of a brick,
etc. (Fig. 3).� Note that cells are not closed, for
they don’t contain their own boundaries. The
case p � � is special: a 0-cell, by definition, is
just a point,� that we shall call a node. A 1-
cell will be an edge, a 2-cell a facet (we reserve
“face” for another usage), and a 3-cell a volume.

Figure 3. A few p-cells (caution, c� is not one of them),
contributing to a closed cellular paving of D. (This
should be imagined in dimension 3.)

Now, a cellular paving of some region R of
space is a finite set of p-cells such that (1) Two
distinct cells never intersect, (2) The union of
all cells is R, (3) If the closures of two cells c
and c� meet, their intersection is the closure of
some (unique) cell c��. It may well happen that
c�� is c, or c�. In such a case, e.g., if c� c� � c,
we say that c is a face of c�. For instance, on
Fig. 3, c� is a face of c�. If c is a face of c�

which itself is a face of c��, then c is a face of
c��.

We’ll say we have a closed paving if R
is closed. (Fig. 3 gives a two-dimensional
example, where R � D.) But it need not be
so. Closed pavings are not necessarily what
is needed in practice, as one may rather wish
to discard some cells in order to deal with
boundary conditions. Hence the usefulness of

� This notion of cell is slightly more restrictive than
topologists would have it [HW]. For instance, to map
B� (the segment � � �����) to a closed loop minus one
point (cf. c� in Fig. 3) would not make a cell in our sense.

� No inconsistency there: V� reduces to a single element,
the null vector, and B� � V�.
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the following notion of “relative closedness”:
C being a closed part of R, we shall say that
a paving of R is closed modulo C if it can
be obtained by removing, from some closed
paving, all the cells which map into C. Fig. 4
displays the case we shall actually need, of a
paving of R � D�Se which is closed modulo
Se. Informally said, “pave D first, then remove
all cells from the electric boundary”.

Figure 4. A culled paving, now “closed relative to” Se.
This is done in anticipation of the modelling we have in
mind, in which cells of Se would carry null DoF’s, so
they won’t be missed.

Each cell is provided with an inner orienta-
tion of its own: Each edge has a “forward direc-
tion”, each face has a notion of “turning clock-
wise” in it, each volume its own “corkscrew
rule”. These orientations are arbitrary and in-
dependent. For reasons soon to be disclosed,
nodes must be oriented, too (a possibility we
mentioned earlier, without using it). This con-
sists in attributing a sign, � or �, to each of
them. (For simplicity, we may assume they all
bear a � sign.) We shall denote by N � E �F �V ,
the sets of oriented p-cells of the paving, and
by N�E� F� V the number of cells in each of
them.

Two cells 	 and c, of respective dimensions
p and p��, are assigned an incidence number,
equal to 	� if 	 is a face of c, and to 0 oth-
erwise. The sign, � or �, depends on whether
orientations “match” or not, a concept we have
met before (cf. [B3], Section 3.3).� The bound-
ary of c has a natural outer orientation, corre-

� Let’s recall the essentials. An inner orientation of � is
a way to decide whether p independent vectors, tangent
to � at one of its points, form a direct frame of a skew
frame. Take, at this point, a vector which goes outward
with respect to c’s boundary (an unambiguous notion),
and list the p given vectors behind it. If the �p � ��-
frame thus obtained is direct, with respect to the inner
orientation of c, we decide the original p-frame was

sponding to the “inside to outside” crossing di-
rection. Since 	 belongs to this boundary, the
inner orientation of c and this induced outer
orientation of 	 cooperate� in defining an inner
orientation of 	. If this coincides with 	’s own
inner orientation, we say that the orientations
of 	 and c match (see Fig. 5). This understood,
the sign rule is: � if orientations match, � if
they don’t.

Figure 5. Top: individual oriented cells. Bottom: the
same, as part of a paving, showing respective orienta-
tions. Here, orientations of v and f match, those of f
and e, or of e and n, don’t. So Gne 	 ���Rfe 	
���Dvf 	 ��

Collecting these numbers in arrays, we ob-
tain rectangular matrices G, R, D, called inci-
dence matrices of the tesselation. For instance
(Fig. 5), the incidence number for edge e and
facet f is denoted Rfe, and makes one entry in
matrix R, whose rows and columns are indexed
over facets and edges, respectively. The entry
Gen of G is ��, as explained in Note 5. Sym-
bols G, R, D are of course intentionally remi-
niscent of grad, rot, div, but we still have a long
way to go to fully understand the connection.
Yet, one thing should be conspicuous already:
contrary to grad, rot, div, the incidence matri-
ces are metric-independent entities, so the anal-
ogy cannot be complete. Matrices G, R, D are
more akin to the (metric-independent) operator
d from this viewpoint, and the generic symbol
d, indexed by the dimension p if needed, would
make cleaner notation: d� = G, d� = R, d� =

direct, and the other way round. If p 	 
, � is a node, c
is an edge, and the rule specializes as follows: attribute
the sign � to � if the outgoing vector tangent to c, at the
end-point �, goes in the same direction as c itself.
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D. The mnemonic value of G, R, D, however,
justifies the abuse.

Let’s only point out that, just as rot 
 grad =
0 and div 
 rot = 0, one has GR = 0 and DR
= 0. Indeed, for an edge e and a volume v, the
fv� eg-entry of DR is

P
f�F DvfRfe. Nonzero

terms occur, in this sum over facets, only for
facets which at once contain e and are a face
of v, which happens only if e belongs to v. In
that case, there are exactly two facets f and
g of v hinging on e (Fig. 6), and hence two
nonzero terms. As Fig. 6 shows, they have
opposite signs, whatever the orientations of the
individual cells, hence the result, DR = 0. By
a similar proof, RG = 0, and more generally,
dp	�dp � �.


Figure 6. Opposition of incidence numbers, leading to
DR = 0, whatever the orientations.

Remark. The answer to the natural question,
“then, is the kernel R equal to the range of
G ?”, is “yes” here, because D�Se has simple
topology. Otherwise, this would lead us far into
homology, a branch of topology which studies
the global topological properties of manifolds
by first chopping them into cells, then looking
at the algebraic properties of the incidence ma-
trices. (See, e.g., [Ar].) �

The whole algebraic structure composed of
the sets N � E �F �V and of the incidence matri-
ces is called a “cell complex”. This, plus the
(later quite necessary) details about each cell’s
map, forms what we shall denote M, and call,
informally, a mesh of D, the primal mesh in the
theory.

1.4 Dual mesh
The dual mesh of D is also a cellular paving,


 It’s no accident if this evokes the proof of Stokes
theorem we saw in [B3], Section 3.4. The same basic
observation, “the boundary of a boundary is zero” [TW,
KW], underlies both proofs.

though not of the same region exactly, and with
outer orientation of cells. Let’s explain.

To each p-cell c of the primal mesh, we
assign a unique �n � p�-cell, meeting c at a
single point, called the dual of c, and denoted
�c. Hence a 1–1 correspondence between cells of
complementary dimensions. Thus, for instance,
facet f is pierced by the dual edge �f (a line),
node n is inside the dual volume �n, and so
forth. Since, at the common point, the tangent
spaces to the primal cell c and the dual cell
�c are complementary ([B3], p. 26), the inner
orientation of c provides an outer orientation for
�c (Fig. 7). Incidence matrices G̃� R̃� D̃ can then
be defined, as above, the sign of each nonzero
entry depending on whether outer orientations
match or not.

Figure 7. Inner orientations of edge e and facet f , re-
spectively, give crossing direction through �e and gyratory
sense around �f .

Moreover, it is required that, when c is a
face of c�, the dual �c� be a face of �c, and the
other way round. This has two consequences.
First, we don’t really need new names for the
dual incidence matrices. Indeed, consider for
instance edge e and facet f , and suppose Rfe �
�, i.e., e is a face of f and their orientations
match: Then the dual edge �f is a face of the
dual facet �e, whose outer orientations match,
too. So what we would otherwise denote R̃

�e�f

is equal to Rfe. Same reasoning with the
opposite signs, and for other kinds of cells,
from which we conclude that the would-be
dual incidence matrices G̃� R̃� D̃ are just the
transposes Dt�Rt�Gt of the primal ones.

Second consequence, there is no gap between
dual cells, which thus form a cellular paving of
a connected region �R, the interior �D of which
is nearly D, but not quite (Fig. 8). A part of its
boundary is paved by dual cells: We name it
�Se, owing to its kinship with Se (not so obvious
on our coarse drawing! but the finer the mesh,�

� A refinement of a paving is another paving of the same
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the closer �Se and Se will become). The other
part is denoted �Sh. So the cellular paving
we now have is closed modulo �Sh, whereas
the primal one was closed modulo Se. The
whole structure, again, is called the dual mesh,
denoted by fM.

Figure 8. A dual paving, overlaid on the primal one.

Given M, all its duals have the same com-
binatorial structure (the same incidence matri-
ces), but can differ as regards metric, which
leaves much leeway to construct dual meshes.
Two approaches are noteworthy, which lead
to the “barycentric dual” and the “Voronoi–
Delaunay dual”. We shall present them as spe-
cial cases of slightly more general procedures,
the “star construction” and the “orthogonal con-
struction” of meshes in duality. We shall con-
sider only polyhedral meshes (those with poly-
hedral 3-cells), which is not overly restrictive
in practice.

The orthogonal construction is an old idea,
developed by the young Maxwell� [Ma]. It
works for “straight” primal cells, i.e., with
straight edges and plane polygonal facets. Let
dual cells be straight, too, each orthogonal to
its primal partner. Figure 9 gives a 2D exam-
ple. A particular case is the Voronoi–Delaunay
tesselation: Start from a set N of would-be pri-
mal nodes; for each node n, located at point xn,
build the Voronoi cell

�n � fx � jx� xnj � jx� xmj �m 
� ng�
comprising all points closer to n than to other

region, which restricts to a proper cellular paving of each
original cell.

� Working on elasticity, Maxwell had done the same kind
of separation between non-metric and metric notions that
we rediscover nowadays in analysing Maxwell equations.
Read the masters � � �

nodes;
 for two nodes m and n, take

fx � jx�xnj � jx�xmj � jx�xlj � l 
� n� l 
� mg
which, if non-empty, will be the dual 2-cell for
edge fm�ng, and so on. If things go well, two
meshes in duality are thus obtained. (See [B2],
p. 107, for more details and references.) Gener-
ically,�� the primal mesh is then a simplicial
one, as its volumes are tetrahedra.

Figure 9. Left: Orthogonal dual mesh. (Same graphic
conventions as in Fig. 8, slightly simplified.) Right:
Likely the simplest example of a 2D mesh with no
orthogonal dual.

Alas, such pavings, whose virtues will be ob-
vious when we study the discrete Hodge oper-
ator, are notoriously difficult to build. Even the
less stringent condition of orthogonality can be
impossible to satisfy, if the primal mesh is im-
posed (Fig. 9). If one starts from a simplicial
primal with only acute dihedral angles,�� all
goes well. But this property, which we shall
see is desirable, is not so easily obtained, and
certainly not warranted by common mesh gen-
erators.

Figure 10. Two star-shaped polygons (left), and one
which is not (right). Dots mark eligible centers.

Hence the usefulness of the star construction,
more general, because it applies to any primal
mesh with star-shaped cells. Recall that a part
A of E� is star-shaped (Fig. 10) if it contains


 The idea dates back to Dirichlet [Di].

�� Meaning that, if not so, a slight displacement of nodes
will make it so.

�� The angles between facets.
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a point a, that we shall call a center, such
that the whole segment [a� x] belongs to A
when x belongs to A. Now, take a center for
each primal cell (the center of a primal node is
itself), and join it to centers of all faces of its
cell. This way, simplicial subcells are obtained
(tetrahedra and their faces, in 3D). One gets
the dual mesh by rearranging them, as follows:
for each primal cell c, build its dual by putting
together all k-subcells, k � n� p, which have
one of their vertices at c’s center, and other
vertices at centers of cells incident on c. Figures
11 and 12 give the idea.

Figure 11. Star construction of a dual mesh (quite close,
here, to a barycentric mesh). Notice the isolated dual
edge, and the arbitrariness in shaping dual cells beyond
Sh.

Remark. The recipe is imprecise about cells
dual to those of Sh, whose shape outside D can
be as one fancies (provided the requirements
about duality are satisfied). Nothing there to
worry about: Such choices are just as arbitrary
as the selection of the cell centers. It’s all part
of the unavoidable approximation error, which
can be reduced at will by refinement (insofar as
computing resources are there). �

In the case of a simplicial mesh, cell bary-
centers make convenient centers, hence the
barycentric dual. It’s a well-known structure,
but visualizing it in three dimensions may be
not so easy. Cf. Fig. 12.

Figure 12. A dual facet and a dual edge, in the case of a
simplicial mesh and of its barycentric dual. Observe the
orientations.

Remark. If the primal mesh has been obtained
by restriction of a closed one, as suggested
above (“pave D first � � � ”), subcells built from
the latter form a refinement of both the primal
mesh and the dual mesh. The existence of
this “underlying simplicial complex” will be
important later. �
1.5 The network equations
We now want to apply the principle described
in the Introduction: Satisfy the balance equa-
tions �����–����� for a selected finite family of
surfaces.

Let’s first adopt a finite, approximate repre-
sentation of the fields. Consider b, for instance.
As a 2-form, it is meant to be integrated over
oriented surfaces. So one may consider the in-
tegrals

R
f b, denoted bf , for all facets f , as a

kind of “sampling” of b, and take the “DoF-
vector” fb � bf � f � Fg, indexed over primal
facets, as a finite representation of b. This does
not tell us about the value of the field at any
given point, of course. But is that the objec-
tive? Indeed, all we know about a field is what
we can measure, and we don’t measure point
values. These are abstractions. What we do
measure is the flux of b—or rather, its varia-
tions, but never mind—by reading off the in-
duced emf along the loop of a small enough
magnetic probe. The above sampling thus con-
sists in having each facet of the mesh play the
role of such a probe, and the smaller the facets,
the better we know the field. Conceivably, the
mesh may be made so fine that the bf ’s are
sufficient information about the field, in prac-
tice. So one may be content with a method
that would yield the four meaningful arrays of
degrees of freedom, listing
� the edge emf’s, e � fee � e � Eg,
� the facet fluxes, b � fbf � f � Fg,

� the dual-edge mmf’s, h̃ � fh̃f � f � Fg,
� and the dual-face displacement currents,

d̃ � fd̃e � e � Eg�
all that from a similar sampling, across dual
facets, of the given current ��, encoded in the
DoF array �j � f�je � e � Eg�

Next, suppose the surface � in ����� is the
simplest possible one in the present context,
that is, a single primal facet, f . The (inner)
orientation of f confers an orientation to its
boundary �f . The integral of e along �f ,
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by linearity, would be the sum of its integrals
along edges that make f , if the orientations
of these were compatible with the orientation
of �f . But when orientations don’t match,
multiplying by Rfe restores the right value, by
the very definition of these incidence numbers.
Therefore, eq. ����� applied to f yields

��� �tbf �
X
e�E

Rfeee � ��

There is one equation like this for each facet
of the primal mesh, that is—thanks for hav-
ing discarded facets in Se, for which the flux
is known to be 0—one for each genuinely un-
known facet-flux of b. We may now express
(8) in matrix form, like this:

��� �tb � Re � ��

the first group of our network differential equa-
tions.

Finally, the same reasoning about each dual
facet �e (the simplest possible outer-oriented
surface that �� in ����� can be) yields

���� ��td̃e �
X
f�F

Rfeh̃f � �je�

for all e in E , i.e., in matrix form,

���� ��td̃ � Rth̃ � �j�

the second group of network equations.

If a field e� b� �h� �d, described by its DoF-
arrays e�b� h̃� d̃, satisfies (10) and (11), it auto-
matically satisfies the balance equations �����–
����� for, respectively, all inner-oriented sur-
faces made of 2-cells and outer-oriented sur-
faces made of dual 2-cells. Our first objective
is thus achieved.

WHAT NEXT?
There are F scalar equations in (10), and E
in (11), for ��E � F � unknowns. So we miss
E�F equations: one relation between e and d̃
for each edge, one relation between b and h̃ for
each facet. How to get them most simply? This
is the problem of the discrete Hodge operator,
next column’s subject.
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