(2): Geometrical objects

We have introduced oriented three-dimensional
Euclidean space, denoted E’3, and understood as
athree-layer structure: 3D affine space (a set of
points on which translations can be performed),
plus a dot product, plus an orientation. \We now
look at denizens of this universe. We'll pay
attention to which of these structures they really
depend on, and review their use as descriptors
of physical entities, with emphasis on the notion
of force, which itself ushers the electric field
and the magnetic field, conceived as differential
forms.

2.1 Vectors

Vectors we know well. They belong to the
“vector space” structure (V3) and represent
trandations: for any two points = and vy, there
iS a unigue vector v such that y = « + v. (It's
indeed the “free’ vector v, an element of V3,
not the bound vector {z,v} we are speaking
about: For it's the same v-trandation that will
send 2', say, to y' = 2’ + (y — x).) For vectors
so to stand for trandations is totally in line with
their abstract definition. But precisely, what we
want to discuss this time is the vector as rep-
resenting something else than itself, the vector
as a proxy for some entity of physical interest.

For instance, vectors are often used to rep-
resent position. Vector r (as it's often de-
noted) is then assimilated with the point 0 + r,
which involves some arbitrariness, since such
a representation depends on a choice of ori-
gin. Granted, in many questions of physics, it
does make sense to specialize a point to play
origin: in atom dynamics, celestia mechanics,
etc., there is such a privileged point. But oth-
erwise, it's not such a good idea.

A more legitimate use is for displacements
from a reference position, as one does in con-
tinuum mechanics (and now it's bound vectors
we have in mind). Consider a moving mass of
fluid, or a deformable body, represented by a
set! B, elements of which are called mate-
rial particles. The materia particle sitting at

1" B is not a naked set: in order to account for the
notion of “materia continuity”, it must be endowed with
a topology (and a bit more: the right structure is that of
smooth manifold, actualy).

point « at a reference instant (¢t = 0, usually)
will be found at time ¢ at a different point
x + &(x). The vector field @ — &(x) is
called displacement at time ¢, and its evolution
in time describes what happens to the whole
body, provided one knows®> where each particle
stands at ¢+ = 0. Virtual displacements, as one
knows, may have to be taken in consideration,
and are represented by (time-independent, of
course) vector fields, the same way. Metric
and orientation of space are irrelevant to such
descriptions.

Vectors can aso stand for velocities. Let's
first consider a single particle, which passes at
point « at time ¢. It will be at = + 6tv, up
to higher order terms, 6t seconds later. The
bound vector {x,v} thus fully represents the
particle’'s motion at time ¢. To describe its fate
over some span of time [¢,t3], one will resort
to the notions of trajectory (a smooth map from
the real interval [¢1,t2] into E3) and of field of
tangent vectors,

(1)

one at each point x(¢). (Pause a moment to
check that such a limit is well defined, without
need for a metric on V3.)* Now if instead of
a particle we have the above extended body, a
vector field will be able to describe its instant
motion, while atime-dependent vector field will
account for its evolution.

Although metric and orientation of space are
there again irrelevant, this time one may object,
“But is there not some metric element here,
as betrayed by your reference to the second,
the unit of time? No metric on Ej3, al right;
but you need a metric (and an orientation, to

o(t) = limg_y [o(t + 51) — 2(1)]/6t,

2 The mathematical device by which such information
can be encoded is, of course, a map, ug say, from B to
F3: the material particle b € B sits at point @ = ug(b).
Such a map is called a placement. Note how the initial
placement u, and the dis-placement &, combine to give
the placement at time ¢.

3 The trajectory is more than its supporting curve: it's
this curve plus a specific way to run aong it (just as a
graded ruler is more than a plain ruler). Notice how the
supporting curveis oriented (it'sinner orientation) by the
law of motion.
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boot) on the time-axis.” Right on! But please
make allowance for the necessity to proceed
step by step in this deconstruction process we
have initiated. We focus on the structure of
space, for the moment, and other fundamental
categories such as time, energy, electric and
magnetic charge, etc., will have to wait in line.
So we take seconds, joules, coulombs, and
webers' for granted. (It's meters and inches
that are under attack!) Yet, let’'s acknowledge
that when it comes to velocities, vector fields
cannot do the job alone, some extra structure
(here, a chronometry) is needed.

Vectors are aso frequently cast in the role of
rotations. We shall dwell for a while on this
example, which will lead to the construction of
a new geometric object.

2.2 “Axial vectors’

You know the trick: When a solid has one of
its points anchored at a fixed position a, its
velocity field v is given by

(2)

where the spin vector® s may depend on time.
The instantaneous axis of rotation is then the
line supporting s, and the norm |s| is a measure
of the rate of spin. As we know, defining the
Ccross product requires a metric and an orienta-
tion of space. One cannot object about metric,
since the very notion of rotation depends on it.
But orientation? Look at a spinning baseball;
its velocity field (the v of (2)) iswhat it is, and
exists independently of any orientation conven-
tion. Yet s, in (2), does depend on orientation,
since x itself does! Change the orientation and
you need to change s into —s in (2) in order to
obtain the same velocity field.

So here again, the spin vector cannot do its
job aone. It needs extra structure in back-
ground. But whereas one part of this struc-
ture, the metric, is clearly relevant (as was the
chronometry in the velocity example), another
part, orientation, seems artificially introduced
here, since it cancels out in (2). To say the

v(z) =s X (z —a),

4 Grams, no. Can you see why?

® It's a vector at point @, thus a bound vector. So the
“axial” objects we are about to define will also be point-
bound. But | stop insisting on this distinction from now
on. Whether bound or free objects are meant should be
obvious from the context each time.

same thing in a different way, what truly repre-
sents the rotatory motion is not the spin vector s
alone, but a composite object, the pair {s, Or}
where Or is the chosen orientation for ambi-
ent space. Moreover, since the opposite pair
{—s,—0r} represents the same instantaneous
velocity field, we have two equivalent descrip-
tors for the same instant motion (and only two:
no other pair will do). Formally, we may denote
this as

(3)

an egquivalence between the two pairs.

In mathematics, when objects are equivaent
in some respect, we often bundle them together,
putting like with like, and start considering each
of the “equivalence classes’ thus obtained as a
new object in its own right. This is how, to
recall only one well-known example, rationa
numbers are defined as equivalence classes of
pairs of nonzero integers. We consider two
ordered pairs of signed integers {m,n} and
{m',n'} as equivaent if mn' = m'n, and we
dump all eguivalent pairs in the same class
g. (Then we justify the abuse of notation
q=m/n =m'/n', and happily go ahead.)

In the spirit of such tradition, what follows,
which Voigt® first did around 1910, appears as
arather natural move. Let's consider an equiv-
alence class for relation (3) as a geometrical
object in its own right, that we shall call (very
provisionaly) a rotator, and denote by 5. So,
formally,

(4) $={{s,0r}, {—s,—0r}}.

Thus defined as an equivalence class, the rotator
5 is not the same kind of object as s or —s.
But it can be represented by one of these, in a
very definite way: If space is oriented once and
for all, this establishes a one-to-one association
between vectors and rotators by which, as one
sees, s stands for s if the chosen orientation is
Or.” But let's insist again on the fact that 3

{s5,0r} ={—s,-0r},

6 cf. [Po], which points to [Vg]. Post credits Voigt for
the introduction of the term “tensor”, too.

" The representative would of course be —s if the chosen
orientation was —Or. (The notation 5 is not unimpeach-
able: it betrays a bias in favor of Or as the symbol for
the standard orientation.)
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exists in its own right, just as s, whether space
be oriented or not.?

Of course “rotator” is not a good name, since
such geometrical objects can serve for other
things than velocity fields in a rotatory motion.
(To quote only one, of which the reader will
have been aware aready, and to which we shall
of course return, the magnetic induction field B
can be represented by afield of such “rotators”,
one at each point.) But the name chosen by
Voigt for objects like s, axial vectors, appears
much worse, in retrospect.

For again (remember, we had the same trou-
ble with “bound vector”, last time), “axial vec-
tor” must be understood as a single, unbreak-
able label for this new kind of geometrical ob-
ject. “Axial” is not, definitely not, an adjective
that would point to some quality possessed by
either 5 or s, some “axiaity”. Such a thing
cannot exist, anyway. It can’t be an attribute of
“the vector” 3, if only because s is not a vector.
Neither can it be an attribute of s, which just
plays the role of 5. So there is here a quite un-
fortunate choice of terms,” aggravated by the
habit to call “polar vectors’, for contrast, the
“ordinary” vectors.

Remark. Alternative denominationsexist: e.qg.,
twisted vector, which has the same drawbacks
(but also some advantages, to be discussed in
due time), or pseudo vector, which is a bit bet-
ter (since a pseudo X is not supposed to be
an X). But be careful: authors may use such
names for again dlightly different objects. ¢

Let us check that this geometrical object
is indeed able, by itself and without the pre-
existence of an orientation, to represent rotatory
motion. Given a metric, consider an axial
vector 3 at point «. Let's select one of the
two elements of the class, say {s, Or}. Metric
and orientation Or define a cross product x.
Now, the instantaneous velocity field is ©+ —

8 Maybe an analogy can help, for what it's worth. Think
of F5 (theworld . ..) asastage. Orientation, metric, etc.,
are elements of the set; s isacharacter in the play; s and
—s are actors, who may aternate in the part, depending
on which set (Or or —Or) isinstalled.

9 Though one tries hard to avoid such things in mathe-
matics, they do happen. A “signed measure” is not a
measure, “free Abelian groups’ are not Abelian groups
that would happen to be “free”, and so on. So much for
logic!
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s X (@ — a). Had we chosen the other element
of the class (4), two signs would change (one
in front of s, one in the definition of the cross
product), and we would get the same field.

Figure 1 shows how to design a convenient
icon for axia vectors. (Figure 2 gives the 2D
version.) Theideais simply to replace symbols
by iconsin (4), and to do some stylizing (since
the two arrows do double duty, keep only one,
etc.). Hence the icon for the axial vector 3(z)
at point x: it consists of a plain segment (not
a vector), with x a midpoint, and of an outer
orientation of its supporting line. This is sat-
isfactorily suggestive of the notion of “turning
around” the rotation axis, a a speed propor-
tiona to the length of the segment—the very
notion we wanted to capture in the first place.

X

Figure 1. Merging the icons for vector and orientation
to produce an icon for the axial vector.

Remark. Notice how an axial vector confersan
outer orientation on its supporting line, whereas
a polar vector gives it inner orientation. This
suggests an aternative way to define these ob-
jects in affine space. A (bound) polar vector
is made of (1) a point, (2) a line through this
point, (3) areal number (the length of the vec-
tor), (4) an inner orientation of the ling, that is,
a sense or “pointing direction”. An axial vec-
tor is made of the same items, except for (4),
which is an outer orientation of the line, that is,
a sense or “turning direction”. <

Note that no ambient orientation is suggested
by the icon. None should be, because the axial
vector does not depend on orientation. (This
was the whole point in defining it the way we
did.) Like the bound vector, it's an “affine
object”, meaning that, of the three layers of
structure that make E5, only the affine structure
IS necessary to its existence. Yet axia vectors
differ a lot from vectors, and | can't resist
quoting Burke's elegant argument (Fig. 2) to
show to which extent they do so.



Figure 2. 2D icon for axia vectors, and how it's used
in Burke's graphic illustration [Bu]: “To appreciate that
a twisted vector is an independent notion, consider the
problem of finding a continuous nonzero vector field on
the Mobius strip which is everywhere transverse to the
edge. No such vector field exists, but a twisted vector
field with these properties does.”

Axia vectors can be subjected to stretch-
ing, turning, mirroring, etc., i.e, to al geo-
metric transforms, just like vectors.'® Since a
skew transform A (such as amirror reflection)
changes the orientation class of frames, it sends
the representative {s, Or} of 3to {Ms,—Or},
not to {M s, Or}. Hence the different behavior
of axial and polar vectors under mirror reflec-
tion (Fig. 3). Thisis well seen by using icons,
for one need only apply the transformation to
all graphical elements that compose the icon'!
in order to visualize the transform of an object.

Exercise. Study Fig. 4 and comment on its
meaning.

There is nothing simple in what precedes,
so one may wonder whether representing spin
by a vector was such a good idea in the first
place. Thinking about dimension n instead of
3 may help, there. In al dimensions n, rota-
tions are represented, via an orthonormal basis,
by n x n orthogonal matrices. Instantaneous ve-

If an object 6 is defined as a class of equivalent tu-
ples {01,02,...}, and if some transform 7' can act
on al components o; (which in general are objects
of different types), then 76 is defined as the class
of {Toy,Toy,...}, provided the latter compound be
equivaent to {To},To,,...} when {oy,0,,...} and
{0],05,...} are equivalent. Only transforms for which
this condition holds are legitimate.

1 That's the rationale for good icon design [Al]: if I(0)
is the icon of object o, and T" a geometric transform, the
icon I(T'(o)) of the transformed object T'(0) should be

T(1(0))-

locity fields in such rotations (or if one prefers,
“infinitessimal rotations’) are then represented
by n x n skew-symmetric matrices, which de-
pend on n(n — 1)/2 parameters, and this hap-
pens to equal » when n = 3. Soit’s only when
n = 3 that vectors can stand for infinitesimal
rotations,'? thanks to the cross-product trick'?
of (2). It's a spurious association. No wonder
we had so much trouble!

- L] \ LN
- — = \ \
m * m * .
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Figure 3. Two fields (suggested by a few scattered
icons), each invariant by mirror reflection, but one made
of axial vectors, the other one of polar vectors.

We gained something of value, however, by
this brush with axial vectors. awareness that
vectors and vector fields, these workhorses of
calculus, are not always the best tool for the
job at hand. What we want to challenge next
is their use to represent forces.

4

% Sale, 2=

Figure 4. How polar vectors, too, could be defined in
terms of axial ones.

2.3 Covectors

Is force a vector? Or, to be precise about the
meaning of “is’ (we shall feel free to abuse the
language from now on, so let it be the last time
| fuss like that), “is this physical manifestation
we call force properly described by this (well
understood) mathematical abstraction, the vec-
tor in Euclidean space?’

7/

12 The “right’ geometrical objects for infinitesimal rota-
tionsin al dimensions are bivectors, which we shall soon
encounter. Cf. [He], where Hestenes has recast a large
part of classical physicsin the language of multivectors.
A good summary of his views can be found in [Hs]. It's
fascinating and recommended reading, even if he over-
states his case at times.

13 A binary operation with the properties of the cross
product can exist only in 3 and 7 dimensions [Ec].
Case n = 3 we know about. | don't know what the
implications of the case n = 7 are.
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The answer seems obvious. force has a mag-
nitude, right? A direction, right? Hence, it's a
vector, what else?

WEell, it's no so obvious that force has di-
rection. If you kick a golf bal, yes, it goes
along with your shove. (Doesn't it?) But this
is a simple, point-like object. What of a rugby
ball? Should we take the direction in which the
body moves as the direction of the thrust we
exert? Playing a few minutes with a gyroscope
is enough to cast this in doubt. It's easy to see
that, in all cases where we can assign a definite
direction to a force, this is the direction taken
by material objects to which the force is ap-
plied, and since this direction is determined in
part by the shape and structure of such objects,
it cannot be attributed to the force. Force has
no intrinsic pointing direction.

So let’s take the question from another an-
gle. Consider a physical force field, such as
the gravitational field, or the electric field. (As-
sume, for ssimplicity, a static field, so time is no
concern.) We want to describe this empirical
reality by some mathematical abstraction. How
do we know about the force field? By the de-
formations it causes on material structures, by
the displacements it imparts on loose objects
placed in the field. And since we can represent
displacements by vectors, there lies our handle,
in which one will recognize the time-honored
principle of virtual work: Imagine (to treat the
case of the electric field), an electric charge x
coulombs strong, placed at point =, where y is
ascalar factor meant to tend to zero'*, and let’s
displace it to = + A\v, where v is a vector (the
“virtual displacement”) and A another “vanish-
ing” scalar factor. The work involved in this
displacement, or virtual work, is asmooth func-
tion of Ay and v, which one can Taylor-expand
in Ay. The leading term of this expansion is of
the form Ay f.(v), where v — f,(v) is some
linear map (this is the key point). Now if we
know the map v — f,(v), we know the force at
point =. This is as complete a characterization
of force as one may desire.

In this description, the force at point = “is’,
therefore, a linear map of type!> VECTOR

4 gnce actualy putting a finite charge there would alter

the field.

15 wWhen afunction f sendsall or part of aset X to another
set Y, we say that “thetypeof fis X — Y.
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—REAL, that is to say—by the very definition
of dual space—an element of the dual of the
vector space Vs. This dual, V5", is a three-
dimensional vector space too, so its elements
would deserve the generic name of vectors. But
they are not of the same type as the vectors of
V3, so we call them covectors, instead. Force,
as we see, is a Covector.

The force field, now, is a field of covectors,
one at each point. Calling that a covector field
would make perfect sense. But it happens that
fields of covectors have another name: one calls
them differential forms (DF) for reasons that
will little by little become apparent. Anyhow,
such a covector field, or DF, appears as the right
geometric object by which to represent a force
field.

As a corollary, this will give us the right
mathematical representation of the electric field.
Humankind, by a protracted process of experi-
mentation and theorization, recognizes the ex-
istence of a particular substance called “electric
charge’ and of a physical manifestation, called
the “electromagnetic (EM) field”, which affects
the space around us in ways which are re-
vealed by, precisely, the behavior of electrically
charged objects. More specifically, a moving
particle of (vanishingly small) charge ¢ appears
subject to a force, the Lorentz force, which (1)
is proportiona to ¢, (2) depends in part on the
velocity of the particle. We thus distinguish
two parts in this force, the static one (which a
nonmoving particle feels) and the dynamic one
(due to motion), and hence, we also distinguish
two aspects, two facets, of the EM field: the
electric one and the magnetic one. The electric
field is this part of the EM phenomenon that is
revealed by forces on nonmoving charged par-
ticles.

So, assuming by convention a unit charge,
the electric field is akin to a force field. The
electric field is a covector field. It “is’, more
precisely, the mathematical object we may de-
note as follows

(5)

a compact and spiked (but convenient, as you
will see) expression, that should be parsed as
follows: e (the differential form that represents
the electric field) is the field + — ¢,, where
e, IS acovector at z, which itself is the linear
map v — e,(v), where the real number ¢, (v)

e=ax — (v— ep(v)),



isinterpreted as a virtual work. More precisely,
the work yielded by the field when a charge y
at = is pushed to = + Av would be Aye,(v), up
to terms of higher order in \y.

Remark. It will be convenient to write the
value e, (v) as (e;, v), with the covector on the
left and the vector on the right (that’s Dirac’'s
“bra—ket” notation), and to informally refer to
this number as “the effect of ¢, on v”, since
it's the value of amap, ¢, that acts on vectors.
Note that we can say “the effect of v on e,”
as well, since a vector can be seen as a linear
map over covectors, by reflexivity of the duality
relationship (the dual of V¥ is V,). ¢

Q!

®

Figure 5. Icons for a covector at «, in 2D and 3D.
(Their origin can be traced back to [VW].) The length
of the segment or the area of the plane patches are not
meaningful.

We said that force should not be construed
as pointing towards some direction, the way a
vector does. This doesn’t imply that force has
no directionality at all, for spatial directions are
not all alike with respect to a force covector.
The map v — e, (v) has a kernel, made of vec-
tors at « such that e,(v) = 0. They define, in
3D, a plane containing =, along which virtua
work is zero, to first order. (So this plane is
tangent to the equipotential surface of the force
field through «, if there are'S such surfaces.)
Under the virtual work interpretation, the force
at « should, actualy, be visualized as a pair of
paralel planes (Fig. 5). Oneisthe previous null
plane, passing through =. And—just as the tip
of the velocity vector of a particle was the point
reached after one second of movement, assum-
ing no change in velocity—the other plane is
the one reached by releasing one joule of virtual
work, again assuming uniformity of the force
field.

16 \Which is not necessarily the case. One may imagine
force fields such that the virtual work involved in pushing
aparticle form z to y depends on the trajectory followed,
not only on the end-points. It means that the above “null
planes’ can't be quilted together to envelop surfaces.
A centra result of differential geometry, the Frobenius
theorem (see, e.g., [Sc], p. 82) tells when they can.
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Figure 6. The dectric field, between an electrode at
potential 1/, and the ground.

Remember this hall for electrostatic experi-
ments in the first installment ([B1], p. 19)? See
on Fig. 6 how such icons nicely visualize the
electric field around a charged isolated conduc-
tor, and near the ground. This pictorial repre-
sentation of the force field does not depend on
a metric. In particular, the notion of orthogo-
nality of field lines (which have no status so
far) with respect to the conducting surfaces is
irrelevant. Note how Fig. 6 can be looked at
from any angle, and retain its meaning. (Same
remark about Fig. 5 of last issue [B1].)

It should not be felt as counterintuitive that
the larger the covector (which measures the in-
tensity of the electric field), the thinner itsicon,
i.e., the closer the two planes which compose
it. It's because higher intensity means closer
equipotentials. Figure 7 should make that clear.
(Since a covector w is a linear map from vec-
tors to reals, it makes sense to ask the question,
“given a covector w and a vector v, what is the
value of (w,v)?", which Fig. 7 answers.)

We are now prepared to introduce the notion
of gradient of a function. If a smooth function
f maps A, (the affine space) to reals, we may
expand it in the vicinity of a point x, thus
obtaining f(y) = f(x)+ <a linear part in
y — x> + <higher order terms>. The “linear
part” here, considered as a function of y — x,
is a covector, which we may denote as df (),
and call the differential of f at point x. Hence
acovector field df (themap » — df(x)), i.e. a
differential form, which it would be natural to
cal the differential of f. It's more common to
cal it its gradient, however. No surprise here:
we expected the force field to be the gradient of
the potential function, when there is one. But a
great risk of confusion, because “gradient” may



mean something else when a metric structure is
present. Let’s address this delicate issue.

Figure 7. Since (w,v) = 1 when the tip of vector v
lies on the “arrowed front” of the covector w, the value
of (w,v) for the vector v of this figure is the ratio 3/«,
by linearity. (This ratio is an affine notion, since only
one direction is concerned. No metric involved.) Large
ratios, i.e., big covectors, thus correspond to closely
spaced planes in the covector’s icon.

2.4 Vectors as proxies for covectors

Suppose that a dot product has been defined.
Then, each linear map v — (w,v), that is to
say, each covector w, has an associated Riesz
vector, defined as the unique vector w such
that w - v = (w,v) for al v. Conversely, of
course, each vector w generates a linear map,
that isacovector. (Hence an isomorphism, non-
canonical, between V,, and V,*.) A vector field,
therefore, generates a differential form. To save
on notation, | will denote the DF thus associated
with avector field w as 'w, wherethe 1 refersto
something called the “degree” of the DF (later
to be defined, but of no importance right now).
Same notation, of course, for the covector !w
(or Lw(x) if we need to refer to its location),
generated by the vector w at point .

So if aforce field is described by a DF w, it
can as well be described by the vector field w
such that 'w = w. By the very definition of the
iconic planesin Fig. 5, w is orthogonal to them,
and hence the field lines of « are orthogonal to
the equipotentials of the field. This restores the
sense of pointing directionality of force that we
shunned a moment ago, and also gives status
to the notion of field lines. These lines support
the test-particle trgjectories, so there is no doubt
that metric is physically relevant here. But
what it tells about is the structure of space, as
revealed by the dynamics of simple particles,'”

17 Note that a particle with complex inner structure, like

not the structure of the over-imposed electric
field.

The best way to make that obvious is to
imagine two metrics that would only differ by
the chosen unit of length, say -; for inches and
-m for meters. The same electric field e is then
represented by two different vector fields E; and
E.., linked'® by the equality

(6) Ei(x) sv=Ep(z) mv

for al test vectors v. This is reflected in the
choice of units. volts per inch for E;, volts
per meter for E,,,, whereas the DF itself is, so
to speak, in “volts per vector”. One should
imagine, at each point of space, a machine
where one can insert a vector, to then see a
dial give the number of joules (recall that joule
= volt x coulomb) available by letting a unit
charge (one coulomb) drift from « to « 4+ v (all
that, of course, to first order and virtually).

The proxy fields E; and E,,,, therefore, can-
not do their job aone. Both require a specific
metric, irrelevant to the virtual work available
at each point, which reflects the rea nature of
the electric field: a differential form.

Now, let’s go back to the notion of gradient.
A pressure gradient, for instance, is routinely
given in millibars per kilometer, in technical
meteo reports, showing that what people have
in mind there is the vector field representative,
not the differential form. We must commit
ourselves to some nonvarying use, so we shall
denote the differential form by df and reserve
the notation grad f to the proxy vector field
with respect to a background metric which,
hopefully, will be fixed once and for al. This
way, therefore, df = Y(grad f).

Remark. If one appliesthe DF df to a specific
vector field v, one gets a scalar field

(7) @ — (df(2),v(z)) = (grad f)(z) - v(2),

which is the one often denoted by df/dv, or
better 0, f, that is, the derivative of f along

a spinning top charged off-center, would behave differ-
ently.

18 The differential form e is the same in both cases, o

e =1 E; =»E,,, as we would be forced to write if
we insisted on having the metric explicitly appear in the
notation. Just keep in mind that this left upperscript “1”
implicitly points to the metric.



v».1%  (The notion of normal derivative, 9, f,
is a case in point.) An affine notion, as one
sees, despite the appearance of a dot product
on the right of (7). By areversa of viewpoint,
a vector field can thus be seen as an operator,
acting on functions, which has all the formal
properties of aderivation (linearity, 9,(f+¢g) =
Oy f + 0,g, and Leibniz rule, 9,(fg) = fO,g +
g0y f). Vector fields are derivations. We won't
make much of this important observation for
the time being, except justify the use of an
otherwise bizarre notation, 9;, for the fields of
basis vectors in what follows. $

2.5 Components

We avoided using frames and components up
to now, and indeed, one can do much mileage
without them. They can’t be ignored, however,
if only to make contact with other work using
them.

So let’'s assume a smoothly varying field of
frames over A, : a each point, n indepen-
dent bound vectors {0;(z), 0a(x), ..., ()},
forming aframe at =, that we may denote d(z),
and also forming n vector fields 0y, 0s, ...,
Op. The field + — O(x) is caled a reference
frame.? Any vector field v can then be written

(8) v = Z vial'

1=1,...,n

with of course v(z) = ¥;vi(2)d;(x) a each
point. The v's are the components of v in this
reference frame. We define an associated dual
frame, or coframe, by introducing the covectors
d'(x) such that

(9)  (d'(x),0j(z)) =0if i £j,1ifi=j.

A covector field w can then be written w(x) =

19" 50 one has (df,v) = &, f, exhibiting a duality that
would better be seen by writing (df, v) = (f, dv). Butno
notational system can satisfy all needswith equal success.

20 Be well aware—this is a nasty little trap, that very
few authors warn about, [Sc] being one of the except-
ions—that whether a coordinate system, that is, a set
of n functions ¢! : A, — R that map points to n-
tuples of coordinates, induces basis vectors (9; is just
the one corresponding to the i-th partial derivative), the
converse is not true, even if one restricts attention to
the neighborhood of a point. This is why we talk of
components, not of coordinates.

Siwi(x)di(x) a each point, that is’!

9) w= Z w,;di.

~~~~~

As a result, the scalar field (w, v) is equal to

Sl Z wi(:z:)vi(x),

i=1,....n

(10)

geens

which is of course generally abbreviated as
> wivt or even w;v' (the Einstein convention).
Be careful, this is not a scalar product, but a
so-called “duality product”.

Now suppose there is ametric, defined by the
dot products ¢;; = 9;-9; (there, position depen-
dent). Then, the Riesz vector of w is w such
that (w,v) = Y ; gyw/v’ = > ;wiv’, hence
w; = Y; gijw’. The components w; of w are
then called the covariant components of . . . w!
These components do not depend on « and the
basis only (as do its contravariant components,
i.e., the w's in the expansion w = 3, w'd;),
but aso on the metric, to which the w's owe
nothing, so it's a misleading symmetry that is
suggested by this unfortunate terminology.

Where does it come from, by the way? If
the basis is changed to 0;, with the new basis
vectors given as 9; = >_; A70; in terms of the
old ones, the new components »° must satisfy
2. 0'0; = X;v'0;, hence v = 32; Alv/: they
transform “the other way” with respect to the
basis vectors. A similar calculation, based on
(9)(10), shows that “covariant components” of
w transform just as basis vectors do: «; =

This is why vectors and covectors are some-
times called “contravariant vectors’ and “co-
variant vectors’. One may find this debatable.
(After all, defining a change of frames by the
way the 0;s change is an arbitrary choice. One
might as well give the new basis covectors in
terms of the old ones. Then, it's the w;s that
would be “contra’!) But much worse, covectors
(and al other sorts of tensors) are sometimes
defined by their behavior under frame changes,
and that is really old-fashioned, a remembrance
of the time when vectors were not conceived as

21 The symbol ¢’ thus stands with advantage for the *dz*"

of the physics literature, a badly thought-of notation in
many respects.



autonomous objects, but as frame-related sets of
numbers.?

Remark. Components of df are the partial
derivatives 0;f. So 0, f = >_; 0; fv'. Compo-
nents (grad f)* of grad f, such that grad f =
>i(grad f)'0;, verify 0;f = 32 gij(grad f)).$

2.6 Gyroscopic forces, bi-covectors

Now, let’s deal with the “magnetic part” of the
Lorentz force, the one due to motion. It has the
experimentally demonstrable property of being
gyroscopic, that is, to depend on the actual
velocity vector V' in such away that the virtual
work for av paralel to V' isnull. (Electronsin
a steady magnetic field twirl around field lines
in complex motion, but neither lose nor acquire
energy.”?)

A gyroscopic force field, therefore, can be
characterized as a covector-valued map, which
at each point sends the actual velocity vector V
of the particle passing there to a covector w (1),
with the essential property that

(11)
By linearity,
0= (W +V), 0+ V) = (w(v), V) +{w(V),0)

(w(V),V)y=0foradl V.

for any pair of vectors {v, V'} . Thissuggeststo
define a new entity, denoted b, acting on such
pairs to yield a real number, which we shall
denote (b; v, V'), and define as

(b;0,V) = (w(V),v)
where w(V') is the force covector. So we

have here (at each point) a mapping of type
VECTOR x VECTOR — REAL, whichislinear

2 goes this way: Build composite objects w = {0,
o Op; wi,...,wn}, made of n vectors and n real
numbers. Say w and w are eguivaent if there is a
regular matrix A such that 9; = Zj Al9; and @; =
>_; Alw;, and call the equivalence class a “covariant”
vector. (Note that, in order to define vectors in the
first place by such a method, you would have to ded
with classes of n(n + 1)-tuples of numbers. No wonder
“old tensor” calculusis so dreaded.) With this approach,
an axial vector is a (class of) similar sets of numbers,
but with the last » components ¢’ transforming as a =
sign(det(A4)) _; Alal.

with respect to both arguments, and alternating,
meaning that (b;v, V) = —(b; V,v) whatever v
and V. Such an object is called a bicovector, or
2-covector. (They form a vector space, which
has a dual, elements of which are bivectors.)
A field of 2-covectors is a differential form
of degree 2, or 2-form for short, in reference
to the number of vectors acted upon. So the
magnetic part of the EM field is a 2-form,
caled “magnetic induction”. It's like having
a distribution of machines with two slots (to be
filled in this precise order), one for the virtua
displacement, one for the actual velocity, the
dia then giving the virtual work. Figure 8
displays a suitable icon [Bul].

What of vector proxies? There's an obvious
aternating bilinear map that one can associate
with a vector u: it's

(12) {0, V}—=u-(vxV),

but this time both metric and orientation are
necessary to build this associate bicovector,
that | shall denote *u. (Thus, by definition,
Cu;v, VY =u-(vx V), or (V xu)-v.) Inthe
stage analogy, therefore, we can have a vector
field playing the part of the magnetic induction
field, but only if metric and orientation have
previously been set, say ¢ and Or. Then there
isavector field B which describes the magnetic
part of the EM field, in the precise sense that
the Lorentz force vector (mind that!) on a unit
charge of velocity V' isV x B. Of coursg, if one
substitutes —Or to Or, it's —B which acts.?*

One can do without metric and orientation,
thanks to the concept of 2-form: B is just a
proxy for the 2-form b = 2B, which is a purely
affine object. One can keep the metric and
do without the orientation by introducing an
axial vector B, the one represented by the pair
{B, Or}. Hence the oft-repeated assertion that
“magnetic field is an axial vector”. But is there
any wisdom in thus disposing of the orientation
while keeping the metric? Especialy when it
callsfor as difficult a concept as “axial vector”?

24 And if one substitutes inches for meters. . . But no need

23 ild-upi i [
The energy build-up in synchrotronsis due to an electric to repeat this.

field, which changes direction at each half-turn.

21



Figure 8. A 2-covector at « needs two pairs of paralel
planes (with a way to tell which is first, here the caret
in front of ). So it has a definite associated spatial
direction (its kernel, to which its vector proxy will be
paralel). The length of the icon along this direction
is not meaningful. Note the suggestion of a flux tube.
(Strong fields correspond to narrow tubes) The effect
on the pair of vectorsistheratio 346/« (again an affine
notion), but you need to shear the cross-section first, to
let one plane absorb one of the vectors. Rules of this
kind make such icons too cumbersome to be useful as
such. On the right, a simplified one.

2.7 Twisted covectors

The same way we defined axial vectors, we may
introduce new affine objects,

(13) w= {{UJ,OT},{—CJ,—OT},

where w is a covector. But “axial covectors’
would be a poor name for them, wrongly sug-
gesting the existence of some axis which is
nowhere in sight on the icon (Fig. 9). We shall
call them twisted covectors, and unify the con-
vention by thus referring to al objects which
“carry orientation in their bag”, including ax-
ial vectors, from now on twisted vectors. Of
course vector proxies for twisted covectors are
twisted vectors. Having no immediate use for
such objects, however, we shall not deal with
them right now, but return to the analysis of
Maxwell’s equations, beginning with Faraday’'s
law, in search for motivation.

Y

®

Figure 9. Icons for a twisted covector [Bu], in 2 and 3
dimensions.

22

References

[All S.L. Altmann: Icons and Symmetries, Clarendon
Press (Oxford), 1992.

[B1] A. Bossavit: “On the geometry of electromagnetism.
(1): Euclidean space”, J. Japan Soc. Appl. Electro-
magn. & Mech., 6, 1 (1998), pp. 17-28."

[Bu] W.L. Burke: “Manifestly parity invariant electro-
magnetic theory and twisted tensors’, J. Math.
Phys., 24, 1 (1983), pp. 65-9.

[Ec] B. Eckmann: “Topology, Algebra, Analysis—Relations
and Missing Links’, NoticesAM S, 46, 5 (1999), pp.
520-7.

[He] D. Hestenes: New Foundations for Classical Me-
chanics, D. Reidel (Dordrecht), 1986.

[Hs] D. Hestenes: “Vectors, Spinors, and Complex Num-
bers in Classica and Quantum Physics’, Am. J.
Phys., 39, 9 (1971), pp. 1013-27.

[Po] E.J. Post: Formal Structure of Electromagnetics,
North-Holland (Amsterdam), 1962. Dover edition
(New York), 1997.

[VW] O. Veblen, J.H.C. Whitehead, The foundations of
differential geometry, Cambridge, 1932.

[Vg] W. Voigt: Lehrbuch der Kristallphysik, Teubner
(Leipzig), 1910.



