
(6): Some questions and answers

Summing up—provisionally

As this Series, if not its subject matter, ap-
proaches its closure, it seems appropriate to
summarize our observations so far, and to ad-
dress some questions that were asked at various
occasions, over e-mail or in recent meetings.
To most of these questions, I have only partial
answers, at best. But unanswered questions are
not so bad a thing in science: they may foster
further progress.

What we have described so far can be char-
acterized as a discretization toolkit. Faced with
the task of solving electromagnetic equations in
some definite physical configuration, the mod-
eller will proceed as follows:

� Partition the region of interest into small vol-
umes, or “�-cells”, hence an algebraic structure
called “the primal mesh”.

This is described by sets N , E , F , V , of nodes, edges,
etc., and by incidence matrices, G, R, D, which say
how oriented p-dimensional faces, with p � �, of said
volumes, relate. (Some boundary conditions, one will
recall, are taken into account by deletion of some p-
cells.) We have seen repeatedly how a “dual mesh”
can, conceptually at least, be associated with the primal
one. (Practical aspects of this association are among
questions to be answered.)

� Take as unknowns, or “degrees of freedom”
(DoF), for the problem at hand, cell-based
quantities.

As we described several times, such DoFs are the
emf’s along primal edges, the induction fluxes relative
to primal facets, mmf’s along dual edges, etc. Hence
DoF arrays, e, b, h̃, d, j̃, which relate in definite ways
to either the primal or the dual mesh. Some of these
quantities may be imposed by the physical situation,
which turns them into data. In particular, as we always
assumed up to now, intensities j̃f through dual facets
can all be data, which one gets by (approximate)
integration of the given current density �� over the
dual facet �f . But arranging for some of them to be
unknowns, linked with emf’s via Ohm’s law, is not
difficult, as we shall see

presently. Other data may come from the rest of the
boundary conditions.

� Form the so-called “discrete Hodge opera-
tors”.

These are square symmetric matrices, ��� and ���, and
their inverses. (This, for wave propagation problems.
It’s easy to imagine how a ��� would intervene in an
eddy-current problem, although we didn’t yet address
this issue: It’s precisely by an equation of the form
j̃ � ���e� j̃

s

, where j̃
s

stands for the known “source”-
current intensities, that one might account for Ohm’s
law.) In contrast to incidence matrices, discrete hodges
require a knowledge of the metric of the mesh (lengths
of edges, areas of facets, etc.), which one usually
derives from a database containing nodal positions,
and material properties of each elementary volume.
(Such properties are part of the metric structure, in
our view.) We return in a moment to the two main
methods by which hodges can be constructed.

� Substitute e, b, h̃, etc., for the fields e, b, �h,
etc., in the equations. Substitute R or Rt for
rot, depending on whether the field to which
this applies is on the primal side or on the dual
side.

If things evolve in time, replace time-derivatives by
appropriate finite differences. It may happen, in some
modellings, that operators grad or div also appear in
the equations. If so, substitute G and D, or �Dt and
�Gt, to grad and div, according to which side the
DoF-array belongs in.

� Solve the algebraic equations thus obtained.

� Display the results, and discuss accuracy.
Both operations, we saw, require interpolants, by
which one can climb back from DoF arrays to fields,
and perform some error analysis that will justify the
choice of Hodge operators, and hence, tell to which
extent the results can be trusted. Whitney forms, in-
cluding the well known “edge element”, provide these,
at least for simplicial primal meshes.

For definiteness, we’ll refer to this line of at-
tack as Generalized Finite Differences (GFD).
Indeed, it reduces to finite differences in their
basic and best known form, Yee’s FDTD method,
when the 3-cells are regular bricks (which are
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of course, even in GFD, the recommended vol-
ume shape wherever possible; the point is that
you don’t easily model real objects, like a cel-
lular phone near a human head, say, by laying
only bricks).

6.1 Where is the beef?

Now, the questions.
Q. – Though known as a supporter of edge ele-
ments, you advocate here an approach in which
finite elements seem to play quite a modest role.
Did you change your mind?

A. Hardly. Whitney forms are the right finite
elements for differential forms. Edge elements
for e, facet-elements for b, this is the basic
tenet. I sure continue to stand for that. But
yes, the role of finite elements, or perhaps more
accurately said, of variational formulations in
numerical methods may have been exaggerated.
For long, the dominant paradigm was: Give a
variational form to your problem (minimize, or
perhaps stationarize, this or that functional over
this or that Hilbert space of a priori eligible
fields). Restrict consideration to some finite-
dimensional subspace, generated by a set of
basis fields, called finite elements. (There is
more in the notion, but let’s not err.) Hence a
system of equations, or an ODE system. Solve.
Plot. Check. Assess accuracy.

The obvious difference there, with respect to
GFD, is that one needs finite elements much
earlier. They are essential. Without them, no
discrete equations. Besides, the technique to
prove that the method works, based on the vari-
ational method, forces one to adopt the vari-
ational method in the first place in order to
just describe the numerical method. Concep-
tually, these two phases of the action should be
distinct—as they are in GFD.

I would be the last to deny the virtues of
the variational method: Among other things, it
helps us to be thorough in the description of a
problem: No way to forget some subtle con-
straint of topological origin, for instance, or to
impose too many boundary conditions, because
it would result in a flawed formulation (with
either an infinity of solutions or none), some-
thing which can then (hopefully) be detected
by theoretical reasoning—not discovered with

embarrassment a few minutes before the client
comes for the contract-clinching demo.

Yet, not being able to simply explain (to
a programmer, for instance) what the method
is, which recipe one should follow, without
first explaining the mathematical foundations
in painful detail, is a terrible burden. It
faces teachers with the impossible challenge of
dumping high-level mathematics into reluctant
minds as a precondition to giving them the
useful (and much easier to understand) stuff.
It reduces the workforce in research groups,
since only the mathematical élite seems quali-
fied enough. And it forces users to rely on pro-
prietary “codes”, rather than using open-source
software pieces that would correspond to ele-
ments of the above “toolkit”.

In GFD, while the methodological advan-
tages of the variational method are retained,�

such obstacles are removed, because the need
for finite elements is relaxed and postponed.
The first thing they serve for, building a dis-
crete Hodge operator, can be achieved without
them in a different, much more transparent way,
if one uses mutually orthogonal meshes. Then
comes the minute of truth—did we get a con-
vergent method of approximation? And there,
finite elements are necessary. But at this late
stage, the question is one for specialists. Er-
ror analysis, speed of convergence, are no less
important issues in GFD. They still call for the

� The tools in the kit incoporate them, in some way. This
point could not be explained in general without some
deep forays in topology, but an example will perhaps do.
Consider eddy currents induced in a conductive torus by
temporal variations of the current in some exciting coil.
Setting up eddy-current equations inside the torus, plus
magnetostatic equations outside (of course parameterized
by time), plus the obvious conditions of tangential and
normal continuity at the boundary, will not make a well
posed problem. There is something else to say, about the
relation between total current and rate of change of the
flux traversing the torus loop. This kind of “non-local”
boundary condition is very easily overlooked, and is one
of these things the variational approach helps not to forget
about. In GFD, the existence of a problem is revealed
by the fact that the range of G does not completely fill
the kernel of R, something a software element can test
for you, automatically, as soon as the mesh has been
completed. Work is in progress, in some research groups
[5, 12] to design such “watchdog” software tools.
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attention of professionals (and much is left there
to do), but don’t stand in the way of teaching
and training. Which is as it should be: Driving
instructors don’t teach you thermodynamics, do
they?

Q. – How effective is all this, in practice? Have
you done numerical experiments?

A. This question has been asked a couple of
times in a way that seemed to imply that GFD
was a novel proposal I would be making. Not
so. GFD is an approach common to several
groups of researchers, loosely connected if at
all, who discovered its main elements indepen-
dently. (See e.g., in addition to alrady cited
work, [10] on Tonti’s method, Shashkov et al.
[8] on “mimetic discretization”, Chew et al.
[13] on “lattice” approaches.) One should turn
to their publications, especially those of the
Darmstadt group, which has the largest accu-
mulated experience [2], for evidence about the
effectiveness of the method.

Q. – Well, then, so nothing new under the
sun. But if so, what’s the purpose of all this
differential geometric apparatus? After all, this
is not elementary mathematics either.

A. No, the geometric approach by itself does
not generate new algorithms. Even the fact that
it brings in a new understanding of existing
algorithms is not so compelling a reason to
decide on seriously studying it. After all, as a
friend recently observed, when people in good
command of an efficient method understand
what they are doing in their own way, they tend
to care little for explanations of the, allegedly,
“real nature” of what they do. Which benefit
they may expect in getting acquainted with a
new perspective, when the effort involved is not
negligible, is then a legitimate prior question.

However, the Computational Electromagnetism
(CEM) community as a whole may find such
benefits in a synthesis of the different view-
points. The very fact that GFD, or whatever
name one eventually adopts for this approach,�

� “Generalized finite volumes” has been suggested [7].
Tonti prefers “finite formulation of electromagnetism”
[14], which may reveal a more ambitious agenda than
simply discretizing an underlying “continuous” formula-
tion, as we have done here. Weiland et al. [2] use “Finite

emerged in almost identical form in indepen-
dent research groups, is a problem. Take for
instance, [11], a work I only recently became
aware of, to realize that, apart from minor vari-
ations in the definition of degrees of freedom
(densities instead of integrated quantities), they
propose and analyze the same network equa-
tions we dealt with here. Conceivably, the same
thing might well happen again next month,
with another paper from researchers outside the
CEM community, and no doubt it would be the
same network equations again. When parallel
and independent efforts result in proving the
same theorem, no one is surprised: there was
some kind of logical necessity at work. But
when it results in the same numerical technique,
what can it mean, if not that some necessity of
the same kind lies underneath?

If so, we must dig and find out. That’s the
real point of conceiving Maxwell’s equations
as relations between differential forms, i.e., be-
tween objects meant to be integrated: As soon
as we have decided for one DoF per cell, the
network equations follow, with inner necessity.
All those making this basic choice will find the
same equations.

Now, about the discrete constitutive laws, the
situation is different. Not only is there this
great divide between Galerkin-inspired methods
and those which use a diagonal hodge, but tiny
variants can be observed in the latter category.
The relevant question now is, why this variety,
and how much of it is allowed? The geometric
approach offers an answer: in order to meet the
necessary consistency property

��� ���rM � r
M
��� � � when M� ��

the discrete Hodge operator must satisfy

���
X

e��E
��
ee�

� e� � � �e�

Integration Technique” (FIT), which in my opinion de-
scribes well the derivation of the network equations, but
they consider the construction of their hodges (diagonal,
as a rule) as a component of FIT, as well. In contrast, I
would include in GFD the Galerkin method (which they
would probably consider foreign to FIT), for the reasons
exposed here so far: it does generate the same network
equations, and differs in the way the hodges (then, non-
diagonal) are built.
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where e� is the vector along edge e� and �e
the vectorial area� of the dual facet pierced by
edge e.

This is a criterion, the form of which ex-
plains why the hodge and the dual mesh are
so closely related: A discrete Hodge operator
is acceptable, as an element of the toolkit, if
there is a way to devise a dual mesh that will
satisfy (2). We found two examples: (1) When
dual cells are orthogonal to the primal ones, and
��
ee

� equals the ratio between vectors �e and e,
all off-diagonal terms of ��� null, (2) When ���

equals the mass matrix of edge elements, dual
cells then being those of the barycentric dual.
Clearly, there are other possibilities, which re-
main to be explored, but we now know the rules
of the game: Satisfy (2).

6.2 Technical issues

Q. – How to construct the dual mesh?

A. The problem, it should be stressed, is to
build the primal mesh in such a way that a suit-
able dual one will exist, and “suitable” depends
on which hodge one wants to use. This remark,
unfortunately, is of little help. If primal 3-cells
are tetrahedra with all dihedral angles acute,
there is a simple solution: join the circum-
centers of the primal cells, as in the Voronoi-
Delaunay construction, and lo the dual orthog-
onal mesh. In this case, the problem is with the
primal mesh, since getting the dual is a simple
local process. But it’s a tough problem, because
this condition on angles is very strong.

Observe, however, that (2) is a local condi-
tion. It means in particular that one may well
use the diagonal construction of the hodge in
large homogeneous regions, where a uniform
mesh is all right, and the Galerkin one at places,
such as material boundaries, where the shape of
the primal mesh is severely constrained. This
results in a non-diagonal hodge, but with so few
off-diagonal terms that it may not be a problem.

� Recall that the vectorial area of a triangle is its area
times the normal vector. The vectorial area of a poly-
hedral surface is defined as the sum of vector areas of
its triangular facets. When � is not uniform, � �e is the
weighted sum of vector areas of triangles that constitute
the dual facet �e, with the values of � as weights.

Also remark that (2) is not “necessary” in that
strong a sense, since its purpose is to satisfy
(1), an asymptotic condition only. If (2) is vi-
olated for a small proportion of edges, and if
the (virtual) refinement process makes this pro-
portion tend to zero, (1) can still hold. So it’s
tolerable to cheat on some edges or facets, as
Fig. 1 suggests. (Similar procedures have been
tested for the MAFIA codes [1].)

Figure 1. “Cheating”, when an occasional dual facet
cannot be made orthogonal to its primal edge (e here). In-

stead of � area��e��length�e�, set ��
ee

� equal to � �E � �e���E � e�,
i.e., to � l��l, with the notations of the figure, where E is
a guesstimate of the direction of the electric field in the
vicinity. (Recall that e and �e stand for the vector along
e and the vectorial area of �e.) This amounts to replace
length�e� by the length of its projection onto the sup-
port of E, and area��e� by the apparent area when looking
parallel to E.

Q. – Which elements for cells of general shape?

A. We have had edge elements for hexahedra
(not necessarily with plane facets) for long [15],
and more recently, for shapes such as pyramids
[4, 3, 6], compatible enough to ensure tangen-
tial continuity of the interpolated fields when
used together. The problem is crucial if one
wants the analytical form of the interpolants,
in order for instance to compute the Galerkin
hodge. If one uses the orthogonal construction
and the diagonal hodge, it’s no more a practical
issue but a theoretical one: The only problem
is to find some convergent p

M
, in last install-

ment’s notation. To this effect, one may rely on
the convergence properties of simplicial Whit-
ney forms, and build interpolants as weighted
combinations of these.

To be specific, suppose each p-cell of the
mesh M, for all p, has been provided with
a “center”, in the precise sense of JSAEM 7,
2 (1999), p. 158, i.e., a point with respect
to which the cell is star-shaped. Then, join
the centers in order to obtain a simplicial re-
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finement, M say, where the new set Sp of p-
simplices contains the old one Sp. In similar
style, let u and u stand for DoF arrays indexed
over Sp and Sp respectively, with us = us for all
s in Sp. Our problem is to define p

M
u, knowing

what p
M

u is. Isn’t it obvious? Just take for p
M

u
the smallest, in the energy norm, of the p

M
u’s,

with respect to all u’s compatible with u.

The family of interpolants thus obtained is
to our cellular mesh, for all purposes, what
Whitney forms were to a simplicial mesh.
Purists, however, will object against calling
them “Whitney forms”, because they are metric-
dependent, unlike the standard Whitney forms.
The same construction on the dual side will pro-
vide similar pseudo-whitneys on the dual mesh.

Q. – What about higher-degree Whitney forms?

A. When using the Galerkin method, finite
elements of higher polynomial degree give
schemes of higher accuracy, which more than
compensates for the increased number of DoFs.
Hence the interest for Whitney forms of higher
polynomial degree. But a caveat about that:
Our approach to network equations, as exposed
so far, is in jeopardy if there is more than
one DoF per cell, so it’s not so clear what
to do of higher-degree Whitney forms out of
the rather restrictive context of the Galerkin
method. Since the red thread in GFD has been,
up to now, the duality between chains (for-
mal sums of cells) and DoF arrays, these forms
make full sense only if we can associate their
DoFs with well identified geometric objects.

Thus, though this is a very promising area
for future progress, it should be explored with
the right equipment. A good compass, in my
opinion, is this “partition of unity” property,

X
e�E

eihwe�x� � ��

in the esoteric notation of last time, or more
clearly, in terms of vector proxies,

X
e�E

�We�x� � v� e � v�

at all points x and for all vectors v, where e,
again, is the vector along edge e. From this,
which generalizes the

P
n�N �n�x� � � valid

for nodal 0-forms,� and has counterparts for

� I denote here by �n the same nodal hat functions that

simplices of all degrees, we were able to prove
that the mass matrix of edge elements does sat-
isfy the criterion (2). This was, at the root, the
reason why edge elements give a convergent
scheme in the Galerkin approach. Therefore,
this property should be taken seriously: what-
ever Whitney elements of higher degree are,
they must constitute a partition of unity.

Now (a heuristic move, not a formal asser-
tion, even less a proof), the product of two
partitions of unity makes a partition of unity.
Let us, therefore, take as second-degree edge
elements, on a simplicial mesh, the products
�nwe, indexed over the set N � E . Actually,
let’s do that for all simplicial degrees, in all di-
mensions: second-degree p-forms are the prod-
ucts �nws, where n spans the set of nodes, and
s the set Sp of p-simplices.

Forms obtained in this manner have all the
required properties. In particular, they con-
stitute an exact sequence, i.e., if for instance
b �
P

n�f bnf�
nwf has a divergence-free proxy

(db � �), then there are DoFs ane such that
b � d�

P
n�e ane�

nwe�.

The main problem with such forms is the
interpretation of degrees of freedom such as
ane. With standard Whitney forms, the DoF ae

was the integral of the 1-form a =
P

e� ae�we�

over edge e. Here, we cannot expect to find a
family of simple 1-chains such that ane would
be the integral of a =

P
ne ane�

nwe over one
of them, and have a null integral over all
other chains of the family. Although such
a family will exist, the emphasized condition
makes it anything but simple. We must be
content with less: 1-cells such that integrals
of
P

n�e ane�
nwe over them determine the anes,

and in clear one-to-one correspondence with the
basis forms �nwe (Fig. 2). Let’s call such
cells (introduced in [9]) “small” edges, an ad
hoc terminology.

were called wn last time. This is for readability only,
�nws being better than wnws in this respect.
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Figure 2. Left: Small edges (some of them are broken
lines) associated with forms �n we. Right: One of the
possible systems of chain elements in 1-1 correspondence
with independent degrees of freedom.

A problem then emerges: There are 24 small
edges, but the dimension of the space generated
by the �nwe, if the mesh reduces to this single
tetrahedron, is only 20! This is due to the
relation

X
e

Rfe�
f�ewe � ��

here written for edges and facets, but actually
a general property of Whitney forms. (�f�e

denotes, if Rfe �� �, the hat function of the
node opposite edge e in facet f .) Since each
facet contributes one such constraint, the span
of the forms �nwe has dimension ��E 	 F �.

We might just omit one small edge out of
three on each facet, but this is an ugly solution.
Fig. 2, right, suggests a better one. It shows 20
“chain elements” (12 half-edges, four inner seg-
ments, and the four three-pronged stars, which
themselves are 1-chains formed of 3 small seg-
ments each). This time, 1-chains formed from
these elements have the desired property (and
no smaller set of chain elements can do): A
second-order one-form whose integrals over all
of them vanish must itself vanish.

The reader will easily guess about “small
facets” and “small volumes”, and may want to
tackle the challenge of finding a nicely sym-
metric set of 2-chain elements (15 instead of
16; total dimension of the span ��F 	 T �).
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