
  – ∂  D + rot H = J,     ∂  B  + rot E = 0,
           B  = µH,                  D = εE    
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(b)

(a)

  4πC = v·∇H,      C = J + DË,   

  B = v.∇U,        E = – UË – ∇Ψ,    
  B = µH,           D = (4π)   κE  

–1

dF = 0,   G = ∗F,  dG = J

(c)
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INTRODUCTION

What is this series� of articles about? Examine
the following figure, which displays Maxwell
equations in three different formalisms. Never
mind what these equations mean (this is sum-
marized in the caption, but it’s a secondary
point). My immediate purpose is to call atten-
tion on how they look. In spite of describing
the same physical phenomena, they are as dif-
ferent as three sentences with the same meaning
can be in three different languages. The fact
that one can discuss the same physics within
widely different mathematical formalisms is
what will concern us here. In particular, I wish
to show that different geometrical objects can
serve in describing electromagnetism: vector
fields, differential forms, even quaternions, as
in Maxwell’s time, and so forth: “axial” vec-
tors, “polar” vectors � � �. There is terrible con-
fusion around the latter concepts, which I hope
to dispel a little by showing how they relate.
This will be, if not the exclusive subject, at
the very least the red thread connecting these
columns.

The linguistic metaphor should not be str-
etched too far, but it’s apt to some extent. You
can say one thing in Japanese and exactly the
same thing in English, in most scientific con-
texts (leaving apart of course, poetry, allusions
to political actuality, and jokes). You will not
just substitute word for word, however, for both
languages use different grammatical categories.
Box a of Fig. 1 reproduces something Maxwell
told us about the way the world behaves [Ma].
Boxes b and c show how this message trans-
lates in two contemporary languages: the “vec-
tor fields”

� Published in J. Japan Soc. Appl. Electromagn. &
Mech., 6 (1998), pp. 17-28 (no 1), pp. 114-23 (no 2),
pp. 233-40 (no 3), pp. 318-26 (no 4).

formalism of most textbooks and Journals (box
b) and the “four-dimensional differential forms”
idiom (box c) of many Physics treatises (see,
e.g., [Mi]). As one sees, the translation does not
consist in a mere change of notation (passing
from H to H, for instance), for even when the
symbols look alike, they denote different kinds
of entities—different “geometrical objects”.

Figure 1. Maxwell equations, with given currents: in
the style of Maxwell’s treatise (box a), in what may
be the most widely accepted contemporary formalism
(box b), and in modern differential geometric notation
(box c). Maxwell used quaternions. (The v means
“vector part” of a quaternionic product, and r is the
operator id�dx � jd�dy � kd�dz.) Notwithstanding, his
formalism is not so far from today’s received notation
(box b), in which, apart from factors ��, box a would
read rot H � C � J� �tD, B � rot A, E � ��tA�r��
Boxes b and c say exactly the same thing, but whereas D,
B, etc., denote vector fields, F, G, and J are differential
forms (J combines electric current density and electric
charge in a single entity, F is “Faraday’s tensor” and the
star is the so-called “Hodge operator” in Minkowski’s
metric).

Maxwell’s apparently bewildering notation
begins to make sense when one remembers
he had adopted quaternions as basic entities
(at least, at the beginning; later, this changed;
see e.g., [Cr] or [Sp] for historical accounts

1



     

of the evolution towards the vector formalism
of today). Similarly, we shall discover the
kinship between (b) and (c) by examining the
relations that exist between differential forms
and vector fields. Let me hasten to say that
quaternions will not be addressed here. Not
that they should be confined to the dustbins of
history, far from it. (They are quite useful in
modern work on robotics, for instance.) But
their relevance to electromagnetism was 19th-
century illusion. Differential forms, on the
other hand, are the right stuff—as I hope to
show. But the way they are introduced in
classics of differential geometry (which almost
all discuss box c, if only in a rather thin chapter)
cannot be recommended to Engineers. We
shall adopt a different approach, leading to a
formalism much closer to the familiar one of
box b, by setting aside time and 3D-space,
which the four-dimensional equations �c� do not
distinguish.

In order so to stay very close to the famil-
iar concepts, we shall have to introduce, and
discuss with care, an appropriate geometrical
framework, consisting of things such as affine
three-dimensional space, the associated vector
space, and geometrical objects living therein.
(To “live” means that such entities may assume
varying values as time goes on.)

That such a critical discussion be necessary
at all is not so obvious. We often take for
granted 3D space (good old Euclidean space,
that is), as the natural framework in which to
do physics, and though we shall not depart
from this tradition here, I want to stress that
this is a modelling decision, something that is
to a large extent up to us, human beings, not
something forced on us by the very structure
of the Universe. The World is, and it certainly
has order and structure. But order and structure
in our descriptions of the world are something
else, even if we try our best towards a close
match, in the process of model building.

This activity—model building—is what dis-
tinguishes “pure” mathematics from “applied”
ones. Pure mathematicians try to discover,
analyse, and classify all logically possible ab-
stract structures. People who apply mathe-
matics, including physicists and engineers, use
them to construct specific abstract structures,
which reproduce some of the features of the
real world, and thus can help in explaining or

predicting the behavior of some definite seg-
ment of reality.

So mathematical entities by which we thus
describe physics are not a priori frames of our
thinking. They are our creation, moulded of
course by the structures of the world out there,
but still abstract things. Therefore, they are
more or less adequate as tools with which to
deal with the real world, which means one
can—and one should—criticize the way they
are applied, and question their adequacy. This
process of critical reevaluation (constantly rein-
vigorated by new engineering practices, such
as programming and computing) is the impetus
that forces formalisms to evolve, even in well-
understood compartments of physics, like clas-
sical electromagnetism, as witnessed by Fig. 1.

The purpose of these articles is thus to crit-
ically examine the geometrical concepts which
compose the current formalism of electromag-
netism. Hence a discussion at two levels: the
formal one of mathematics, where one intro-
duces abstractions (such as, for instance, three-
dimensional affine space), and the practical one,
where one passes judgment on their relevance
to model building. This explains the alterna-
tion, in these columns, between descriptions
of geometrical objects, and discussions of their
physical significance.

And now, rather than go on philosophizing,
let’s do it.

1. AFFINE SPACE
Nothing is built without foundations, so we
shall assume some preliminary knowledge: sets,
functions and maps, elementary logic, and some
familiarity with the basic structures: group,
field, vector space � � �. Recall that all such
structures are sets,� but not naked sets: struc-
ture is conferred on such sets by specific sys-
tems of relations and operations, which tell
what can be done with and to the elements of
the set.

1.1 Vector spaces
For instance, a vector space� on the reals is
a set of objects called vectors, which one can

� One can (though this is not the only way) present
mathematics in such a light that all mathematical objects
are sets of some kind.

� Defined terms are set in slanted style, on first ap-
pearance. [Footnote’s footnote, Sept. 2002: Fonts have
changed, with respect to the original, in what you are
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(1) add together (e.g., forming vector v � w
from vectors v and w) and (2) multiply by real
numbers (e.g., forming vector �v from vector
v and real number �). No need to recall the
properties required of these two operations, if
the set is to qualify as a vector space. Just be
aware that “vector” is a generic name, which
may apply to other objects than the familiar
two- or three-dimensional vectors of elementary
geometry, provided the set of all objects thus
considered obeys the vector-space axioms.

For instance, think of the electromagnetic
(EM) field, at any instant, in one of these large
experience halls in which high-voltage electri-
cal hardware can be tested. At this stage of
the discussion, we pretend not to know what
the EM field “is”, meaning that we are not yet
committed to a specific mathematical object by
which to model this empirical reality, the phys-
ical EM field (detectable by its effects on dust,
on our hair, etc.). But we know that two EM
fields can be superposed, adding up their ef-
fects, and that a given field can be scaled up by
a factor 2, say, giving conceivable� EM fields.
So it makes sense� to consider the set of all
conceivable EM fields, in this hall, as a vector
space. One can then envision the evolution of
the experiment in the hall as a (continuous) se-
quence of values of a representative vector in
this abstract space, in other words, as a trajec-
tory. And there we are, with the beginning of
a geometrization of the whole thing.

The main feature which distinguishes such
vector spaces of fields (often called “functional
spaces”) from those of plane or spatial geom-
etry is, of course, dimension. The dimension

reading, for better aspect on screens. In the process,
“slanted” has become plain old italic. The layout has
changed somewhat, too. But apart from typos, no sub-
stantial modifications have been done.]

� Not the same as realizable, of course, due to nonlinear
effects: we know only too well that fields of arbitrary
magnitude cannot be maintained in the hall. Note here
how insidiously the modelling process gives status and
credence to mathematical objects that may lack any
counterpart in the real world: An electric field �����

volts strong, for instance, is “conceivable”, absurd as the
very thought of one may be.

� It makes sense from some vantage viewpoint, of course.
The technician in charge of the Van de Graaf may laugh
off this “vector space” stuff as pedantic, whereas the
person who simulates the experiment on a computer will
see it as very natural.

of a vector space is the maximal number of
linearly independent vectors, if there is such
a maximum (otherwise we have an infinite di-
mensional space, like the above space of EM
fields). A basis, or frame, in a vector space V
of finite dimension n is a family of n linearly
independent vectors. Applied mathematicians
seem to be especially fond of a particular space
of dimension 3, denoted IR

�. This is the set
of all triples of real numbers fx� y� zg. Such
triples can be added or scaled up the obvious
way. Reading such paper titles as “MHD in a
subset of IR�”, or “Wave propagation in a strat-
ified region of IR�”, one might believe that this
particular vector space is the natural framework
in which to do physics, which I think is silly,
and is one of the received ideas I want to chal-
lenge here. (But one thing at a time.)

It’s an exercise (just pick two bases, and
associate their elements two by two) to show
that one can always map two vector spaces V
and W onto each other, if they have same di-
mension, by an invertible linear map (i.e., a
map f such that f�v � w� � f�v� � f�w� and
f��v� � �f�v��. So if one is using V to model
some physics, W will do just as well. For in-
stance, if the trajectory t� v�t� in V describes
the evolution of a physical system, the trajec-
tory t � f�v�t�� in W provides an equivalent
description. This is due to V and W being “of
the same form”, or as one says, isomorphic, via
the isomorphism f .� From this point of view,
there is only one abstract n-dimensional vector
space, and this particular mathematical object
we shall label Vn, for future reference.

Isomorphism doesn’t mean that V� should
be identified with IR

�. Indeed, V� and IR
�

can be put in one-to-one correspondence by a
linear map: just select a basis fe�� e�� e�g in
V�, then the generic vector v can be expanded
as v � v�e� � v�e� � v�e� and thus paired

� Linear maps are thus, among all possible maps be-
tween V and W , those which “preserve the linear struc-
ture”. Needless to say, mathematicians have devised a
language with which to discuss such abstract properties
of abstractions. It’s the theory of categories [LS], fondly
nicknamed “abstract nonsense”. A category regroups ob-
jects of similar structure, and morphisms are structure-
preserving associations between pairs of such objects.
Linear maps are the morphisms in the category of linear
spaces. (A bit later, we’ll meet affine maps, which are
the morphisms in the category of affine spaces.)
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with the triple fv�� v�� v�g of its components in
this frame. But all this depends on the choice
of basis, which is arbitrary. So there is no
canonical way to associate V� and IR

�, which
means, there is no unique, natural way to do it,
that would stand out among all others for some
good reason.

To say the same thing in different words, the
vector v of V� can be represented by its com-
ponents, but to say that v is the same as its
triple of components would be going much too
far. Unfortunately, pupils are trained all around
the world to consider 3D vectors as triples of
numbers, and when they begin to get the idea,
one introduces the abstract idea of vector to
them. There may be valid reasons for such
pedagogy, but the (much sounder, I think) ge-
ometrical approach goes exactly the opposite:
vectors are geometrical entities, which can be
added, stretched, etc., and their Cartesian rep-
resentation is only a useful computing device,
by no means one that should always be used.
(We all know examples of problems of geome-
try which can be solved more easily and more
elegantly without coordinates than with them.)

As this theme will recur, I don’t wish to ham-
mer in the point right now, but just think about
this: when solving a problem in electrotechnics,
you don’t pick just any system of coordinates
(or “reference frame”), you carefully select one
which is adapted to the device under study. So
what makes the interest of coordinates is some
peculiarity of the device, which makes some
directions in space stand out among others. In
the absence of such extra structure, there is no
“canonical” way to select a set of coordinate
axes, and imposing one would break the sym-
metry of space in an arbitrary way, devoid of
physical justification.

Which prompts the question: What is this
allusion to “symmetries of space” supposed to
mean? This is where another basic structure,
that of group, intervenes.

1.2 Affine space
Group is a simpler, more primitive, and hence
more general structure than vector space. A
vector space is already a group, an additive
one: indeed, the operation � admits of a neutral
element (the vector 0, which is such that v�� �
v, for all v), and for each vector v, there is
another one, namely �v, which yields 0 when

added to v. Together with associativity (the fact
that u��v�w� � �u�v��w��, these properties
constitute the axioms for the group structure.
Moreover a vector space is a commutative (or
Abelian) group, meaning that v � w � w � v,
something which is not part of the definition of
groups in general. So a vector space can be
construed as a set with two layers of structure:
first, the one of Abelian group, conferred on it
by vector addition; and a second layer, due to
the introduction of scalar multiplication, with
the properties required to make it compatible
with addition. (This game of peeling out layers
in a mathematical structure, in order to analyze
it, we shall play recurringly.)

So if we forget about the multiplication by
reals in V (thus depriving it of one of its struc-
turing features) what remains is an Abelian
group, called the associated group of transla-
tions. Why this name? It’s a way to put em-
phasis on what a given vector v may do on
other vectors, how it acts on them. To vector
v, we may associate the map w � v�w, called
the “v-translation”, and that we shall denote by
Tv, so that v�w is the same as Tv�w�, the im-
age of w under the translation, or “v-translate”
of w. Note that Tv is not a linear map of V
to itself, because 0 does not map to 0. On
the other hand, translations are not devoid of
“linear” properties, since for instance, it is true
that Tv��w�w����� � �Tv�w� � Tv�w

����� (see
Fig. 2—and note how one must divide by 2!),
and a name will be useful for maps with this
property: they are called “affine maps” of V to
itself, or “affine transforms” on V .

Figure 2. Translation by v, and its affine properties.

Obviously, the vector space structure is not
required if one wants to define affine maps.
All that is needed is a set, elements of which
are now called points, not vectors, in which it
makes sense to take the point midway between
two points, or barycenter (and more generally,
the barycenter of a given finite set of points to

4



which weights of nonzero sum are assigned).
Affine maps are then defined as maps which
preserve barycenters. A set thus equipped with
a notion of barycenter is called an affine space.

Given a vector space V , there is a way
to build from it an associated affine space A,
which is the same as V as a set, but differently
structured. For this, we first define A as a
set on which one can perform v-translations:
Given a vector v of V and a point a of A,
there is another point, denoted Tv�a�, which
is the v-translate of a, and one postulates the
obvious properties (Tv�Tw�a�� � Tv�w�a�, and
so forth). One says that V “acts by translations”
on A. Next, we assume that any two points
of A can be connected by a v-translation, i.e.,
there is always some v such that Tv�a� � b,
and that Tv�a� always differs from a when
v �� �. Nothing more natural, now, than writing
v � b � a, or Tv�a� � a � v, so if one selects
in A some particular point, denoted 0, one can
make the identification between the point Tv���,
alias � � v, and the vector v. Not a canonical
identification, of course!

Now the barycenter of a and b is the well
defined �b�a���-translate of a, that is, the point
a��b�a���. Affine maps, from one affine space
to another, are then defined, as already said,
as those which preserve barycenters. (Affine
transforms are affine maps from the space into
itself. Those of them which are one-to-one, and
thus invertible, form of course a group, called
the affine group�.) They preserve many other
properties, as a consequence. For instance,
alignment: three points “on the same line”
(i.e., one of them is the barycenter of the other
two, with adequate weights) are transformed to
aligned points. Pairs of parallel lines transform
into pairs of parallel lines, and so on. But
distances or angles are not preserved. In fact,
such notions simply don’t make sense in affine
space: to give them status, we shall have to
introduce (but only later) another element of

� At this stage, the reader may wish to examine the rela-
tion between this affine group, denoted GAn in dimen-
sion n, and the more familiar linear group GLn of linear
transformations in Vn, which is isomorphic (via selection
of a basis) to the group of n� n regular matrices. As a
starting point, note that a linear transform on vectors in-
duces an affine transform on points, and that, conversely,
any affine transform can be described as the combina-
tion of such a special affine transform with a translation.
Beware, this is more difficult than one might think.

structure, called the metric of space. (Note right
now, however, that ratios of distance between
aligned points do make sense and are preserved,
i.e., are “affine invariants”, as one says.)

Everyday examples of affine transformations
abound. If for instance, in a museum, you com-
pare a painting with its catalogue reproduction,
the two images in your visual field correspond
by affine transform (Fig. 3), at least if they are
small enough to allow the use of parallel per-
spective (the one where the eye is supposed to
be at infinity).

Figure 3. A common case of affine transform. (Note
that “vanishing points” are at infinity in this rendering of
the situation, so that parallel lines in the painting are seen
as parallel lines of the views. More realistic perspective
would defeat our purpose!)

To the abstract vector space V�, it thus cor-
responds the abstract affine space A� (its di-
mension is, by definition, the dimension of the
vector space). Informally, A� is what one gets
when “forgetting where the origin was” in V�.
Conversely, selecting an origin in A� yields V�,
in a non-canonical identification. If one notices
that selecting an origin for the space we live in
is always an arbitrary move, A� emerges as a
better model for ambient space� than V� and—a
fortiori—IR

�.
In particular, the notion of vector field needs

affine space, not only a vector space, to make
sense. A vector field is a mapping from An

to Vn. This mathematical entity is very apt to

� Meaning, the space we live in. Later we shall use
“ambient” in a more technical sense: it will refer to the
encompassing space in the modelling, the one in which
geometrical objects under consideration all live, a 3D
affine space usually, but it may happen to be a manifold
of any dimension.
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model the (physical) notion of velocity field of,
for instance, a mass of fluid: at each point x
of A�, fluid particles have a definite average
velocity, represented by a vector v�x� of V�.

By the way, there is a name, bound vector,	

fx� v�x�g consisting of a point in An and a
vector of Vn which one considers as assigned
to this point. (One may also say “a vector
at x”.) Note that “bound” is not a qualifier,
there: “bound vector” must be understood as
a non-separable aggregate of words. Bound
vectors are not vectors, one may even argue,
because they do not form, taken together, a
vector space: indeed, it makes no sense to add
fx� vg and fy� wg, unless x � y, or to multiply
fx� vg by �. (They do form an affine space,
though. Can you see it? First note that a bound
vector fx� vg can be construed as the pair of
points fx� x� vg.) We are all familiar with the
graphic convention according to which a family
of bound vectors scattered on the page serves
as a picture of a vector field.

Figure 4. A few standard icons for bound vectors. For
other examples, look carefully at plots of vector fields
displayed by commercial software packages. As a rule,
“three-dimensional” icons, like the two on the right, are
to be preferred for 3D fields, and the more compact the
icon, the better. (The norm of the vector, in the rightmost
one, is rendered by the apparent volume of the cone.) The
art of iconology, as applied to the visualization of fields,
is still in its infancy. For some serious work in the area,
see [C&], and [Tf] for general guidelines. (A reference
list of works not to be imitated would exceed the size of
this Journal.)

This is perhaps the right place for an aside,
devoted to the notion of icon [Al]. Icons are
drawings that stand for an abstract object, be
it on our computer’s screen or on a piece of
paper. The most common icon for the bound
vector fx� vg is an arrow based at x with its
tip at x � v (Fig. 4). It’s not that good a

	 Caution: Many physicists say “bound” and “free”
where I say “free” and “bound”, a usage that Burke [Bu]
also endorses. But calling “free” a vector whose tail is
attached to a point is more than I can swallow.

graphic convention, however, when it comes to
visualize fields, because too long arrows tend
to clutter in ugly tangles in regions where the
field is large, symmetries that may exist are
blurred, etc., thus such images often give a
wrong idea of the overall field. The pair of
points fx � v��� x � v��g is often a better
choice. One may also draw arrows differently,
as suggested by Fig. 4.

1.3 Symmetries of physical space and of
affine space
Now let’s return to these alleged “symmetries”
of space. Mathematically speaking, the sym-
metries of a structure are just its structure-
preserving maps, so the symmetries of affine
space are affine transforms, by definition. But
what is at stake in the present discussion is
something else: the ability of such notions to
reflect symmetries of the real world around us.
One of these symmetries is translational invari-
ance: if you move this experiment hall fifty
kilometers away, you will observe the same
physics inside it. Humankind learned about this
long ago, at least as regards horizontal transla-
tions. With Galileo and Newton, we realized
that space was also invariant along the third
dimension. Obvious changes in physical phe-
nomena when one climbs up were attributed to
the very presence of the Earth and of its gravi-
tational field, but one accepted the idea that the
laws of, say, celestial mechanics, would be the
same a few light-years away, in any direction.
So a prerequisite for all mathematical models
of physical space would be translational invari-
ance, and from this point of view, of course,
affine space A� does qualify.

However, one may object, affine space is too
symmetrical for the purpose, for one cannot
pretend that physics is invariant with respect
to scaling and shearing. But some aspects of
physics are, as there exist experiments which
can entirely be described using affine notions
only. Figure 5 gives one (the idea comes
from [Br], p. 100): The visitor of the science
museum is watching a ball rolling along a gutter
secured to the wall, and what we see, as in
Fig. 3, is a photograph taken from infinity. Our
view and his are different, but they correspond
via some affine transform, which is enough to
agree on our respective predictions: the ball
will settle at the point of contact of the gutter
with a line parallel to the wall’s bottom line.
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(The floor is supposed to be level, of course,
but the wall need not be vertical, as far as it is
plane.) Only affine notions are involved.

Admittedly, this is a very special case, and
there are many physical events in which the
symmetry of affine space is broken. Solid
dynamics, for instance: rigid bodies you can
translate and rotate, but not stretch or deform
without altering their inner structure. Rigid
bodies are so important in our existence that
we need to be able to distinguish, among affine
transforms, those which are “deformation-free”.
Mathematically, what is required for that is a
metric structure.

Figure 5. Where will the rolling ball eventually stop?
In spite of our different perspectives, we agree with the
visitor on that.

1.4 Metric
Metric is conferred onto a vector space V by
endowing it with a dot product. The dot prod-
uct v �w of two vectors v and w is a real num-
ber, and the correspondence fv� wg � v � w is
supposed to be linear with respect to both ar-
guments, symmetrical (i.e., v � w � w � v) and
most importantly, v �v � � unless v � �. Then,
the square root jvj of v � v is called the norm of
v (more precisely, the Euclidean norm, as there
are other kinds of norm—but we won’t have to
deal with them).

There are a lot of possible dot products
on Vn. A way to get them all is to select
some frame fe�� e�� � � � � eng and to set v � w �
P

i�j gijv
iwj , where the metric coefficients gij

are the entries of a square strictly positive def-
inite symmetric matrix. As soon as we have
adopted a dot product, notions of orthogonality
and angle begin to make sense. We also know
what “distance” means, speaking of two points

x and y of the associated affine space: it’s the
number d�x� y� � jx� yj, of which one imme-
diately sees it satisfies all properties required
of a distance (d�x� y� � d�y� x� � �, unless
x � y, and the triangle inequality). This turns
An into a metric space (any space equipped
with such a distance function), with a bonus:
the metric is compatible with the affine struc-
ture, which means that it’s invariant by trans-
lations, d�x� v� y � v� � d�x� y�. Translations
are thus isometries, i.e., transforms that pre-
serve distance. It’s relatively easy to show that
isometries in An must be affine transforms (let’s
not feel forced to do it here). But the converse
is not true. Those affine transforms that do pre-
serve distances are called displacements. They
form of course a group, smaller than GAn.
Among them, those that fix at least one point
are called orthogonal transforms. They include
rotations (but rotations have another property:
they “preserve orientation”, a notion we shall
soon discuss and criticize), and mirror reflec-
tions (transforms v � v � �u�v u� where u is
a unit vector �juj � 	�. Orthogonal transforms
which fix a given point form what crystallogra-
phers call a point group.


Granted that a metric structure is necessary
to correctly model solid dynamics, should we
commit ourselves to a metric when only elec-
tromagnetism is involved? Definitely, yes. As
Fig. 6 should suggest, there are optical experi-
ments which cannot be described in exclusively
affine terms, the way a ray of light bounces off
a mirror, for example.

Figure 6. Equality of angles in light-ray reflection is not
an affine notion. (Symmetry of the ray and its reflection
with respect to the normal is an affine notion, but it’s the
concept of normal, now, which is not an affine one!)

What is very exciting, however, is that all
aspects of Maxwell’s theory are not alike in this


 The reader may wish to check that such a group is
isomorphic to the group of orthogonal matrices of order
n. A space group, in contrast to point group, is a
subgroup of displacements which contains translations
in all three directions.
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respect. Some are affine invariant, some require
a metric. As we shall little by little discover,
both Faraday’s law and Ampère’s theorem can
be edicted using only affine notions. On seeing
box b of Fig. 1, this statement seems utterly
unlikely, doesn’t it? For the very definition of
curl does involve a metric (just try to change
the scale of length, for instance). Yet it’s true,
as we shall see. But this truth is hidden by
having represented the physical entities forming
the (physical) EM field by these mathematical
entities, the vector fields E, H, D, and B.

On the other hand, the constitutive laws B �
�H and D � �E in box b are metric-dependent.
This is where the metric structure of space
intervenes�� in the laws of electromagnetism.
The modern notation of box c neatly makes the
distinction, as metric is concentrated, as we’ll
see later, in the “star-operator” of the middle
equation.

In fact, this differential geometric notation is
even more general, for the equations dF � �
and dG � J do not depend on all aspects of
the affine structure. (Let’s say rapidly, though
we don’t have the technical equipment for such
issues at this stage, that “their invariance goup
is (much) larger” than the affine group GA�.)
Indeed, Maxwell equations continue to make
sense, and to be physically relevant, in sit-
uations where the underlying space does not
possess the symmetries we are used to, as
for instance when investigating the magneto-
hydrodynamics of a dense star, where space
is “warped”, as one knows, according to Gen-
eral Relativity. Although physicists, obviously,
need to deal with such situations, engineers
don’t (well, not yet � � � ), so the choice of metri-
cized affine space as the framework in which to
do our modelling is a reasonable one.

1.5 Orientation
Still, a last element of structure is lacking,
which one cannot do without in electrodynam-
ics: orientation of space. Among elements of
the framework we are building, it certainly is
the most difficult one to discuss, and the source

�� And though it’s much too early, one can’t resist the urge
to confirm what the reader may already be suspecting:
things go the other way. It’s the constitutive laws of
electromagnetism that give space its metric. After all,
don’t we make our geodetic surveys with light rays?

of endless difficulties experienced by students,
and not only them, when dealing with fields.

Orientation, like metric, is an element of
structure that one may lay over a vector space.
These are independent structures. One may
have metric without orientation, and the other
way around. So here, we assume a given vector
space of dimension n, but no dot product.

Consider two frames in Vn , say fei 
 i �
	� � � � � ng and ffj 
 j � 	� � � � � ng. One may
express the eis as linear combinations of the
fjs, hence a “transition matrix” T such that
ei �

P
j T

j
i fj . As T is regular, its determi-

nant has a definite sign, � or �. We say that
feig and ffjg have the same orientation if the
sign is �, opposite orientations if the sign is
�. (Obviously, the sign is the same if one ex-
presses the fjs in the feig-frame.) This defines
two classes of frames, two of them belonging
to the same class if they have same orienta-
tion. An oriented vector space is a composite
mathematical object, a pair, which consists of
(1) a (finite dimensional) vector space, (2) one
of its two orientation classes. So for each vec-
tor space, there are two oriented vector spaces,
with opposite orientations, which can be asso-
ciated with it. To orient Vn consists in making
a choice between these two possibilities, that is,
designating a distinguished class of frames. It’s
convenient to name this class Or, and the other
one �Or. Frames of Or will then be called
direct frames with respect to this orientation),
and those of �Or, skew frames. (One also says
“even” and “odd”, hence the notion of “parity”
of a frame, which is just the class it belongs
to.) The two possible oriented spaces are thus
fVn� Org and fVn��Org, which we shall ab-
breviate as �Vn and �Vn. (Of course, if one
selects �Vn as the oriented space in which to
work, then the skew frames are those of Or.)

Take good note that, once a vector space has
been oriented, there are direct frames and skew
frames, but there is no such thing as direct
or skew vectors, except, one may concede, if
n � 	. A vector is a vector is a vector, and
does not become a new object just because the
space it belongs to has been oriented! This
remark will be important later in our discussion
of polar and axial vectors.

Remark. It’s all right to consider an oriented
vector space as a pair consisting of (1) a space,
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(2) one of its frames, provided the frame thus
privileged serves no other purpose than fixing
the orientation class. Pupils asked to “orient
the figure” are, unfortunately, often confused by
that, for they tend to believe that this is the same
as selecting coordinate axes. Not so. Orienting
the paper sheet (n � �) means deciding on a
“direct” sense of rotation (anticlockwise, most
often), but one is not committed to definite
axes by that. Orienting space (n � �) means
deciding which helices are direct or skew. As
one knows, the usual convention for orienting
3D space is the “corkscrew rule”, which makes
most helices of the real world (shells, staircases,
� � � ) direct, or as one also says, right-handed.
�

An affine space, now, is oriented by orienting
its associate vector space: a “bound frame” at
x in An , i.e., a set of n independent vectors
at x, is direct or skew if the n vectors form a
direct or a skew frame in Vn. Hence two new
structures: �An and �An.

Vector subspaces of a given vector space
(or affine subspaces of an affine space) can
have their own orientation. Orienting a line,
in particular, means selecting a vector parallel
to it, called the director (vector) of the line,
which points in what is then, conventionally,
the “forward” direction along this line. Note
that such orientations of different subspaces are
a priori unrelated. Orienting 3D space by the
corkscrew rule, for instance, does not imply any
orientation in a given plane. Still, the standard
orientation of space and of a horizontal plane
do match, obviously. How come? Because
the vertical direction also is oriented, bottom-
up. So, if space is oriented, and if some
privileged direction in space is oriented, planes
that are “transverse” to this direction (meaning,
the intersection reduces to a single point) inherit
an orientation, as follows: to know whether a
frame in the plane is direct or skew, just append
it to the director of the line (i.e., place the latter
ahead of the list of frame vectors), and check
whether the spatial frame thus obtained is direct
or skew.

The recipe can be generalized to all dimen-
sions, so let’s introduce a convenient terminol-
ogy. We say that two subspaces U and W of V
are complementary if their span is all V (i.e., if
any v in V can be decomposed as v � u � w,
with u in U and w in W ) and if they are trans-

verse (U �W � f�g, which makes the decom-
position unique). Now (Fig. 7), we say that U
has an external or outer orientation if an orien-
tation is provided for one of its complements,
W say. (For contrast and clarity, we shall call
inner orientation what was simply “orientation”
up to this point.) These notions (which one can
trace back to [VW], cf. [VD] and [Sc]) pass to
affine subspaces of an affine space the obvious
way.

Figure 7. Externally orienting a line U by orienting a
plane W transverse to it.

Figure 8. How an externally oriented line acquires
inner orientation, depending on the orientation of ambient
space. Alternative interpretation: if one knows both
orientations, inner and outer, for a line, one knows the
ambient orientation. The drawing on the left, then, can
be understood as an explanation of Ampère’s rule.

It’s clear that if the encompassing space V
itself is oriented, then an outer orientation of U
gives it an inner orientation: to know the ori-
entation class of a frame in U , append it to a
direct frame of W , thus obtaining a frame in
V , and look to which class the latter belongs.
But two possible orientations for V make two
ways to do that, so outer orientation and in-
ner orientation are different, as are their in-
tuitive meanings. For instance, inner orient-
ing a line means distinguishing “forward” and
“backward” directions along it. But outer ori-
enting the line, that is to say, inner orienting a
transverse plane, amounts to make a choice be-
tween the two ways to “turn around” the line. If
ambient space is oriented, the “direct” way to
turn around a line implies a way to go “for-
ward” along it (see Fig. 8, and note how a
play on icons advantageously substitutes for all
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this stilted prose!). Similarly, outer orienting a
plane means specifying a “crossing direction”
through it.

Figure 9. Möbius band, not orientable. (To prove
this “experimentally”, make such a band, lay on it the
drawing of a frame, that will be moved around the band,
thus returning at the starting point in inverted position.
Be careful to use transparent material for both the ribbon
and the frame, otherwise, your parlour-trick will fail on
its nose.) As the middle line l does not separate two
regions, no global crossing direction can be defined for
it, so it has no outer orientation with respect to the band.

Curved lines also can be internally and ex-
ternally oriented. The case of surfaces is a bit
more complex. Orienting a surface means ori-
enting all of its tangent planes at all points,
in a “consistent” way. For neighboring points,
tangent spaces are different, but close enough
to have a common transversal. Orientations at
these points are consistent if they give the same
outer orientation to this transversal, which can
always be achieved. But though this ensures
consistent orientation locally, it may not be pos-
sible to maintain such consistency all over, as
this all-time star of mathematical populariza-
tions, the Möbius band, testifies (Fig. 9).

On the other hand, surfaces which enclose
a volume can be oriented: “going inside out”
defines a consistent crossing direction. This is
outer orientation, from which inner orientation
stems, if the ambient space is oriented.

Remark. While inner orientability is an intrin-
sic property, outer orientability always refers to
some ambient space. It makes sense, for in-
stance, to speak of outer-orienting a line traced
on a surface: this means, as above, defining
a consistent crossing direction, from surface
points on one side of the line to points on the
other side. As Fig. 9 shows, this may not be
possible for some lines when the encompassing

surface is non-orientable. This demonstrates
how different the two notions of orientation can
be. �

Figure 10. A skew transform (mirror reflection about
line l, with unit vector u), and a direct one (rotation
around 0).

Before leaving orientation, we need to br-
oach this dangerously vague notion that some
geometrical transforms could either “preserve”
or “reverse orientation”. What is meant by that
is their effect on frames. Apply an invertible
affine transform to n bound vectors forming a
frame, you get another bound frame (at another
point, in general, cf. Fig. 10). The two frames
belong to the same class or they don’t. Hence
two classes of transforms: the direct ones (like
rotations), for which a frame and its image be-
long to the same orientation class, and the skew
ones (the other way round), like mirror reflec-
tions. (Central symmetry, i.e., the affine map
x � �x, can be direct or skew, depending on
the dimension.) One also says “parity preserv-
ing” and “parity reversing” transforms.�� Note
that the orientation class Or, as a whole, is
mapped to �Or by an odd transform, but this
cannot by any means “change the orientation of
space”, that is to say, our earlier commitment
to Or as the class of direct frames!

1.6 Oriented Euclidean space
We are now in possession of a framework in
which to model electrical phenomena: oriented
Euclidean three-dimensional affine space, that
will be denoted E� (and �E� when it will be

�� The notion applies to more general point-to-point trans-
forms than those of GAn; but the parity of such a trans-
form, then, is only locally defined, and may not be the
same at all points.
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felt necessary to remind about orientation). It’s
A� coated with two layers of structure: a dot
product and an orientation.

Dimension 3 has this in particular�� that one
can define a new operation, the cross product:
Given two vectors u and v, the cross product
u � v is a vector orthogonal to both of them,
of squared length juj�jvj� � �u � v��, and such
that the frame fu� v, u� vg be direct. The very
notion, therefore, does not make sense without
a metric and an orientation. To keep oneself
aware of that, one might “decorate” the symbol
�, like this: ��� or ���. Notice that u ���

v � �u ��� v, which clearly explains what
is meant when one says that “� is sensitive to
orientation”. This would be, however, the only
advantage of such heavy notation, which one
can’t seriously propose.

Remark. If � is a new dot product, one has
u � v � Lu � Lv� where L is some linear
map. One should then be able to express
u ��� v, the cross product associated with this
new metric, in terms of u, v, L, and ��� (or
perhaps, ���). Would you care to try it? It’s
not so easy an exercise. �

Another kind of “sensitivity to orientation”
is demonstrated by the following fact: if T is
an affine transform, T �u � v� � �Tu � Tv�
the sign depending on the parity of T (it’s �
for a mirror reflection). This contrasts to what
happens with respect to vector addition, since
one has T �u� v� � Tu� Tv, unconditionally.

We can briefly summarize all that by saying
that the cross product operation belongs to the
structure of oriented 3D Euclidean space.

This is true of other operations, notoriously
the curl operator. Let’s not try to define the
curl the “elegant” way, without coordinates,
because it’s one of these cases where one is
better off using them. Having adopted a direct
orthonormal Cartesian system of basis vectors
and axes, start from a smooth vector field u,
take the curl the usual way, and just check that
the field rotu thus obtained would have been the
same with another system of such axes, which
is easy by invoking the Stokes theorem. It’s
then clear (Fig. 11) that rot�Mu� � �M�rotu�,
if M is the mirror reflection with respect to a
plane m.

�� One might generalize to n� � vectors in En , but this
is not usual.

Figure 11. Applying Stokes’ theorem to a small patch of
surface around x, rimmed by �, and to its mirror image,
to see that rot�Mu� � �M�rotu�.

The other differential operations, grad and
div, are less capricious. We’ll discuss grad
at some length next time, but it’s obviously
immune to orientation diseases. As for div,
it’s even simpler, as the metric structure is
irrelevant in this case: the operator div belongs
to the affine structure. (Think of v as the
velocity field of some compressible fluid. Then
divv expresses the rate of change of the volume
along the flow, which is an affine concept.)

This concludes our survey of “space”, as a
framework for modelling: We shall work in
E�, “oriented Euclidean 3D space”, while be-
ing well aware of the “multilayered” charac-
ter of this structure. Logically, we should dis-
cuss “time” as well, but having no ambition
to address Relativity here, we shall be content
to consider time as a parameter, which is all
right if all phenomena are referred to the pre-
vious space E�. The next part will introduce
new geometrical objects: axial vectors, covec-
tors (instead of vectors), and differential forms
(instead of vector fields), whose introduction
will be motivated by an analysis of the Lorentz
force exerted on a moving charge.
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