(3): Integration, Stokes, Faraday’s law

Where do we stand? We have identified three
systems of mathematical entities, closely re-
lated but distinct, by which the physical electro-
magnetic field can be represented: (1) The pair
of vector fields E and B, (2) The pair of dif-
ferential forms e and b, (3) The pair consisting
of E plus the axial vector field B—the defini-
tion of which will briefly be recalled. Now, we
show how Faraday’s law is expressed in these
systems.

3.1 Three systems of representation

In the previous chapters, we have found a
minimalist description of the EM field. With
the barest equipment in background (affine 3D
space), it was possible to display geometric ob-
jects which tell about forces felt by electric
charges. afield + — e, of covectors, denoted
e, which gives the Coulomb force, and a field
x — b, of 2-covectors, denoted &, which gives
the part of the Lorentz force proportional to
the particle’s velocity. (We'll say the “dynamic
part” of the Lorentz force, for shortness, the
“static part” being of course Coulomb force.)

Since the EM field was defined as “what
pushes loose electric charges’, the concept of
electric charge being taken as a given, the above
two geometric objects (known as “differential
forms’, the 1-form e and the 2-form b, both
time-dependent) contain al the relevant infor-
mation about the field. Neither the orientation
of space nor its metric played any rolein it. Of
course, one may have to introduce them later,
in order to deal with other aspects of physics.
But up to now, and to say it briefly, we have
been able to describe the electromagnetic field
via affine objects.!

One can do with even less than an affine structure: Since
p-covectors make sense at each point of a differentiable
manifold (they act on tangent vectors), differential forms
make sense too. But the generaity thus gained would
not compensate for the increased conceptual difficulty.
Differential manifolds are apt to model our intuitive
notion of “three-dimensional continuum” that ambient
space seems to have, at least at our scale. Some physi-
cists currently speculate about the possibility of not even
assuming such continuity [Bw].

As suggested last time, it's like having at
each point of space a machine with two dots
and two dials. Insert a vector v in the first
dot, and thefirst dial displaysthe (virtual) work
yielded by the field in the virtual displacement
v of a particle of charge unity standing at this
point, hence the “static” force that a passing
charged particle will feel. This is the electric
side of the machine, so to speak. It has a
magnetic side, too: To exploit it, insert the
actual speed V' of such a particle in the second
slot, and read off the corresponding virtual work
(still with respect to v), on the second dial.
If we agree to denote by i,b a covector? of
the form v — b(u, v), the “dynamic” force is
therefore the covector —:y/b, and the Lorentz
force is the covector ¢ — 7y/b.
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Figure 1. Construction of the vector proxy for the

“dynamic” force, here denoted F, from the velocity
vector V' and the magnetic-induction vector proxy B.
Metric information (lengths of 1V and B, and the angle
they form) is enough to know the length of F and its
supporting line, but an orientation is needed to know
which way F points. If one decides to change the
orientation of space (right side of the figure), one must
represent the same magnetic induction by —B instead of
B, since F doesn’'t change. So, for a given metric, the
same 2-form b has two vector proxies, B and —B, one
for each orientation of ambient space.

The vector formalism replaces these pretty
complex machines by simple pairs of vectors:
E and B, one pair at each point. The rela
tion with ¢ and b is given by ¢ = 'E and
b = 2B, in last instalment’s notation.> Now
the above virtual work is (E+V x B)- v, which

2 This is called the inner product or contraction of the
2-covector b by the vector u. We'll use it later.

3 For the reader’s convenience, let’s recall this notation:
given a vector u, lu denotes the covector v — u - v and
2y the 2-covector {v,w} — u - (v x w). The metric is
involved in both mappings. Moreover, since the cross
product x is orientation-dependent, the correspondence
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is another way of saying that the Lorentz force
is the covector 1(E + V' x B), the same cov-
ector as ¢ — iyb. Owing to long familiarity
with the expression E + V' x B, one may con-
sider the {E-B}-machines as smpler than the
{e-b}-ones, but this is an illusion. The {E—
B }-machines cannot work without a whole in-
frastructure in background: the dot product and
the orientation, both necessary to give sense to
the cross product operation (see Fig. 1). The
{e—b}-machines, more basic, can work in au-
tonomy. It's in that sense that our description
deserved to be caled “minimal”.

From this point of view, the“ {E-B}-machines’
stand in between, for this mode of representa-
tion necessitates only a metric in background,
no orientation (cf. Fig. 2). At each point,
there is a regular (or “polar”) vector E and a
“twisted” (or “axial”) vector B. The force vec-
tor F is of course the same, but is obtained by
a dightly different rule, a kind of “orientation-
free” variant of the cross product, which Fig. 2

displays.
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Figure 2. Construction of the dynamic-force vector F
from the velocity vector V' and the magnetic-induction
twisted-vector proxy B. Thistime, orientation of ambient
space isirrelevant: the outer orientation of the support of
B, which B, as a twisted vector, brings with it, suffices
to show which way F must point: so that turning it 90°
around B will bring it in the same plane as V' and B.

Is the simplification thus brought in by the
use of an axial vector worth the trouble? The
issue will be more clearcut after we have com-
pared the expressions of Faraday’s law within
each of the three systems. For this, we need to
know how to integrate differential forms first.

Exercise. Both figures 1 and 2 can be read
as geometric constructions of the icon of the
Lorentz-force vector proxy, assuming a metric
in background. Similarly, it should be possible
to build the Lorentz-force co-vector’s icon from
those of V' and of the 2-covector b (see last is-
sue for iconic conventions). Can you propose

between u and 2u also depends on orientation. (Exercise:
Check that i,%u = —1(v x u).)
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such a construction? (You may find it a rather
involved and cumbersome recipe. Decide by
yourself, however, to which extent this judg-
ment is biased by long-time familiarity with
vectors' manipulation.)

3.2 Integration of forms

Integrating differential forms is a simple mat-
ter: they are, as we presently see, geometrical
objects which are meant to be integrated. More
precisely, p-forms have canonically defined in-
tegrals over p-dimensional inner oriented man-
ifolds. Cases p = 1 and 2, that is, lines and
surfaces, are the ones of interest for us.

Figure 3. Subdividing an oriented curve ¢ in order to set
up a Riemann sum such as (1); shown, a generic “curved
segment” s, and the associated point and vector.

Suppose we are given the electric field as a
smooth 1-form e and are being asked to find
the corresponding electromotive force along an
oriented smooth curve ¢ (Fig. 3). Let’s chop the
curve into a finite family S of adjacent curve-
segments and pick a point x; in each of them.
To each such short curve s, we may associate
a vector v; which joins its endpoints; we make
this vector point in the direction indicated by
the curve's orientation. Let the covector e(x)
at point x; act on v, yielding the real number
(e(xs),vs). Summing up these numbers, we
obtain the following “Riemann sum”

(1) I(c;S,e) = Z<€($5),vs>-

sES

Now, by definition, the integral of ¢ over ¢ is
the limit

/e =limg_. I(c; S, ¢),

where “S — oo” means that the number of
curved segments tends to infinity as the subdi-
vision is repeatedly refined.

We shall not attempt to make this“S — oo”
notion more precise. This would raise a series
of technical points (for instance, make sure that
no finite part of the curve escapes subdivision),



and thus hide the main ideas. Moreover, there
is no big difference, in how one would tackle
the passage to the limit, with respect to the
Riemann integration theory for functions, to
which the reader has probably been exposed
once (and once is enough .. .).

What does make an important difference, on
the other hand, is the absence here of any
reference to the lengths of the vectors v;. Such
lengths are not defined anyway, since we did
not assume a metric on the ambient space. Had
we done that, there would be a notion of length
of lines, of area of surfaces, of volume of 3D
regions. In one word, a measure® (in the sense
of classical measure theory [Ha]), induced by
the metric, on manifolds of any dimension.
Here, there is no need for such a measure:
the differential form e carries with itself, so
to speak, al it needs to be integrated over an
oriented line.

Figure 4. Subdividing an inner oriented surface S into
triangular patches. A generic triangle ¢, and its assigned
point , in S. Top right: three vectors associated, in an
arbitrary way, with ¢’s boundary.

Oriented is the keyword, as we shall see
more clearly in dimension 2. Now, it's a 2-
form & that we want to integrate over a surface
S (Fig. 4), and the idea is to approximate S
by a finite family 7 of tiny adjacent triangles,
each with an associated surface point z; and
boundary edge vectors u;, v, w;. These have
arbitrary orientation, but the inner orientation
of S intervenes in the way we now build each
term of the Riemann sum: the rule is to select
any two vectors out of three, to order them so
that they make a positive frame (this point is
essential), and to let the covector b(x;) act on
them. For instance, in the case of Fig. 4, a
number which complieswith this prescriptionis
(b(4); ve, ug)/2 (the 2 is a dimensional factor),
and one easily sees that the same number would

4 caled the Lebesgue measure.

pop up if we had chosen vector-pairs {w;, u;}
or {w¢, v}, thanks to the properties of b as a
bilinear alternating mapping. This number is
thus a characteristic of the oriented triangle ¢,
so we shall abbreviate it as (b(x,);t). The rest
is straightforward: form the Riemann sum

I(S1 T? b) = Z<b(xt)7 t>7

teT

and set [ b=lim7_.I(S;7,b).

Generalizing to a connected® p-manifold M
is easy: To get the integra [, w, divide A
into a family S of p-simplices, pick a point
xs In each of them, build vectors along the
edges of s, select any p of them which form
a direct frame, let w(x;) act on them, and
divide by p! to get (w(xs),s). Then [jw =
liMms_o > ses{w(zs), s), as above.

The reader may want to work out the case

p = 3, in 3D affine space. When p = O, of
course, the integral of a O-form f over a O-
dimensional connected manifold, that is to say,
asingle point® z, is f(z).
Remark 1. One should not confuse the inte-
gral of a O-form, just defined, with the inte-
gral of the function f, in the common accep-
tion of the word, over a line, a surface, etc.
This doesn’t make sense in the present context,
where there is no underlying measure. What
may make sense, on the other hand, is the in-
tegration of some differential form generated
by the function. We return to this point in a
moment. $

3.3“0Ild” vs*“new” integration

We need to review the relationships between
this new concept of integration and the stan-
dard one when dealing with differential forms
in oriented Euclidean 3D space. From last in-
stallment (cf. Note 3), we know four kinds of
such objects: the O-form and 3-form °f and 3f

5 No essential restriction there: The integrals can be
evaluated over each connected component, then summed
up. Note however that orientations could be chosen
independently for each connected component of /.

6 Which we assume, by convention, to be positively
oriented. A point can be oriented: this amounts to
give it a sign, + 1 or —1. But having no need for it,
we don't consider this possibility. If however x was
negatively oriented, the “integral” of °f would be — f(z),
by convention.
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generated by a function f, and the 1-form and
2-form 1u and %u generated by a vector field w.

We just saw what the integral of °f is. What
comes next is the integral of v on a smooth
oriented curve ¢. Let's introduce a field » —
7(x) of vectors tangent to ¢, al of length 1, al
pointing in the direction of positive orientation.
Terms of the Riemann sum (1) are of the form
<1u(:1;s),vs> = u(xg) - vs > u(xs) - 7lvs|. Since
the norm |v;,| is also the Lebesgue measure of
the segment s, this sum can be rewritten as
Yses T - ulxzs)|vs|, which can be viewed as a
Riemann sum for the classical integral of the
function x — 7 - u(x), on ¢, with respect to the
metric-induced measure. Hence, at the limit,

2 /Clu=/c7'-u,

where the second integral is a classical one
(again with the Lebesgue measure understood),
called the circulation of v along the oriented
curve C.

It's an easy guess that, smilarly

3 /Szu:/sn-u,

the flux of « through S. The field + — n(x)
is made of vectors of length 1, orthogonal to
S, and all oriented the same way. Which way?
This is told by the orientation we had on E3 in
the first place: the crossing direction is the one
which makes the intrinsic orientation of S and
the ambient orientation “match”, in the sense of
the Ampere observer’s rule. One may feel sur-
prised that S needs an inner orientation at the
left-hand side of (3), and (apparently) an outer
orientation at the right-hand side. But this outer
orientation is only meant to induce an inner one,
in conjunction with the ambient orientation on
FE3. And since the way « generates % also de-
pends on ambient orientation, the two effects of
the latter cancel out. No crossing direction is
really involved in (3), which makes the “flux”
terminology a bit misleading.

Remark 2. So we may anticipate that when
we really need to deal with a specific crossing
direction, as will be the case for intensities, the
integral of a 2-form will not be the adequate
concept any longer.

Remark 3. Would the flux of an axial vector’
make sense? It does, over an inner oriented

7 Recall that | take “axia” and “twisted” as synonymes,
but beware: other authors may use different conventions.
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surface, even if the ambient Euclidean space is
not oriented itself. Select one of the two rep-
resentatives of the twisted vector, {u, Or} say,
use Or to determine which way n should point,
then [y n - u is the flux. Again, we see the ad-
vantage of using twisted vectors: no need to
specify an ambient orientation that will, any-
way, be irrelevant to the fina result (the value
of the integral). But this is a tiny advantage:
we still need a metric from which to build a
L ebesgue measure, even though this measure is
irrelevant to the final result. ¢

To complete the series, the integral of 3f
over an oriented three-dimensional domain D
is + [ f, the integral in the standard sense
of the function f, with the Lebesgue measure
of volumes understood. The sign depends on
whether the orientations of D and E3 match or
not.

There are other possibilities to build differ-
ential forms from functions and fields, but they
always reduce to the above four ones in some
way. For instance, what is often denoted dx
is the one-form v — v*, where v* is the z-
component of vector v in an x—y—= system of
local coordinates. The integral [.dz over a
curve ¢ is ssimply the circulation aong ¢ of the
field of x-directed basis vectors.

Conversely, one could argue that any inte-
gral actualy concerns some differential form:
whatever one finds under a summation sign is,
in some way, a form. For instance, the “dou-
ble integral” [fs f(z,y)dx dy of classical cal-
culus is the integral of a 2-form, here denoted
f(z,y)dzdy (and sometimes, in a way which
helps reinforce this interpretation, f(z,y)dx A
dy), built from f and from the coordinate-
related 1-forms dz and dy. (By definition,
(dx A dy;v,w) = 0wy —v¥w?®. Thisis called
the “wedge product” of dz and dy.)

3.4 The Stokes theorem

Knowing how to integrate forms, one may wish
to be able to differentiate them, too.

Start from asystem {v1, ..., v,+1} Of p+1 vec-
tors at a point . They form a (p + 1)-simplex
s, say a triangle in the case p = 1, to which
the order in which the vectors have been pre-
sented confers an inner orientation (Fig. 5). The
boundary ds of this simplex has an outer orien-
tation, as we remarked earlier: “from inside to
outside” defines a crossing direction. Using s



itself as “ambient space” in which Js is embed-
ded, we derive from that a canonical inner ori-
entation for al faces of s, i.e., the p-simplices
that together constitute Js. So we may inte-
grate the given p-form, w say, over ds, hence a
number 5, w.
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Figure 5. How p + 1 vectors, given in an ordered

seguence, generate an inner oriented (p+1)-simplex. Left:
construction of a homothetic triangle s,,.

Now let’'s define a new covector at x, denoted
dw, by the following limit process:
fo e
0sq

(p+1)!

where s, is homothetic to s as suggested by
Fig. 5, and thus “shrinks to =" as « goes to
0. The new field dw of (p + 1)-covectors thus
obtained is called the exterior differential of the
given w.

This way, we have the near-equality [, w ~
[, dw for a small enough simplex s. Summing
up over al ssimplices of asubdivision S of some
manifold M, we get

/dezgg/gdwzgg/aswz/mww,

where the first two near-equalities stem from
things we already know to be true: The first
one comes from approximating [, dw by a
Riemann sum, the second one from the very
definition of d. If the third one can be justified,
we shall have proven the Stokes theorem,

/de /E)Mw’

where w is a p-form and M an oriented (p +1)-
manifold. All it takes is passing to the limit as
S — oo.

Remark 4. Equation (4) shows that d and 0
are adjoint to each other, in some way. Note

dw(vl, R vp+1) = |ima_>o

(4)

aso this: since 90M is empty, one has dd =0
as a corollary. ¢

Figure 6. Because the orientation of A/, whatever it
is, induces compatible orientations on s and s’, the
two p-faces supported by the common triangle, which
have opposite outer orientations, have opposite inner
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Figure 7. The same argument, in the case p 1
Contributions of inner edges to the Riemann sum will
cancel out.

The existence of an inner orientation of M,
again, is the essential ingredient in this proof.
First, because it gives sense to the first integral:
if M is oriented, the outer orientation of its
boundary (from inside to outside) inner-orients
OM, as we aready argued. Second, because
of the cancellation two by two of the integrals
[, w at the right-hand side of the equality

S [e=x % [w

seS seS oeds

(5)

where o spans the set of faces of all simplices
s of the subdivison §. A face of s is an
oriented p-simplex, whose orientation comes
from that of s, the same way as above. But
for two adjacent simplices of S, say s and s’
(Figures 6 and 7), it's two opposite orientations
that are thus conferred on the two faces which
coexist at the common boundary of s and s'.
So all terms [, w in (5) disappear, except those
corresponding to faces o that belong to dM,
and for these, the orientation is just right for
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the corresponding terms to form a Riemann sum
relative to [, w.

Reviewing this proof, one will probably judge
that the definition of the d operator was engi-
neered in order to have Stokes' theorem hold.
This is a quite defendable opinion. Indeed,
the classical differential operators grad, rot, and
div, are best defined in such a way, and we did
that, earlier, bit by bit. So let’'s just review the
whole thing systematically.

3.5 Grad, rot, and div, as avatars of d

Take E3 as background, with metric and orien-
tation Let be given a function f, and a curve c,
represented by a parameterization® t — ¢(t),
with ¢ € [0,1]. The gradient of f is the
vector field grad f such that [.7 - grad f =
f(e(0)— J (¢(2)). Thislatter expression happens
tobe [;, f, so using Stokes, i.e. [, d% = [,.9f,
we have that

(6) Ygrad f) =d% = df

(we may drop the zero superscript, for there is
only one way to turn a function into a O-form).
The vector-field grad f is a proxy for the 1-form
df, as we saw last time.

Remark 5. In particular, if f is the function
{z,y,z} — z, in an z—y— Cartesian system,
then df is what we denoted dz a moment ago.
Having a unique notation d for what looked
to be different notions of differentiation seems
more logical at present. So there is some
method in our madness. $

Now, you guessed it:
(7) )

To prove (7), just compare

/2(r0tu):/n-l’0tu:/ Teu
S S 0s
=/ lu=/dlu,
0S S

where all equalities hold either by definition or
owing to the Stokes theorem. The proof of (8)
is left as an exercise.

2(rotu) = dtu, 3(divu) = d?u.

8 This is how it's done in practice. Note that 7 is then
the field ¢ — (8:¢)(c(t))/](O¢e)(e(t))], and that an inner
orientation is implied: from ¢(0) to ¢(1), that is, for
increasing ¢, by convention.
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What's nice about it is that it works both
ways. you can define the d of a 1-form lu
by (6) if you have the curl aready, say by its
definition in coordinates, or define rotu once

you know what d is.

Still, there are subtletiesin (7) and (8), worth
mentioning. First, the dependence on metric.
Change the dot product - for a new one ., the
gradient changes. the vector fields grad / and
gradf suchthat grad f-v = gradf . v = (df, v},
for al v, are of course distinct. (The notational
distinction, bold versus plain, is ad hoc, and
won't be used again.) A similar thing happens
with rot and rot, respectively associated with -
and .. In terms of the transition matrix L such
that « « v = Lu - Lv, one has L' L grad = grad,
obvioudly. If you solved the similar exercise
regarding x (first paper of the series, §1.6), you
won't find it too hard to work out the analogous
relation between rot and rot, and to see why,
as already mentioned, div = div.

The second remark is about the dependence
on orientation. Observe that it intervenes twice
in (8) (both superscripts 2 and 3 refer to
orientati on-dependent associations), oncein (7),
and not at al in (6). Therefore, rot isorientation-
dependent, whereas neither grad nor div are. In
more precise terms, if 1u is the 1-form whose
vector proxy is u, the vector proxy of its d, that
IS rot u, depends on orientation.

Can that be cured? The illness comes from
the fact that 2-forms, contrary to 1-forms, have
two, opposite, vector proxies, one for each
orientation. On the other hand, we know that
a 2-form has a single twisted vector proxy.
So let’s represent the 2-form d?u by a twisted
vector field, denoted rot«. This way, we have
defined a differential operator, rot, of a new
type: it maps vector fields to twisted vector
fields, instead of to plain vector fields. All
this is so cumbersome that one may doubt the
usefulness of such hair-splitting. So it's time
to turn to a specific application: the various
ways to mathematically describe (the ways to
encode) Faraday’s law.

3.6 Faraday’s law

As established by Faraday’s famous experi-
ment, variations of the flux through a conduct-
ing loop create an electromotive force. A math-
ematical statement which is meant to express
this law with maximum economy will there-



fore establish a link between the integral of &
(the induction 2-form) over a fixed surface S
and the integral of ¢ (the electric field 1-form)
over its boundary 05. Hereit is:

9) at/sb+/65@:o,

where 0, denotes the time derivative. These
numbers have dimension: webers for the first
integral, volts for the second, which fits, since
avolt is a weber per second.

Remark 6. Of course S and 05 must be ori-
ented (Fig. 8) for the integrals to make sense
(and the orientation of 9.5 must be the induced
one, as earlie—otherwise change + to — in
(9)). But which orientation of S is selected is
indifferent. (Physically, it's rather the orienta-
tion of 0.5 which is selected: it corresponds to
the two ways a galvanometer can be inserted
in the circuit here abstracted as 95. Hence the
orientation of S.) ¢

S

N

Figure 8. Both ways to orient S and 9.5 in (9).

S

Putting metric and orientation in background
(Fig. 9), and using vector proxies, we transform
(9) into

. + . =

(10) at[/sn B] /857' E=0,

the integral form of the law, saying that the
rate of variation of the magnetic flux through
a closed loop is compensated by the induced
emf in this loop. By the Stokes theorem, (10)
is equivalent to the differential version of the
law:

(12) 0B +rotE =0,

and there we are in well charted territory.

But of course, one may as well apply Stokes
to (9) directly, hence

(12) 8b+de =0,

to be compared with (11). We have here a
strictly affine expression of Faraday’s law. Met-
ric and orientation are not needed, and not in-
voked.
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Figure 9. Notations used in formula (10). All vectors
shown are of length 1.

By our earlier discussion of Lorentz force,
we are prepared to see the third formalism,
with no orientation but twisted vectors, stand
in between. Indeed, inthe“ {E-B}-machinery”,
the differential expression of the Faraday law is
(13) B +rBtE =0,
by using the above “twisted curl”. Note the
consistency: (13) is an equality between two
objects of the same type—two twisted vector
fields. Thereis of course an integral form (use
Remark 3), which does not require, contrary to
(10), an ambient orientation.

Is the simplification thus brought in by the
use of an axial vector—the economy of the ir-
relevant ambient orientation—worth the trou-
ble? Frankly, 1 don't think so. The met-
ric, which is just as irrelevant, as (9) and
(12) testify, is still present in (13). So why
stop halfway? Either one decides to work in
Euclidean space, with its metric and orienta-
tion, and the standard concept of vector field is
enough, or one adopts the language of covec-
tors and differential forms. We have not yet a
compelling reason to take the latter stand (it's
only when one deals with deformable conduc-
tors that one really appreciates the advantage
of getting rid of the metric), but as for now,
we find no outstanding advantage to the twisted
vectors formalism.

Besides, these axia vectors pose notational
problems when one wants to distinguish them
from polar ones. This, which we managed to
do here by using tildes, is often achieved by
playing on the shape of the arrows above letters:
thus © may denote an axial vector, whereas v
is a polar one. Some electromagnetic treatises
are graced at every page by such artwork. | am
not very fond of the device: It's very difficult
to use consistently, it generates cumbersome
typesetting, and there are so many kinds of



geometrical objects to deal with (we have not
exhausted the list!) that attempts to have a
specia graphism for each of them are hopeless.
Better to explicitly declare the type of each
entity when first introduced, and to use neutral
typography.

WEe' |l break here with our study of formalism,
leaving the analogous discussion of Ampere's
theorem for the next column. But before stop-
ping, we need to discuss another issue: this
restriction we made above by assuming a fixed
surface S in our study of the integral form (9)
of the law is a matter of concern.

3.7 Faraday’s law for moving circuits

Since (9) encodes, in mathematical terms, a
physical experiment, and since (9) and (12) are
mathematically equivalent, the local expression
(12) subsumes Faraday’s law: it’'s the one on
which one may always rely.

In many circumstances, however, we need
to know the circuital emf generated by flux
changes which are due, in part or in totality,
to the movement of the circuit, a case not
covered by laws (9) or (10). Though this
situation goes beyond the limits fixed to this
series (asingle reference frame, no motion), the
issue cannot be ignored (see [Co, CL, RS] for
relevant discussions).

So, if we want a flux—emf relation for mov-
ing circuits, we must derive it from (12), or
from one of its equivalents (11) or (13). This
amounts to evaluate J; [¢ b when S moves, this
motion being described by the velocity field V
a instant ¢t. There are two parts in this rate of
variation: one is [y 0;b, the other is the value
that 0; {4 b would assume if b was frozen at its
instantaneous value b(t), changes coming from
the change of S with time. Approximating the
derivative by a finite difference, we are led to
a comparison between [q(.5 b and [,y b for a
fixed field 5. This can be done by considering
the volume enclosed by a surface composed of
S(t + 6t), S(t), and the extrusion of 95 in the
direction of V', to which one applies Stokes
theorem, before letting 6¢ go to 0. The com-
putation (which unrolls just as the well-known
one in vector formalism, to be found e.g. in
[Co]) resultsin

8t/sb+/as(e—ivb)=0,
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where one recognizes the Lorentz force felt by
charges sitting on 05.

Discussing this would lead us too far astray.
But let’s stress the conclusion that the simplest
form of Faraday’s law we have found during
this investigation of formalisms, 9,6 + de = 0,
is also the one which may be trusted in all
circumstances.

Next, we may expect a parallel treatment of
the Ampere relation, —9,d + dh = 7, but an
important difference will emerge: it's twisted
differential forms that appear in this formula
And a new geometric object, the “Hodge op-
erator”, will be introduced as the right tool to
model constitutive laws.
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