(4): “Maxwell’s house’

Last time, we were able to express Faraday’s
law and the Lorentz force in terms of new
mathematical abstractions, namely the differen-
tial forms e and b, defined on affine 3D space
without any metric or orientation. We now ex-
tend this approach to the full system of Maxwell
equations. The metric of space will not be ir-
relevant. But we shall see exactly where and
why it is needed, thus completing our layer-by-
layer analysis of geometrical structures under-
lying Maxwell’s equations. A synoptic presen-
tation of the Maxwell equations (“Maxwell’s
house™) can then be proposed.

4.1 The way ahead

In the previous article, we stopped at the point
where Faraday’s law could be expressed by
O;b+de = 0, instead of the familiar 9;B+rotE =
0. In the newly arrived-at viewpoint, b and ¢
are seen as more legitimate representatives of
the (physical) electromagnetic field than their
“vector proxies’ B and E, because the latter
need, in order to be defined, a metric and an
orientation of ambient space: Both structures
we recognized as irrelevant when discussing
Faraday’s law, whose physical content owes
nothing to them. Lorentz force, also, proved
representable by an affine object, the 2-covector
e — iyb. The correspondences e = 1E, b = 2B,
and iy'b = —1(V x B), where the superscripts 1
and 2 implicitly refer to a specific metric and
orientation, made possible the passage from one
formalism to the other.

We aso acknowledged the existence of an
intermediate formalism, in which ambient space
need not be oriented, but still must be equipped
with a metric. It accounts for Faraday’s law
in the rather awkward form 9;B + rotE = O,
where B is a twisted, or axial vector, aso
acting as proxy for b, and rot is an orientation-
independent variant of the curl operator, which
maps ordinary (or polar) vectors to twisted
Oones.

Now it seems natural to go forward and
to subject all other elements of the Maxwell
system of equations to a similar transcription
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process. We'll find two main obstacles along
theroad: (1) It's not the same kind of integrals
that appear in the integral forms of Faraday’s
and Ampere’s law, (2) Metric reenters the stage
when it comes to expressing constitutive laws
such as B = yH, or J=0¢E, and so on. Both
obstacles will be overcome by the promotion of
appropriate new entities (“twisted” forms, and
the Hodge operator), and when we are through,
a novel geometrical framework, called in jest
“Maxwell’s house”, will be seen standing erect.
We'll verify that this framework is “home’,
indeed, to all geometrical objects which con-
tribute to the description of the electromagnetic
field and to its dynamics.

4.2 Currents, twisted forms

Let’s begin with the equation d;¢ + divJ = 0,
which expresses the conservation of electric
charge.

One is tempted to say, “Well, vector J looks
very much like the proxy for adifferential form
7, namely j = 2J; therefore, by mere imitation
of what was done for Faraday’s law, we guess
that 0,q +d; = 0 is the sought-for affine ex-
pression for charge conservation, provided we
see ¢ as a 3-form.” But then what about the
integral form of this law on some 3D domain
D, that would be & [ q + [5p7 = 0O, thanks
to the Gauss theorem? The integral [;, 7 can-
not immediately be recognized as one of the
two quantities that would make physical sense,
namely, the flux of charge exiting from D and
the flux entering D, because integrals of this
kind, as we saw last time, are only defined over
inner-oriented surfaces, whereas such qualifiers
as“exiting from” or “entering” imply acrossing
direction through the boundary.

More generally, given a surface S (not nec-
essarily closed), what we wish to capture is the
notion of intensity, which relates to the ques-
tion “how much electric charge crosses S, in
some definite direction, per unit of time?’ In-
tensity, therefore, refers to what we called last
time an outer-oriented surface, that is, a sur-
face endowed with a crossing direction. Note
that 0D, above, can be given one: either from



inside to outside, or the other way round, as we
wish. It's a matter of convention on which we
shall return.

So if we want an affine object that would
properly represent intensities, it has to be some-
thing whose integral makes sense over outer-
oriented surfaces. A two-form, which as we
saw last time is intended to be integrated
on inner-oriented surfaces, cannot do the jab,
unless—and this points to the solution—one has
a way to infer an inner orientation of S from
the given crossing direction. If ambient space
is oriented, the crossing direction does imply
an inner orientation of S, as we saw repeat-
edly (Fig. 1). But of course “exiting intensity”
or (in the case of Fig. 1) “intensity from re-
gion — to region +”, as physical concepts, have
objective meaning, which cannot depend on a
mere convention about orientation. Therefore,
the geometrical object entrusted to code the in-
formation about intensities across al possible
outer-oriented surfaces must bring with it a tool
to convert outer orientation into inner orienta-
tion.

Figure 1.
a surface (here from region “—" below to region “+”
above), no inner orientation results, unless an ambient
orientation of space is given. Then an inner orientation
of S isinduced. The figure displays the two possibilities
in this respect.

When a crossing direction is assigned to

And objects thus equipped we know about:
twisted two-forms are it. A twisted 2-form 7 is
an equivalence class of pairs {ordinary 2-form,
orientation}: We take al pairs {j, Or}, where
j isa2-form and Or one of the two orienta-
tions possible in ambient space, decree that pair
{j,Or} is equivdent to pair {—j, —Or}, and
to none other, and denote by 7 the equivalence
class {{j,Or},{—j, —Or}} thus obtained. Of
course, we may envision 7 aso as a field of
twisted 2-covectors. the value of 7 at point
x is the twisted 2-covector j(x), which is it-
self aclass {{j(z),0r},{—j(z),—Or}} of two
equivalent pairs of type {ordinary 2-covector,

orientation}.

Hence new geometrical entities which are
duly integrable over outer-oriented surfaces: in-
deed, to compute 47, pick one of the pairs
which compose 7, the pair {j,Or} say, use
Or to derive an inner orientation of S from
its given outer one, as Fig. 1 explains, then in-
tegrate the ordinary form j over S, thus inner
oriented. Hence a real value. Taking the other
pair {—j, —Or} would give the same value, be-
cause of two changes of sign which cancel out,
so the number [ 7 iswell defined by this recipe.

This is quite satisfying, for it corrects an im-
balance which could be felt since we first char-
acterized differential forms as “objects that can
be integrated over inner-oriented manifolds’.
This |eft open the question “but then what about
outer-oriented manifolds?’, which we can an-
swer now: It's twisted p-forms,

O={{w,0r}, {—w,—0r}},

that can be integrated over outer-oriented p-
manifolds. The integral of & over the outer-
oriented M is defined as [;,; w, with on M the
inner orientation induced by its outer orienta-
tion in conjunction with Or.

In particular, when M isadomain of Es, its
outer orientation isasign, + or —, and the inner
orientation induced by Or is +Or or —Or,
depending on this sign. Hence [, @ = + [, w,
the outer orientation providing the sign.
Remark. An abstract manifold, though not
necessarily orientable, can always be assigned
an outer orientation (with respect to itself asits
own “ambient space’, so to speak), since this
amounts to selecting a sign, + say. So, twisted
forms directly defined over such a manifold can
be integrated without ado. The weight of a
Mobius band, for instance, is the integral of
an appropriate 2-form, representing the paper’s
density. Another name for twisted forms of
maximal degree is, appropriately, “densities’.
¢

One may feel that the symmetry between or-
dinary forms and twisted ones is not as neat as
the symmetry between inner- and outer-oriented
manifolds, because of this cumbersome defi-
nition via classes! But scales are balanced

1 Ealier, we compared a p-covector with a machine
with p numbered dots, in which one inserts vectors,
vy in dot 1, vo in dlot 2, etc., to get a real number in
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again when one realizes that ordinary differen-
tial forms can be defined as equivalence classes,
too: the form w can be identified with the class
{{&,0r}, {—&,—0r}}. One should therefore
consider ordinary forms and twisted forms as
objects of similar complexity.

Or should | say, as objects of similar simplic-
ity? For we see now the possibility of defin-
ing differential forms, straight or twisted, in the
most simple fashion, without having to intro-
duce covectors first, as we did. Why not say
that a (standard, twisted) p-form is just a lin-
ear map from (inner-oriented, outer-oriented)
p-manifolds to real numbers? Only tradition,
which nowadays reserves the label “differential
form” to smooth fields of covectors, prevents
us to do that.

Let me stress how easily this notion accounts
for the notion of (physical) current density. For
if we want a mathematical object that would
describe electrical current, what do we need, a
minima? Just to be able to tell which quantity
of electric charge flows, per unit of time, across
any given surface. This requires a machine
of type OUTER ORIENTED SURFACE — REAL, a
mapping that should obviously be linear. A
twisted 2-form, in the sense of the last para
graph, fits this description. Nothing else, met-
ric, orientation, or whatever, is needed, and the
mathematical representation of the physical en-
tity “current” could hardly be made ssmpler.

But let's end this digression. Next issue is
the d of twisted forms and Stokes theorem.

return. A twisted p-covector, in this spirit, is a pair of
similar machines, set to yield opposite numbers when
fed the same way, and which one is actually used would
depend on ambient orientation. Thus described, straight
and twisted covectors look like very dissimilar objects,
indeed. But there is another metaphor for a p-covector: a
machine with (1) a bin in which the vectors are thrown,
unsorted, (2) a lever with which one selects an inner
orientation of the p-dimensional subspace spanned by
these vectors. Since inserting vectors in a definite order
does point to an inner orientation (the one for which
they form a positive frame), the two machines are easily
seen to be equivalent. Now, the twisted p-covector
machine has (1) a bin, of the same design, (2) alever to
select an outer orientation of the spanned subspace. The
symmetry is thus restored. To give a concrete example,
in dimension 3, a twisted 2-covector machine will accept
two vectors (whose order doesn’t count), plus a crossing
direction of the parallelogram they form, and yield a
number (think of an intensity, for instance). We'll return
to this with Fig. 5, below.
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4.3 The d, Stokes, and charge

Recall that an inner-oriented manifold M
induces an orientation of its boundary OM
(cf. Fig. 2). For shortness, we'll say that orien-
tations of A and M “match” when the orien-
tation of 0M is the one induced by M. Then,
given a p-form w, where p is the dimension
of OM, one has [}, dw = [y w. The d was
defined, back in §3.4, in order to have this re-
sult, which holds whatever the orientation of
M, provided the boundary’s one does match.

v A

Figure 2. How the orientation of M induces one on
OM. (M’s dimension p +1 is 2 on the left, 3 on the
right, 1 at the bottom.) To know whether a frame of p
vectors tangent at a point of M is direct or skew, take
a vector ¥ which points outwards with respect to M, list
behind it the p vectors, and check whether the (p + 1)-

frame {v, v1, ..., v, } thus obtained is direct or skew with
respect to the orientation of A/. Note that M may well
be disconnected (left). Also notice the special icons (+
or —) for inner orientation of points.

Remark. Asthe caption of Fig. 2 explains, the
matching rule relies on having chosen “inside
to outside” as crossing direction through 0M.
This is the usual convention. Should one want
to reverse it, there would be a change of sign
in the Stokes theorem, then f;, dw + [, w = 0.
¢

By definition, do is the equivalence class
{{dw,Or}, {—dw,—0Or}}, which means, in-
formally, “given atwisted form &, select arep-
resentative, whence a standard form to which
one applies the d, and an orientation which one
puts back, thus obtaining a representative of
do”.

Thisis engineered in such away that Stokes
theorem be valid for twisted forms, too, when
the outer orientations of M and 0M match. We
don’t need a new convention to define this new
kind of matching: Just select an orientation for



ambient space, then outer orientations of A/ and
OM induce inner orientations, which do match
or don’'t. If they do, it's evidence that the given
outer orientations did. Figure 3 explains this.

S
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Figure 3. Matched outer orientations for a surface S and
its boundary 0.5. To check that they do match, choose an
ambient orientation, and derive from it inner orientations,
which match, as one can see (cf. Fig. 2). (The symbol
x may be understood as “compose the orientations on
the left with” the icon that follows, which figures the
orientation of ambient space.)

Outer-orienting a surface, therefore, induces
a way to circle around its rim (not the same
as turning around the surface along the rim!).
Outer-orienting a 3D domain induces a crossing
direction for (each of) its bounding surface(s).
This outer orientation, being the inner orienta-
tion of a zero-dimensional vector space, is just
a sign, plus or minus. If the sign is plus, the
induced crossing direction is the conventional
one (inside to outside). On the other hand, if
we outer-orient the boundary from outside to in-
side, the outer orientation of D that matchesthis
is the one with the minus sign. Please think all
this over, because it’'s essential to the discussion
we'll have in a moment about whether electric
chargeis, as physicists have it, “a pseudo-scalar
or a true scalar” [Br]. Another useful exercise
is to think about both kinds of orientation of
the endpoints of a line (Fig. 4).

<)
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Figure 4. Matched outer orientations for a line and its
endpoints (cf. Fig. 2). Outer orientation of a point is
inner orientation of its 3D neighborhood, hence the icons
attached to the endpoints.

Now, we may return to our eguation and
take a step forward. Since current density
must be represented by the twisted form 7,

2
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and knowing what we know about the Stokes
theorem for twisted forms, charge conservation
must be expressed by

(1) g +dj =0,

where the charge density ¢ must be a twisted 3-
form, for consistency. Isit al right? Yes, if we
define the charge inside D as [}, g, with + for
outer orientation of D. Then the matching outer
orientation of dD is from inside to outside, so
J5p 7 is the outgoing current, and the expected
conservation law, 0; [pq + [3p 7, does result
from (1) by Stokes.

What we need to fathom, now, is the relation
between this ¢ and the ordinary charge den-
sity ¢, understood as a function. Recall that, if
one assumes a metric and an orientation (call
it Or), a function ¢ generates a 3-form 3¢,
but in an orientation-dependent way, so there
are, for a given metric structure, two opposite
straight 3-forms coming from ¢, one for Or,
one for —Or. In contrast, there is only one
twisted 3-form associated with ¢, which is ¢
= {{3¢,0r},{-3¢,—Or}}, and the other way
around. So, given a metric, there is awell de-
fined function ¢ associated with ¢, the twisted 3-
form that stands for charge density. This func-
tion, which does not depend on the orientation
of space, and is therefore a “true scalar”, is
what we understand by electric charge density
usually. Its Lebesgue integral over a domain
D, which is the same as [}, 3¢ when D’s inner
orientation is Or, coincides with the integral of
g over D when D’s outer orientation is +.

So the “scalar proxy” of atwisted 3-form is
afunction. An ordinary 3-form can aso be rep-
resented by a function, but the sign of the latter
depends on orientation. We know how to give
status to such a “pseudo scalar”, as physicists
say in their confusing lingo: Define a twisted
function f asthe class {{f,Or},{—f,—Or}}
of pairs of type {ordinary function, orientation}.
In metricized, but non-oriented 3-space, the
scalar proxy of a straight 3-form is a twisted
function.

Remark. Electric charge is divD. By analogy,
magnetic charge, if such athing existed,” would
be divB (and we would have to add some
“magnetic current”, —K say, on the right-hand

which seems unlikely, as early observations of such
charges were disconfirmed later [GT].



side of Faraday’s law to account for nonzero
values of divB). Since B stands for a 2-form b,
magnetic charge is the straight 3-form db (let’s
call this m), and its scalar proxy would be a
twisted (or pseudo, or axial, ...) function, so
magnetic charge is not akin to electric charge
in this respect. Its conservation would be ex-
pressed by

) Sm +dk =0,

of which db = 0 is a consequence when k& =0
and m = 0att=0. Thereis a theory which
sees the origin of electric charge in small-scale
topological twists of space [So], based on an
argument which applies to twisted forms but
not to straight ones. Maybe, as it has been
speculated, this is why magnetic monopoles
don't show up, in spite of “grand unification”
theories that seem to require them [GT]. <

4.4 The Maxwell equations

Next issue is Ampere's theorem. To simplify
the discussion a little, let’s first ignore dis-
placement currents, and address the equation
rotH = J, which is closer to the practice of
low-frequency electrical engineering anyway.

No choice here: This trandates as di = j,
in which 4 must be a twisted form, like 7, and
of degree 1. A magnetomotive force, therefore,
is the result of integrating on an outer-oriented
line (let’s be careful not to say “along” the line,
which was al right for electromotive forces,
but connotes inner orientation). Figure 3, left,
well illustrates how the crossing direction for
currents and the “way of turning around” the
line must match for the integral version of the
theorem, (47 = [5¢ h, to hold.

Finally, let’s introduce displacement current.
Being dike total current, it must be represented
by a twisted 2-form, denoted d. The complete
version of Ampere's theorem, in local differen-
tial form, is then —0;,d + dh = 3. Applying d
to both sides, and integrating in time, we get
dd = g, the transcription of divD = ¢ in the
new language, and the expected expression for
the electric charge in terms of the electric in-
duction.

So now we know them al! All the fields
appearing in Maxwell equations, as formulated
in oriented Euclidean space, have been replaced
by differential forms in an orderly way: E and
B by straight forms ¢ and b of degrees 1 and 2,
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H and D by twisted forms /4 and d of degrees
1 and 2, J and ¢ by twisted forms 7 and ¢ of
degrees 2 and 3. Magnetic current and charge
would be, if they existed, a 2-form —% and a
3-form m, both straight. It's just as easy to
guess about the potentials one may be led to
use: Vector potential A, similar to E, becomes
the 1-form a, electric potentia is the O-form
v, and al this fits well with the representation
¢ = —0ia — dip. Magnetic potential is a twisted
O-form &, such that &+ = d holds (locally,
at least ...) in current-free regions. Outside
of such regions, one can introduce an electric
vector potential—the one denoted by T in the
context of the so-called “T— method” [Ca], here
the twisted 1-form 7, such that 7 = 7 + dp.

Of al these objects, only the twisted O-form
® is new to us. It is, as usua, an equiva
lence class {{,, Or},{—¢, —Or}}, where ¢ is
a straight O-form. As O-forms are in direct cor-
respondence with functions (no metric needed),
we see that the magnetic potential is an instance
of “pseudo scalar”, one of these functions that,
mysteriously, “change sign with orientation”.
We are now in a position to take a global view
of this kind of phenomena. For this, let’s round
up all the geometrical objects that contribute to
the field’s description, in each of the three sys-
tems of representation, and display the relevant
equations again.

In naked affine space, we have, in order of
increasing degree, the straight forms ¢, ¢ and
a, b and k, and magnetic charge m, on one side,
and the twisted forms ¢, h and 7, d and 3, and
electric charge ¢, on the other side. The basic
equations are

(3) —atgl'f'd?b :37

(4)

where k, always null for all we know, is just
a false window for symmetry. Conservation
equations (1) and (2) derive from that, if one
sets ¢ = dd and m = db. Lorentz force on
a unit electric charge with velocity V is the
covector e —iy 0. (The reader isinvited to work
out a formula for the force that a hypothetical
magnetic monopole would fedl.)

When space is equipped with a metric and an

orientation, we have vector and scalar proxies
for al these entities, in terms of which these

8tb +de = —k,



eguations rewrite as

(3) —9;D +rotH =],
4) 9B +rotE = —K,
and conservation eguations as
(1) Oq +divd =0,
2) Om +divk = 0.

The Lorentz force has E + V' x B for vector
proxy. If one chooses to work with the opposite
orientation, one will describe the same physics
by changing the signs of B, H (and hence, of T
and ¢, if they are used), K, and m, because rot
and x, both sensitive to orientation, “change
sign” in the process, too.

If we keep the metric and shun the orienta-
tion, the egquations become

(3" —9,D+rotH =J,
4" 9B +rdtE = —K,
" dyq +divd =0,
2" o +divk =0,

where E, D, J are vector fields, H, B, K,
twisted vector fields. Electric charge density ¢
is here a function, magnetic charge density m
atwisted function (alike magnetic potentia o).
The “twisted curl” rdt sends vectors to twisted
vectors, while rot (which isthus subtly different
from the rot of (3)) does the converse. The
Lorentz force is the “polar” vector E + V xB,
where % denotes this orientation-independent
cross product that was described in Fig. 2 of
last installment.

As one sees, there is a clear correspondence
between the two latter systems (equations num-
bered as (n') and (»")): things denoted with a
tilde in the orientation-free framework, that is,
twisted (or axia, etc.) vectors and scalars, cor-
respond to those fields in the standard frame-
work (oriented Euclidean space) whose sign
must be changed when one decides to change
orientation.

Unfortunately, rules about the correspon-
dence between equations in (»') and equations
in (n), those of the metric-free system, are not
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so clearcut. In particular, and because of the
vagaries of the curl operator, it is not true that
proxies for twisted forms are, systematically,
twisted vectors or scalars. The proxies of i
and ¢ are scalar fields, while those of m and ¢
are twisted scalar fields. It doesn’t mean that
there is no simple rule (there is one, as will be
obvious on Fig. 6), but the tildes are no reliable
mnemonics in this respect. | readily concede
that calling “twisted” al geometrical objects
that carry orientation with them may not have
been such a good idea in the first place. Per-
haps one should speak of twisted and straight
forms, and of axial and polar fields? No ac-
cepted terminology has yet emerged, athough
one would think that the available vocabulary
(odd vs even, axial vs polar, twisted vs plain or
straight, pseudo versustrue, and so forth) isrich
enough for the needs of a rationa taxonomy of
our zoo of geometrical objects. Meanwhile, be
wary of authors of papers or books who, mis-
led by their own terminology, may misclassify
some electromagnetic entities [BH]—and exert
such caution against the present writer, too.

4.5 The Hodge oper ator

Let’s now tackle constitutive laws. In the non-
oriented Euclidean framework, we have

(5" B=puH, D=¢E.

Ohm’'s law would be J cE. These are
relations between objects of the same type—
which is at it should be, since u, ¢, and o are
scalar entities.

Or are they? Let’s not go too far and char-
acterize such coefficients as scalar invariants,
which they are not: they have dimension, they
change value when the metric is changed, and
besides, there is such a thing as anisotropy. So
maybe the real nature of these parametersis still
hidden by the formalism.

So let's see what their status can be in the
minimal framework of differential forms—and
it looks like a mess: We certainly can't write
b=ph and d = ec, Or j = oe, because that
would be trying to establish a proportionality
relationship between objects of different types—
different on two counts. forms of unequal de-
grees, which differ in orientation status (straight
and twisted). So i, € and o cannot be scalar
multipliers, even if endowed with physical di-
mension. They have to be operators, linking



objects of different types. It happens that clas-
sical differential geometry has such an operator
in store, that will prove perfectly apt to the task.

This so-called Hodge operator, or star op-
erator in some countries, is a linear machine
which maps p-covectors of one kind (twisted or
straight) to (n — p)-covectors of the other kind,
where n. is the dimension of the underlying vec-
tor space. In affine space, a smooth field of
similar machines, one at each point, will there-
fore map p-forms of one kind to (n — p)-forms
of the other kind, which seems to be exactly
what we need.

So let V,, be areal vector space of dimension
n, endowed with a dot product “-” and an
orientation Or. Let a p-covector w be given.
We denote by xw the (n — p)-covector such that,

if the family of vectors {v1,v2,...,v,} makes
a direct orthonormal frame, then

6)  *w(vpst, ..., vn) =w(vy, ..., vp).

This may look preposterous. does (6) re-

aly define a covector? Shouldn't we ex-
pect a formula that would give us the value
*w(ug, u2, ..., up—p) for any list of n — p vec-
tors? Such formulas can be given, but are not
very instructive. Neither are they useful, for no
actual computation is required. All we need
is to make sure that x~ is well defined, and
the above rule happens to be enough for that,
thanks to the linearity of covectors with respect
to their arguments and their alternation property
(permute two factors, change the sign). Start-
ing from a list of vectors {u1,u2,...,un—p},
we may always apply the Gram—Schmidt or-
thogonalization method® to build a system of
vectors al of length 1 and two-by-two orthog-
onal, and thus obtain a determinant, the value
A of which* we store. Call {vp+1,vp2, - -+, v}
the orthonormal system thus obtained. In the
orthocomplement of the subspace it spans, pick
p vectors {vy, va,...,v,} oOf length 1, orthogo-
nal two-by-two, in such a way that the full list
form adirect frame. Then «w(uy, uz,. .., up_p)
= Aw(v1,...,vp). The last objection, “but we

could have selected adifferent system {v}, v5, . ..

is countered by noting (same argument as in

3 Unlessthe u;'Ss are not independent—nbut then, the value
of ww for such alist must be 0.

4 Note that A does not depend on which way the Gram—
Schmidt procedure is performed.
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Note 5) that the determinant of {v}, v5,... v}
with respect to the basis {v1, vo, ..., v, } would
then be 1, by the rules. Note that x is a linear
operator, in an obvious way.

Next, observe that not only metric played a
role there, but orientation too, because of the
stipulation that the v;'s should make a direct
frame. Had we taken —Or as orientation, the
operator defined by (6) would have been the
opposite. As we see, the star operator behaves
very much like curl and the cross product, in
this respect. Having aready obtained, with
(1"—5"), an expression of Maxwell's equa-
tions which is manifestly orientation-free, we
can be sure that such an orientation-sensitive
operator is not the right tool. But we also know
how to fix it: define % by

(7))  Fw={{xw,0r},{—*w,—0r}}.

This maps p-covectors to twisted (n — p)-
covectors, indeed. Findly, if a twisted p-
covector & is given, we select a representative
{w, Or} of &, apply to w the « as defined thanks
to Or (thisis of course the key point), and &
iswhat results, astraight (n — p)-covector. Note
that x is its own inverse, up to sign: one has
**w = +w, the sign depending on p and n.

This operator is the device by which we shall
link 6 and %, d and e, etc., like this:

()

Let's show it by examining Ohm’s law, which
| claim iswell expressed by 7 = o %e.

To do this, select a point x, understood in
what follows. Let ¢ and j be the electric field
and current density in the vicinity of . Take
three vectors {vy,vp,v3} a «, al of length
one, mutually orthogonal, select as orientation
the one which turns them into a direct frame
(Fig. 5), and let ; be the 2-covector at » that
represents j for this orientation. Imagine a cube
of metal of conductivity o built on the three
vectors. The intensity across the bottom of the
(;#b”e is I = j(v2, v3), by the very interpretation
of the 2-covector j as current density. (Note
that the chosen crossing direction does orient
the cube’s basis in such a way that {vp, v3} is
direct for the induced inner orientation.) The
voltage drop from bottom to top is V' = ¢(v1).
And the resistance V//I of this unit cube is 1/o,
so we have j(v2,v3) = oe(v1). Compare this

b:/,L;?L, d=e%e.



with (6): it amounts to saying that 7 = o * e.
Removing the orientation scaffolding, we get

(8)

as promised.

So we are through, at last: Equations (1)—
(5), plus Ohm’s law (8) if needed, give a full
description of electromagnetism (for linear ma-
terials and non-moving bodies). Orientation of
space has been discarded entirely. As for met-
ric, it's only at the level of constitutive laws
that it has been invoked.

IS metric necessary at this level, or could
we perhaps strip the framework even further?
Apart from merging space and time, which is
feasible and would lead us to the relativistic
formalism of box (c) of Fig. 1 in the first paper
of the series, there is little room left for such
further improvement. For if we try to discard
metric, the constitutive laws are still there and
must somehow be described. We might directly
introduce a Hodge operator as an affine entity,
that would linearly map p-covectors to (n — p)-
covectors. But then it can be proved [B3] that,
as soon as we have such an operator in the case
p = 1, it is the Hodge associated with some
metric: Hodge implies metric.

7= oke,

Vi

akp=,

Figure 5. How j = o%e expresses Ohm's law (see text).

Still, since at least two such operators would
be needed, one for , one for ¢, the question
would arise whether there is some common met-
ric in which they would take the forms p x and
e x. When thisis so, we say that the materia is
isotropic, though not necessarily homogeneous
since + and ¢ may depend on position. There
IS no space left here to address such issues, but
what precedes hints at the potential usefulness
of what we have been doing: Questions such
as “what do we mean by isotropy, exactly?’
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and other similar ones related to material sym-
metries, as distinct from the symmetries of the
equations, and to what remains of such symme-
tries when the material is strained, do benefit
from this dissection of structures. It's also use-
ful is the investigation of forces, as suggested
in[B2].

4.6 A synoptic conclusion

Let's gather all our findings in graphic form
(Fig. 6). Since al relevant objects are dif-
ferential forms of degrees O to 3, straight or
twisted, and since time derivatives and, occa-
sionally (cf. the example of 7 on Fig. 6), primi-
tivesin time may have to be considered, we can
group them in four similar categories, shown
as vertical pillars on Fig. 6. Each pillar sym-
bolizes the structure made by spaces of forms
of al degrees, linked together by the d opera-
tor. Straight forms are on the left and twisted
forms on the right. Differentiation or integra-
tion with respect to time links each pair of pil-
lars (the front pillar and the back pillar) form-
ing the sides of the building. Horizontal beams
symbolize constitutive laws.

“ % 3 8
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& — - r2 g
o e — ~
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S ‘ e d B
_-% Jd m @ 0 2
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Figure 6. “Maxwell’'s house.”

As one can see, each object has its own room
in the building: b, a 2-form, at level 2 of the
“straight” side, the 1-form « such that 4 = da
just aboveit, etc. Occasional asymmetries (e.g.,
the necessity to time-integrate 7 before lodg-
ing it, the bizarre layout of Ohm’s law ...)
point to weaknesses which are less those of the
diagram than those of the received nomencla-
ture or (more ominously) to the incompatibility
of Ohm’s law with Einsteinian relativity. Most
things mentioned up to now can be directly read



off from the diagram, up to sporadic sign inver-
sions. An equation such as 9;b + de = —k,
for instance, is obtained by gathering at the
location of & the contributions of all adjacent
niches, including £’s, in the direction of the ar-
rows. Note how the rule about which scalar-
or vector-proxies must be twisted or straight is
now apparent.

But the most important thing is probably the
neat separation, in the diagram, between “ver-
tical” relations, of purely affine character, and
“horizontal” ones, which depend on metric. If
this was not drawing too much on the metaphor,
one could say that a change of metric (due for
instance to a change in the local values of ,
o, €tc., because of a temperature modification
or whatever) would shake the building horizon-
tally but leave the vertical panels unscathed.

This points to a methodology for discretizing
the Maxwell equations. The orderly structure
of Fig. 6 should be preserved, if at al possi-
ble, in numerical ssimulations. Hence the search
for finite elements which fit differential forms,
and thus would alow to build a similar “dis-
crete” structure. This search is not over, in
spite of the existence of differential-geometric
objects (Whitney forms, see e.g., [B1]) which
are remarkably efficient as finite elements for
forms, because the ssmultaneous discretization
of straight and twisted forms, on the same
mesh, and the concomitant construction of dis-
crete Hodge operators, is still an open field of
inquiry.

So maybe we' Il have more to say about such
things in future columns.
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