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| ntroduction

0.1 Prerequisite and notations

Beyond calculus, and a previous encounter with Maxwell equations, some
familiarity is assumed with what could be called "the functional point of view" in
mathematics. that things like functions and vector fields can be considered as
points in some abstract space. The reader should therefore know about distances,
norms, linear operators, integrable functions, Hilbert space, etc. Some notions
about vector and affine spaces, e ementary but undertaught, are recalled below.

Notations are classical, except perhaps for afew idiosyncrasies:

First, all functionsare apriori partia: if f goesfrom X to Y, itisdefined
on apart of X, denoted dom(f), its domain®, which in general isnot all of X.
The set of possible values f(x), called here codomain of f (instead of the more
familiar range), isdenoted cod(f). The set of al partial functionsfrom X into Y
isdenoted X — Y, and one will write

feEX—=Y

to assert that f issuch afunction (onewill say that f is "of type X — Y").
"Injective” will refer to afunction f such that a point of cod(f) istheimage of a
single point of dom(f). Thenitsreciprocal f' €Y — X isdefined, dom(f') =
cod(f), and cod(f™") = dom(f). "Mapping" and "function" will be synonymous. If
two functions have the same expression by formulas but different domains, they are
deemed distinct.

Next, a construct like
@ X = E(x),

where E isa Y-vaued expression depending on X, denotes afunction f of type
X —Y. Since (1) and f then denote the same object of X — Y, onewill fed
authorized to write

! Italics are used either for emphasis, or to warn that a definition of theitalicized word isimplied or suggested by
the context. The distinction between both uses should be easy in all cases.
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f=x — E(X)

asadefinition of f. Thisisnon-ambiguousif dom(f) = X. (Otherwise, one may
write, according to the same principle,

f=x&€ A —= EX),

where A isasubset of X, whichisthen dom(f). But thisis heavy notation, and
we shall try to avoid it.) Asan example of the use of thisformalism, take the
following example: The potential of acharge distribution g can be considered asa
function of position X,

¢ =x—> (4n)"fqy) x - y['dy,

but as well (and the point of view isthen quite different) as an operator which
associates ¢ with q. If G isthisoperator, one may defineit by writing

G=q— (x = (4n)"Saly) X - y["dy).

Provided some precautions are taken, like being generous with parentheses when
thereisrisk of ambiguity, this notation is very helpful.

Last, onewill use E,, or smply E, to denote the Euclidean three-dimensional
affine space, and thedot " - " for the scalar product of two vectors of the associated
vector space (more on these concepts in Section 0.2). A field of normasisaways
denoted n. Differentiation is always denoted with 9, never with aprime. All
vector spaceswill beredl, i.e., with IR asunderlying field. Oneuses L*[D) for
the Hilbert space of square integrable real functionson adomain D of space,

(f,9) =J,fg=/,f(x) g(x) dx for the scalar product, and the norm in this spaceis
|| = (f, )" = [, FeQF ax] ™

One has tried to adopt a geometrical style, that would avoid confusion
between abstract objects and their various concrete representations, and afew
words of warning about this may perhaps be helpful. If v isavector, belonging to
avector space V_ of dimension n, thelist {v*,...v"} of itscomponentsina
given basis, denoted v, is not the same object as v: v isaso avector, but one
which belongsto IR" (the Cartesian product of IR by itself, ntimes), and though
it represents v, it should not be confused with it. Indeed, if the basisis changed, v
will be represented by a different element of IR". In the same spirit, one
distinguishes between vectors, el ements of avector space V,, and covectors, ele-
ments of itsdual V *. A covector isthus afunction on V , linear, and real-valued.
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One well knows that alinear function c € V_ — IR can be represented, after
having selected abasisin V, by avector of IR", since

@) cw==,_, ¢V,

thus c={c,...,c} doesrepresent c. But one should not confuse ¢ with ¢, or
with the vector of V_ represented by c. In other words, if the choice of abasis
alows one, thanks to (2), to establish a bijection between V_ and V. *, it does not
warrant their identification: V_ and V_* areisomorphic, as vector spaces, but
nothing beyond that, and the isomorphism depends on the basis. It isnot, as one
says, "canonical”, i.e., determined by the sole vector space structure of V.

The distinction between vectors and covectors is rarely stressed, even less
often illustrated by graphical means. Burke [26] has promoted a very natural and
not widely enough known convention to this effect (Fig. 1), which seemsto come
from Schouten [88]. He represents covectors by two parallel straightlines (two
parallel planes, in dimension 3), one of them through the origin, the other one a bit
farther away, capped with an arrowhead. These two lines (or planes) are meant to
represent two level lines (or surfaces) of the function c: the one through the origin
iIsthelocus of the v's such that c(v) =0, the other one of the v's such that c(v)
= 1. Thecloser thesetwo level sets, the larger the covector (beware!). For
vectors, Burke uses arrows, aswe all do.

This convention has many good pointsfor it. First, the action of covector ¢
on vector v can beread off the picture (Fig. 2): it'saratio of two lengths
measured along the same line, awell defined number (independent of the direction
of thisline), which makes sense without any reference to notions like distance, or
angle, which have no meaningin V.. Next, it provides avery natural graphical
rendering of the notion of "tangent” covector to a surface, which is ubiquitousin
physics, where displacements are generally vectors, and forces, covectors. The
electric fidd, for instance, isrightfully represented by a covector at each point of
space, since it makes itself being felt by the force it exerts on charged particles.
This covector istangent to conductive surfaces (Fig. 3): this property characterizes
such surfaces. Remark the invariance of Figs. 2 and 3 with respect to affine
transformations. whatever the position of your eye, you see covectors as tangent
to the surface (whereas the right angle between a surface and its normal does not
project as aright anglein general).
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Figure 1. Vectors and covectors according to Burke [26]. Ontheright, a
covector in spatial dimension 3.

Figure 2. The effect of covector ¢ onvector v, thatis c(v), istheratio b/a.
(Thisratio is an affine entity, which does not need ametric in order to be
defined.) Cf.[26,27].

When ascalar product is defined on V,_, one may pair vectors and covectors
in amore canonical way. One will denote the scalar product in V. with adot.
L et thus
- €V xV —IR

be such a scalar product, i.e., abilinear, symmetric function, suchthat v -v >0 <
v = 0. If c isacovector, there exists aunique vector u, of V_  such that

c(v) =u, V.

Thus one may define an electric field "vector", aforce "vector”, etc. But this
is taking advantage of an additional structureon V_ (the one conferred on it by
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the operation -) which may not exist, or be quite fortuitous when it does exist.

For instance, the position of a pendulum can be specified by two angles 6, and 6,
(Fig. 4). Let 80 ={060,, 06,} be adisplacement of itsbob and 66" another
displacement. Which physical meaning can be attributed to the scalar product

00, 00, + 80, 00', ? None whatsoever. On the contrary, the expression c, 80, +
c, 80, can beinterpreted as the effect of acovector ¢ on the displacement 50
(Exercise 1: what is the physical meaning of the ¢s? and of the full expression?).
With the latter scalar product, one may always associate a vector with ¢. But what
sense would it make to identify something which physically is atorque with
something which looks rather like an angle, or the variation of an angle?

Figure 3. The"dectricfield" covector at afew points of the space lying
between an electrode E at potential 1 and the ground.

So we shall not confuse V withitsdual. However, there are cases in which
adistinguished scalar product existson V.. One then calls Euclidean space of
dimension n thepair {V ,-},i.e, V,  endowed with the structure which stems
from this scalar product (including the notions of distance, angle, area, volume,
etc.), and one reserves the notation E_ for it. Ordinary spaceis E,, aswesaid
earlier.

We shall not confuse vector and affine space either. An affine space (whose
elements are then called "points") is a vector space "deprived from itsorigin“, so
that one cannot add two points, or multiply a point by ascalar. But one can still
consider the midpoint of the segment linking two points, and more generally the
barycenter w.r.t. to real weighting coefficients, and taketheratio b/a of Fig. 2.
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The difference of two pointsis avector (belonging to a vector space whichissaid
to be associated with the affine space), and thisiswhat gives meaning to

©) X=X N X

i=0,..,n i

wherethe xs arepoints, and = A' = 1. For (3) readsas

> N (X

i=0,..,n _X)zo’

meaning that x isthe barycenter of the x;s with weights A'. The set of points of
the form (3) iswhat is called an affine subspace. If it happens to be the whole
space, and if al points x. are necessary for thisto be true, n isthe dimension of
the space. In that case, the A's of (3), considered as functions of X, are the bary-
centric coordinates of x inthe basis of the xs. A function (of the variable x)
which islinear with respect to the barycentric coordinates of X, in somebasis, is
said to be affine. (This property then holds in any basis.)

Figure 4. Configuration parameters for a pendulum.

No particular notation has been reserved for affine spaces. the context (the
fact that we have been speaking of points or of vectors) should be enough to tell
whether we mean the affine or the vector space. Actually, whenworkingin V_ or
E .., both structures are often needed simultaneously, for physics needs not only
vectors and covectors, but "bound vectors', which are pairs consisting of apoint x
and avector v (onewill then say, with some abuse, that v isa"vector at x").
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0.2 Why study differential geometry ?

While the intrusion of differential geometry in eddy-currents theory is arecent
phenomenon [7, 33, 50, 56], Electromagnetism in the large has for long made a
substantial use of its concepts, especialy differential forms (cf. e.g., [27], [89]). This
modern point of view was anticipated by Maxwel himself [70], and by Kevin [95].
Moreover, physics as a whole, nowadays, undergoes geometrization, and in some
areas, like mechanics of the continua, the use of differential geometry is much more
intensive than what we shall try to foster here (cf., e.g., [1], [68], [39]).

But eddy-currents theory, and their computation, are parts of engineering
science, and the latter seems to be less concerned, up to now, by this geometrizing
trend. One easlly understands why. Engineering sciences are lessinterested in
understanding phenomena than in predicting them, in precise quantitative terms.
Hence they require computation, which implies a representation of abstract
geometric objects with the help of numbers. Measuring a magnetic field about a
point x , for instance, will yield three numbers, corresponding to the intensity of
the field (or rather, of the magnetic induction) along three directions. These three
numbers being al one needs to know about thisinduction (and its effects), the
temptation is strong to identify them with theinduction at x (call it b(x)). We
may well argue that they are only a particular concrete representation of b(x), that
thisobject b(x) isof avery different nature than a mere triple of numbers, that it
Is, aswe shall see, a "2-covector”. Such adiscourse has no urgent appeal to an
engineer, who has other and more pressing things to care about. Only the proof
that this new viewpoint brings computational advantages can divert the attention of
engineers and convince them to take the time to studly it.

Thereisahistorical precedent: vector calculus. Strange asit may appear
today, it is only during the Fifties that notions like "vector space”, "linear transfor-
mation", etc., have become commonplace in engineering science. (In France, they
did not enter the curricula of so-called "preparatory classes’, where candidates to
engineering schools are trained, before about 1960.) When this happened, it was
clearly dueto the realization of the power of the matrix formalism as a computing
tool (enhanced, as it then was, by el ectronic computers), not to some late
recognition of the conceptual simplification brought into science by the notions of
vectors and of linearity in general, which was obvious since the end of 19th

century.

Time does marvels. Oneisso fond of vectorstoday that students protest
when you strip them of these so pretty arrows, straight or curved as the case may
be, and that some Journals set them in a special face (and insist on your compliance
to such conventions).
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One could jeer for pages on such inertia phenomena, observe that physicists
have not yet fully adopted Schwartz's distributions, atool custom-made to fit their
needs, or quote from Kron, persecuted al hislife by international institutions of
electric science and their mandarins, who malicioudly tried to force him to substitute
"matrix" for "tensor" everywhere in his papers [60]. That nowadays, anong
eddy-current speciaists, one still prefersto see h and b, for instance, as vector
fields and not as differential forms of degree 1 and 2 respectively, should be
blamed on thiskind of inertia. But thisisbesidesthe point. If wearerightin
thinking that novel mathematical objects enter the toolkit of engineers only when
they lend themselves to computation, we must consider whether things are ripe,
from this point of view, asfar as differential forms are concerned.

The answer is not obvious. On the one hand, yes, there exists a calculus based
on differential forms. The classical formulas—Green, Ostrogradskii, etc.—, or
vector analysisidentitieslike rot rot = grad div — A, al have much smpler expres-
sonsin terms of differential forms. From this point of view, we do have there a
workable computing tool, even better than vector analysis. The understandable
objection that "computers can perhaps understand real numbers, but not differentia
forms' does not hold water: one may code numerical methods based on
differential geometric concepts, thanks to elementary objects (in both senses:
mathematical objects and program objects) called Whitney forms [104], which are
to differential forms what shape-functions are to functionsin finite element theory

[6].

But on the other hand, no, differential forms cannot exclude vector fields from
current usage. Consider, for instance, the two Green's formulas'

4 Jodivb o+ [ b-gradg=/_n-b g,
o) Joroth-a-f h-rota=[_nxh-a

They are specia cases of asingle formula, which appliesin dimension n for all
integers p from 1 to n- 1. Here n = 3, so there are only two possible values of
p, hence the two above formulas. But for thisreason, there is also asymmetry, a
duality betweenthecases p=1 and p = 2, which are particular to dimension 3,
and which play an essential réle. Quite often, to be "forced" by conventional

vector notation to write twice the "same" formulawill be illuminating, by emphasiz-
ing this duality. One may find there a good reason to stick with the "old" notations
rot, div, etc.

' | find convenient to call them that, but it's an abuse (cf. the index of [50]). But amild one, since there are
already so many Green's formulas around . . .
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Actually, aswe shal seein Chap. 5, adl differential formsin dimension 3 are
representable either by functions or by vector fields. (Indimension 4, things
aready go differently: the electromagnetic field tensor F, isaform of degree 2,
and it has no representation as avector field in general.) Thus, everything that can
be done with forms can be done with vector fields as well, and often more
smply*. The advantage of differential forms, in this context, is that they help
understand what oneisdoing: They explain some formal analogies (like between
(4) and (5) above) which otherwise would look fortuitous, they suggest interesting
symmetries.

So: the conceptual interest of differential formsis certain, but their benefitsto
computation are not so obviousif one does not go beyond dimension 3.

A reasonable stand at the present time could therefore be: talk vectors, work
with functions and vector fields, but while being fully aware of their geometric
nature as differential forms, and being able to make it explicit when needed, espe-
cdly when such amove helps understand symmetries and analogies. The present
lecture notes should be enough from this point of view, even if they fall short from
what should be requested of a development which would frankly rely on differentia
geometry®. (Thereisno shortage, anyway, of texts of such a nature [32, 33, 50,
73, 89, 97, 103, etc.].)

Thefirst three Chapters proceed along the same path as most treatises (cf.,
e.g., [62]): notion of manifold, construction of manifolds, tangent vectors, tangent
space and itsdual, differentia forms, orientation and integration. (More space than
usual, however, is devoted to orientation-related notions. “twisted" differential
forms, etc.) All this can be done without introducing more structure than that of
differentiable manifold. The structures added in Chap. 4: "standard density",
"metric", then allow us to make the connection with standard objects of vector
anaysis. Onethusarrives, in Chap. 5, to three-dimensional Euclidean space, where
all the familiar notions. operators grad, rot, div, Green formulas, etc., are waiting
to be revisited.

We do however acknowledge the right to be reluctant to follow this classical
itinerary, which is unavoidably wearing, even if most mathematical technicalities are
left aside, aswetried to do. It'safact, abit paradoxical but inherent in the nature
of mathematical apprenticeship, that the richer the structures, the easier they are to

' But not lways: in some field-computation problems in spatially periodic structures, one meets exotic
three-dimensional manifolds, non orientable, on which the "translation” in terms of vector fields may become
exacting.

? The most salient omission is the "Lie derivative", indispensable to the student of electromagnetic forces.
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understand and to handle: E, issubjectively "ssmpler” than the underlying three-
dimensional manifold, and closer to our intuition. For the reader who would
therefore prefer to directly embark on Chap. 5, one hastried to make it logically
independent. In this chapter, one does not forgo the project to emphasize
distinctions which are blurred by elementary geometry: vectorsvs. covectors, €etc.,
quite the contrary. But thanksto the presence of the strong structures of E,, the
essentia definitions of thefirst four chapters can be recast in much smpler form.

A possible reading strategy may thus consist in beginning with Chap. 5. One
will find there frequent cross-referencing to Chaps. 1 to 4, which one will probably
want to follow up, in order to absorb this material on a piecemeal basis. The reader
doing so is however advised to neglect, at first reading, all mentions of "twisted
forms" and of orientation-related problems.
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Chapter 1

M anifolds

A manifold is a set equipped with some structure which makesit look like IR" in
the vicinity of any of its points. aclosed surface, for instance, lookslike IR?
locally, the set of all possible rotations of a solid with respect to one of its points
locally lookslike IR?, etc.

The concept of manifold isintended to model the somewhat fuzzy idea of
"multi-dimensional continuum", as encountered in physics. The Earth surface, for
instance (from the point of view of geodesy) isabidimensiona continuum: two
coordinates are needed to specify alocation. The variety of colors that a normal
human eye can perceiveis, it seems, athree-dimensional continuum. The set of all
possible configurations of a car, from the point of view of the driver trying to enter
atight parking dot, isacontinuum in four dimensions. two for the position of the
centre of the car, one for its orientation, one for the angle of the front wheels. Etc.
The mathematical concept of manifold is designed to serve in the modelling of
situations where such continua play ardle.

1.1 Definitions

For this, it must reflect the intuitive image we have of such continua: besides
the possibility of specifying points by giving their coordinates, which will be taken
into account by the notion of chart, the concept of manifold should incorporate
some flavor of homogeneity and regularity. For instance, the sets pictured in Fig. 5
are not manifolds, for lack of homogeneity. The surface of a cube, for lack of
regularity at the corners, isa"topological” manifold, not a"differentiable" one. The
definition will either discard them, or make the distinction precise.

1.1.1 Differentiable manifolds

Definition 1 (Fig. 6): A manifold of dimension n isthe assembly of the following
elements: 1°- aset X, 2°- afamily of functions v, of type X — IR", the
so-called charts (their collection, {y_: o € A}, being called the atlas), with the
following properties:
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(8 cod(y ) isa connected open set of IR" (non empty),
(b) v, isinjective,
(c) X isthe set-union of the dom(y ),

(d) The y_s are"compatible" (aswill be explained).

Figure 5. The union of two planes, or of ahalf-lineand aplane, isnot a
manifold: no neighborhood of A lookslike achunk of |IR", whatever n.
("Neighborhood" should here be understood in the sense of the natural
topology of these sets, the one induced by |R®.)

If X isnot empty, thereis at least one chart, according to point (c). A single
chart may sometimes be enough: if for instance X isavector space, and if ()
= {x',..., X"}, wherethe x' are the components of the vector x in some frame of
basis vectors, then ¢ turns X into amanifold of dimension n (the one dubbed
V. inthelntroduction). Similarly, if X isan affine space, n barycentric
coordinates (out of n + 1) constitute achart. The charts are what physicists call
"reference frame", or "system of coordinates'.

When one looks at two different chartsin areal-life atlas, for instance those of
Europe and of former USSR, one can tell them as "compatible": the Russia of
both chartsis the sameterritory, only with different scales, shapes and orientations.
Condition (d) iscrafted in order to grasp this notion of compatibility: Let us set,
for two charts o and f3, with overlapping domains,
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Wap = Walaomey' Wpa = Wplaom,)»

I.e., for each of these charts, its restriction to the domain of the other one, and

© Vop = Wpo O Waps -

Then the transition function vy, isof type IR" — IR" (itsdomain isapart of
cod(y ), cf. Fig. 7) and its continuity, its differentiability, etc., make sense (whereas
such notions are meaningless as regards the charts themselves). According to the
geographical analogy, v,, should at least be continuous. Hence the following
complement:

Definition 1 (continued): The y_ are C‘-compatible, meaning that, for some
k=0, the vy, of (6)areall of class C* (i.e., with open domain and k times
continuously differentiable).

dom(lpa)
v IR’
e
« /\W* cod(¥ )
p
IR
dom(lPB)
cod(wﬁ)

Figure 6. Concept of manifold.

If k =0, weare dealing with atopological manifold, and with a differentiable
manifold if k = 1. The required differentiability may depend on the situation. We
shall agree once and for all that all our manifolds are smooth, i.e., of class C* for all
Kk, or asone says, C*. (Smooth also refers to the transition functions themselves.
Note that one might be interested in other properties of these functions: their
linearity, their analyticity, etc., hence as many specialized notions of manifolds.)
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dom(w[ﬂ(x} Y

Figure 7. Compatibility of two charts.

Figure 8. By orthogonal projection of X (the set-union of two half-axes)
onto non parallel lines of the plane, one gets chartsof X (each with domain
X), which arenot C*-compatible.

Exercise 2: Consider the manifold made of the subset {{x,y}: (x=0and y=0) or (x= 0
and y=0)} of theplane IR?, with the two charts suggested by Fig. 8. Show that it is of class C°,
but no more. Discuss the above reference to the surface of acube.
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Thus X, which, stripped of its charts, would be an amorphous set, inherits
from them avery rich structure. For instance, X has atopology, the one for
which open sets are the preimages of the open setsof IR" under the 1 (they do
satisfy the axioms for open sets, thanks to the compatibility condition). So oneis
entitled to speak of a continuous function from one manifold into another one, of a
homeomorphism, etc. But thereismore: If X and Y aretwo manifolds of class
C', of respective dimensions m and n, one may speak of the differentiability of a
function f of type X — Y: onerefersfor thisto the maps of type IR" — IR"
obtained by composition of f with appropriate charts. (Onewill call regular a
function which can be differentiated indefinitely".) Two manifolds are diffeomor-
phic if they admit of a one-to-one mapping, differentiable in both directions. Then,
their dimensions are the same. (L ater, we shall see what the derivative of a
function of type X — Y is)

This structure, however, does not allow one to talk about a"distance" on X.
If one has a need for this, one must endow X with additional structure, as we shall
do later. Itisnot sufficient either to decide whether X has the Hausdor ff separa-
tion property, i.e., whether non-intersecting neighborhoods can always be found
around two distinct points. Thisis an independent hypothesis, which is generaly
understood: all our manifolds will be Hausdorff, unlessthisis explicitly denied.
Similarly, X has no reason to be separable (i.e., to possess an enumerable set of
open sets from which all open sets can be obtained by union operations), but al our
manifolds will be supposed to have this property.

Exercise 3. Under which conditionsis a manifold connected?

To which extent does this structure on X, as provided by charts, depend on
these charts? The geographical analogy, again, suggests the answer. Consider two
atlases of Britain, A4, and 4. one can tell they chart the same territory from the
fact that any chart from the first one is compatible with any chart from the second
one (when their domains do overlap), which allows one to merge the two atlases as
asingleone. One will therefore say that two manifolds {X, A4,} and {X, A4,}, on
the ssme set X, are equivalent if all chartsof A, are compatible with all those of
A,. Thissuggeststhat the mathematical objects we really want, i.e., those which
can serve as models for the intuitive idea about continua we started from, arein
fact not the manifolds in the somewhat narrow sense of Def. 1, but their equiva
lence classes with respect to the relation just defined. Each of these classes contains
adistinguished representative, the atlas of which isthe collection of all mutually
compatible charts. Thisatlasissaid to be complete (or maximal). So when we

' or at least, as many times as required by the situation.
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shall mention amanifold, we shall be referring to the structure conferred on set X
by the complete atlas (even if asfew as one or two charts may be enough to
describe it, and to perform computations when necessary).

1.1.2 Manifolds with boundary

Now, an objection. With the previous definition, al points of amanifold are smilar,
to the extent that their neighborhoods all 100k, in the precise sense we just
elaborated, like apart of IR". Thisisnot aways satisfactory. For instance, if acar
Is blocked against the kerb, or if its steering wheel islocked, the car isclearly "at
the boundary" of its configuration set: the neighborhood of such a configuration
does not look like an open set of IR*. Many multidimensional continuado have, in
thisway, aboundary. The corresponding mathematical notion is that of manifold
with boundary, which is obtained by allowing X tolook like a closed half-space of
IR", instead of IR", in the neighborhood of some points. Fig. 9 should be enough to
convey the idea (and one may refer to [46] or [84], for instance, for precise
definitions). A manifold in the former narrow sense (i.e., one without boundary)
then becomes a special case of manifold with boundary. (In the sequel we shall
omit the words "with boundary", unless thisis required for the sake of clarity.)

IR’
S e CY
X
NI
dom(y) )<
cod()

Figure 9. By convention, heavy lines correspond to the boundary, and thin
lines are not part of X.

L et us concede that even this broadened definition is not completely
satisfactory, for it does not discriminate between various kinds of boundary points:
edges, corners, etc. There does not seem to have been much interest in
Mathematics in the task of working out the concepts necessary to deal with such
fine distinctions, but it could be done if really needed (cf., e.g., the concepts of
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"pseudo-manifold” and "pseudo-boundary” in [90], val. 2, pp. 148 and 158), and
we shall rest on this.

Exercise4: A color is often specified by giving three intensities of primary colors. In another
system, one makes use of three variables, caled luminance, hue and saturation. Show that these
systems can be understood as two charts on the same "manifold of colors'. Describeit. Allow for
the possibility of continuously going from red to purple by two essentially different routes. (For
an account of the "theories of color", cf. [40], which refersto the classics. Aristotle, Newton,
Gaoghe, Grassmann, Maxwell ... Cf. [47] for aprecise description of one of these "theories’, i.e.,
from the present point of view, one of the charts which have been proposed for the colors
manifold.)

Exercise 5. Normal vectors (of al lengths) to a surface form amanifold (not to be confused with
the set-union of lines normal to the surface!). Provide an atlasfor it.

Exercise 6: Inagiven plane, the set of all equilateral triangles of unit side-length has amanifold
structure. Describeit (dimension? charts? other, diffeomorphic manifold(s)?).

Exercise 7. Givethe set of all trianglesinscribed in the unit circle, non degenerated, and isosceles,
amanifold structure.

Which manifolds can one come across with in numerical electrotechnics? First
of al, regions on which one may have to compute fields. partsof E, open or
closed, or (in the case of, e.g., the computation of eddy-currents on thin conductive
sheets) surfaces embedded in E, with or without a boundary. But that is not the
end of it. When one wants to compute a spatially periodica field, ase.g., in an
aternator, the computational domain can be reduced to some fraction of space, that
may be called the "symmetry cell”. But the underlying manifold is not this part of
space, it iswhat is obtained by suitable identification of opposite sides of the
symmetry cell (more about thislater, Section 1.4.2). Finaly, other kinds of
continuathan "spatia" ones (as were all the previous ones) may claim consider-
ation. For instance, when one measures a magnetic field in some spatial region, one
isreally roaming inside amanifold of dimension six (three for the position X, three
for b(x), so that each measurement result is described by six parameters).

We shall therefore examine how such non-elementary manifolds can be
constructed from ssmpler manifolds. There are basically twoideas. 1°- gluing,
2°- forming products, which find their synthesisin the notion of "fibered
manifold”, or "bundle".
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1.2 Construction of manifolds: gluing

To illustrate the notion of gluing, let us start from a manifold (with boundary)
like the unit square C? of Fig. 10. Let usintroduce the relation

A~A"if (y(A)=1, y(A) = 0 and x(A) = x(A")).

By assumingthat A ~A andthat A'~A if A~ A’, oneobtainsan equivaence
relation over C* Let C be the set of equivalence classes, or quotient of C* with
respect to thisrelation. One will easily see how to provide C with charts in order
to turn it into amanifold (with boundary) of dimension 2 (Exer cise 8: describe
such a chart in the neighborhood of the point A = A' of C). Clearly, thereisa
surjection f € C? — C, with f(A) =f(A"), which respects the manifold structure
except at pointslike A or A'.

The upper and lower edges of C?, can be glued in another way, the relation
then being

A~Aif (y(A)=1 and y(A) =0 and x(A) = 1 - x(A")).

The manifold thus obtained is of course something else entirely. (It'sthe Mobius
strip, denoted MS)

y
Y 1¢A'

Figure 10. Manifold C obtained by identification of the upper side and
lower side of asquare.
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s

Figure 11. Mobius strip obtained by identifying upper side and lower side
after reversal of one of these.

0 A 1 X

A warning, at thisstage: Fig. 10 (or Fig. 11) shows more than the manifold C
(or MYS), it shows this manifold as embedded in space E, thanksto a perspective
view. Let it bewell understood that thisis atribute, not mandatory on principle
grounds, to the taste of many of us for the visualization, plane or spatial, of
mathematical objects. A manifold should actually be conceived in abstracto, for
itself, not as a part of some "ambient space”. For instance, let usthink of the
manifold each point of whichisalineof E, passing through the origin. Thisisa
two-dimensional manifold which can be conceived without any reference to any of
its possible representations as a surface immersed in E,. Itsnameis projective
plane. Similarly, Klein' bottle of Fig. 12 isaquite smple manifold of dimension 2.
What makes the quaint charm of such geometric objectsis not their intrinsic
structure as manifolds but the complexity of their representationsin E,: by playing
with scissors and a M 6bius strip, one does not actually study the manifold MS but
rather its various possibleimmersionsinto E.. (Cf. [8, 25, 41, 54, 81], among
others, for games of this kind, sometimes actually quite serious[91].) Infact,
according to a general result due to Whitney, a separable manifold of dimension n
can always be embedded into IR*™ (the words "embed", "immerse", etc., have a
precise meaning, that will be disclosed later: cf. Def. 9, p. 63). But thereisno
particular physical interpretation to this encompassing manifold. For instance, the
configuration space of a double pendulum oscillating in agiven vertica planeisthe
surface of atorus, but the three-dimensional space in which one can visuaizethis
torusis conceptually irrelevant: it has no particular physical meaning.

Exercise9: What is the configuration space of the pendulum of Fig. 4 (p. 6)?

Exercise 10: What isthe configuration manifold of a car with locked front-wheels 1°- on dry
ground? 2°- onice?
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Figure 12. Kleinbottle. Theequivaencerdation A ~A' isdefined by
((y(A) =(00or 1) and X(A) + x(A") = 1) or (x(A) = (0.or 1) and y(A) = y(A)).

Exercise 11: Weld two by two the edges of asguare in order to get atorus.
Exercise 12: Describe the projective plane with three charts. Can two charts be enough?

Exercise 13: Make a projective plane out of adisk, by gluing the boundary onto itself. Try to
draw the result asimmersed in E,.

Exercise 14: Weld two by two the edges of a square in order to get a projective plane.

Exercise 15: Show how to glue two M6bius strips into aKlein bottle.

Our gluing moves, so far, yielded manifolds, but thisis not always so. For
instance, let us start from IR and let usidentify x =1 with y = -1 by putting
them into the same equivalence class (each of the remaining point being a class by
itself). One gets atopological space thisway, but not amanifold, for the
neighborhoods of the welding point cannot be assimilated to neighborhoodsin IR
(Fig. 13). Same thing about the equivalencerelation x ~y < (x|=1 and y =
- X). Thereisno smple genera criterion, aside from the definition itself, saying
whether the result will be amanifold or not: one has to check that the charts
around points to be identified do match properly. (See[46] for afew tempering
examples)

So far we have made our gluing job by identifying two parts of the same
manifold. One may aswell work with two manifolds X and Y by identifying a
pat A of X andapart B of Y, provided there exists an injective mapping
f& X — Y, with dom(f) =A and cod(f) = B. Onefirst takesthe manifold
X UY (overtheset X UY, with the union of the two atlases for its atlas), then
therelation y =f(x) between pairs of pointsof X U Y, and one goes on as above.
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-1 1 - X Yy X

L) M

Figure 13. Ways of gluing which do not yield manifolds

One may for instance glue two half-planes (Fig. 14) and get aplane. Fig. 14
represents an injection of it into space, which is not an embedding (not an
iImmersion either). Such situations are not to be excluded in physical applications:
suppose one has to compute direct currents (not induced currents) on a conductor
made out of two conductive sheets welded together, asin Fig. 14. The geometric
singularity at the junction of the two sheets, being physicaly irrelevant, should not
be a concern in the mathematical modelling process. It al goesasif one had to
work on the manifold of dimension 2 obtained by (mathematical) gluing, without
any regard to which way it isinjected into E.

=

Figure 14.

In the same spirit, Fig. 15 represents a"wild" injectioninto E of amanifold
with boundary of dimension 2 obtained quite regularly by gluing. One has taken
arectangle (manifold with boundary), removed two disks (hence, again, amanifold
with boundary), then glued the edges of the holes together in the way indicated by
the figure (instead of the other possible one). One will check (by describing a chart
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around a point of the edge of the hole) that this procedure does yield a manifold.
The latter is not orientable (a concept on which we shall have more to say), just like
aMobius strip, butit'snot MS. (It'saKlen bottle minusadisk.) There, again,
one may very well have to compute currents on a contraption like that of Fig. 15,
for instance in order to determine its ohmic resistance.

Figure 15.

Asadightly more complex variation, Fig. 16 shows a manifold of dimension
2 obtained by gluing a cylinder (the manifold with boundary of Fig. 10) to the
edges of two holes | eft by the removal of two disks from arectangle. One may
easily imagine an eddy-currents problem on such a surface, or on an even more
complex one. In al these cases, the domain of computation is therefore a manifold
of dimension 2 with boundary, not necessarily orientable.

Such manifold constructions are not made in the mind only. When one
designs aworkpiece with the help of a CAD system, oneis actually charting some
manifold. There arethree differences, however. First (the less consequential one)
the charts "go the other way", in general: from apart of IR® to the manifold to be
constructed. Next, objects constructed this way are not always manifolds, for some
of the "monsters’ previoudly barred by the definition (cf. Fig. 5) might be relevant,
and should be describable by the system. The right mathematical concept does
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exist: that of "cell complex" (cf. [44], p. 134, or [53], Chap. 7, or [3], or [84]), but
such complexes are more genera than manifolds. Last, these software systems are
designed to describe manifolds embedded in three-space only, and they don't take
the concept of atlasinto account: each part of the workpiece is described by a
single chart. One may view these characteristics as weaknesses of such systems,
and think that some differential geometry could help in improving them.

—— = e
0 ) LL _
- /

Figure 16. Non orientable surface obtained by surgical procedures:
dissecting, rearranging, gluing back...

The point of view of "inverted charts' (let's say, more elegantly, of
"parametric representations’) can be systematized. Let U and V be two open
setsof IR", and f € U — V abijection (between dom(f) C U and cod(f) C V),
differentiable in both directions. By gluing according to f, one gets a manifold.
This can be generalised to afamily of open sets U, and to "gluing functions'

f, € U, = V,, which must be compatible, in a sense which can easily be made
precise. Thisdoes correspond well to the idea of a continuum which locally looks
like IR", since it was built by patching up piecesof IR". One could give of
manifolds a definition different from Def. 1 (although equivalent) by working from
this point of view, which can be qualified as constructive, or synthetic: one buildsa
manifold by patching pieces together, whereas the point of view of Def. 1 was
rather analytic: given amanifold, one scansit piece by piece, with the help of
charts.

Exercise 16: Fig. 17 describes two manifolds of dimension 1 obtained by gluing two copies of
the segment ]0, 2[. One of them is not Hausdorff. Why? (See[9] for other examples of
"unreasonable” manifolds.)
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Figure 17. Gluing according to the bijections x € ]1,2[ — x above and
Xx€11,2[ = x -1 below

Exercise 17: Show that by gluing two copiesof IR according to abijection f between two
opensets U and V (thus dom(f) = U and cod(f) = V), one gets a Hausdorff manifold if and
only if neither f nor f~' admits of a continuous continuation to alarger open set.

1.3 Construction of manifolds: bundles

The second way to make manifolds consistsin taking products. For instance: on a
surface B, the "base", one may consider tangent vectors. The continuum formed
by all these vectors (each considered as attached to some point of the surface) can
be assimilated, locally at least, to the product of B by the vector space V,. One
saysthisisafibered manifold or bundle, of base B, of fibre V,. The set of al
pairs {x, v}, where v isatangent vector at point x, formsthe fibre above x.

The reader who wishesto arrive quickly to the notions of tangent vector and of differential
form can safely jump to Chap. 2 right now.

1.3.1 Bundles

There is no problem in defining the Cartesian product of two manifolds {X, A4}
and {Y,B}: it's X x Y, with the following collection of charts as atlas:

X yteXxY = {g,), ¥} IR xIR"

Indeed, as one may check, all these charts are compatible two by two if the ¢_s
were, aswell asthe y,s. But the notion of bundle does not reduce to the notion of
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product. For instance, thering of Fig. 10 (p. 18) isaproduct: that of S, (the

unit circle) by the segment [0, 1]. But the Mobius strip of Fig. 11 is not one
(otherwise, it would have the same global topological structure as the ring, which
clearly is not the case). But locally, both theringand MS do look like the product
of IR by [0, 1]. Sowhat makesthe difference? We shall try and understand this
point in this Section on bundles.

Other example: the manifold of all vectors tangent to a sphere embedded in
E, (Fig. 18). Again, it lookslocally like aproduct, but isnot one. Its points are
pairs consisting of a point of the sphere and a vector, based at this point, lying in
the tangent plane. Itsdimensionis 4. If onejust looks at tangent vectors whose
tallsareinasmall chunk U of the sphere, this piece of manifold is clearly identifi-
able with the product U x IR?. The whole manifold (which we shall meet again
under the name of TS,) looks locally like a Cartesian product. Buit if it was one,
one might assign to each point of the sphere a tangent vector, continuously depend-
ing on this point, and nowhere vanishing (cf. Exer. 18). But thisisanotorious
impossibility (it's the problem of "combing the hedgehog"), ruled out by a cd-
ebrated theorem of Brouwer ([5], p. 110, [38], p. 131).

Exercise 18: Make the above argument precise by showing that the mapping x — {x,f} of S,
into S, x IR?, where f = 0 isafixed vector of IR?, iscontinuous.

Figure18. TS, isnot the Cartesian product of S, and IR?

This example may help grasp the deep difference between a continuum like
TS, and (for instance) the one obtained by assigning to each point on the Earth the
local values of pressure and temperature. One must not confuse a vector field on a
two-dimensional surface with apair of scalar fields. they are objects of different
types, they are, more specifically, two "sections' of two different "bundles’ on the
same "base" S,. Itisnow timeto define these concepts.



26 Alain Bossavit

Just as when defining manifolds, one may here adopt the analytic or the
synthetic point of view. We shall begin with the latter, which is more intuitive.

Figure19. Thefibre F, "above" x isobtained by identifying two copies of
F, oneabove §, =, (X), oneabove &;. But thisidentification is not
necessarily the identity mapping.

Let thus F beamanifold, thefibre, and B another one, the base. For
simplicity, weassume F isdescribed by asingle chart. For each chart of B, say
Yy, € B — IR, let us build the product manifold cod(y ) x F and let's try to patch
these productsinto awhole. So, consider two charts vy, and v, with
overlapping domains (Fig. 19). Thefirst ideawhich comesto mindisto glue
cod(y,) x F and cod(y,) x F by identifying the pairs {g,,f} and {gf} of
IR" x Fif and only if

() P, €D = v, )

But what one obtains thisway isthe product B x F, since aclass of equivaent
pairs {&,f} inthesenseof (7) ischaracterised by apoint of B (the preimage x =
Y, '€, =, '€y andapoint f of F. Sothisassembly rule (which consistsin
identifying the fibre above ,(x) with the one above 1 (x)) istoo restrictive.

What more flexible rule could one adopt? The example of MS will givea
clueinthisrespect (Fig. 20). Let F=[-1, 1] bethefibre, S, thebase, conceived
as the unit circlein the plane, apoint of S, being specified by its polar angle. Two
charts are enough to cover it, with domains (and codomains aswell, cf. Fig. 20)

dom(y,) =] -¢e,x +e[, dom(y,) =] -¢ 2m+¢]|
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with 0 <e <m. Then dom(y,) N dom(y,) consists of two open segments U
and V. One getsaMobius strip by gluing fibre to fibre "without flipping" above
U but "with flipping" above V. The equivaenceisthus(7) above U, but above
V theidentification is made according to the non-trivia rule:

{1} ~{&.f} = (W, €) =¥, '€y and f, =-1).

-—

Z
7

Qup 1T =~ T cod(y,) x F
cod(¥,)x F F | F
P
: 2T+ €
u
s a0
)
— §
V
T-¢€ COd(‘Pﬁ)

cod(y )

Figure 20. Patching two rectanglesinto aMobius strip. (Remark the
notational abuse which consistsin giving identical namesto dom(y,), whichis
apatof S, and cod(y,), apartof IR.)
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The two copies of the fibre above a point are indeed identified via a bijection from
F onto itself, but this bijection is not necessarily the identity.

This should be enough to motivate the following construction rule:
Definition 2: Given,

1°- A manifold B, the base, of dimension n, with an atlas {y_: o € 4},

2°- A manifold F, the fibre,

3°- Afamily G of diffeomorphismsof F,

4°- For each pair {a, B}, a trangtion function g, of type B — G, of
domain dom(y,) N dom(y,,),

the bundle made out of these elements is the manifold V obtained by identifying
the pairs {§, f} € IR" x F according to the following rule: {g,f,} and {Ef,}
are equivalent if, on the one hand,

) P, 6D =, €,

e, if § and g, aretheimagesof thesame x € B, and if, on the other hand,

©) f,= 0,001,

Condition (8) tells how to gluethe cod(y ) together in order to get B, and
(9) tells how to assemble the fibres. The definition is still incomplete, because a
transition function cannot be just any function. First, from (9), g, 09, isthe
identity. By the same argument, if x belongs to the domains of three distinct
charts, onehas g, 09, =9, Sothevaluesof the g ,(x) form, taken all
together, agroup: therefore, onewill requirethat G be a group of diffeomor-
phisms of the fibre. Moreover, for v apoint of V, i.e, an equivaence class of
{€,.f,}, thefunctions v — {E_,f_} arechartsabout v, which must be
compatible. By writing down explicitly the correspondence {& , f,} — {&; f;},
we see that the function

{1} = {y, 09, E), 9, W, E) f}

must be differentiable. Sothe g,, themselves must have this property, and for this
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to make sense, G hasto wear a structure of differentiable manifold. Groups
which are also manifolds (and in such away that group operations be differentiable)
arecadled Lie groups. So, findly,

Definition 2 (continued): G isa Liegroup, called structural group of V, and the
transition functions are differentiable.

Thus we have finally formalized the notion of smooth patching of the fibres
that we wanted.

"The" group G isnat, infact, uniquely determined by the structure of the
fibre. One has some leeway in choosing it, and one generaly takesit as small as
possible, soit isoften finite'. (Inthe caseof MS, it containstwo elements: the
identity and the "flip" f — - f.) Inthat case, the end of Def. 2 is redundant, the
G-valued trangition functions being piecewise constant.

If it happens, when one builds a bundle, that the fibre has more structure than
aplain manifold (like, for instance, alinear space), one naturally triesto preserve
this structure, in such away that the fibre F, above x inheritsfromit. So
transition functions must themselves respect the structure of F, and one hasto
choose the group G accordingly. For instance, if F isavector space of dimen-
son n, G will bethegroup GL_ of isomorphismsof F,i.e, thelinear invertible
mappings of F ontoitself. (Thus, inthecaseof TS, the structural groupis GL,.
What one getsthisway is called a vector bundle. Most of those we shall encounter
are of thiskind.

According to (8), toeach v €V (anequivaenceclassof {&_,f_}) cor-
responds apoint x inthe base, the one such that vy (x) =€ for all charts about
X. Thispoint isthe projection of v, denoted x =p(v) (cf. Fig. 20). The preimage

F=p"(),

caled fibre above X, inherits any structure belonging to thefibre F:if F isa
linear space, F, isone, etc. Mappings which transform fibres into fibres while
respecting whatever structure they have are called bundle maps. So if

ueV — V' issuch amapping, it sendsafibre F_above x onto afibre F,
above x' (andtherestriction of u to F_  respectsthe structure of F: itislinear
when F isalinear space, etc.). Moreover, there exists g € B — B' such that the
diagram

' A finite set, once equipped with the discrete topology, bears amanifold structure, thus finite groups are Lie
groups (as also are groups like Z, Z" etc.).
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where p and p' arethe projections, commute. The bundle maps play with
respect to the structure of bundle the same rdle as held by continuous—or linear,
or differentiable, etc.—functions with respect to the structures of topological
space—or linear space, or manifold, etc.

1.3.2 Sections
Now, avery important notion:

Definition 3: One calls section of a bundle V of base B any function
s€ B — V such that

(10) p(s(x)) =x V x € dom(s).
Thus a section assignsto each point x within its domain in the base a point of

thefibre F_ above x (Fig. 21). (Notethat a bundle map transforms sectionsinto
sections.)

S(X) —
_/
F
/\‘\/
B X

Figure 21. Notion of section.

Oneisstrongly tempted to say "s is (thus) an F-valued function over B".
But thisisthewrong idea. Section s isnot an object of type B — F, but an
object of type B — V which satisfies condition (10). Thedistinctionis clear-cut in
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thecaseof TS,: an example of IR*valued function over S, isthe mapping
{position} — {temperature, pressure}, whereas asection of TS, isafield of
tangent vectors, and we have aready noticed the difference. We shall now analyze
itinfull generdlity.

By the very definition of V, we have charts about x), i.e., mappings such as
sx) = {E,f, }. Consider suchachartof V,whichassignsto gx) the pair
{€,f }, andlet f =q_(9x)). Localy, thanksto this chart, we can study the
continuity, the differentiability, etc., of f asafunction of x. By compatibility of
charts, these are intrinsic properties of asection. So we should liketo call f, the
"fibre component" of gX), just as x isits"base projection”. But can we? To say,
for instance, that this fibre component f, is"constant” in the neighborhood of x
Is saying something which isvalid in this particular chart, but not in another one,
and thus cannot be attributed to the section. To speak of a"constant” section is
thus meaningless. More generdly, there is no way in which the "fibre components’
of 9x) and qy) can be compared when X =y, their possible equality being a
chart-dependent phenomenon, devoid of any intrinsic meaning.

A bundle, thus, isonly fibered "verticaly" (Fig. 22). The notion of "horizontal
strata", or of "sections parallel to the base", does not exist. When thereis aneed
for it, one must endow the bundle with an additional e ement of structure (called a
"connection” [12, 59]).

Sections of bundles are the right objects by which to model physical fields.
When for instance one is studying conduction on a metallic surface, or elastic
deformation of the same, there is no intrinsic way—and no need—to compare the
current density vectors, or the stress tensors, at two points remote from each other:
such a comparison would not make physical sense. Other example, the field of
displacements of an elastic structure. In all these instances, as one knows, it pays to
make use of local frames, i.e., not in any fixed relationship one with respect to the
other when the shape of the body under study is changing: such apracticeis
tantamount to considering said fields as sections of some bundle, the base of which
Is some reference configuration of the body, and the fibres, vector spaces of various
dimensions. No comparison of "values' of thefield at remote pointsis called for,
and there is no need, when modelling the situation, to choose a richer mathematical
structure than necessary. To the contrary, excess structure can be a nuisance (as
some cumbersome treatments of elastic shellstheory testify).
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Figure 22. The "component in thefibre" f_, contrary to the projection X, is
chart-dependent, and has no intrinsic meaning.

1.4 Coverings

Midway between the two manifold construction methods we have examined
(gluing and fibre assembly), there is an intermediate case: when the fibreis a set of
Isolated points. The bundle and its base, then, are manifolds of equa dimensions.

Everything we have said isvalid in this case, since a set of isolated points has a
manifold structure (charts are functions ¢ € F — IR°, where IR° is by convention
reduced to asingle point (point 0), and each point f of F contributes one chart
Y., for which dom(y,) = {f}). But owing to the fact that the structural group isa
permutation group, more precisely, a subgroup of the group of permutations acting
on F, there are specia properties.

1.4.1 The notion of covering
L et's begin with two examples (Fig. 23). Thebaseisthecircle S, thefibreisaset

of two points. Fig. 23 shows the two possible bundles. Asone may notice, the
preimage of a small enough neighborhood of x consistsin two non-intersecting
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neighborhoods, and the restriction of p to each of them isalocal diffeomorphism.
Thisis, by definition, the characteristic property of coverings. They are also
requested to be connected, which eliminates the case of Fig. 23, left. Another
example (Fig. 24): thebaseis S, thefibre Z (the set of signed integers), and the
group Z aswell, acting on itself viathe operations g, =m — n+m. The
bundle, as one sees, is nothing else than thereal line. When acoveringis, asinthe
present case, ssimply connected, one callsit "the" universal covering of the base
[67]. Thisterminology is supported by atheorem asserting existence and
uniqueness, up to diffeomorphism, of this universal covering [67].

m M

i 1 (O A
= , M

Figure 23. Two coverings of thecircle. Ontheleft, G reducesto the
identity. Ontheright, G isthe group of permutations of two objects.

Figure24. IR asacovering of S'. Figure 25.
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Exercise 19: With the two charts of Fig. 20 (p. 27) on S,, describein detall (i.e., by writing
down the equiva ence classes) the bundle of Fig. 23, right.

Exercise 20: Same problem, with asafibre F = {0, 1, 2}, the structural group being Z.,i.e,the
cyclic group with three elements. (Hint: Fig. 25.) Thisisa"three-sheet" covering.

Exercise 21 (Fig. 26): Cut out a paper ribbon of about 20 cm x 2 cm. Patch it into a Mobius
strip. "Cover" it with apaper strip 45 cm long. Glue the ends of the latter together. Cut the M S
and pull it off. What do you observe?

—

v\\
Figure 26. Two-sheet covering, orientable, of a M6bius strip.

1.4.2 Interest of the notion of covering

How relevant are such coverings to electrotechnics? How can they ever be? The
factis, they are, essentialy in two ways. When discussing "multivalued potentias’,
and when symmetry is present.

Consider aring in which flows acurrent of total intensity | (Fig. 27). Cal B
the open region around thering, and h the magneticfield. Since roth=0 in B,
there exists, locally, apotentia ¢ such that h = grad ¢. But since the circulation
of h aongacircuit like ¢ (Fig. 27) isequa to I, ¢ isnot globally defined over
B. It'samathematical freak, called a"multivalued function". At each point of B,
thereis not asingle value, but an infinity of values of the potentia, their differences
two by two being multiplesof 1. Thanksto the concept of covering, this
multivalued potential gains access to the status of a bona-fide function, living not on
B, but on the universal covering of B (fibre Z, group 2).



Differential Geometry for Electromagnetism 35

Figure 27. The magnetic potential outside the ring is amultivalued function.

In the same spirit, but with more complexity, the study of eddy-currents on
conducting surfaces of convoluted shape, like e.g., tokamak shieldings[13, 74], or
sheaths around alternator outputs [100], calls for multivalued functions whose
natural home is a covering of the surface. Such questions are commonly treated by
way of "cuts" of the surface, and by allowing the stream-function to be discontinu-
ous across these cuts. But then the very determination of these cuts can be a
non-trivial problem. Its solution requires a good understanding of certain notions of
topology: first homology group, Betti numbers, which cannot be introduced here.

Remark 1. Making cutsisan old problem: in structural computations, it was identified,
and the importance of the above notions acknowledged, decennials ago [45].

(Actualy, Betti himself took interest in making cuts, cf. [10], asquoted in [82].) The
problem was only recently solved in both a rigorous and constructive way. See on this
the work by Kotiuga[57,58], and the discussion hosted in 1990 by the IEE Journal
[101,18,59]. {

Now about symmetries. Many structures, in eectrotechnical applications, are
repetitive, possibly at different levels: one may often generate a sizable part of the
structure by suitable assembly of copies of asingle element. If afield hasto be
computed in such acase, it isnatural, at least at an early stage of the modelling, to
pretend this repetitivity goes on indefinitely in all spatia directions. The problem
then becomes one on an infinite domain with periodicity (with respect to space) of
such physical properties as conductivity, permeability, etc. Thisspatia periodicity is
also shared (in a sometimes not obvious way) by the field values. One may then
[15, 16] limit the computation to a"symmetry cell* of the structure (Fig. 28).
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Figure 28. A repetitive structure and a periodicity cell for abidimensiona
problem in magnetostatics.

To be specific, let ustake the case of Fig. 28, where one wants to compute the
perturbation to an initially uniform field due to a pattern of materials with two
different permeabilities (i.e., u periodical asafunction of x and y). Thefied
thus modified has the same periodicities as the structure: h(A") = h(A") = h(A),
thus one may compute its values on the symmetry cell C, with appropriate
"periodicity” conditions (i.e., conditions imposed to the field components at
homol ogous points on two opposite sides of the cell). But this amountsto solving
the same equations on the manifold B obtained by gluing opposite sidesof C, as
was donein Exer. 11 (B isatorus).

This manifold can be obtained in another way. Let G be the group (with an
infinity of elements) generated by the trandlations AA' and AA". One may
identify the pointsof B with equivalence classes of pointsin the plane E,, two
points being considered as equivalent if one is sent to the other by one of the
translationsin the group. (Onesaysthat B isthe quotient manifold of E, by the
equivalence relation.) Clearly, now, the whole plane E, isacovering of B: one
may thus conceiveit as abundle, with fibre G and group G. Thefibre above X,
which isthe set of points

' Even when thisis not so, spatial periodicity of the underlying medium can still be put to advantage, by a
procedure which generalizes the Fourier decomposition method, provided the problem isalinear one. Cf. [16].
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G, ={gx: gEGC}
iscaled theorbit of x under the action of G.

Once the computation has been performed on the base, finding the field on the
covering amounts to specifying a certain section of abundle over B, with fibre
E,xG.

All of thisworkswell provided al orbits are of the same kind, which istrue
when the group acts fredly, i.e., no point is fixed by any group transformation other
than the identity. But when there are reflection symmetries, this condition is not
satisfied. For thisreason, the notions of fibre, of coverings, etc., introduced so far,
are not powerful enough to really account for what is done in the presence of
symmetries. We aready spotted, when discussing the notion of manifold with
boundary, afew weaknesses of the run-of-the-mill mathematical apparatus, and this
isanother one. The "right" notions do exist (cf. [75], Chapter "Orbifolds"), but
only small circles of specialists are familiar with them.

Exercise 22. The symmetry groups of "wall-paper patterns' like the one of Fig. 28 are dl
isomorphic to one of the groups of alist of seventeen, which can be found for instance in [14], or
[66],[87], etc. Getthelist of these 17 groups, then, for each of them, describe the analogue of B
above. Inwhich casesisit adifferentiable manifold?
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Chapter 2

Vector fields
and differential forms

2.1 Vectorsand covectors

The notion of tangent vector at x to asurface S seemsfamiliar: onethinksof a
"bound vector”, at point x, whose supporting line is tangent to the surface at
point X.

But this requires some ambient space, and if oneisthinking for instance about
the configuration manifold of a mechanical system, thereis no natural ambient
space to speak of, in general. So one should be able to define tangent vectors
without any reference to such an ambient space. The mechanical notion of "veloc-
ity vector" will suggest how this can be done: we'll start from the idea of speed
along atrgjectory, in amanifold, athing of obvioudly intrinsic character, and try to
abstract out the right notion from there.

In achart, the velocity vector is easily defined. In the case of the above-
mentioned car, for instance, it has four components. two for the speed with respect
to the ground, one for the speed of gyration around the vertical axis, one for that of
the driving wheel. But there are other possible charts. In another one (with other
coordinate axes on the ground, angles measured in degreesinstead of radians, etc.),
one would get adifferent set of four numbers. The velocity vector should be a
chart-independent entity, only represented, in different charts, by such systems of
four numbers. This entity, the "tangent vector"”, does exist, and we are about to
defineit.

A trajectory, inamanifold X, isasmooth function (cf. p. 13) of type
IR — X whose domain is connected. Thisdomain istherefore a segment of IR.
A scalar field over X isasmooth function of type X — IR. Itscodomainisa
segment of IR (since X isconnected). A trgectory g isthrough x ("at time
0" will aways be understood) if 0 € dom(g) andif g(0) =x. A scaar field f
vanishesat x if f(x) =0. Cf. Fig. 29.
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A trgectory isthus, intuitively, acurvein X described according to some
specific time-schedule, or as one may prefer, agraded and oriented curve. A scalar
field f can be understood (cf. Fig. 29) as a partition of dom(f) into "level
surfaces’ X, = {x € X : f(x) =a}. ("Scaar", or "red" field, is of course meant
here to contrast with "vector” field. We shall smply say "function" when no
confusionisfeared.)

Figure 29. Traectories and scaar fields.

Two trgectories g and ¢' through x aretangent ("at point x" being
understood) if, for all chartsy of aneighborhood of X,

(A1) [w(g(t)) - w(g®)lt=o(t)
(meaning: tendsto O faster than t when t — 0).

Onewill easily check that if (11) isvalid for any chart about X, thisistruein
al C'-compatible charts. (We are speaking here of differentiable manifolds, i.e., of

class C' or better.) So thisisan equivalence relation on trajectories.

Two functions f and f' vanishing at X will be said to be tangent (again, at
x) if, for al y € dom(y),
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(12) fly) - £(y) = o(lw (y) - w(X)D)

(meaning: tendsto O faster than the distance of x and vy, as measured in the
chart v, when y — x). Here again, this property is chart-independent.

Following the lead of [27], we have emphasized the duality between the two
notions (from which a duality between vectors and covectors will stem). Fig. 30
suggests what tangent trgjectories or functions look like. One also says that they
arein "contact of order one". (All thisis part of amore general theory about the
contact between mappings of type X — Y, where X and Y aretwo manifolds.)

Figure 30. Tangent trgectories and tangent functions at point x.

Now,

Definition 4: One callstangent vector at x an equivalence class, in the sense of
(11), of smooth trajectories through X.

Definition 5: One calls covector at x an equivalence class, in the sense of (12),
of smooth functions vanishing at Xx.

For reasons which should become clear below, | denoteby g. and f* the
equivalence classes of atrgectory g and of afunction f at point X.
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Figure 31. Vector and covector at point x. Vector and covector are supposed
to liein the tangent plane.

Theintuitive meaning of Def. 4 is clear when X is V.. For an equivalence
class of tangent trgjectories includes a particular, distinguished trgectory (or as one
says, a"canonical representative”): the straight, uniform, tragjectory (thereisonly
one of thiskind in the class). It can be characterized by a vector based at X,
namely the velocity vector common to all trgjectories of the class. Thusitisonly
natural to call the classitself a"vector" in the general case. (Why it should be
qudified as"tangent” is clear if X isembeddedin IR™, cf. Fig. 31)

Exercise 23: Show that when g and g are equivalent in the sense of (11), either their images by
all charts are tangent, or their class g. isthe onewhich contains the constant trgjectory t — x
(denoted g. = 0).

Asfor Def. 5, the approach is the same: one gives to the whole class the
name of the geometric object which best characterizesitinthecase X =V ,i.e,
the covector at x associated with the one function of the classwhich isaffine. The
graphic representation of the covector introduced p. 4 consists, when n = 3,in
drawing two paralée planes, tangent to the level surfaces of this function.

In the general case, there are neither "straight” nor "uniform” trgjectories, but
the same graphic symbolism can be used, hence Fig. 31.
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2.2 Tangent and cotangent bundles, and duality

The existence of the "tangent plane” of Fig. 31 is not due to the fact that X is
embedded in E, in this particular drawing. Such a plane has an independent
reality. Indeed, aswe shall now check, the set of tangent vectors at point x
(denoted T X), and the set of covectors (denoted T *X), both have a natural
structure of vector space', of same dimension as X. Moreover, they are dual to
each other in away which aso is naturd, i.e., chart-independent.

The shortest path to this result takes the following detour: how do vectors
and covectors transform when one maps a manifold to another one?

2.2.1 Tangent space

Solet X and Y betwo manifoldsand u& X — Y asmooth mapping. Let y =
u(x). If g isatrgectory through x, uog isatrgectory through y, which
defines atangent vector, for upg and uo g areequivaent (in the sense of (11))
if g and g' are, thanksto the differentiability of u. We shall denote this vector
U« g« (X understood). Wejust obtained amapping u«(x) from T X to T)Y.

Similarly, if f isafunctionon Y (vanishingat y), fou isafunctionon X
(vanishing at x), the corresponding covector can be denoted u* f*, and this
definesamapping u*(y) €T *Y — T *X.

Note that, by construction, the following associativity rules hold when
ueX—-=Y and veyY — Z:

(VoU)x =Vils, (VoU)* =u* v*,

each expression being of course evaluated at X, y =u(x) or z=v(y), asthe case
may be”. (Mind the transposition of u and v in the second equality! The maps
u*, v*, (VoU)*, goright to left.)

Let uswork out in detail (and once for al) what u. and u* arewhen X
and Y areaffinespaces: X=V_, Y=V _ and ueV_— V. Letusarbitrarily
select anoriginin X, in order to match each point x of V_ (theaffine space)
with avector x of V_ (thevector space). Samethingin Y.

! Atleastif x & 9X. More on this point later (next Remark).

% One may dislike the notation, and prefer something like (v ou) = v, ou,, etc., but v, and u, arelinear
operators, and tradition wants their composition product written by simple juxtaposition, as for matrices.
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Let e, 3=1,...,m, bethebasisvectorsof V_ and e, i=1,...,n, thoseof
V.. (Thisconvention, indicesin small capitals on one side and in small case on the
other, tends to become standard. Cf. for instance [68].) Itisonly natura to
represent the point u(x), image of the point X, by listing the components u' of
vector u(x) asfunctions of the components of vector x. Thus,

€,

X’ e, U(x) = 2.y

with y' = u(x, ..., x™), where U isafunction of type IR" — IR. Let us consider
the trgjectory t — x + te,. Itsvelocity vector (at x) isequal to e, so one may
name e, also the vector of T X that isrepresented by thistrajectory. Itsimage
by u isatrgectory through u(x), namely t — u(x + te), whose velocity vector
at t=0 isby definition u.(X) e, One sees, by differentiating t — u(x + te), that

(13) U (x) e, =%, , ,oulox(x)e,
SO U« (X) isinthat case arectangular matrix, indeed afamiliar one: the Jacobian
of the u's

In the same vein, let ¢’ be the basis covectors of V_: those are the linear
functions x — x’ (sothat ¢'(e) =9d',i.e. 1 if 1=3 and O otherwise). Let ¢
be those of V. A covector at y = u(x) is(the class of) the affine function
y' — €'(y' - u(x)), and it is again natural to namethis ¢'. By way of definition,
u*(y) €' isthe (class of the) function x' — u(x") — U(X), therefore (take the linear
part of this difference with respect to x' — x):.

Wejust redlized that if X =V _ and Y =V, themapping u. (at point x)is
the matrix of the gu/ox’ and u* (at point u(x)) is the transpose of this matrix.
The whole point of the present development (which will not end before p. 49) isto
show that in the general casealso, u. and u* aretwo mutually transposed linear
operators. For this, we havefirstto seethat T X and T)Y are vector spaces.

In X of dimension n, let g. beavectorat x and ¢ achart about x.
Then . g. isavector a y(x). The mapping V. isinjective, for if two
trgjectoriesin V,say ¢ og and y o ¢, aretangent, g and g' are (it'swhat
"tangent” means). It isthuslegitimateto carry onto T X the vector space
structure of V_, which is done by defining the sum of two tangent vectors g. and
h. asthe tangent vector . “(« g« + P« hs). Thismove not only turns T X
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into a vector space, but also gives abasis, dependent on 1. The basis vectors are
the classes of the trgjectories g =™ oy, with

Y =t—y(x) +te,

e being the i" basisvectorin V_ (Fig. 32). By associating the n components of
P(y) withthe n components of . (X) g« (y) (avector at y(y)), one gets a chart
for the manifold of pairs {y, g« (y)}, i.e.,, the manifold of al tangent vectors. The
latter isthus of dimension 2n. We shall denoteit by TX.

Figure 32. Basisvectors, for n=2.

Remark 2. If x isaboundary point of X (Fig. 33), we obviously have a problem. For
such apoint, T, X isnot avector space (but only a half-space, or more generally a cone),
if Def. 4 isto be taken literally. Indeed, recall that X "looks like a half-space” in the
neighborhood of a boundary point. So there are two kinds of trajectories through x:
those "tangent to the boundary" (this makes sense in a chart, and is a chart-independent
feature) and the "incoming” ones. If g isone of thelatter, and g. the associated
tangent vector, —g. isnot part of T,X, according to Def. 4. Thisistoo drastic, and
one will rather define T, X as the vector space spanned by the tangent vectorsat x.
Vectorssuch that g, ° or g, ° (Fig. 33) are said to be incoming, the sames with the
opposite sign are said to be outgoing, and those like g, (or - g, ') are said to be
tangent to the boundary. Thelatter form an (n - 1)-dimensional subspace of T,X,
which will easily be seen to be isomorphicto T,0X. ¢

Exercise 24: Let ¢, and v, betwo chartsabout X, u =1pﬁo(1pa)‘1, and g thebasisvectorsin
IR". Show that, if € =(x),

U, (§) § = Z; oulox'(§) &

and conclude to the C**-compatibility of chartsof TX if thoseof X are C*-compatible.
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Figure 33. Do tangent vectorsat x form avector space or acone? (The
trjectory g' istangent to the boundary, g isincoming.)

Themanifold TX isabundle, the so-called tangent bundle. Itsfibreis V,
the fibre above x is T X, and the foregoing exercise has shown what transition
functionsare. The structural group is GL , the group of al invertible linear maps
from V_ ontoitself. (ItisalLiegroup: the representation of its elements by
matrices, once chosen a frame base, is a chart, which is enough to endow the group
with amanifold structure.) Sectionsof TX are called vector fields.

2.2.2 Cotangent space

L et usturn to the covectors. Let f* beacovector a x. If 1 isachart about X,
then (yp™)* f* isacovector at y(X), and hereagain T *X can beidentified with
V.. The basis covectors are the equivalence classes which contain the functions

fi =y IP.(Y) - 1Pi(x)

thatis, f = ¢ oy, where @, of type IR" = IR,is ¢, =m — 1 - Y'(x), and y' is
the i component of the chart vy (Fig. 34).

By associating the n components of y(y) with the n components of
(p™)*(x) f*(y) (acovector at y(y)), one gets achart for the manifold of pairs
{y, f*(y)}, i.e, the manifold of al covectors. The latter isthus of dimension 2n
and will be denoted by T* X.

Exercise 25: Show that (just asfor Exer. 24) these charts are compatible.

Remark 3: If x € X, same problem asin Remark 2, same solution. ()
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Like TX, T*X isabundle, the so-called cotangent bundle, with the same
structural group as TX. Thesectionsof T* X, or fields of covectors, are called
differential forms of degree 1, or 1-forms.

f1=0

Figure 34. Basiscovectors, for n= 2.

One often denotes by v the sectionsof TX: Thevalueof v at apoint x of
X isthusapair, consisting of x and of atangent vector v(x) € T X at this point.
A popular generic notation for 1-formsis w.

If X and Y aretwo manifoldsand ue€ X — Y isadifferentiable mapping
between them, we now know (at last!) what the derivative of u is(Fig. 35). It's
the bundlemap u. € TX — TY that mapsthe pair {X, g}, where g isa
trajectory through X, to {u(x), u« (X) g« }. Thisis sometimes called the tangent
mapping. (Notethat u may not be differentiable everywhere; in that case,
dom(u.) isonly apart of X.) Asonesees, u gives birth to another map of
different type, u.. Itasoinducesamap u* € T*Y — T* X, of yet another type.
What goes on here well illustrates the notion of functor: amechanism which, given
maps between objects of some category (here, the manifolds), builds other maps,
which operate between objects of adifferent category (here, vector bundles). The
words "objects’, "functors’, "categories’, here, are used in an informal way, but
they take on a precise meaning in the frame of the theory of categories, which was
purportedly devised to study thiskind of phenomena. (See[65] onthis.) Itsrealm
Isthe study of diagrams similar to the one in Fig. 36, the meaning of which should
be obvious (the p's denote projections of the various bundles onto their bases).
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u

Figure 35. The "tangent mapping" u. € TX — TY.

Remark 4. To gelR— X (g(0) =x) and fEX — IR (f(x) = 0) correspond the
mappings g. and f*, which send the unit vector e of TR and the unit covector &
of T,*IR onto g, (0)e and f*(x)e respectively. Identifying T,/JR and T,*IR with IR,
and thus e and ¢ with 1, oneeasily seesthat g, (0)e and f*(x)e are the vector of

T X and the covector of T,* X that we called respectively g. and f* up to now.
Thisis aposteriori justification for this notation, as promised p. 41. ¢

u
T*X T*Y
u
X Y
pT T P
u
TX x = 1Y

Figure 36. Thefunctors , and *.

Exercise26: Let v and V betwo sectionsof TX. Define v+ V' and av,where o € X — IR.
(Samething for w and w', sectionsof T*X.) Concludethat TX and T*X are moduleson the
ring of functionsover X. (A moduleisto aring what avector spaceisto afield.) Verify that if
ue X — Y, theoperations u. and u* do distribute with respect to addition, and that u.(av) =
o UV, aswdl as u* (aw) = a u* .

2.2.3 Duality between vectors and covectors
We dtill have to deal with the vector-covector dudity. Given g€ IR — X, a

trgectory through x, and f € X — IR, afunction vanishing at X, both smooth,
one may take the derivativeat 0 of the composition product f o g (of type
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IR — IR). Notethis:
(14) <@, f*>=d/dt (f 0 Q)|.. .-

This number only depends on the classesof f and g (thanksto (11) and (12), as
usual). We have thus obtained a bilinear mappingon T X x T *X. Itisnon-
degenerate, i.e,, it vanishesfor dl * only if g. =0, andvice-versa. This
establishes aduality between T X and T *X.

Let usnow consider ue X — Y, atrgectory g through x, and afunction
f vanishing a y = u(x), hence the following diagram:

g u f
R—=X—-=Y — IR

Then, after (14), one has
didt (f o U 09),- = <Ux (X)Gx, ¥ >TyY, Y <G, U (y) f* P T X

showing that the linear maps u. (x) and u*(y) are mutually transposed (or
"dual"), aswe saw wasthecasewhen X =V _and Y =V .

2.3 Differential calculus on manifolds

We shall now see how adifferentia calculus, as powerful asthe familiar oneisin
vector spaces, can be developed about manifold mappings.

On the face of formula (14), one would like to write
(15) <o, f*>= of/ox dg/dt], _, ,

I.e., to chain the differentiationsof f and of g. Even though such achain rule has
no validity, since the right-hand side of (15) has no meaning yet, it is quite sugges-
tive: the action of covector f* on vector g. may be conceived as the differentia-
tion of f "inthedirectionof g.". Infact, thisinterpretation would be correct if

X were V, df/ax then being the gradient of f at x. So we are entitled to define
the gradient of f at x asthe covector f*,justas g. wasthe velocity vector at

X on thetrgectory g.

Thisinterpretation of (15) asthe derivative of f isevidence that a vector field
(i.e., asection of TX) can always be seen as adifferential operator: the one that
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associates with function f the function x — <v , f*>, that is, according to (15), the
derivativeof f at x inthedirectionof v. Conversely, if 9 isafirst-order
differentiation operator, one may prove the existence of a unique vector field v
such that

(16) of =x = <v, f*>,

In other words, vector fields arefirst-order differential operators on manifolds.
Some text-books, like e.g., [96, 105], define tangent vectorsthisway. We did not,
but we still can reflect this point of view at the notational level by denoting 9,

both the vector field v and the differentiation operator, and 4 f the function
which appears on the right-hand side of (16). The basis vectors (relative to a chart
about x) are often denoted as d/0x,, but the plain (and more logical) notation 9,
seemsto be gaining favor. Let us adopt it. So, denoting by v' the components of
v inthisbass, we have

g =3 V' 0,

\Y i=1,..,n i

which legitimates the notation

vV of

i=1,..,n i

17) 0f==
(which, if v = g., isnothing else than (15)!).

Remark 5: Life would be hard if notation could not be abused. It is now quite natural
to write, for avector v, a X,

Vx = Zizl, ...,nVix ai’
and for avector field v,
VEX—=Z2 V()9

the V'(x)'s being the coordinates of v, in some basisabout x. Thisis an abuse, on two
counts. First, though v(x) isapoint of thefibre TX, i.e., apair consisting of apoint X
and avector a X, only the latter is made explicit; but thisisonly natural. On the other
hand, a section of TX isdenoted asif it was afunction taking its valuesin the fibre,
whereas we toiled to emphasize the difference between these two concepts. But again,
thisabuseis natural: for locally, in the domain of achart about X, sections are indeed
functions taking their values in the fibre, by the very definition of abundle. From here
on, we shall indulge in the abuse without any further apologies. ¢
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Congider, again, u€ X — Y, with X and Y of dimensions m and n, and
feY — IR Let v beavector fieldon V, and w = u,v. Onehasabasis
{0,:3=1,...,m} for TX,abasis {9,: i=1,...,n} for T)Y,with y=u(x).
(Note again the use of small caps.) In these bases, induced by charts about x and
y which need not explicitly be written, one has, following the pattern of (17),

v'a, 9, =% w9

J=1...m J w i=1..,n i"

(18) J, =2
On the other hand, by way of definition of u.,
0, f=9,(fou),

and this suggests the following development, where we let the rules of differentia
caculus play fredly:

that is,
(19) 9,=Z,V'Z, aU d.

Thisisnot formally valid, since d U’ has no precise meaning for the time being, but
let us persist. Oneaso has 9, = U« d,, thus, after (18),

9, =,V U0,
But u.d, isavector which can be written as follows, in the base of the d.s

(20) u*aJ:Zizl,...,n Mgl

if wedecidetocall 9,u itscomponents (compare with (13), p. 44!). Thuswe get
back (19), and this gives meaning to the a u's of (19): these are the components
of vector u.d,. Now (19) islegal, so we know how to apply the chain rule: thisis
all that was required to extend to manifolds the familiar rules of differentia caculus.

After (13) (p. 44), one may aswell denote by au/ax’ the o u's of (19) and
(20). Let usstressthat none of these expressions have intrinsic meaning: we just
gave one to them, with (20). (To compute these numbers, if need be, one uses
charts.) The notation is such that one may now apply the rules of differential
cdculus"asif" the manifolds X and Y were affine spaces. This combineswith
Einstein's convention of implied summation with respect to repeated indices (not
adopted in this book) to make a powerful tool, which of course one should know,
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and thisiswhy we insisted on its foundations. But to exclusively rely on its use
would not be agood idea (no more, to suggest an analogy, than to systematically
rely on analytical methods in matters of geometry).

What about covectors? The basis covectors, in agiven chart, are in general
denoted by dx', but the notation d' seems, as for basis vectors, more logical.
These basis covectors are the linear mappingswhichto v €T X assign the
components V. Thus

dv =V,

hence the different possible expressions of the duality between avector v and a
covector f*:

<v,f*>=3% afv == af dv=29f
=(2,via)f=3 afdv=(Z af d)v,

which suggests the following notation: df for the field of covectors generated by
f, and

df =% afd

for its expression in the covector basis. The operator d thusintroduced is called
exterior derivative. Oneisnow entitled to write

df(v) =9, f
as another version of (15) (when g. =v).

This certainly leaves much to be desired. One should like more symmetric
expressions, likeeg., dv inlieuof df(v). But can one go against tradition, which
so firmly backsthe use of df ? The object thus denoted, the so-called gradient of
f, isafield of covectors, i.e., a 1-form, associated with f, whose effect on a vector
fied v consistsintaking the derivative of f indirection v at each point. Oneis
facing here afamiliar notion, sometimes very difficult to grasp during the calculus
curriculum, that of differential. The differential isamachinery whose purpose isto
evaluate "the (first order) variation of afunction f in the neighborhood of a point
x". Answer: "thisvariation isafunction of the displacement vector v; this
function is caled the differentia of f; itsexpressionis df(v)". Differentiation and
derivation, as one can see, correspond to dual points of view, because one might as
well answer asfollows. "thisvariationisafunction of f, the function under
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consideration, once given the displacement vector; thisfunction consistsin taking
the derivative of f aong v; itsexpressionis 4 f".

Remark 6. The gradient is often defined as a vector field, instead of asa 1-form. Well
have more to say on thislater. )

Exercise 27: Write down the counterpart of formula (20) for the covectors u* d'.

Exercise 28: Incase u isadiffeomorphism (whichimplies dim(X) = dim(Y)), show that
(U = (u)™

and the same about u*.

At this stage, we may begin to see vectors and covectors as "'geometric
objects’ which, so to speak, "live" on manifolds. When one goesvia u from a
manifold X to another manifold Y, vectorson X are "pushed forward" by ux,
while covectorson Y are"pulled back” to X by u*. Vectorsand covectors can
be written as linear combinations of basis vectors and basis covectors. Basis
vectors are akin to derivations along the coordinate lines (the g of Fig. 32). The
basis covectors assign to a vector its components. The effect of a vector on a
covector isarea number, invariant with respect to changes of charts. The bilinear
mapping thus obtained is non-degenerate (cf. p. 49), hence adudity between
vectors and covectors. Vectors are akin to derivation operations, and covectors to
differentias of functions.

We shall now discover other objects which live on amanifold, those of the
same family which stand at a given point forming the fibre of some bundle. These
are the tensors. Among them, differential forms play amajor réle.

2.4 Differential forms
2.4.1 Multi-covectors

We already met with two "vectors' of classical physics which arein fact, from the
geometrical viewpoint, covectors. force (whose effect on a displacement-velocity
vector is apower) and the electric field e, which one can identify with the force it
exerts on charged particles. There are "vectors', like for instance the magnetic
induction b, which correspond to still different objects. One knows the rdle played,
in several instances, by the flux of b across a surface, or asurface element. But a
"surface element” is, in precise terms, apair of vectors, v, and v,, say, tangent at
some point of the surface referred to. The flux across this element isobvioudly a
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linear function of v, and v,. Moreover, it changes sign when the order of the
vectorsis changed, according to the intuitive idea that surface elements {v,, v,}
and {v,v,} arethesame, but with opposite orientations. (We shall come back to
the notion of orientation, with a precise definition, inamoment.) So, if we state the
following definition:

Definition 6: One calls a bi-covector, or 2-covector at X, any IR-valued
mapping w on T X x T X, linear with respect to both arguments, and
antisymmetric (or skew-symmetric), i.e.,

(21) o, V,) =-oV, Vv, Vv,v,eTX,

weredlizeit is custom-made to fit b(x), the magnetic induction at point x: b(x) is
indeed a 2-covector at X. Thefield b itself isafield of such objects, that is, a
cross-section of the bundle of 2-covectors. thisiswhat iscalled a 2-form.

The way to generalization is straightforward: onewill call p-covector at x a
multilinear alternating map on T X, i.e,, following up on (21), one that changes
sign when two among the p vector factors are exchanged (one also says " skew-
symmetric"). Hence the notion of a"p-form":

Definition 6 (continued): A p-form, or differential form of degree p, isafield of
p-covectors.

The definition of a p-covector carries over to the case p = 0: itisthen an
argument-free function, i.e., aplain number, based at x. A O-formisthusa
functionon X. (A smooth function, of course: recall thisis understood for al
sections of bundles we may be led to consider.)

So hereisanew family of bundles (vector bundles, clearly) on X. What isthe
dimension of the fibre? Let usbegin withthecase p=2. Let o, bea 2-
covectorat x and {9,: i=1,...,m} abasisfor TX. If v,=X V', 9, with j=
1 or 2, onehas

W, (Vy, V) 0 Z V) 9, V,0) =2, 0,0, 0) V| V.
By antisymmetry, knowing the n(n - 1)/2 numbers w (9, 9;) for i<j isenough
to compute , so the dimension of thefibreis n(n - 1)/2. One may thus write

o (v, Vv,) =2 o (0, )V, V, = V', V).

l<i<js=n i’
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There are two kinds of factorsin this expression: the (9, ), that can be
denoted as w,(x), which characterize w,, and the bilinear (with respect to v)
expressions. Each of theseisthe result of applyingto v, and v, a particular

2-covector, denoted d A d:
(22) d A d)v,v) =V, V, -V, V.
These d A d are the basisvectorsin the fibre of 2-covectors above x.

Remark 7. People formed in some European traditions may be mistaken by the use of

the symbol A, and think they recognize in (22) an old acquaintance, in the case n = 3.
But thisisanillusion: thenotion of vector product of two vectors (the "cross product”,
in Gibbsian tradition) has nothing to do here, and will not be met before long. ¢

If w isa 2-form, itisthusonly natural to write, in the neighborhood of a
point X,

w=x—=>2_ oKdad.
The notational abuse isthe same as the one (lambasted, then forgiven) in Remark 5.

When p > 2, the dimension of the fibre is given by the exercise that follows.

Exercise29: Let w bea p-formon X. Justify the notation
(23) WEX=>Z oy 0¥) dPA A d®

where C(n, p) isthe set of increasing injections from the segment [1, p] of IN into the segment
[1, n]. What isthe dimension of the fibre?

As one sees, the game stops when p > n, because amultilinear alternating
mapping yields O when its vector factors are not linearly independent, and p
vectors cannot be independent if p > n. So there are no non-trivial covectors for
p>n.

Thecase p=n isspecia. On V,, thereisawell-known n-covector, namely
the determinant of n vectors, inagiven basis. Changing the basisyields another
n-covector (another n-linear alternating map), but proportional to the former, as
one well knows, and asis easily seen by doing the computation in some basis.
Conversely, every n-linear alternating map is a multiple of some determinant. So
thefibre of n-covectorsisof dimension 1. A field of n-covectorsiscalled a
volumeif it does not vanishon X (alocal volume at x if it does not vanish in
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some neighborhood of x). Theword iswell-chosen, for the determinant of n
vectorsisindeed, in e ementary geometry, the volume of the parallelotope built on
them. The signischaracteristic of the orientation of the set of n vectors, a
concept we shall soon encounter again.

Exercise30: Let ue X — Y and o, bea 2-covector a y = u(x). Set,on T,X x T, X,
(U*w), = {Vy, Vo = @, (U, Ue).

Check thisisacovector at x. Takeabasisfor T, X. Consider the bases (induced by u) for T,Y
and for the p-covectorsat x and y. Write an expression for u*w in these bases.

2.4.2 Thealgebra of covectors. exterior product

As one may suspect, the notation d' A d, for one of the basis 2-covectors, is not a
single block. It can be conceived as the result of an operation, denoted A, that
creates a 2-covector from covectors d and d. The operation can be iterated,
according to (23), toyield p-covectors. Infact, it can be defined for forms of any
degree. Let usfirst agreethat if o isanincreasing injection from the integer
segment [1, p] into [1, p + q], then ¢ isthe complementary injection, of domain
[1, g], whose image is the set of integers that do not belong to the codomain of the
first one, and that sign(o, ¢) isthe signature of the permutation of [1, p + ] thus
obtained. Then:

Definition 7: Let w and m bea p-anda g-covector. Set, if
p+Qg=n,

(29 (@ ANV, .. V) =
2 oecpprg IO, S) O,y -+ s Vo) NVqays - 5 Veg)-
If p=0 (i.e, if o isafunction), w A m issimply denoted w n.

The reader will satisfy herself that d A d of (22) does correspond to this
definition, andthat d* A ... A d" isindeed the determinant of n vectors.
Operation A iscalled the exterior product, or simply wedge product. Itis
associative (contrary to the cross product, also denoted A by some, athough the
Gibbsian notation with a crossis obvioudy preferable) and anticommutative, in the
following sense:

25 o AN=0=D""NnAw.
(25) n=( n

All thisiseasily verified. Notethat w A w =0 if p isodd.
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Exercise 31: Write o A ) intheform (23).

(-1)P9sign(o, c). Prove(25).

Thus, the fibres of covectors above a point are not foreign to each other.
Actually, one should rather consider all p-covectorsat x aselementsof asingle
family, the algebra of covectors: the structure of algebrais conferred on it by the
operation A. Itisnamed "Grassmann algebra’.

Some dissymmetry has crept in with this proliferation of covectors, with the
effect to spoil the simple vector-covector duaity we had at the beginning. One
regains balance by introducing objects dual to the p-covectorsfor p > 1. One
thus calls p-vector an element of the dual of the vector space of p-covectors.
(Beware that a p-vector isnot acollection of p vectors!) A field of O-vectorsisa
function. The Grassmann agebra of multi-vectors aso exists, but is less popular
and less often applied than the multi-covectors one. (A noteworthy exception is
[52], an account of classical electrodynamics based on multi-vectors.)

Exercise 33: Derive the following coordinate expression for afield of p-vectors:

U=X—>2ccmp Uspg doy A -+ A gy

wherethe o, A ... A 9, are p-vectorsthat will be defined with reference to the basis p-covectors
da...ad.

A word about tensors, to conclude. These are fields of multilinear mappings,
but not necessarily alternating ones, which do not work exclusively on vectors of
the tangent space (as p-covectors do) or on covectors (like p-vectors) but on both
kinds. We'l encounter one later (the metric tensor).
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Chapter 3

Orientation and integration

3.1 Orientability of a manifold
3.1.1 Volumes

Let X beof dimension n, x apointand Q  an n-covector, non-zero (i.e.,

Q (v, ...,v)=0 if the v. areindependent). Supposefirst n=1 or n=2. The
presence of Q then orientsthe tangent space (Fig. 37). Thisisclearif n=1: a
lineisoriented if one can know left from right, rear from front, past from future,
etc. All thisamountsto be able to tell "positive" and "negative' vectors apart. a
vector v will be positiveif € (v) >0. Similarly, for n =2, one has an orientation
when one knows the meaning of "turning left", or "counter-clockwise": if v, and
v, aretwo vectors, v, is"leftto v,", or else"v, and v, form adirect frame", if
Q (v, Vv,) >0. For n=3, spaceis oriented when one can know whether three
vectors form adirect frame: so isthe casewhen Q (v, v,, v,) >0. Astwo
different 3-forms, Q and Q' , yield numberswith either matching or opposite
signs, there are only two possible orientations (and the "right-hand rule" isthere to
remind us of which of the two classesof 3-forms orients positively). In dimension
n,abass v, ..., v, will bedirectly oriented, or adirect frame, if Q (v ,...,v)>
0, aretrograde frame in the other case.

One may choose a consistent orientation system in awhole neighborhood U
of X, provided one has asmooth field of n-forms x — Q , whose domain includes
U, and non-vanishing in U. Then, not only one may tell, at every point y of U,
whether a system of n independent vectorsat y isor isnot positively oriented,
but this orientation, this sign associated with the system of vectors, continuously
dependson x: if, for n smooth vector fields v,, one has Q (v (X),...,V (X)) >0
at point x, this stays valid by continuity if one substitutesanearby y for x.



60 Alain Bossavit

>

Q. (v)>0 Q (v, ,V,)>0

Figure 37. Notion of orientationfor n=1 and n=2.

In particular, thereisa system of n vector fieldswhose orientationis the same
all over the domain of a chart about x: these are the basis vectors x — 4.(X), as
defined p. 50. To orient the neighborhood of x amounts to deciding whether
these n vectorsform adirect or aretrograde frame.

Thus one may locally orient amanifold, and in two different ways. The
guestion of orientability is whether one can do that, in a consistent manner, over
the whole manifold.

The Mobius strip example (Fig. 38) suggests how to do it, and also how one
can fail at thistask. How to doit: Choose an atlas, orient the domain of each
chart. When two such domains overlap, the orientations are either the same or
opposite, but one may (at least if the intersection of domainsisin one piece, which
can always be arranged) change one of the orientations and proceed step by step,
thus trying to make al orientations compatible. But this process can fail: it does
fall with M S, because this particular manifold can be described by using three
charts whose orientations, whatever the combination one chooses among the six
possible ones, areinconsistent. Our intuition of an "orientable” manifold is one for
which this process succeeds. But if soisthe case, one may obtain, by smoothly
patching the local n-formstogether, an n-form which never vanisheson X, what
we called earlier avolume. Hence the following definition:

Definition 8: A manifold is orientable if one may endow it with a volume. Two
volumes Q and Q' "define the same orientation” if Q' = a Q, with a > 0.

An orientation isthus, in full rigor, an equivalence class of volumes, the
equivalence relation being the one given in Def. 8 above. Thus, on a connected
manifold, there are two possible orientations, or none.
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dom(y, )

dom(y,)

Figure 38. Orienting aMaobius strip, by continuation: the method, with here
three charts, and (try something else, and see) itsfailure.

Whether we live in an orientable manifold has been much speculated about,
and remains an unanswered question. Imagine the manifold obtained by removing
from E, theinterior of two spheres (Fig. 39) and by gluing the surfaces according
to the indicated identification. It cannot be oriented, as one will convince onesalf by
looking at what happens to an oriented frame which dips aong the trgectory v,
when it reaches point A and goes through. If we lived in such a universe, and
assuming that it inheritsfrom E, its metric (a concept on which we shall return),
we could see, from Earth T, two images of the same galaxy G, sent along the two
geodesics GT and GBT. Anastronaut traveling along TG, then GBT, would
come back with the heart on the right side. Maybe it's what happens to the heroes
of the movie The Black Hole, the epilogue of which leaves us uncertain about what
the post-mortem disclosed.

Exercise 34: How isdetermined point B on Fig. 39?
Exercise 35: Check that the manifolds of Figs. 15 and 16 (p. 23) are non-orientable.

Exercise 36 (Fig. 40): Describe amanifold of dimension 3, non orientable, without boundary,
compact, obtained by identifying opposite faces of a cube in some specific way.



62 Alain Bossavit

Figure 39. By identifying two spheres of identical radius, at distance a one
from the other, according to the equivalence x ~ x + a, oneturnsthe
remaining space into anon-orientable manifold of dimension 3.

Figure 40. A suggestion for Exer. 36.
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3.1.2 Transversefields

The non-orientability of the Mobius strip is sometimes "proved” asfollows. Choose
acontinuous field of normalsin the neighborhood of some point, which can always
be done. Then try to extend such afield to the whole ribbon. That fails.
Therefore. ..

Such reasoning isincorrect, and it is worthwhile to understand why. Let us
first give along overdue definition:

Definition 9. An immersion of a manifold X into a manifold Y isa mapping
ue X — Y, of domain X, suchthat u.(x) isinjective at all points of X.

Note that an immersion is not necessarily itself injective: if itis, andif u isa

diffeomorphismof X into u(X) (important! cf. Fig. 41), onecalsit an embed-
ding. (Cf., eq., [62].)

] [ ] [

I [
Figure4l. Threeimmersionsof ]0, 1] into IR?. Only thelast oneisan

embedding. The onein the middleisindeed injective (no double point), but its
imagein IR?, with the topology induced by IR?, isnot amanifold.

Exercise 37. Find aninjection of 10, 1] into IR? whichisnot animmersion.

Let thus u beanimmersion, thedimensionsof X andof Y being m-1
and m respectively. Sotheimageof T X under u. isasubspace of
codimension 1 inthetangent space T )Y at y =u(x). Let therebe for each
x € X avector n(x) of T Y, nonvanishing, notincludedin u. (T X). If now
X — n(X) iscontinuous, one saysthat n istransverse with respect to X.
(Example: the field of outward going unit normalsto aclosed surface of E,.)
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When asubmanifold X isthus endowed with a continuous field of transverse
vectors, it can inherit an orientation from the ambient manifold Y, to the extent
that Y itsdf isoriented. Forif Q isavolumeon Y, the (m- 1)-form

{€, ... & .} = QN WE, ..., g )

does constitute avolumefor X. Soif Y isorientable, the existence of a
transversefield on X impliesthe orientability of X (and the other way round,
too—nbut thisis not easily proved).

Butif Y isnot orientable, it may contain orientable submanifolds deprived of
any transversefield, or the other way round, as one will see by working out the
following two exercises.

Exercise 38: Check: the midcircle of aM®bius strip has no transverse field.

Exercise 39: Find, on Fig. 40, an immersed Mobius strip, equipped with a continuous field of
normals.

So the fact that MS, when immersed in E, the usual way, has no continuous
field of normals does not prove anything about its orientability. The reasoning was
wrong because the existence of such afield of normalsis not a property of X or
of the ambient manifold Y, but a property of theimmersion u. What isinvolvedis
in fact the orientability of u itself (aconcept we shall define in a moment).

Remark 8. Let o bea p-form, v avector field. The operation which consistsin
building the (p - 1)-form

{§21 e %p} g (,O(V, %2’ e Ep)

(used above to give avolumeto X) iscaled contractionof w by v, or inner product.
The result is often denoted i,w. WEIl have usefor it later. )

Exercise40: Isthe manifold SO, (of al rotations about afixed point) orientable? (Hint: first
check that SO, can be obtained from a sphere of radius rt by identifying antipodal surface
points.)

3.1.3 Orientation covering

To any manifold X, orientable or not, one can associate an orientable
manifold asfollows (look at Fig. 26, p. 34). It will beabundle on base X, with
for fibre atwo-points set, say {1, -1}, and for structural group the group S, of
permutations of two objects, also denoted {1, -1}. To build it, consider an atlas
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on X,say {y_ : o€ 4}, and gluelocal Cartesian products (which consist in two
copiesof dom(y ), namely {-1} x dom(yp_) and {+1} x dom(_)) with
transition functionsg,, =1 or -1 depending on whether the orientations of the
basis vectors do or do not coincide on the intersection dom(y,) N dom(y,)
(which may always be taken connected, provided there are enough charts). The
result is atwo-sheeted covering of X, say X, whichwill easily be seento be
orientable: Indeed, the foregoing recipeis but a paraphrase of the definition of
orientability given earlier.

Exercise41: Satisfy yourself that X does not depend on the chosen system of charts.
Onecalls X the orientation covering of X. When X isconnected and
orientable, X consistsin two disoint connected parts (two copies of X). When
X isconnected but not orientable, X isconnected.
Thefibreabove x, for x € X, consistsin two points, that we shall note x*
and x~. Thus, if p isthe projection onto the base, px* = px =x, and p™(x) =
{x*, x} (Fig. 42).

X+

/j\
X/\@\
e T

Figure42. (Theinvolution i will be used later.)

X

Exercise 42: Let an orientationof X be given. Consider apositively oriented system of basis
vectorsat Xx*, and an other oneat x~. Show their imagesby p. arebasesat x, with opposite
orientations.

Exercise 43: Show that the continuous "lifts" r* = x — x* (suchthat pr* betheidentity) and r-,
that one can always define locally, cannot be continued all over X unless X isorientable.

A first application of these notions is the definition of the orientability of a
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function ue X — Y: itwill be orientableif it can be lifted to a bundle map of X
into Y with isomorphism from fibreto fibre. In preciseterms,

Definition 10:_A smooth function ue X — Y isorientableif there exists a
smooth U € X — Y which makes the following diagram commute:

(where p and g arethe projections), and under which the two points of p™(x)
have distinct images.

This amounts to saying that one may "associate, in a continuous way, the
orientations of a neighborhood of x and of a neighborhood of u(x)" (a sentence
to which, actually, only Def. 10 isableto give precise meaning!). Such an
associ ation mechanism was described above in the case when u isan immersion of
codimension 1 endowed with atransverse field. Such amapping is therefore
orientable.

Notethat if U doesexist, U oi (where i istheinvolution of Fig. 42)
satisfies the same requirements. There are thus two ways (or none) to orient a
mapping when X is connected.

Exercise44: If X and Y areorientable, u&€X — Y is.

u(x) (= u(x)) /

Figure 43. Retractionof M'S onto itsmiddleline
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Exercise 45: The"retraction” of MS onto itsmidline (Fig. 43) isnot orientable. More generally,
if dom(u)=X,if Y isorientable, but not X, then u isnot orientable. (Suggestion: continuous
Maps preserve connectedness.)

Exercise 46: A diffeomorphism isaways orientable.

3.2 "Twisted" objects
3.2.1 Twisted functions

WE'l now indulge in an apparently gratuitous game, the point of which will only
later become apparent. It's again a matter of building a non-trivial bundle, one
which is, so to speak, "warped by the orientation”, just like the above one, but the
fibrethistimewill be IR, instead of being apair of points. The structural group
again contains two elements (which are mappingsfrom IR onto IR): theidentity
A — A andtheinverson A — —A.

Let thus X beamanifold, {y_: a € A} asystem of charts, with domains
so chosen that all their intersections be connected. Let us consider the Cartesian
products IR x dom(yp,) and IR x dom(y,), and let usidentify them according to
thefollowing rule: apair {A, x} belonging to oneisequivalenttoapar {u,y}
belonging to the other if x =y to start with, andif A =+ u or - u, depending
on whether the orientations induced by the charts coincide or not in the common
domain dom(y,) N dom(y,).

The fibered manifold produced by this operation (let uscall it E'ZVL(X)) IS
independent of the chosen system of charts. If X isorientable, A(X) issimply
the Cartesian product IR x X, and sections of this bundle are nothing else than
real-valued functions defined on X. Butif X isnot orientable, they are objects of
anew kind. To better understand their nature, et us observe that if vy, and y,
have a common domain, but contrary orientations, the above procedure calls for
theidentification of {A, x} with {-A, x}. Soif oneinsistson considering a
cross-section s of 4 asafunction defined on X, its values are not real numbers,
but pairs {rea value, orientation}, or more accurately, equivalence classes of such
pairs, the equivalence relation being

{\ Q} ~{-\, -Q}

where Q isaloca volume giving the orientation.
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Sections of ‘}ZVL(X) are called twisted functions, which well fits such bizarre
objects. Canit bethat physics realy needs them?

To make sure of that, let us consider the problem of Fig. 44, which consistsin
computing eddy-currents induced in athin metallic conductor. Suppose one wants
to apply the stream-function method. As described in the standard case when the
surface is endowed with afield of normals n, this method consists in expressing the
current density j as j =- n x grad a, where a isafunctionon C to be
determined. One meshes C, and unknowns are the nodal values of a

A notorious problem with this method is the possibility that a be multivalued,
which can be remedied by properly placing cuts (Remark 1, p. 35). Thisdifficulty
Is not the one we want to discuss, so we make sure to avoid it by introducing the
perfectly permeable magnetic circuit M of Fig. 44. The magnetic field vanishes
there, so, by Ampere's Theorem, there is no global current, hence no grounds for
multival uedness.

The other difficulty, the one which does concern us, is the absence of a
continuous field of normals. This, however, does not rule out the stream-function
method, because we may define a locally (Fig. 45). Let'spick apoint X, decide
that a(x,) =0, and assignto &x) the circulation along some path joining X, to X
of vector j* (thatis, j rotated ninety degreesto the left). Since divj =0, rot j*
=0, s0 aX) isindependent on the chosen path, and j = —(grad a)" by
construction.

Figure 44. Induced eddy currentsin an electrically conductive Mébius strip
C. The presence of the perfect magnetic circuit M forcesthetotal intensity in
C tobe O.



Differential Geometry for Electromagnetism 69

Figure 45. Construction of the stream-function a near X,.

The above use of the words "to the | eft" testifies on the paramount role of
orientation in this procedure: if right and left are permuted, this changes the sign of
a (without changing j!). The physically relevant object at point x isthus not the
real value a(x), but the pair formed by a(x) and the orientation about x (with the
convention that the pair {-a(x), opposite orientation} represents the same object).
Thus a isnot a"genuine" function, but the local, and orientati on-dependent
representation of a geometric object in which one recognizes a "twisted function”
as defined above.

Exercise 47. Having cut the strip, asin Fig. 46, one may choose an orientation. Check then that,
for two points facing each other on opposite sides of the cut (like B and B'), onehas a(B) = -

a(B)).

Figure 46. On the edge of the strip, a=0 (no incoming nor outgoing
current).
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Exercise48: Let | beagiven current density on the non orientable surface of Fig. 16. Draw the
cuts which are necessary to make the defintion of a stream-function possible, and tabulate all the
relations between values of a on opposite sides of acut. They take two distinct forms (hence two
different kinds of cuts). Explain this.

3.2.2 Odd functions

As one will have guessed, there are some links between the above twisted functions
and ordinary functions defined on the orientable covering. Let us describe them.

For this, let i bethe mapping (from X into itself) defined by i(x*) =x~ and
i(x) =x". (Thelabdl + or - isassigned to both points of the fibrein an arbitrary
way, since they play symmetrical réles, but this does not prevent i from being well
defined.) Thismap is adiffeomorphism (Exercise 49: check this) and, since ioi
istheidentity, aninvolution of X ontoitself. Now, we'll say afunction
fe X — X iseven (resp. odd) if

foi=f (resp. foi=-f).
Of course, afunction can be neither even nor odd.

Since an even function f assumes the same values at both points of X
above x, one may "pull downto x" thiscommon value, thus associating with f a
function living on X. The converse being possible, one sees that even functions on
X can beidentified with functionson X.

Odd functions will prove more interesting. Choose an orientationon X.
Sitting at X', above x € X, let ustakeabasisat x*, positively oriented. Takethe
image of these vectorsby p., henceabasisat x. Onethushasat point x areal
value, f(x*), and an orientation. The same operation at point X yieldsthe _
opposite value f(x) and the opposite orientation, by the very definition of X.
These two opposite pairs are but a single element of the fibre above x of the
bundle 7A(X), according to the above-mentioned construction rules. In other
words, to each odd function on X corresponds a twisted function on X.

Conversely, one may lift any twisted function defined on X to an odd
functionon X, whichiseasier to conceive and to handle. But one will remark
(Exercise 50: try it) that such alift can be performed in two different ways, which
yield functions of opposite signs, the sign depending on the chosen orientation of
X. Thereisthus no canonical correspondence between twisted functionson X
and odd functionson X. (A twisted functionisactually apair {odd function on
X, orientation of X}, with the same quotient operation as above.) Thisdlight
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difference motivates the contrasted use done here of two terms ("twisted" and
"odd") which historically were applied to the samething. (De Rham [83] cdls
"odd" the objects — functions, differential forms, tensors...— which | cal here
"twisted", according to modern usage. One also says "oriented”.)

Remark 9: How to practically represent twisted functions, for computational
purposes? The manifold X isdescribed by alimited number of charts, whose domains
are orientable. So one selects (arbitrarily) an orientation for each of them. A twisted
function is then represented, in each chart, by afunction a andasign, ¢ =+1 or -1
One will call thissign, with adlight abuse, “the local orientation of the twisted function
a'. (Of course, {-a -¢} represents the same twisted function in this chart.) If one has,
for some reason, to change the orientation of a chart, one changes the sign of the ¢
(relative to this chart) in the data structure of each twisted function. ¢

3.2.3 Other twisted objects

Once understood, the processis easily generalized: thusthere are fields of twisted
vectors, twisted differential forms, etc. A twisted vector isapair { vector, loca
orientation}, with the now standard proviso that the pair consisting of the opposite
vector and the other orientation represents the same twisted vector. Here also, one

may introduce the notion of odd vector field on X : it'sacross-section v of TX
that satisfies

I« V = =V.

(Cf. Fig. 47. Noteincidentaly that i. isaninvolution on T)~(.)

«— 7

s X

X

<

Figure 47. Odd vector field, above X.

The M6bius strip case (Fig. 48) proves that one may find on the orientable
covering an odd field, continuous, which does not project on X (whichever
definition of such aglobal projection one tries) as a continuous field. On the
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contrary, the corresponding twisted field is continuous. Burke, with his characteris-
tic felicity in choosing graphical conventions, had found away to visuaisethis
continuity (Fig. 48). (Remark the use of an arrowed segment to represent a twisted
vector. The length of the segment is the vector's modulus, the arrow is akind of
orientation, but "external", like the one conferred upon a surface by afield of
normals, as seen earlier.)

In data structures, fields of twisted vectors are represented, for each chart, by
afield of ordinary vectorsand asign (called "local orientation” of thefield), ina
similar way as functions.

ExgrciseSl: Let ueX —Y and v beafidd of twisted vectorson X. How can one define
U, v? (Suggestion: cf. Def. 10.)

Let usfinaly define twisted forms. A twisted p-covector at x isan element
of the twisted (by the orientation) bundle of p-covectors, that is, following the
method we already used several times, apair {p-covector, local orientation}, the
pair formed of the opposite p-covector and of the other orientation representing
the same object. A twisted p-formon X isafield of twisted p-covectors.

Figure 48. Field (regular and nowhere vanishing) of "twisted vectors' on a
Mobius strip, and the impossibility of representing it by a (regular) field of
"genuine" vectors.
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Again, as was the case with twisted vectors, reasoning on ordinary forms
livingon X may be easier. Let i be the involution which permutes the two
pointsof X aboveagiven point of X,and w a p-formon X. One can define,
as aready done above,

i*m = {El’ . Ep} — (D(i*?él, ey i*Ep),

wherethe Es are vectors of TX. (Aninvolution again.) A p-form w on X
quaifiesasodd if i*w = -w.

Once chosen the orientation of X , there i's a one-to-one correspondence
between odd formson X and twisted formson X.

Vectors and twisted covectorsarein duality. Let v ={v,¢} and @ =
{w, €'}, inlocal representation (the chosen local orientations may not coincide). Set

<w,V>=¢ g<w, V>.

This duality bracket is an orientation independent quantity, since changing the
orientation of the representation of w, for instance, yields

<®,V>=¢ (=) <-w, V>,
I.e., the samevaue.

Smilarly, if o isa p-covector, represented by {w, ¢}, and gi,with i =
1,...,p, asetof twisted vectors, each represented by {€, ¢}, the effect of @ on
themis

B(Ep-nE)=ee, ...ty O, .. E)

Thisjudtifies aredefinition of twisted p-covectors as alternating multilinear
mappings on the vector space of twisted vectors. The dua objects are twisted
p-vectors.

We shall now examinethecase p = n. Twisted p-formsarethen caled
"densities’ [27], because they well model, as one will see, the physical notion of
density (of charge, of matter, of energy, etc.). Thisisso because twisted n-forms
can be integrated, i.e., they may appear as integrands under summation signs.
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3.3 Integration

Let X be aconnected manifold of dimension n, not necessarily orientable, which
will be assumed in all this Section to be triangulable, according to the definition to
be given below. This hypothesisis done for technical reasons, to help define the
integral in asense similar to Riemann's. The object we wish to integrate is a twisted
n-form, or density. Remarkably, thiswill prove feasible without any preexisting
notion of measure, contrary to what happens in standard integration theory.

3.3.1 Triangulation

We shdl call reference p-simplex the following closed set of IR":

(26) S={x€IR: x,=0 Vi, 2 x =1}

Subsets of S” obtained by replacing one or more of the inequalitiesin (26) by
equalitiesare caled facesof S°. Thus, in particular, the verticesof S® and the
empty set are faces. Onedenotesby e, ..., e the basisvectorsof IR".

A (plain) p-smplex will be an embedding s€ IR” — X, with dom(s) = .
(One may occasiondly call "smplex" theimage §(S°) — then denoted |s| — but
it will bean abuse: asimplex isamapping, for some p, of § into X (Fig. 49).)

For convenience in what follows, we introduce the following notion: amap of
type S — S* will quaify assimplicial if it isaffine, injective, and transforms
verticesinto vertices. (It then transforms all facesof S° into facesof S' of same
dimension.) By convention, afunction with empty domain is aso taken as
amplicd.

Definition 11: A smplicid tessdllation of a manifold X of dimension n isa
family S of n-simplicesin X with the following properties:

(@ If s and o aretwosimplicesof S, the mapping soo™ issimplicial,
(b) If s= o, then |9 = |0,
(€ U, ld=X,

(d) Any compact part of X iscovered by a finite union of images |[g.
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S .
g 0
1
SZ
0 1 Sg

Figure 49. A few smplices, in dimension 2.

These axioms do correspond to the notion of mesh familiar to finite elements
users. Note however that the shape of the elementsis optional, and can thus be
adapted to the curvature of the boundary oX.

Finite elements theory leadsto introducing p-smplices, with p < n,relative to
atessdllation, to account for the notions of nodes, edges, faces, etc. For our present
needs, n-smpliceswill do.

By various subdivision procedures (which need not be detailed here, cf. e.g.
[5], p. 125), one may associate with each ssimplex s of S afamily of smplices
forming asmplicia tessdlation of |9, and whose union for all s of S formsa
amplicid tessdlation of X, whichisthen called arefinement of the first one (Fig.
50).

A manifold istriangulable when it can be endowed with asmplicid
tessdlation. Smooth manifolds (p. 13) are always triangulable ([51], p. 1291,
[28]). By subdivision, one may refine atriangulation at will.
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Figure 50. Subdivision of a 3-smplex. Note that the central octahedron can
be divided in three different ways. (Beware, thisisnot a"barycentric
subdivision” [2, 84], which would introduce other vertices at the centres of the
faces and of the tetrahedron, for atotal of 24 tetrahedra.)

3.3.2 Theintegral of an n-form: tentative definition

Let w bean n-formon X. How could one define alinear mapping, that would
be denoted w — [, w, and would have the linearity properties one expects from
an integral? By imitation of Riemann's procedure, one might think of assigning to
each smplex s of agiven triangulation areal number <w, s>, to then take the
sum

(27) | (w) =2 <o, S>.

If thissum tends to afinite limit I(w), when S isrepeatedly subdivided, one will be
entitled to say that w isintegrable and to call thislimit the integral of w.

The problem is thus to put forward a reasonable definition for <w, s>. (All
the rest, showing that the limit exists, isindependent of the initial triangulation, etc.,
isfar from being technically trivial, but the reader is assumed to have taken this
kind of medicine at least once, and thus not to be in need of it any more.)

Aswe have nothing like a notion of length or ameasure on X, thereis not
much leeway in the definition of <w, s> Theonly thing w candoistoacton n
vectors of TX toyield anumber. So we need to associate n vectorswith s ina
natural way. How? the only candidates are theimages s.e of basis vectors of
IR". Solet ustry this:

(28) <w,s>=1n! w(se,....,sxe)=1n! sw(e,..., &)
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Exercise 52: Before reading on, satisfy yourself that "it works' on the following example: X =
[0,1], o, =f(x)dx (the1-form whichtovector § a x assignsthe product of its unique
component £ by f(x)). Consider the smplicial tessdllation

s§=te[0,1] = x_, +t(X - Xx_,)

wherethe x;s arepointsof X suchthat 0=x,<x; <... <X, =1, andinterpret (28).

At first glance, it looks asif we had grasped the wanted notion: Suppose w
represents the dendity of electric chargein aregion X. One subdivides X into
small (warped) tetrahedra, the s, e are tangent vectors which roughly match their
(curved) edges, the values w(s«e, ..., s.e) are, to amultiplicative factor (whichis
the charge density), the volumes of parallel epipeds built on these vectors, the factor
n! (here, n = 3) connects these with the volumes of tetrahedra, and one gets with
(27) an approximation of thetotal charge.

Orientation problems, unfortunately, ruin this scenario. Let us substitute for
some s another simplex s, with |s| = |5, such that themap ¢ =s" oS be
simplicia (aconditionimposed by point a of Def. 11). Then ¢ permutesthe
verticesof S'. According to the parity of this permutation, even or odd, one will
have <w, s> =+ <w, s>, thus al our construction breaks down.

A simplefix would consist in only considering orientable manifolds. For if X
Is endowed with an orientation, as given by avolume Q, one may arrange for all
smplices s to be "positively oriented", i.e., suchthat Q(s. e, ...,s.e)>0. Or
else, and thisis equivalent, one may set*

(29) <w,s>=1n! w(se,...,se)sgn(Qs e, ..., Se))

instead of (28). Thistime, the definition of | (w) isindeed insensitive to the
orientations of the ss.

However, with this new definition, the sign of the resulting integral depends
on the orientation of X, and one can only integrate on orientable manifolds. Thisis
very unpleasant, for why should global quantities like total mass, charge, etc.,
depend on the orientation — quite arbitrary — conferred on ambient space?
Moreover, one may wish to integrate on non-orientable manifolds (for instance, to
compute the mass of aMaobius strip of known density).

' sgn isthe"sign" fonction: -1 or 1 depending on the sign of the argument, 0 whenitis O.
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3.3.3Theintegral of a twisted n-form

So we'll approach the problem in another way: give up on integrating ordinary
n-forms, and concentrate on twisted n-forms, or densities, which bear with them,
by their very definition, the necessary orientation. Let o be adensty, locally
represented by {w, Q}, where Q isavolume (arbitrarily selected) defined in a
neighborhood of |s|. One defines <w, s> asin (29),i.e,

(30) <w,s>=Un o(s.e,...,se)gn(Qs e, ..., Se)).
This number isindependent of the choice of 2, now. Similarly, the sum
l(0)=2 _<w, s>

isleft unchanged if one substitutes s for s asabove, for the possible change of
signin (30) is compensated by that of Q. From this point, one carries on with the
theory (subdivision of S, existence of alimit which does not depend on S, linearity
and additivity of theintegral, etc.) without any further problem.

Theintroduction of twisted forms finds a posteriori justification in this
remarkable result: adengty is (or is not) integrable on amanifold X, irrespective
of its orientability, and without any preliminary construction of a measure.

The theory extends to ordinary n-forms, provided X isorientable: onejust
turns the given form into a density by adjoining an orientation to it. On the other
hand, an n-form cannot be integrated on a non-orientable manifold.

Exercise 53: Did you ever worry about the fact that

F2E(x) dx = - f, f(x) dx
according to an elementary approach to integration (the one which relies on the notion of primitive)
whereas in more elaborated theories the number [, f(x) dx (where A isapart of IR) canbe

defined without any reference to orientation? Show that in the former case f(x) dx isa 1-form,
and adendity in the latter.

Exercise54: Let ue X — Y beadiffeomorphism. Show that
S u » =Jy .
(Remindthat u isorientable, cf. Exer. 46, p. 67.)

Exercise55: Let p beadensity (in the common sense of the word) of chargein aregion X of
E,. Defineatwisted 3-form whoseintegral on X will bethetotal charge.
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Exercise 56: What is the relationship between the notions of "measure” and of "density"?

3.3.4 Integralsof p-forms

If o isatwisted p-formonamanifold Y of dimension n, with p < n, onewill
be ableto integrate it on an immersed manifold of dimension p: If uEX —= Y is
thisimmersion, one will define (cf. Exer. 54)

~ ~

fU(X) w =f)( U* (Dl

once a proper definition of u* w will be at hand. Letthus o = {w, Q} bea
local representation of w in the neighborhood of y = u(x). One knows how to
pull-back o to u*w at x. If onemay adjointoit alocal orientation Q' about
X, naturaly derived from €, the pair so obtained will be, by way of definition,

u* .

Aswe saw above (Section 3.1.2), thisispossibleif u isorientable (Def. 10, p.
66). To any given loca volume Q one may then associate aloca volume
on X. Onewill check that the pair {u*w, Q'} so obtained does represent a
twisted p-formon X. By definition, thisformis u*w.

Thustwisted p-forms can be integrated on some immersed manifolds of
dimension p, those with an orientable immersion. (One also says that such
manifolds have an "external orientation”, a dubious terminology, since an external
orientation is not an orientation, cf. Exer. 39.) Theintegral establishes adudity
between the two kinds of objects.

One should not jump to the conclusion that ordinary differential forms cannot
be integrated: provided the manifold is orientable, one may always turn them into
twisted forms (just select an orientation) and the whole theory applies. The only
difference is the dependence of the sign of the integral on orientation.

Physical entities for which integration makes sense arein general twisted
p-forms. Here follows an especially important example.

Electric current density (let us denote this entity by | ) iscommonly regarded
asavector field. Actually, it'satwisted 2-form. To make this point, let us start
from the idea that one should be able to associate with | (X) some differential
object, whose integral would have to be aflow of charge. Moreto the point, if S
Isaclosed surface, an integration over S should yield the outgoing flow (or
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incoming, at will). But such aflow isindependent, by its very nature, on
orientations of both S and space. Theto-be-defined 2-form (2, because the
dimension of S istwo) isthusnot an ordinary 2-form, whose integral depends on
orientation as we know, but atwisted form. Another compounding argument is.
the words "incoming" or "outgoing" suggest that the surface through which one
wants to compute a flow must be endowed with an external orientation. (Indeed,
the idea of aflow of charge through a M&bius strip doesn't lend itself to any
reasonable definition.) But, aswe know, such externally oriented surfaces are
precisely those on which 2-forms can be integrated.

All this concurs to suggest the proper mathematical object to model the notion
of current density is some twisted 2-form. Knowing this, we necessarily arrive at
the following definition: j (X) isthetwisted 2-covector for which arepresentation
isthe pair {j(x), 2}, where Q isaloca volume and j(x) the 2-covector which
assignsto apair of vectorsat x, say & and m, the flow of charge (through the
parallelogram built on them) in the direction of avector n(x) such that
{€,m,n(X)} beadirect frame for the orientation Q. In order to check the _
correctness of this definition, we must verify that the other representation of j (x),
to wit the pair {-j(x), — 2}, measures the same flow of charge. Indeed, the
covector —j(X) assignsto £ and v anumber which isthisflow with a change of
sign, thusthe flow in the direction of —n(x), and {&, n, —-n(x)} iseffectively a
direct frame for the orientation - Q.

Let now S beasurface, closed or not, endowed with atransversefield n
(which defines the "crossing direction"). The pull-back of j(X) on S isatwisted
2-form, whose integral over S isthe flow crossing this surface along the direction
indicated by n. Thusthetwisted 2-form j (X) well performsitsintended
function: it tells about the flow across externally oriented surfaces.

Thislong discussion may have been more irritating than convincing for some
readers, who may have objected: "Thisisalot of trouble for a rather modest
result. If your purpose was to model the notion of current density (be it of
electrical current or of any kind of 'fluid’), why not use a vector field? | call 'flux
density' at x, onthe surface S asoriented by n, the real number j(x) -n(x). To
get the total flow, | integrate this function of x over S, and theresult isindeed
independent of any orientation. (I concede all this assumes an underlying
integration theory, including the definition of a measure borne by S, but asyou
said, | did my homework about thisin the past, so why not cash in on it?)"

The words | have emphasized are the weak point in thisline of argument. The
problem is not the technical difficulty of definingameasureon S, it rootsin the
absence of metric information on which to base such a definition: whatever the
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unit length and the unit of areaon S, the flow through it (as expressed, for
instance, in amperes) will be the same. Thisisthe point of defining current density
asatwisted 2-form: thisway no metric, no previous notion of length, area, etc., is
assumed.

Even if such notions have been introduced for other reasons, making use of
them is not necessarily agood idea. Think for instance of a problem featuring the
current flow through a deformable materia surface. It will be ssimpler insuch a
case to think in terms of a 2-form, without any recourse to a measure of areas that
would vary with time, with the easy to imagine complications this would bring in at
the computational level.

What have been said about current density isvalid for other kinds of flow:
heat, fluids, etc. One may also think of adding to the list the magnetic flux, i.e., the
induction field b. However, b isnot atwisted 2-form, aswe shall see later. (One
may suspect this by noticing how the flux of b islinked with the circulation of the
electric field by Faraday's law, for orientation plays a part in the matter.)

3.4 Stokes Theorem

Another famous topic, to which we won't pay as much attention asis customary,
because the clanking technique involved hides asingle and smpleidea: one defines
an operator, denoted d, in such away that Stokes Theorem, i.e.,

(3D) Sy do =/, o,

hold locally. Onethen easily findsit to hold globally. Operator d thus appears as
aformal adjointto 9 inthe dudity between p-formsand p-submanifolds.

Consider first amanifold X of dimension n, and a (p-1)-form w. Sitting at
X, one considers p vectors g, ..., . Onemay alwaysdefineasmplex s such
that the images s.e of basis edges of the reference p-simplex S coincide with
the £s. Oneof theverticesis x (Fig. 51). Letusorient |5 so that the £s form
adirect frame. Thisinduces an orientation on d|g| (for which atransversefieldis
at hand, the one obtained by mapping an outgoing vector field on the boundary of
S’ tooneon |9, via 5). Onethenintegrates w on d|s| with this orientation,
hence a number, denoted o.(1).
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Figure51. Definitionof d. The A, arethe coordinates of ageneric pointin
S (here, p=2).

Let now s bethe simplex built from s by applying the transform

s(A) =se M),

where A € S (Fig. 51). Integratingon s yieldsanumber o(e). Aseasly
shown by working in achart about X, the quantity o(e)e tendsto alimit when

e — 0, and this limit is multilinear and alternating with respect to the €s. We now
Set

(32 NE, - &) =lima(eye
hence a covector at X. Then,
Definition 12: dw isthefield of the covectorsin (32).

The definition can be extended to twisted forms, by setting d{w, Q} =
{dw, Q}, where Q isalocd volume. The operator d thusobtained iscalled
exterior derivative.

Exercise57: Consider u€ X — Y. Show that du*w = u* dw. (Hint: Exer. 54, asmplex s a
X, andthesmplex uops at y = u(x).)



Differential Geometry for Electromagnetism 83

One then proves (31), in the case p = n, by working on asmplicd
tessdlation of X, and by taking into account the cancellation of contributions of
most (n - 1)-simplicesto the second integral (this, because both opposite induced
orientations appear, for all smplices but those belonging to 9X).

Exercise 58: Notethat 9 9X isawaysempty, and derive o* =0 from this.

Last, thanksto (31) and Exer. 57, one tackles the case of an immersed
manifold X of dimension p. (Theimmersion hasto be orientableif w isa
twisted form, whereas X hastoif w isanordinary form.)

Remark 10: Onesaysthat a p-form o isclosedif dw = 0O,isexactif w = do for some
(p-D-form o. Since d® = 0, an exact form is closed. On the same pattern, amanifold X
is"closed" if X =0 (but onewill rather say that it is"acycle"), itis"aboundary" if
thereexistssome Y suchthat X =9Y. The question of the converse statement then
arises. Whenisacycleaboundary? When isaclosed form exact? Such questions
make the subject matter of the Chapters "homology" and "cohomology" of algebraic
topology [2,5,44,53,67,...]. {

In spite of the smplicity of the definition of d, the explicit formula, due to
Pdais [77], which expresses dw(g,, ..., §) intermsof intrinsic quantitieslike
(&, ..., &) €c., isnot smple (cf. [68], p. 107). Better hereto use achart. If

oX)=2_w/(X) dP A ... AdP
(for the meaning of this notation, cf. (23), p. 55), one has
(33) do() =2, ,Z 00,6 dArd@ ... Ad®

This can be taken as an analytical definition of d. Indeed, d is often introduced
thisway.

Exercise 59: With the help of (33), verify that the basis covector d of Section 2.3 (p.52) is
actually the d of the function"i"" coordinate”, x — X'.

Exercise 60: Show (by first putting o and m intheform (23)), that

(34) dlwan)=dwan + (-1)™) ¢ A dn.

Exercise61: A twisted O-form (say a) isatwisted function, i.e., a each point, avaue a(x) and
asign g(x), with {a e} = {-a —-¢}. Show that theintegral of a over afinite set of points A is

2 XEA S(X) a(X)
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Apply Stokestheorem on apath joining X, to X, and recover the notion of gradient.

Exercise 62: One heats up a heat-conducting M6bius strip from its boundary. Defineon MS an
appropriate twisted 1-form, such that Stokes theorem, when appliedto al M S, expresses heat
conservation. (Note this should be an intrinsic 1-form, one definedon MS directly, and not as
the pull-back of some 1-formon E;.)

Exercise 63: Discuss the relationship between current density (atwisted 2-form) and dectric
charge (atwisted 3-form); between heat flux (atwisted 2-form) and thermal power.
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Chapter 4

Additional structures
on a manifold

The structure of differentiable manifold by itself, as provided by charts, has proved
very rich, allowing the definition of vectors, forms, the d, the integral, etc.
However, the time has come to add something to it.

What isto follow will more easily be understood by way of analogy. Asone
knows, vectorsof V_ and covectorsof V * arein duality. (Thissmply means
that to any pair {w, v} onecan assign anumber <w, v>, this correspondence
being bilinear and non-degenerate (cf. p. 49).) Thus V, and V * areisomorphic
to each other, but there is no canonical isomorphism, i.e., no natural way to match
avector with a given covector, and the other way round. On the other hand, as
soon as V, isendowed with ascalar product (which turnsit into the Euclidean
vector space E.), such associations become possible: for the mapping v — u - v,
where u isafixed vector, defines a covector w,, hence acanonical isomorphism.
The same phenomenon happens in Hilbert space (it's the Riesz theorem). The
scalar product, in both cases, isthe additional element of structure which makes the
definition of such anisomorphism possible.

Something analogous will happen here: the additional element of structure
will first be a density, then a metric.

4.1 Measurable manifolds

Let X beamanifoldand Q a dendty, or twisted n-form on X, fixed, nowhere
vanishingon X. We shall call such a structure a measurable manifold.

By way of definition, Q(x) isrepresented in the domain of achart by apair
{n-covector, orientation}, and the orientation in turn is represented by alocd
volume, which can be the n-covector itself (€2, say), since it does not vanish
anywhere. So Q is, locally, thepair {Q, Q} (or {-Q,-Q}). Integration of Q
onapat A (of dimension n) will thusyield (cf. (30)) something which is positive
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and additive with respect to A, from which one may define ameasureon X, in
the sense of L ebesgue measure theory (hence the name of "measurable manifold”
we tentatively use here).

Examples where such a structure can provide a good model are: For X, the
continuum of material points of adeformable solid, and for €2, the mass; For X,
agiven territory, and for €2, the population density.

Exercise 64: Find other smilar examples, i.e., with anatural density but no natural metric on
manifold X.

4.1.1 Duality between densities and functions

Consider now on {X, 53} another density ®, locally represented by {w, Q1.
Then the real number

pX) = 0Ey ... EVQE, .- E)

is obviously independent of the £s (by linearity) and insensitive to orientation.
Therefore x — p(x) isafunction (a genuine one, not atwisted one) associated
with the density w, and one may legitimately write

(35) & =pQ.

(Notethat p isnot necessarily positive.) Onesaysthat p and ® aredual to
each other.

For instance, if X isadeformablesolidand Q themass, » can bethe
heat content, or the charge, or the volume of space occupied, or etc. Then p(X) is
what is commonly called the "density” of this substance: quantity of heat per unit
of mass (i.e., specific enthalpy), charge per unit of mass, specific volume, etc. (This
vindicates, a posteriori, the use of the name "density" for twisted n-forms)

One could wonder about the choice of sophisticated mathematical objectslike
densities to model the physical notion known by this name. Why not ssmply the
scalar p? Because p aloneisnot enough: one needs a measure with respect to
which integrate it (the density of charge, for instance, is understood "with respect
to" mass, or volume, etc.). Thedensity w, after (35), incorporates both notions:
scalar density and measure.

The distinction we are doing there is often obscured by the "Eulerian” setting
one usually favors, which consistsin considering physical space E, as the ambient
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manifold. Once aunit of length has been chosen, there is a natural volume (the one
which isusually called volume, precisely), aconventional orientation, and thus a
natural density €2, to which al other densities can be compared. But when field
computation in deformable bodiesisin order, it is very profitable to outgrow this
point of view and to shift to the "Lagrangian” one, where the ambient manifold is
the body itself. The geometric notionsintroduced here then take al their interest
(cf.[20)).

In short, thereis, on a measurable manifold, a canonical isomorphism between
twisted n-formsand functions.

Thisworks the same way as regards ordinary n-forms and twisted functions:
If o issuchaform, it can be matched with the twisted function {p, Q}, with pQ
= w. It happensthat Electromagnetism features anatural 3-form: the magnetic
charge (div b, in ordinary language, and db if one considers b, as one should, asa
2-form). The corresponding charge density function is thus actually a twisted
function, or as Treatises have it, sometimes a bit esoterically, a" pseudo-scalar".
(Fortunately, free magnetic charges do not exist in nature, up to now, which makes
this dependence of the sign of charge on orientation rather irrelevant. The absence
of magnetic charge, on the other hand, may have something to do with its
geometric nature. Cf.[92].)

4.1.2 Duality in general

Let now | beafield of (genuine) vectors. Since the mapping

(36) {8 Bt = Q(LE» -1 B,

considered at point X, isan (n - 1)-covector, one obtains, by pairing it with the
orientation Q, atwisted (n- 1)-form | (said dual to ). Conversdly, there
corresponds to agiven (n - 1)-covector a unique vector, after (36) (just check
uniqueness, which implies existence, in afinite dimensional space), so things go both
waysthere again: tothetwisted (n- 1)-form | corresponds adual vector

fidd, |.

For n = 3, this corresponds to the already discussed case of electric current.
As one may have anticipated, the notion of divergence of avector field now

comesin anatural way (but only now!). The divergence of the vector field j, dual
to thetwisted (n- 1)-form |, isthefunction divj such that
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(37) dj = (divj) Q.

Exercise65: Let u€ X — Y beanimmersion, with dim(X) =m- 1 and dim(Y)=m. One
assumes the existence of atransversefield n on X. Let v beavector fieldon Y. Show that the
expression "component of v with respect to n" can be given a precise meaning. (Suggestion:
Fig. 52. One denotes thiscomponent by v, for therest of this exercise.)

=

u(x) S

Figure52.

Exer cise 65 (continued): Let now Q beastandard density on Y. Build fromitand from n a
density on X, denoted nQ. Find back v, by comparingwith nQ the (m-1)-formwhichis
dua to v.

Exercise 65 (end): From (37), Stokes theorem, and what precedes, derive Ostrogradskii's
theorem:

Jox in = Jx divi,

and explain the notation. (Beware, n isafield of outgoing vectors, but not the field of normals,
for lack of any metric structure on which to base the notion of orthogonality!)

Thus, the presence of a standard density allows oneto pair objects of different
types which otherwise would be unrelated: functions and densities, vector fields
and twisted (n- 1)-forms. More generally, Q associates an ordinary (resp.
twisted) p-form to afield of twisted (resp. ordinary) (n - p)-vectors, as displayed
in Fig. 53, by atransformation which is called the "dua map". (Its geometric
definitionisonly paatableif p=0, 1, n-1 or n. See[89], p. 25, for the
analytical definition.)

There does not seem to exist a standard symbol to denote this dual map with.
Let usadopt < for this purpose (not to be used beyond this Section). Thus | =
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< J. Inthe other direction, one prefers to set <>JT = (-1)"j, instead of <>] =], to
get rid of afew minus signsin some formulas, so the transformation < isnot quite
an involution. Actualy,

SO = (_1)p(n—p)

when applied to a p-form or to a p-vector.

p-forms

p-vectors

(n —p)-forms

(n - p)-vectors

Figure53. Correspondences under the dual map induced by a standard
density Q. (Thesign ~ isan abbreviation for "twisted".)

Exercise 66 ("covariance” of the flux, and more generaly of the integral of an (n - 1)-form):
Show that, with proper hypotheseson u€ X — Y and S,

Js U T :fu(S) T )
where | isatwisted (n- 1)-form (dim(X) = dim(Y) = n).

Exercise67: Let (X,, Q,) and (X,, Q,) betwo measurable manifolds, and ue X, — X, an
orientable map. Onewill say that u isavolume-preserving map if u* Q,= Q, (or -Q)).
Study in that case the commutativity of the diagram:

u
TX] — = TX,

& &

*

T*X1<—u T*x2
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4.2 Riemannian manifolds
4.2.1 Metrics

Definition 13. One hasa metric g on a manifold X when there exists, at each
point X, a bilinear map

g, ETXxTX —IR,
symmetric with respect to both arguments, positive definite, i.e.,:
(38) g(v,v)>0 & v=0,
with smooth dependence on X.

In coordinates,
g(V.v) =2, g,(X) V'V,

the g, (or "coefficients of the metric tensor") being smooth functions of X, with
gij = gji'

A manifold endowed with ametric is a Riemannian manifold. Note that g,
isascalar product on T X, thus a metric gives each tangent space a Euclidean
structure. So one will abbreviate, if thereisonly one metric in sight, asfollows:

g(v,v)=Vv-v.

Given such a structure, things like the norm of a vector, the angle of two vectors,
orthogonality, etc., make sense. (But beware: only in the tangent space at a point.
There is no way to take the scalar product of tangent vectors at two distinct points.)

Distance between two points also makes sense, asfollows. Themap v —
[9.(v, V)]*% of type T X — IR, isnot acovector, sinceit lacks linearity. But by
restriction to one-dimensional submanifolds, it yields a density, called "the length
element”, which can be integrated, for instance along an arc connecting x with vy.
The result isthe length of thisarc. By taking the infimum of Iengths of all arcs
from X to y, one getsthe distance between x and y. Axiomsfor adistance are
easlly checked.

One also gets new correspondences. Let v be avector field. Then
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(39) X = (€ —V(x)§)

definesa 1-form, often denoted with aflat sign: bv. Conversely,toa 1-form
corresponds (according to the Riesz theorem) a vector field denoted with a sharp,
#v, suchthat w(g) = (#v) -E. Of course,

= =1

The same operators can be defined in an obvious way for twisted vectors and
forms.

Exercise68: Let (X,,0,) and (X,,0,) betwo Riemannian manifolds. One says that
ue X, — X, isanisometry if g,(us v, u,w) =g,(v,w) for any pair of vectors v and w at Xx.
Study in that case the commutativity of the diagram:

u,
T Xl — T X2
b \} # #)L b
: u*
TX =——T%,
(Notethat u hasto be adiffeomorphism and dim(X) =dim(Y).)

Remark 11: If fEX — IR isafunction, #df isavector field, denoted gradf (cf.
Remark 6). If v EX — TX isavector field, #dbv isvector field, denoted rotv.

Exercise 69: Study the commutativity of u, withthe operators grad and rot. (Cf. Exer. 68.)

One may also sharpen a p-forminto afield of p-vectors, or flatten such a
fieldinto a p-form. (Thisismore easily done in coordinates, and the exerciseis|eft
to the reader.) One thus obtains the diagram of Fig. 54.

4.2.2 Hodge operator

But this diagram doesn't tell the whole story. For the existence of a metric entails
that of a(local) volume, thanksto (38). To get it, onefirst selectsalocd
orientation. Then, for a given set of vectors &, ..., § , one builds the Gram matrix

G with the dot-products §, - §; asentries, and one sets

(40) QE,, ..., &) = = [det(G)] ™
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(where det isthe determinant), with the sign + or — according to the orientation
of the Es. Then Q ={Q, Q} (asoequa to {-Q, -Q}) congtitutes a standard
dengity.

p-forms !

(n - p)-forms p-vectors

b (n - p)-vectors

Figure 54. Correspondences set by a metric.

So the Riemannian structure encompasses that of measurable manifold, so #,
v, and the dual map are available. One calls Hodge operator (denoted =) the
composition of » and of the dual map:

% = 5o .

One shows (Exercise 70: doitinthecaseof a 1-form) thisisequal to ¢ #. This
"star operator” thus takes ordinary (resp. twisted) p-formsto twisted (resp.
ordinary) (n - p)-forms. Hence the scheme of Fig. 55, obtained by superposition
of the two previous ones.

Exercise 71: Show that

(41 wnm (100,

Remark 12: It would be natural to call Hodge operator as well the one indicated on
Fig. 55, which turns p-vectorsinto (n - p)-vectors (twisted or not as the case may be).
Common usage, however, seems to reserve the name for the operator which works on
forms. ()

Contrary to the dual map, seldom used, the Hodge operator isamgjor tool, so
the sketchy definitions we just suggested are not enough. Here follows adirect
one. First remark that a p-covector w in Euclidean space is known if one knows
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how it acts on an orthonormal system of p vectors. for, givenany p vectors,
one may first orthogonalize them without changing the value of , then scale them
to length one and take scaling factors into account thanks to the linearity of w.

p-forms
/ b
&
V#\‘

(n —p)-forms p-vectors

N

(n - p)-vectors

Figure55. Canonical correspondences for a Riemannian manifold.

Letthus o bea twisted p-covector represented by {w, Q}, where Q is
the volume (40). Let e, ,...,e, beasystemof n- p orthonormal vectors. To
thisincomplete basis, one may append p normalised vectors e, ..., €, orthogona
between them and to the previous ones, and such that Q(e,, ..., e) > 0. Then,

Definition 14: =w isthe (n - p)-covector

(42 {&--m8) = 0, ... &)

Thisis unambiguous, because w(e,, ..., &) isthe same for any eligible system
of e's.

Exercise 72: Justify the foregoing assertion. (Hint: begin with p = n; thenthereexistsa
constant A suchthat w(e,,...e)=AQ(e,...,e), andthislater quantity isindeed invariant.)

For a p-covector m, *w isthetwisted covector obtained by pairing the
covector defined by (42) with the orientation Q.

Thereisaremarkably ssmple coordinate expression of the Hodge operator
when the chosen basisis orthonormal:
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(43) s@ A AdP) =P A A

(In particular, indimension 3, =dx = dy A dz, =dy = dz A dx, etc.) From (43), one
gets = (d°™ a ... A d°®) for any injection o of the segment [1, p] of IN into
[1, n]. Theonly problem isto find the right sign, asimple and dull exercisein
combinatorics, but a prerequisite for the one which follows.

Exercise 73: Writedown *w, where w isthe covector
W= cmp W DAL AdP,
(Cf. (23) for the notation.)
Exercise 74: Let u€ X — Y beanisometry. Investigate the commuitativity of the diagram:

*

o .
F (Xi (u‘1) ” fp(y)
_ 1\ %
R e AN

u*

(where FP(X) denotesthe space of p-formson X, and ~ thetwisted forms).

4.2.3 Scalar product

If one could take the scalar product of two p-covectorsat X, thiswould yield by
integration over all X abilinear formon FP(X) with al the properties of ascaar
product, like the one defined on the functional space L? (which would then
correspond to the special case p = 0).

The presence of a metric should make this program feasible: forif u-v
makessense, u and v being vectors, setting o -1 = (#w) - (#n) transfersthis
scalar product to covectors, which coversthe case p = 1. Can this be generalized?

Y es, thanks to the Hodge operator. Let Q be the standard density, and w
and n two p-covectorsat x. Since #n isatwisted (n- p)-covector and
(n- p) + p =n, the wedge product of w by =n isatwisted n-covector,i.e, a
multipleof Q. The multiplicative factor (atrue function) is the wanted scaar
product. One thusdefines w -1, a point X, by
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®(X) A xn(X) = o(X) -n(X) éx’

and one sets

(44) (0,M) =/, A =,

whichisbut theintegral of x — w(X) -n(X) with respect to the measure induced
by Q.

Exercise 75: Going back to Def. 7 (p. 56), check that (w,m) issymmetric and that (w, w) = 0.

Exercise 76: Show thatif w and n are 1-forms, (w,n) = (#w, #n), as expected.

4.3 Hilbertian structures on spaces of forms

Starting from (44), we now establish an integration par parts formula, that will
generalize the familiar ones involving the divergence,

Si,odivb+[ b-gradp=/,n-b ¢
(cf. (4)), and the curl, (5).
4.3.1 Traces (tangential and normal) of a form
We begin with the notion of "outgoing (unit) norma field".

Let'srecal (cf. Remark 2, p. 45) that if x € d0X, there are three kinds of
vectorsat x: "tangent to the boundary” (these spanin T X asubspace T dX, of
codimension one), "incoming", and "outgoing”. Among the latter, aunique oneis
orthogonal to T,0X and of length 1 (with respect, of course, to the metric g,):
thisisthe "outgoing unit normal vector”, denoted n(x). One easily checks, within
achart, that x — n(x) iscontinuous. (Hence atransversefield)

If Q isthe standard density associated with g, nQ (cf. Exer. 65) isa
dendty on 9X. Since g, by restrictionto ToX, definesametric oniit, thereisa
naturally defined surfacic Hodge operator, also denoted * (the distinction with the
oneon X will always be clear in context) and a standard density on 9X, whichis
nothing elsethan nQ (take adirect orthonormal basisin T X, and add n(x) to

it).
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Exercise 77 A priori, two standard densities (with opposite signs) can be constructed from the
metric induced on 9X. Selecting nQ amountsto orienting the map i, and also to deciding,
among two possibilities, how the local orientation of X inducesalocal orientation on 0X. Verify
that the choice thus done conforms to standard conventions (Fig. 56).

5

m=2 m=3

Figure 56. Induced orientation in two and three dimensions. The frames
{n,&,} and {n, &, E,} aredirect orthonormal.

We now define traces, normal and tangential, on the manifold's boundary, for
a p-form (twisted or not). Thetangential trace of w € FP(X) isits pull-back
I*w, where 1 € 9X — X isthe canonical embedding of X into X. (Since i is
oriented, thanks to the transverse field n, twisted forms can be pulled-back, so
& € T°(X) asohasatrace)

To avoid overloading the symbol =, we shall denotethis p-formon X by
tw. So,

toE, - &) = 0E, . E)

when the Es are tangent to the boundary at x € 0X.

Remark 13: The Stokes theorem can thus be written
Jx dw =[x to,
which corrects the slight notational abuse in (31). {

Exercise 78: Verify (cf. Def. 7, p. 56) that t distributes with respect to A:
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tuav)=tuatyv

Asfor the normal trace, it is not only a matter of notation, but a new notion,
that could not be defined before having introduced ametric. One calls normal
trace of a p-covector w at x € X the (p-1)-covector

(45) no(x) = {&, ... &} = o(n(x),§, ..., &)

The definition extendsto p-forms and also (if orientations are associated according
to the above-mentioned rule, Exer. 77) to twisted p-forms. The reader will check
that n, as an operator from FP(X) into F°~ Y(0X), or from FP(X) into

F P 1(0X), satifies

(46) n= (_1)(9—1) dim(X) w1 %

(which could be used as a definition).

Exercise 79: Provethe equivaence of (45) and (46), and check that

47) *N=1%, Nx=(-1) =t.

4.3.2 Green'sformula
Now thingsstart to fly. Let u bea (p-1)-formand v a p-formon X, with
dim(X) =m. Denote ( , ) the scalar product definedin (44) and < , > the
analogous scalar product on 9X. Since u A *Vv isatwisted (m- 1)-form, one
may invoke Stokes theorem, hence

Sed(ua =v)=[ tuna=v).

Expanding the left-hand side with the help of (34) and the right-hand side thanks to
(47) and Exer. 78, one gets

Sduaxv—-(=DPf uadsv=[_ tua=nv
I.e., (46) and (44) being taken into account,
(du, v) - (_1)P+(I0—1)(m—p+l) (u, * ds v) =<tu, nv>.

Onethen defines & (the codifferential), as applied to aform of degree p, by
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(48) § = (-D)"P-D+1 s
hence the integration by parts formula
(49 (du, v) = (u, dv) = <tu, nv>,

which can be called Green's formula as rightly as (4)(5), since al formulas named
after Green stem fromit.

Exercise 80: Show that, if u and u' are p-forms,
(du, du’) + (du, dU’) = (- Au, U) + <ndu, tu> - <t du, nu>

where A=-(dd+ 6 d). (Thisiswhat iscaled "Green'sformula" in calculus textbooks.)

Exercise 81: Provethat, if u and u' are p-forms,
0du,u) - (u, 6 du) =<tu, ndu> - <tu, ndu>

("second Green'sformula").

Exercise 82: Check dt=td. Show that &+ = + *d, and d+ = + %, and watch for the
dependence of the sign on the degree of the form to which these operators are applied. Conclude
that nd = - dn. Then work out the following formulary:

= td = nd=, =8t =dn=, *t§ = — nd=.

4.3.3 Extensions of the theory

From this stems a theory of the Laplace operator on a manifold, quite ssimilar to the
standard one. The essentialsarein[43] and [76] (cf. dso[1, 34]). Let'stakea
glancedt it.

The corner stoneisthe scalar product (44). One completes the vector space
of square integrable p-forms with respect to this scalar product, hence a Hilbert
space, denoted F°(X) (or FP,inthe case of twisted forms). Thanksto the Hodge
operator, thereis an isometry between FP(X) and ﬁ”‘p(X). A theory similar to
that of Sobolev spaces develops, by considering the scalar product

(0, m)) = (@, M) + (dw, dn)

and by completing, hence aspace F"(X), the topology of which is such that
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d € FA(X) = PP*(X)

(of domain F (X)) iscontinuous. The codifferential & of (48) then appears asthe
adjoint of d. Setting

A =— (dd + dd),

one gets an unbounded operator of F°(X), the Laplace operator. Differentia
formssuch that Aw =0 arecaled harmonic. Last, any form of F°(X) can be
written as a sum

w=do+0dp +y
with a € PP, B € F°,** and y harmonic. Thisis"Hodge decomposition” [48].

Doing this requires the same kind of technical results as used in the elementary
theory: trace theorems, Poincaré-likeinequalities, etc. The method consistsin
working within a chart, wherea p-form o isrepresented by afamily of functions,
whose traces on 90X are distributions belonging to miscellaneous Sobolev spaces.
In particular, one may call H™ *?(6X) the space of traces (of p-forms) on X such
that these functions bein H4(9X). Then the following result holds[78]: traces
on X of formsbelonging to F°(X) span the space

{a € H "(9X) : da € H ' (0X)}.
The minus sign may come asasurprise: forif p =0, we are used to find the trace
in HY(0X), not merely in H™4(9X). But thisisindeed what this general result
saysinthat case: do € H,™ meansthat the n - 1 components of the gradient
of a (takenin 9X) arein H"?, so a €HY. Thecase n=3 and p=1is
especidly interesting and one will come back to it in Section 5.1.

4.4 Back to dimension 3: the cross product

To prepare for thistransition, here follows anew viewpoint on an old subject. Let
X be a Riemannian manifold of dimension threeand Q the associated standard
densty. Let u and v betwo vector fields. Select an orientation in the vicinity of
x,and cal Q theloca volume. Then

E—=QU,V,§)
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isacovector. Paired with the orientation, it forms a twisted covector, whose sharp
Isatwisted vector: thisisthe onethat isdenoted u x v, the cross product of u
and v. Asatwisted vector, it can be represented by a vector, once the orientation
has been fixed, but its sign will change with the orientation. This explainsthe
oddities of the cross product, the reason why it only exists in three dimensions, and
the rationale behind the subtle distinction done by the Treatises ([80], p. 200, .. .)
between "polar” vectors (the true ones) and "axial vectors' (the twisted ones).

Exercise83: If u istwistedand v ordinary, show that ux v isan ordinary vector. What
happensin the case of two twisted vectors u and v?

Careless use of the cross product may lead to confusion. Consider, for
instance, the formulawhich gives Lorentz force,

f=jxb.

Forceis, by its very definition, a covector, since it operates linearly on virtua
displacement vectors, yielding the virtual work. But if we wereright in treating b
asa 2-formand | asatwisted 2-form, how can such aformula make sense?
What kind of "product" isit that would yield a covector from two 2-covectors, one
of them twisted? A step forward consistsin defining f asthe covector v —
b(v,j) where | isthe current density vector field. (Theargument v isbut the
field of virtual displacements.) This showsthat the metric was irrelevant, but since
going from | to j involvesthe operator <, some density hasto intervene.
Which density? Clearly the one that measures volumes, since f isadensity of
force per volume unit ("volume" and "density" being taken with their common
meaning in this sentence).

Can one go further and get rid of even this standard density? For this, one
should combine b (a 2-form)and | (atwisted 2-form) in order to find some-
thing like a covector-valued, not real-valued, density (twisted 3-form), so that by
integration over some region, one could find the total force. Thereisageometric
object which fits this description: v — i b A ], where i denotes the inner product
of Remark 8, p. 64. Thisisthe correct representation of the field of Lorentz
forces. One sees the concept of "vector-valued differential form " emerging here,
and this opens new avenues. We shall refrain from walking them (not without
some regret), to concentrate on dimensions two and three, and on structures
specific to these dimensions.
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Chapter 5

Differential formsin E,
and the structure of Maxwell equations

5.1 Differential formsin dimension 3

In this Chapter, we take for granted the notions of function ¢ € E, — IR and of
vector field v € E; — E, (being understood that E, means the affine space on
the left of the arrow, the vector space on theright). The scalar product of two
vectors u and v isdenoted u -v, and the mixed product of three vectorsis
vol(u, v, w). Recall that vol(u, v, w) =u- (v x w). The frame formed by three
independent vectorsis said to have a"direct orientation” if their mixed product is
positive.

5.1.1 Vector fields and differential forms
Definition 15: A p-covector o of E, isafunctionoftype E;x...x E;,— IR

(p factor spaces), linear with respect to all its arguments, and dternating, i.e.,
changing sign when one permutes two of the arguments:

0E,E,..)=-0E,E,..)
etc. (One also says "skew-symmetric”.)

As adirect consequence of the definition, w =0 for p> 3,andfor p=0,
w isareal constant.

A vector u generatesa 1-covector, that will be denoted ‘u:
(50) U=E—u-E,
and a 2-covector, denoted “u:

(51) u={g,n} — vol(u, g, n).
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Conversdly, if o isa p-covector, with p=1 or 2, there exists a unique vector
u such that o ="Pu. (Thiswould not happen in dimension higher than 3.) Smi-
larly, areal number ¢ generatesa O-covector, which isjust the constant ¢, and a
3-covector, denoted °p, which isthe product of ¢ by vol(&, n, ©):

o={En. T = ¢vdEn 0

Definition 16: A differential form o of degreep, or p-form, on E,, isasmooth
field of p-covectors.

The notion isonly interesting when 0 < p < 3. To any smooth function «,
there corresponds a O-form % and a 3-form °p, and to any smooth vector field
u,a 1-form 'u and a 2-form “u, thanks to the above correspondences. One will
denote by FP the vector space of smooth p-forms, with compact support®,
on E..

Exercise 84: One definesthe operation A by °p A P’ =P(p ¢") for p=0 or 3,by °p A Pu=
P(eu) for p=1 or 2,andby *u A *v="2(ux V), thence 'u A 2v=>3"v). Show thisisindeed
the wedge product of Def. 7, p. 56.

Remark 14: After (50), the correspondence u — 'u does not depend on the orienta-
tion of E,. To the contrary, after (51), the form associated with u is —“u if one reverses
the orientation. The geometric object associated with u via(51) isthusnot really a
2-form but apair {2-form, orientation}, the kind of thing we called a"twisted 2-form" in
3.2.3, and the correspondence defined by (51) isthe "dual map" of Fig. 53. On the
other hand, 'u isagenuine 1-form, and the correspondence (50) is the "flat" of (39).
Smilarly, %p isatwisted form. Sincein all this chapter we assume afixed, once and for
al, orientation, these distinctions will not be done (but the reader who has already
tackled the subject matter of Chap. 3 isinvited to do it on his or her or itsown). ¢

5.1.2 Operators d and =*

Definition 17 (cf. Def. 14, p. 93): One calls Hodge operator, denoted *, one or
the other correspondence defined by the equalities

Remark 15: In(41), p. 92, wehad ## = (-1)""~Y", where n was the spatial dimension.
Here, n = 3, hence the absence of any sign change. ¢

' Recall that the support of afield is the closure of the set of points where it does not vanish.
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Definition 18: The scalar product of two p-formsis, for p=0or 3,
Cop, ") = Je, o(X) P(x) dx

andfor p=1or 2,
(u, v) = f53 u(x) - v(x) dx

Onecalls F* the space obtained from FP by completion with respect to the
distance induced by this scalar product.

Last, one takes for granted the "naive" definitions, in Cartesian coordinates, of
grad, rot and div. Then,

Definition 19: One definesthe operator d € F? — FP** ("exterior derivative")
by

d(’e) = *(grad ), d('u) =*(rot u), d(u) =*(divu), d(’p) =0,
for p=0,1,2 and 3 respectively,and § € F? — F**for 1<p=<3, by
d=(-1)P = d=
and 8(p) =0 for p=0.
Exercise 85: Show that §(*u) = - °(div u), 8(%u) = *(rot u), d(3¢p) = - *(grad ¢).

Figs. 57 and 58 are two possible graphical displays of the structures we have
just set out. We shall make use of the former in the sequel.

Exercise 86. Placetherdation *h = - §(°¢p) on Figs. 57 and 58.

Notethat d®=0 and & =0. Asoneknows, rotu=0 = u=grad ¢, and
dvu=0 = u=rota Thecollection of al these results, which is"Poincaré's
Lemma’, isthus expressed in the language of differential forms. A closed p-form
o on E,(i.e, suchthat dw =0) isexact (i.e., thereexists a such that
o = do).
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5.1.3 Formson a surface, traces

Let S beasurface embedded in E, endowed with afield of unit normals n. One
will make use of the following notation (Fig. 59): ¢ for the restriction of a
function, uyx) for the projection of u(x) onto the tangent plane at point X, U,
for the function x — uy(x) withdomain S. Onehas u;=-nx (nx u). Last,
tw, the tangential traceon S of a p-form w,is

tw ={§,... &} = 0E, ..., §)
(cf. Section 4.3.1), and nw, itsnormal trace, is

nw = {Ezl T %p} — (D(n, %2! T Ep)

0 Q i 3 A
grad Y div
1 h * b 2
d rot rot d
2 * a 1
div grad
Y3 . 0

Figure57. A graphica convention for the visualization of spaces F* and of
their relationships. Here, for instance, one has %b = =*h = d(*a) = %(rot a) and
th = d% = *(grad ).

Themetricof E, anditsorientation descendto S asfollows. If & and n
are two tangent vectorsat x € S, then § - n isnaturaly defined. Thanksto n,
one may select an orientation on S by deciding that if vol(n, §,m) >0 (i.e.,, when
n is"totheleft" of € with respect to the normal, cf. Fig. 59), the frame {&, n} is
direct. Onewill easily seethat the 2-volume (or "ared") of the parallelogram built
on £ and m is vol(n, &, n), which therefore is the standard volume 2-formon S.
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0 ¢ 0,
grad div
NN o 4
d rot \ i . rot 5
) / \ ] )
div grad
Y 3 3

Figure58. Another possible graphical convention.

Figure 59. Notations.
Thanks to these metric elements, one may associate functions or vector fields

definedon S and p-forms, exactly asabove. Tothefunction ¢ of domain S,
corresponds the O-form °p, and also the 2-form

‘o =x— (& n} — vo(n(x), &, ).
To the field of tangent vectors u corresponds the 1-form

(52) u=x— (> uXx)-g)
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But now there is another way to get a 1-form, that we'll denote by ‘U (becauseit
isactually atwisted form, cf. Section 3.3.3).

(53) U =x — (€ — vol(n(x), u(x), ).

Remark that "u = *(n x u).

The one-to-one correspondence between thesetwo 1-formsis achieved by the
Hodge operator (still denoted = ; the context will suffice to distinguish it from the
* Oof dimension three). One has (by way of definition, but the reader isinvited to
justify this definition by referring to (42)):

xU="0="nxu),=u=-"u
Asfor other values of p, one has of course

*OCP:ZCP,*ZCPZOCP-

It isnow natural to study the relationship between traceson S of afunction
or vector field, on the one hand, and traces of the associated differential forms, on
the other hand. It's an exercise, whose solution is given by the following table:

p o tw now

0 "o "Pg ><
L u Us °(n-u)

2 “u ?(n-u) ~'(nxu)

3 o “Pg

Remark 16: That n?u = -'(n x u), and not *(n x u), is abit unaesthetic, but unwelcome
minus signs will pop up somewhere in the theory, whatever the sign conventions one
starts with. ¢

From (52), (53) and the previous table, one gets the formulas
tx==%n, xt=(-1)° n=,

obtained above in the general case (Exer. 79).
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5.1.4 Integration

We know (cf. Section 3.3.4) that a p-form can be integrated on an oriented
manifold of dimension p (Fig. 60). A point x (dimension 0) isoriented by
giving it asign, + or —. Theintegral of °p isthen defined as = ¢(x), the sign
being consistent with the orientation. An arc connecting x, with X, isoriented
by giving afield of unit tangent vectors, which one can take as being

s—1(9) =ay(s) /oy I,

where y € [0,1] — IR isaparametric representation of the arc. (Note there are
two possible such fields, T and - T, which depend on the parameterization by
their signsonly.) Theintegral of 'u is, by definition,

ru=fT-u=[,,;ts - usds
That of 'u is

[, =ft-(nxu),

p=0

® T (X)
+

p=2

Figure 60. Orientation of p-manifolds, p=0, 1, 2, and induced orientations
on their boundaries. Oneisreminded (Exer. 77, p. 96, and Fig. 56) that the
boundary of an orientable manifold inherits from it an orientation, thanks to
the outgoing vector field (here v), which can aways be defined if the
boundary is smooth enough.

A surface S isoriented by giving afield of normals n. If the 2-formis
defined by afunction ¢ on S, like %, itsintegra is, till by definition,
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Js %0 = fs 9 = [ p(x) dx

where dx isthe surfacic measure. If it comesfrom avector field by pulling back
o = “u, one has

Jsto =[2n-u= [ (n u)(x) dx.

(Thisistheflux of u through S)

5.1.5 Theaurfacic d

The operator d is defined, according to the principles set in Section 3.4, in order

to express the local form of Stokes theorem. First, let ¢ beafunctionon S and
v atangent vector at Xx. Thereexistsatrgectory g € IR — S, with 0 € dom(g),
with v asitstangent vector at theorigin (i.e.,, v = g4, with the notation of 2.2.1).
The map

v — d/dt cp(g(t))‘tzo = av(p’

being linear in v, definesa 1-covector at X, that is denoted ‘gradsp. The gradient
itself is thus the vector grad,¢ such that

(grad.g) - v = 0,9.

The expected relation

@((2) - ¢(v(0) = f, *(grad @),
which is Stokes theorem, does hold.

Remark 17: So, nothing new with this definition, which does correspond to the
intuitive notion of surfacic gradient. We went into details in order to stress two points.
1°- ¢ need not be defined outside S, 2°- Themetricon S, inherited from E;, only
playsardleif oneinsistson grad«g beingafield of (surfacic) vectors. The associated
1-form *(gradyyp) does not depend on it (thus the dg we are about to define will be
metric independent as well). ¢

Let now u beavector fieldon S, and O an open set, with smooth
boundary 00, around x (Fig. 61). The boundary 0O admits of an outgoing
unitary field of tangent vectorsto S, called v. One sets, as a definition,
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diviu=lim[([,, v - u)/area(O)],
the limit being taken by letting the areaof O tendto 0. Onefinally sets
(%4 rot, u = - divy(nx u).
Then, calling F*(S) theset of p-formson S,
Definition 20: Onedefines d,€ F*(S) — F*(S via
ds °e = (gradyp), d.'u =?*(rotgu), d%p =0,

and 8.€ F°* XS — FX(S) via

0, = (-1)° = d *.

n(x)
A

Figure 61.

Thisisan "ad-hoc" definition, just like Def. 19: oneintroduces d,, starting
from naive definitions of grad,, rot, etc., in order to retrieve the operator d of
differential geometry (Def. 12, and (33), p. 83). The virtue of this procedureisto
quickly get to the point. Its drawback isto blur the distinction between different
structural levels.

Exercise 87: Show that 2(divsu) = dg*u, and 8¢'u = - °(div4u).
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0 @ * 2 A
gradS diVS
ds 1 u - % nxu 1 d
S
rotg —Nxgradg
Y o “ ¢ 0

Figure 62. The structure made of the spaces F*(S), the different redizations
of d, and the Hodge operator .

Asabove (Fig. 57, p. 104), we have a graphic representation of the foregoing
structures (Fig. 62). Beware however of sign changes. One will notice the
intervention, which is necessary in order to make this diagram complete, of ope-
rator — nx grad,, oftenitself denoted rot,, just like the onein (54) (the distinction
being brought to attention by various typographical tricks), because of this. if u=
{0, 0, ¢} inaCartesian system, and if ¢ does not depend on x°, then rot u =
{09, 0,9, 0}, i.e, precisaly —n x grad ¢, where n={0, 0, 1}. Thisis perhaps
not reason enough to adopt such a notation, which is prone to confusion. Some
advocate "grot,* for - nx grad, Thiscould be afine substitute.

Exercise 88: Let u beavector field, whose domain contains S, suchthat nx u=0. Under
which conditionsisthe equality (rot u)s = - nx gradg(n -u) vaid?

Exercise 89: Show that 8¢ = - *(n x grad ¢), and draw adiagram analogous to that of Fig. 62,
but featuring 0.

Remark 18: Evenif S isnot orientable, one may erect a structure similar to that of Fig.
62. But the right side of the diagram is then occupied by "twisted forms', and nx u
must be replaced by afield of twisted vectors, like the one of Fig. 48. ()

5.1.6 Stokes Theorem

One will not be surprised to meet at this stage the different versions of Stokes
theorem, in particular

J, v -grad ¢ = @(y(1)) - ¢(y(0)
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or else
Jon-rotu=/[ t-u=/J rot.u.

What we did was actually a preparation for that. One will check in particular the
relation dt = td (cf. Exer. 82), whose redlizationsfill the following table:

p ® tw t dw dtw
0 P "Pg "(gred @) "(grads )
1 'u 'ug ?(n- rot u) ?(rotg ug)

Therow p =2 ismissing, sincea 3-formon S isnecessarily zero.

Exercise 90: Completethetable, by addingtoit columnsfor nw, = w, Nd w, d N, *t w, &c,,
and read off therelations *td=nd =, * dt=dn=*, *td =-nd=, of the"formulary" of Exer.
82.

The foregoing exercise featured the forms
nd° = n(‘grad ¢) =°(n - grad ) = "(d¢/an),
nd'u=nCrotu) = - *(nx rot u),
n d®u = n3(div u) = *(div u).

The first two will be found again in the renderings of the classical Green formulasin
the language of differential forms.

Let S beaclosed surface, bounding region D, and n the outer normal’.
Then, as one knows (4), (5),

(55 Jou-grade+fiedivu=[ion-u,
(56) Jov-rotu-Jfju-rotv=/ (nxu)-v.
' D for "domain”, with its technical meaning of "connected open set", which we avoided elsewhere, the word

domain being here reserved for another notion. Remark however the two acceptions are very near to each other:
D, or its closure, are indeed the domains of the various fields we consider.
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The first formulais nothing else than

(d°¢, ') - Cp, d 'u) = <t g, n'u>,
I.e. (asin (49), only with different notations):
(57) (do, 1) - (w, on) = <tw, M>,

with n =% and o ='u on the manifold with boundary formed by the closure of
D. The second formulais

(d'u, &) - ('u, 8%) =<t 'u, nv>
for n% = - *(nx v), and the scalar product of 'u and - '(nx V) isequal to
- u-(nxVv)=(nx u)-v. Butthisisnot the only possible interpretation: the
reader will see that (55) can aso be understood as

(d?u’p) — (u, 8 ) = <t “u, n °p>
and (56) as

- (d'v, ) + (v, %) = - <t'v, n%u>.

Could one derive from (57) other interesting formulas? Not so, obvioudly,
since al possible cases have been considered: o =%, 'u and 2u. Thefact that
only two formulas exist in the present case stems from the symmetry of (57) with
respect to the Hodge operator: if thedimensionis 2q or 29 - 1, thereareonly q

different Green formulas.

Thus, in dimension 2, thereis only one, correspondingto o =% and 1 =

Jou-gradg + [ divu=[_ ¢ v u,

(v isthe outgoing normal, with respect to 4S, in the tangent planeto S). The
other one (w = 'u and n = %p) only looks different, because of (54) (Exer cise 91).

fscP rot.u +fs(n X gradscp) -u =f35(P T U,

where t isthe tangent vector to 9S of Fig. 61.
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By setting m = dw' in (57), one gets a second group of Green formulas,
which are of frequent use (cf. Exer. 80):

Jograd o -grad ¢’ = J, - Ap ¢’ + [ 0.9 ¢
(where 0 ¢ isthe norma derivative), and
Jorotu -rot u' = [ (rotrot u) -u' - fyvol(n, rot u, u’).

From this would stem athird group, basic to boundary integral methods, whose
geometric structureis discussed in [21].

5.2 Maxwell's equations

We shall end with a study of Maxwell equations, with the help of the geometric
toolsintroduced in this course. First, afew words on the nature of the intdlectua
exercise we shall thusindulgein.

5.2.1 Modelling

It's a modelling process, that is to say, the construction of a mathematical structure
which is supposed to represent a definite compartment of the real world (in our
case, "classical" e ectromagnetic phenomena, to the exclusion of quantal ones). The
use of aword like "modd", so rich in connotations, may wrongly suggest that the
outcome of such awork could be akind of coarseimage, or perhaps a mock-up, of
reaity. Thisisonly partialy correct. The physicist's ambition goes beyond amere
description of the world, it aims at gaining predictive and operative power. Models
are thus meant to be interrogated, to produce new information, or more to the
point, they should make explicit the implicit information built into them. Thisis
requiring a strong, almost paradoxical property: how could mind constructs, a
priori totally transparent to us, their makers, tell us something new about the
world? Thistiny miracle is commonplace, however. It is performed by these
mathematical objects, equations:* to solve an equation consists in producing an
object — its solution — endowed with specified properties, but which happensto
have a so other, unpredicted, properties, which reveal themselves to us as we ook
a it. Thisiswhy physical models reduce, when all is said and done, to equations:
we formalize our knowledge of reality by setting them, we enrich it by solving
them.

' Provided, of course, the word is taken in a broad sense. For instance, sending queries to a data-retrieval system
by using a combination of key-words, or submitting a predicate to the evaluation of an expert system, consists
from the present point of view in setting up an equation.
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Does this mean that in every modelling, there would exist at the onset a solid,
objective, unquestionable corpus of knowledge, and then a completely free choice
of the building blocks of a new mathematical structure to be appended to it? Such
aview would be too drastic, for this corpusisitself nothing but a system of models,
whose constitutive parts and organization principles guide and restrain our choice.
Indeed, al really innovative new modellings (like the one Einstein did to account for
gravitation) turn the whole edifice upside down before settling in.

From the pedagogical point of view, however, such a presentation is conve-
nient. So we shall suppose known and familiar to us, besides classical mechanics, a
part of electromagnetism: the one that deals with the existence and empirical
properties of electric charge. Consider the latter as a substance, the existence of
which is an experimental fact (cat skin, electrolysis, Millikan's experiment,
whatever): the question "how much charge istherein that region of space" thus
makes sense. Moreover, we record the existence of what will be called thefield, a
time- and |l ocation-dependent physical reality which makesitself be perceived
through the behavior of these charges. Our objective isto set up an electrody-
namics, that isto say atheory (with some predictive power) of this behavior.

At the onset, we thus have a rather scanty" mathematical structure: space
E,, time (ared variable spanning IR), and a 3-form, the charge density 35. Upto
first infinitesimal order?, the charge contained in a parallel epiped built on vectors
E, E, E apoint x is’ p(x)vol(E, &, E,), thetotal chargeinaregion D is
theintegra [, 0.ie, J5 p(X) dx. Onthisbass, we shall model what we know
(from experimenta evidence) of the effects of the field, while following an Occam-
like (or Strunk-and-White-like. . . [94]) golden rule: omit unnecessary mathemati-
cd structures.

5.2.2 Electrical phenomena: first equation

L et us begin with the observed effects of the ambient field on non-moving charged
particles: they sum up to this observation that to move a charge’ some distance

' Uptoapoint. After all, Newtonian space-time E, x IR isaformidable edifice, the achievement of a
protracted modelling process, which is clearly perceived as such now that physics has led us beyond Newtonian
conceptions. We shall come back to this in the Conclusion.

% with respect to the norms of the three vectors.

* If theframe {&,, §,, &, isdirect. Otherwise, the sign hasto be reversed. So we are indeed dealing with a
twisted 3-form.

* A virtual movement, that one may conceive as a limit case for an arbitrarily slow real movement (think to
reversible transformations in thermodynamics).
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implies awork proportional, to first order, to this distance. We shall call "dectric
fidd" the physical entity which isresponsible for these effects. (Of coursethisfield
isonly afacet of the eectromagnetic field: experience shows that moving charged
particles are subject to other effects (deflection of the trgjectories), which will later
be ascribed to another facet of the field, the "magnetic field".) Which mathematical
object shall we select to model the eectric field with?

Consider a charge unit, concentrated at point x. To mathematically model
what we mean by its "displacement”, we have the right object at hand: it's a vector
a x,say v(x). Thework involved being experimentally found to be proportional
to the displacement, we model it asalinear function of type T E, — IR, i.e,, asa
covector at X. Specifying such a covector at each point thus suffices, by definition,
to describe the dectric field (cf. Fig. 3). Thelatter will thus be represented by a
field of such covectors, i.e., by a 1-form, that we shall denote ‘e.

In this composite symbol, one may rightly distinguish the vector field e and
thetag 1, standing for an operator which transforms e into a 1-form, provided
oneiswell aware that the metric of E, has been summoned in order to make this
separation possible. If the metric was changed, the vector field e would be
different, whereas the electric field, as a physical entity, would of course stay the
same. Sothe 1-form ‘e better represents the dectric field than the vector field e,
and the form, from now on, not the vector, will be for us "the" dectric field".

One knows (Sections 3.3, 5.1.4) that a 1-form can be integrated along an
oriented path, yielding anumber. Because of our interpretation of the field, this
integral [, 'e isthe work received when one pushes a unit charge along the
trgjectory y. (The sign convention we are doing at this stage, work received rather
than given, is unimportant for our purpose.) We shall call it "electromotive force
(emf.) aong vy".

Considering now a charge distribution of density °p, instead of a point charge
a x, onewill easily see (Exercise 92) that the work received during a movement
described by the vector field v inthedectricfield e is, tofirst order,
f53 p(X) <g(X), v(X)> dx, where <, > denotes the dudity covector-vector. This
quantity is of course invariant with respect to changes of metric, in spite of the
presence of the volume element dx under the integral.

' Wewon't go so far as saying the electric field "is" a 1-form. Thiswould amount to identify some "elements

of physical reality” (if this makes sense!) with some mathematical elements of the modelling one makes, and this
would go against our objective. Moreover, this would verge on dogmatism, since there is no reason for this
representation of the field by a 1-form to bein all circumstances and for all purposes the best one. This being
said, we shall not deny to ourselves the convenience of saying that, for instance, "chargge isatwisted 3-form", etc.
But it will be just an indication about the réle held by the mathematical object (here °p) in the structure oneis
building, not an ontological statement.
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Exercise 93. Provethisby showing the integral can be written fE3 i,’p A 'e with the notation of
Remark 8, p. 64.

Let us now look for the right object with which to model the electric current,
I.e., the flux of charge. It must bear with it the information needed to answer the
guestion: "What is the quantity of charge which crosses a given surfacein a
prescribed direction (per unit of time)?'. So it has to be (cf. p. 80) a 2-form, say
2j , represented (in a metric-dependent way, just as ‘e above was represented by
€) by avector field j, the one usualy called current density. Given two vectors at
X,say &, and &, theflux of charge across the paralelogram defined by the two
vectors §, and &, in the direction defined by some vector n at X, isto first
order the quantity vol(j(x), &,, §,) sgn(vol(n, §,, ,)). Thelatter isindeed
independent of the orientation of ambient space, asit should, sinceif the orientation
isreversed, thesign of vol(j(x), €,, &,) isreversed, but the sign of vol(n, §,&,) is
reversed too. We are led to the conclusion that the information on the flux is borne
by the pair consisting intheform x — ({&,, §,} — vol(j(x),§,,&,)) andthe
orientation, i.e., the twisted form associated with j (p. 153), hencethetildain #j .

Moreover, one may change not only the sign of the volume form, but the
metric aswell: thevector field j will betotally different, but the associated twisted
2-formwill till be ?j. Sothetwisted 2-form ?j legitimately representsthe
current density. Theintegral [,?j onasurface S endowed with an external
orientation (cf. Section 3.3.4), for instance by anormal field, or atransverse field
(cf. p. 64), isthe flux of charge, per unit of time, through S, in the crossing
direction thus defined. Thisindifferenceto orientation is specific to integrals of
twisted forms, aswe saw in 3.3.3.

At this stage, we may enrich the modelling with afirst physical property (that
one may view as coming from experience): charge conservation. From the Stokes
theorem and Def. 19 (or the definition of divergencein (37)), we have

(58) 0y %) + 521 =1, [0Cp) +dC])]
= [, [0,Cp) +*(divj)] = J, *(@p +div )

for aregion D of surface S. The outer orientation of S being from inside to
outside (according to the convention adopted Fig. 56, p. 96), the left-hand side of
(58) isonly O if charge cannot be destroyed nor created, only displaced. So the
principle of charge conservation can be expressed by the inequality

(59) 9, +d7 =0,
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l.e, dp +divj=0,infamiliar notation.

Let's proceed. Likefor all 3-formsin dimension 3, onehas d°p = 0. By
Poincaré's Lemma(p 153), there existsa 2-form 6 (twisted, just as *° p was)
such that °p = d 23, therefore, after (59), dfo, 5+ J]-O (Of course, 23 is
not unique, and welll wait till thisindetermination is lifted before giving it its proper
name and symbol.) Again by Poincaré's Lemma, there existsa 1-twisted form *n
(non unique) such that

(60) ~ 9,25 +din =7.

Exercise 94. Check the vector field 6 isonly defined upto acurl, and v to agradient, and that
only the transformations of theform® § <— & + rot u, n <= n - d,u+ grad ¢ leave eq. (60)
satisfied. Show that these so-called "gauge” transformations form a group.

Remark 19. The reader may have decided to get rid of symbols *, ?, ~, etc., in order to
solve Exer. 94, and why not, for all this Section. One of course wishes to promote this
transition towards the "differential forms' viewpoint (without imposing it, however, for
the reasons given in the Introduction).

5.2.3 Magnetic phenomena: second equation

Let us now turn to the "magnetic" facet of the field. It could be perceived through
the effect of the electromagnetic field on moving charged particles, as suggested
above, but one will rather invoke induction phenomena and Faraday's experiment,
historically much more significant. Just aswe perceive the eectric field by the
force it exerts on eectrically charged particles, we test for the presence of a
magnetic field with the help of specific experiments. But what is perceived this way
Isin genera avariation of thefield: in space, when onelooks at a compass, or in
time, when one measures the em.f. induced in a closed circuit by the movement of
amagnet (Fig. 63). Inthelatter experiment, one notices that theem.f. V isan
additive function of the surface S which bounds the circuit (I do say "surface’, not
ea'), and is proportional to the rate of change (speed of the magnet, etc.). So
the empirical law of induction, asindeed Faraday put it forward, has to be 0,®(S
+V =0, where @ hasthe linearity properties which characterize a flux through
S, i.e,istheintegra over S of some 2-form. So the right mathematical object to
stand for the magnetic field isa 2-form, that we shall denote by °b, whose integral
over S istheaboveflux ®(S). Onecalsit magnetic induction. Knowing that V
= [ ‘e one gets

! The expression x <— f(x) should be understood asin programming practice (evauate f(x), then assign its
valueto variable x), and read: "x takesthevalue f(x)".
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dJs°b+[s'e=0,
which, after Stokes' theorem, is equivalent to

(61) 0.°b+de=0.

Figure 63. Demonstration of the induction phenomenon: moving the magnet
evokes an em.f. in the circuit, acknowledged by the displacement of the
pointer.

Remark 20. The name "magnetic field" would fit *b better, and some eminent authors
useit in that acception [42]. Butitismore traditionally reserved for another entity,
namely one of the gauge-equivalent 1-forms ™ of (60), whose connection with b
will soon be discussed. ¢

Remark 21. Readers who have been through Section 3.3.4 may have reacted this way:
"Why a 2-form and not atwisted 2-form, to stand for something which has to be
integrated over a surface in order to yield a flux? Why should the above argument
about current density stop being valid here?' Because here the orientation does plays
arole. If one reversesthe (inner) orientation of S, theflux fs°b changessign. If, as
one must do to apply Stokes theorem, one simultaneously reverses the orientation of
S, theem.f. V changessign, since ‘e isan ordinary 1-form. (Thisamountsto saying
that there are two ways of plugging the ammeter, resulting in opposite valuesfor V.)
The choice of an ordinary 2-form for the magnetic induction b is thus consistent with
the electric field itself being an ordinary 1-form. The same argument could be more
quickly presented as follows. aformand its d are of the same kind, both ordinary or
both twisted, so b in (61) isof the samekind as ‘e. ¢)

So far, we twice appealed to experimental evidence, first when introducing
charge and acknowledging its conservative character, then with Faraday's law.
From this point, purely mathematical considerations led us to the following proto-



Differential Geometry for Electromagnetism 119

model (written in vectorial notation):

(62 ob+rote=0, -908+rotn=j, divd =p,
where the last two equations imply the conservation of charge:
(63) o.p +divj=0.

We reached this point by modelling the effects of the field, but without accounting
for the way it is generated by charges and currents. This, which isthe essentia
part, we still have to do.

Experimental factsin this respect show that currents create a magnetic field,
charges create an electric field. One may solicit them alittle further, to have them
suggest a principle of superposition, whose mathematical trandation will be, asin
other areas of physics, the postulated linearity of equations: the superposition of
two distributions of charge (resp. of currents) has the same effects as the sum of the
two corresponding el ectric (resp. magnetic) fields.*

The point isthereforeto link b and e to j and p, or at least to objects
already associated with them. We havethat: the 6 of (62), associated with p.
The easiest way to achieve our goal isto postulate that one of these 6, say d, is
proportional to e d=¢e. Thisleaves, inaway whichisamost forced on us, a
relation to establish between b and one of the ny (which are linked with j),
denoted h: so, b=uh.

We thus obtain the model of Maxwell's equations:
(64 ob+rote=0, -odd+roth=j, divd=p,
(65 b=uwh, d=c e

When the charge distribution p and the current density j are given as functions
of time, and satisfy the conservation relation (63), this model determines (asthe
mathematical analysis, now freeto go in full gear, will show) the four constituents
of thefield, b, e, h, d. Thecoefficients u and ¢ arefunctions of position, and
their numerical values at a point can thus depend on the nature of the material
about this point. This givesthe model enough flexibility to account for phenomena

' Of course, this principle can fail to apply, for instance in presence of ferromagnetic materials. But as

elsewhere in physics, we'll manage to treat such non-linearities at the level of "behavior laws', non-linear, specific
to these materials. It sufficesfor thisto avoid any premature identification between objects (such that, as we shall
see, b and h, or d and e) which are linked by the linear relations suggested by the superposition principle.
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encountered with some dielectrics (where ¢ > ¢, its vacuum value) and with some
so-called para- or diamagnetic materials (for which w > u, and w <, respective-
ly, u, being thevaluein the vacuum). By alowing u to beafunction of the
local state of the field, one may even account for some aspects of ferro-
magnetism.

5.2.4 Maxwell'smodel, in terms of differential forms

One may very well feel unconvinced by the foregoing justification, in standard
vectoria language, of the Maxwell moddl. We shall recast the argument in the
language of differential forms, which helps make it stronger.

For this, let usfirst construct a diagram analogous to that of Fig. 57. Notice
the way the latter diagram is doubled, in order to represent a p-form and itstime-
derivative in two paralle vertical planes (Fig. 64). AsinFig. 57, ordinary forms are
on the left, and twisted forms on the right.

Next, let us place on this diagram the mathematical entities introduced up to
now, beginning with charge and current density (Fig. 65). (To avoid overloading
the diagram, we have denoted them p, |, etc., but we do mean the forms, not the
functions or vector fields that stand for them.) Due to the conservation relation
(59), there isonly oneway to place p and j. The reasoning based on Poincaré's
Lemma by which we introduced d and h then simply consistsin walking down
the right part of the diagram while giving names to the entities encountered at each
node along theway. Asonewill realize, there is not much of a choice in doing
that: once ] and p have been placed upstairson theright, d and h will be
located one floor bel ow thanks to Poincaré Lemma, and the elements of the "gauge
transformation” of Exer. 94 another level below (Exercise 95: place them). Asfor
relation (61), i.e., db+rote=0, itslocation isalso forced.

Exercise 96. On Fig. 65, place a and 1 (respectively a 1-form and a O-form, named "vector
potential” and "electric potential”), such that b =rota and (thus) e= - d,a+ grady. Study the
"gauge transformations’ from apair {a, y} into another.

So now, al the mathematically implied consequences of the existence of
charge and its conservative character appear on the right side of the diagram, all
what has to do with the effects of thefield is on the left side. Knowing that charges
and currents create the field, and having the Hodge operator as a vehicle from one
side of the diagram to the other, what €l se can one do than assess the
proportionality of b and e and of =h and :d, hence (65)? Thusis mode

' Within limits. Let us, incidentally, recall the MKSA values: u, =4r 107, and ¢, = 1/(c’ u,), where ¢ is
the speed of light, about 3 10°
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(64)(65) found back, up to notations:

T div
‘ 2

|
g rot# Y o
|

rad
I s

/

_at

Figure 64. Combination of two copies of the diagram of Fig. 57, linked by
the time-differentiation operator. Thisagebraic-differentia structureis
"home" to Maxwell equations. The horizontal bars on the back and front
walls correspond to the Hodge operator.
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Figure 65. The"Tonti diagram” [98, 99] of Maxwell equations.
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_~ ~

(64) 92+d%e=0, -9°d+d*h=2j, d?d=%,

-~ _~

(65) b=nu="h, ‘d=¢e='e

Coefficients ¢ and w appear now as dependent on the choice of units, and their
numerical values thus account for physical properties of space. One may thus
distinguish in system (64)(65) the "vertical" equations (64), which are the geometric
trand ation of fundamental principles (Faraday's law, charge conservation) and the
"horizontal" equations (65), which express physical properties of space and (since ¢
and p can assume other valuesthan ¢, and u,, as aready pointed out) how
they are modified by the presence of matter.

The "Tonti diagram” of Fig. 65 summarizes and condenses all these
considerations into asingle structure: it explains how (to draw on the metaphor)
Maxwell equations"live" in the structure of Fig. 64. Tonti seems to have been
among the first to point at the universality of diagrams of thiskind in physics. (See
also [85].)

Remark 22. One now perceives the role played by the Hodge operator, and thus by
the metric structure of space E; x IR, in modelling: Whereas the structure of
differentiable manifold, operator d included, had been enough to geometrize the

separ ate description of cause and effect, one needs a metric structure to geometrize the
behavior laws, which are relations between cause and effect. This point of view
suggests that the respective réles of the constants like ¢ and w and of the metric
structure proper are not so strictly distributed. One might very well include the
constants in the Hodge operator, and have the same Hodge operator intervene at both
levelsof Fig. 65: it'samatter of choice of units, of time and length unitsin particular (so
that c=1). Inthisspirit, putting an appropriate metric on the manifold E; x IR helps
ironing out the distinction between anisotropic behavior laws (the case where ¢ and u
are tensors) and isotropic ones (scalar ¢ and u, possibly dependent on position). This
relativizes the "fundamental” character of some "fundamental constants" of physics (as
remarked, e.g.,in[49] or [64] ; cf.ds0[86]). One might push the geometrization of
behavior laws even further, to the point where it would take some non-linearitiesin
charge: one should for this introduce a metric not only on the base E; x IR but on
some bundle on this base, whose fibre would consist in the set of possible states of the
fidd. ¢

Remark 23. The discussion could have been shortened (though perhaps to the
detriment of clarity) by working directly on afour-dimensional manifold M, space-time.
Then b and e [resp. j and p] appear as the two descriptive elements of one and the
same 2-form F [resp. of atwisted 1-form «], and Maxwell equations reduceto dF =0
(thisisthe reduced form of (64)), dG = a. (consequence, as above, of da = 0, charge
conservation, and reduced form of (65)), and G = *F, wherethistime = isthe Hodge
corresponding to an "indefinite" metric, the Minkowski metric, on M. Inthis
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presentation, which is quite standard [27,32,69, 73,89, 103, .. .], onewsdll
distinguishes the three panels of the modelling triptych: Faraday's law trandates as dF
= 0, charge conservation as dG = a, and the principle of superposition, or of linear
dependence of cause on effect, as G = =F. Since = here intervenesonly to yield a
linear map from the vector space of 2-forms onto that of twisted 2-forms, one may
wonder whether the Minkowskian metric underlying * isnot a redundant element of
structure, which could be done without. A result by di Carlo[35] seems to suggest
otherwise: givingthemap G — F (endowed with reasonable properties) would suffice
to determine the metric. If so isthe case, the metric of space-timeis determined by the
very nature of electromagnetic phenomena, and the remarkable "simplicity" of Maxwell
eguationsis no more surprising.

Exercise 97. In afamous method of eddy-currents computation, known as"T-Q" [29], one
representsthefield h intheform h=T + grad Q, where T is subject to some restrictions
(consisting, for instance, inforcingto O one of its components). Place T and Q on the diagram
of Fig. 65. (Onewill edit the notation alittle: for instance T and w, for the sake of consistency
with the style which is prevalent in these notes.)

Exercise 98. Compare the diagram of Fig. 65 with the one that appearsin [79], p. 59.

5.2.5 Quasi-static and static models

In electrotechnical applications, linear dimensions and time-constants are such that,
in any appropriate system of units, the speed of light ¢ assumes avery high
numerical value. One then very naturally wishesto consider it asinfinite, and to go
to the limit in Maxwell's system. As ¢ = (e u)™?, thisamountsto letting one of the
parameters ¢ and u tendto 0. Which one, this depends on the nature of
sources:. when there are high densities of dowly moving charges ("weak
currents'), onelets w goto zero. In the opposite case (small or null charge
densities, strong currents), one cancels ¢ instead.

Thus, in the weak currents model, there is an uncoupling into a one-parameter
family of electrostatic problems:

(66) divd=p(t), d=¢ce, rote=0,

to be solved first, followed by the solution of an analogous family of magnetostatic
problems:

(67) div (w h) =0, roth=j(t)+ad,

where u isthe (finite) ratio of thetwo infinitesmals u and w,.
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In the strong currents model, the situation is reversed: one first solves
(68) divb=0, b=uh, roth=j(),
| being given, then
(69) div(e,e) = p, rote= - 9,b,

where ¢, istheratio of thetwo infinitesmals ¢ and ¢, In both cases (Fig. 66),
one has to successively solve two problems which obvioudly have the same
structure.

The uncoupling istota with steady sources, since then (66) and (67) [resp.
(68) and (69)] are two independent problems: one in electrostatics (at the front of
the diagrams) one in magnetostatics (at the rear), and we then neatly see the
structure in question: it always consistsin findinga p-form w and a (3 - p)-form
11, Hodge conjugate to each other (up to a choice of metric), their d's being
known.

0 0
Y p div
grad - A j : A i+a.d
© > d A ¢ > d A rot
rot \ b M(_» h \X b M( h
-d, b 0
div OT OT grad

Figure 66. Tonti diagrams of the modelswith infinite c: Left, strong
currents, right, weak currents. The side arrow disappearsin the case of steady
(i.e., time independent) sources, hence the uncoupling between e ectrostatics
(at the front of the diagrams) and magnetostatics (at the rear).

This"paradigm” (as Kotiuga says [56], but we shall prefer to speak here of
the "canonical problem"), asillustrated by Fig. 67, is not specia to Maxwell
equations: it formsthe building block for most Tonti diagrams. It was early
identified in Electromagnetism (cf. [102, 72]), but how to discretize it (by use of
mixed finite elements) was only recently understood. See[17, 22] on this point.
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Let usjust recall that this model can be treated by introducing potentials ¢ and o
suchthat w = w°+ dp and m =n°+ do, where w®* and n° are forms satisfying
do®*=f and dn®*=g (s for "sources’, since these forms can be considered as the
sources of thefield, inlieu of f and g). Since, by elimination and substitution, one
may always cast any of the entities w, n, «, @ intheréle of unknown (and even,
in so-called mixed formulations, two of them together), one has alarge array of
possible, equivaent formulations of the canonical problem. They result, according
to the choice of finite eements, in various numerical schemes, an attempted
classification of which can befoundin[22].

p-1 ¢ 9 n-p+1
A
d P ® * n n-p d
Y
Y p+1l f a n-p-1

Figure 67. Tonti diagram of the"canonical problem™: tofind a p-form and
an (n- p)-form, Hodge dua one to the other, knowing their exterior
derivatives. One has placed in the diagram the "potentials’ ¢ and o that
may play arélein solving the problem.

To see how source-forms and potentials are introduced, consider (66) first.
Let d° bethe"source-field" as defined by

d° = x — grad(x — (4m) [ p(y) [x - y[" dy))
(so divd®=p). Onethen sets d = d° + rot u, which turns (66) into
rot(e™' rot u) = - rot(e™ o).

But one might aswell set e=- grady (the source-fieldis O, inthat case) and
arrive at

- div(e grad y) = p.
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Symmetrically, one may solve (68) with help of the sourcefield h*(t) given by the
Biot and Savart formula

h*=x — rot(x — (4m)"Jcj(y) X - y[" dy)).

by setting h = h*(t) + grad ¢, hence

— div(u grad ¢) = div(u h*(t)),

or by introducing the vector potential a suchthat b =rot a (again, zero source-
field), hence

rot(u™ rot a) =j.

Exercise 99. Apply the same methodsto (67) and (69).

Thus, electrostatics as well as magnetostatics lead to "div-grad like" or "rot-rot
like" problems, at leisure. Electroguasi statics and magnetoquasi statics (the weakly
coupled models (66)(67) and (68)(69) respectively) cal for the successive solution of
such problems. The remarkable symmetries and anal ogies between them find their
explanation in Fig. 67, a paradigm coming from differential geometry. Thisisour
justification for having attempted to present the bases of thisdisciplinein this
course.

All thisisfar from being exhaustive, since we did not even mention mixed
formulations, nor problemsin bounded domains, nor discretization methods. See
[24] for some complements.

5.2.6 Theeddy-currents model

We must now get rid of the fiction according to which currents and charges would
be given and known beforehand. For, assume a given material configuration
(possibly asafunction of time: let uscall it "trgjectory" for shortness) and a'so a
given smooth function t — {j, p}, arbitrary (call it "the current"). One may
deduce the evolution of the field from this information, with help of the previous
models, and thus obtain the forces acting on charged particles. (The force acting on
aparticle of charge g moving at speed v is g(e+ v x b), cf. eg. [61].) But then,
these el ectromagnetic forces have no reason to be balanced by forces due to other
causes. So neither thistrajectory nor this current are the ones that will actually
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develop, and these can only be found by solving a coupled problem. The nature of
this problem depends on how charges are linked to matter, and convey these forces
toit. Depending on whether one deals with gases, liquids, plasmas, etc., the theory
of these coupled problems may assume widely different forms,

There is however one kind of materials for which this theory stays smple (so
simple that one often overlooks the fact that it refers to a coupled problem): solid
conductors'. In such media, thereisasimple proportionality relationship between
the current density and the dectricfidd:

(70) j=oe

where o isthe conductivity of the metal. Thisis Ohm'slaw. One may account
for it by imagining that charges, so loosely linked with the crystal lattice that they
are freeto move, and practically inertialess, acquirein the loca electric field some
limit speed, for which the "friction” force, proportional to the speed, balances the
force due to the dectric fiedld. (Reality is of course abit more complex than this,
but never mind: (70) agreesvery well with observations.)

Again, as above with thefirst version of (65), p. 119, we have there arelation
between two differential forms of different orders, so it only lookslikea
proportionality relationship. Actually, one has

(71) j=o0+'8

as with the second version of (65), p. 122. This can be shown by direct reasoning.
For, consider ametallic cube of resistivity o™, of side-length one, built on three
orthogonal vectors v,, v,, v,. Let usapply auniform dectricfield ‘e parallel to
v,. The potential difference between the two faces parallel to v, and v, is V =
'ev,) = e-v, A currentdensity % setsin. The corresponding intensity is J=
%(v,, v;) = vol(j, v,, v,). Butthen J=V/R, wheretheresstance R is o™, s0
%i(v,, v,) = o *e(v,), hence (71) by the very definition of the Hodge operator (Def.
17, p. 102).

Remark 24. The same reasoning would apply to (65), p. 122, areluctance or a
capacitance playing the réle here devoted to the resistance. ()

One must however modify (71) to account for the presence of generators. A
generator is aregion of space where charges, instead of being free to move (and
thus to behave according to the law (71)) are in some way forced to follow definite

' What follows also holds for liquid conductors (liquid metals, salted water...) as far as velocities stay moderate.
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trgectories. Thisinvolves some work expenditure (to counter the electromagnetic
forces which act on these charges). Generators are thus regions of space where
power isinjected into the el ectric system. In most modellings, the current density
in generators, |° (again s for "source"), isthus adata, and one must amend (71)
asfollows.

(72) 2j~ :0*1e+2TS,
with digoint supportsfor j° and o, in genera (but not always).

After (70), the equation — 9 d +rot h=j takestheform - dd+roth=oce,
e,

roth=oe+ d[ee),

which suggests to compare the orders of magnitude of the two terms on the right,
respectively called conduction current and (since Maxwell) displacement current.
For this, let T be acharacteristic span of time for the phenomenon under study, or
asone says, a"time constant”: orders of magnitude arein theratio of/Te. This
dimensionless number is very large in most eectrotechnical applications. Thisis
why, save afew exceptions, one adopts the "strong currents’ model (¢ = 0, and
thus rot h =j, with j = ¢ e +j°) when Ohm'slaw intervenes. One then obtainsthe
eddy-currents model, that is, in vector notation:

| ob+rote=0, roth=j,
(73) |
| b=uh, j=oe+};

and in terms of differential forms:

| 0b+d%e=0, d'h=2],
(74) |

| b=ux*h, 2j =oxle+?j®

Remark 25. Hence, divj =0, which isthe form of the law of electricity conservation in
thismodel. Onealso has p = div(ee) = 0, so the 3-form >p, which is the mathematical
representation of charge, does not feature in the model any more. One should not from
there conclude too fast that charges are physically negligible... Anyway, (73) does not
determine a unique electric field (one may add to it the gradient of an electric potential
1y, provided grady =0 inregionswhere o = 0). For this one should specify the
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charge p outside the support of o, i.e., outside conductors. Let thus for instance' p
=0 in E; - supp(c). One solves

rote=-9b, dive=0

in E; - supp(o). (The necessary boundary values are those of the tangential
component of e (the"trace" of 'e), whichisknown once j is, by Ohm'slaw.) One
may then compute p = div(ee): it'sadistribution, concentrated on interfaces between
regions with different conductivities, and it isnot zero (far fromit ...). Paradox? No.
The parameter ¢ being small, one may consider the Taylor expansion of the field in
termsof ¢, in the neighborhood of ¢ = 0. Model (73) only givestheterm of order O in
this development, aterm for which indeed p = 0. The procedure just suggested yields
the next term, of order 1 in ¢, or at least the part of thisterm relevant to e, and thusto
p. Thistermisin O(e), which does not mean it is physically negligible. Don't put your
hand on a naked conductor. ¢

Let usfinally draw the Tonti diagram of thisnew model (Fig. 68). This
consistsin taking the "strong currents” diagram (Fig. 66, right), deleting all refer-
encesto d and p, and to add Ohm's law, hence Fig. 68, left. At the cost of a
small abuse of representation, one may flatten the diagram by not representing the
differentiation with respect to time (Fig. 68, right). The "coupled" character of this
problem is graphically obvious, and even more so if one reads the constitutive laws
backwards (h=u™" b, e=oc"j). Onemay consider this diagram as resulting from
amerger of two canonical problems, the already met one of magnetostatics, at the
bottom, and at the top, one that characterises a new model, the "conduction”, or
"electrokinetics' model: tofind 3 and ‘e, linked by an affine constitutive law,
their respective d being given. The diagram suggeststhat e [resp. h] can serve
as avector potential for the model downstairs [resp. upstairs], so there are essential-
ly two ways to solve the eddy-currents problem: with respect to the unknown h,
or to the unknown e. There are of course many possible variations, since one may
represent h and e interms of other entities (h=t + grad w, e=- d,a+ grad
1, etc.), and thusthereis actually a"magnetic" family and an "electric” family
of methods, the latter looking for h (hencefor j), the former looking for e
(hence b).

' but not necessarily. There may be space charges, thisis not precluded by having replaced ¢ by 0. Please read
on...
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Figure 68. Tonti diagram for the eddy-currents equation

5.3 Epilogue: towards numerical schemes

How should one pursue? By taking the concept of Tonti diagramsin earnest.

Each of them describes a particular way of housing the protagonists of the various
models (e, b, h, etc.) in the mathematical structure first met, still empty, at Fig. 64.
Theideaisto discretize the structure, once and for all, and not each model on a
piecemeal basis. This can be done, because this structure is nothing else than the
cohomology of E,, and mathematicians have developed methods of cohomological
analysis which closdly resemble what numerical analysts call discretization: one has
in particular Whitney's complex [104, 36, 37], astructure associated with the
simplicial tessellation of amanifold, analogous to the structure in Fig. 64, where
each "vacant room" isavector space of finite dimension. It suffices (if | dare

sy ...— see[17, 19, 23] for details) to "accommodate” each of the "tenants’ (h, b,
g, etc.) inthe "room" which corresponds to its nature to obtain numerical schemes
for al these models.

But the time has come to stop.
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Conclusion

To model physical space by the mathematical object E,, and time by areal variable
gpanning IR, aswe did al along this course, congtitutes an intellectual decision: no
"natural laws", no "apriori categories of human understanding" force this choice
on us. The wisdom of such a choice can therefore be questioned, asin all
modellings: why E,? why IR? Today's scholars, coming after Einstein and
Poincaré, have the benefit of hindsight about this, but let us replace ourselvesin the
situation asit was at the beginning of the 20th century. The laws of € ectromagne-
tism were expressed by the system of equations known since Maxwdl [ 70, Chap.
9], and rewritten by hisfollowers under the now classical form:

(75) -od+roth=j,
(76) ob+rote=0

(plus some relationsbetween b and h, d and e j and e or h — Ohm'slaw,
Hall effect . ..— depending on the medium). It was only natural to see them as
describing adynamics: amathematical rule (here a system of partial differential
equations) which governs the evolution of some objects—vector fields—Iliving

in E.

The modern point of view, acquired throughout a well known historical
process, is different. It does not consider the geometric structure (E, and IR) as
antedating equations (75)(76) (which would thus be, in away, less essentidl,
subordinate). It envisions this structure and these equations as awhole, "the
mode" (amathematical one) of a definite compartment of reality (namely,
"classical", i.e., non-quantal electromagnetic phenomena). It then wonders about
the necessity of this model: hasn't it unnecessary structure? |sthere not amore
economical, hence "simpler" model (which does not mean more easily grasped by
the layman, rather the contrary), that could assume the same function?

To bring this point home, let us consider theterm rot e in (76). At first sight,
it'sthe curl of avector field, i.e., assuming adirect orthogonal basis {v,, v,, v.} on
E,, the vector field whose components are

rote={0,6 - 0,€, 0,6 - 9,6, 9,6 - 9,€'}.

Let'sdo thiswith al the terms of (76), hence three (unwieldy) partial differential
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equations. Sure, they "say the same thing" as (76), but by marshalling extra
structure—the three basis vectors—which can be dispensed with. Indeed, the
historical evolution has been, precisely, to do without them, thanks to the invention
of vector analysis[31], hence (75)(76).

But then, why stop there? Isthere not in (76) some unnecessary structure
left? The vector space structure of E,, for instance, isnot redly called for: to
confer sense on rot e, which stemsfrom e by an obvioudy local operation, it is
enough to have the E, structure present locally. A three-dimensional manifold
with ametricisall what isneeded. Even metric is redundant, as we observed, since
(76) rewritesas db + de=0, i.e, asarelation between the time-derivative of a
2-form (the object here denoted by b) withthe d of a 1-form (the object denoted
€), and all this makes sense on a"naked" manifold (even the dimension of the latter
appears to be incidental). Same thing with eg. (75). Does that mean the metric is
contingent and can be ignored? Not at all, because it played the leading réle when
we had to express the constitutive laws:

b=uh, d=ece

(and also when, not considering j as given any more, we introduced Ohm's law).
But by dissecting the model in this fastidious way, weredlize this. egs. (75) and
(76), the most fundamental, are those which require the less structure. A contrario,
the quest for minimal structures, when one models a class of phenomena, helps one
to recognize what in amodel is fundamental, not to be tampered with, and what is
inessential, thus modifiable. This much helpsin enriching the model and in
broadening its scope. This also helps understand anal ogies between different
models, by revealing their common structure, and exposing their differences.

Thisanalysis, as far as the above equations are concerned, goes even further,
as one knows, to the point of unifying time and space into asingle structure. It's
the whole story of Reldtivity.

The approach thus suggested can be characterized in one word:
geometrization. Indeed, it consistsin understanding the equations of physics as
necessary relations between some geometric objects, e ements of sets endowed with
apeculiar kind of structure (that some mathematicians have tried to characterize, cf.
[93]), those which are called "spaces': vector spaces, fibered spaces, etc. All the
manifold denizens we have met are in this sense geometric objects. To geometrize
thus consists in identifying these objects, as well asthe minimal structures necessary
to account for their relationships, and to specify these relationships, al of thisnot in
succession, but in asingle sweep.
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A practicing programmer cannot fail to see the analogy between
geometrization thus conceived and "object oriented programming” [71], a modern
development in the art of computer programming that one could characterizein
terms almost identical to those used in the previous sentence. The concomitance of
these two trends is perhaps no accident. Asfar as| am concerned anyway, their
connectionisstrong: the long-term aim being the numerical solution of Maxwell's
equations, which implies the writing, according to the rules of the craft, of
specialized software, the "objects" in this programming cannot be without relation
with the geometric objects whose behavior is ruled by these equations. Geometri-
zing the equations of electrodynamicsis a prerequisite to the rational construction
of computing software systems able to solve them.



134

Alain Bossavit



Differential Geometry for Electromagnetism 135

References

[1] R.Abraham, JE. Marsden: Foundationsof M echanics, The Benjamin/Cummings
Publishing Company, Inc. (Reading, Mass.), 1978.

[2] P.Alexandroff: Elementary Concepts of Topology, Dover (New Y ork), 1961 (orig.
pub. as Einfachste Grundbegriffe der Topologie, J. Springer, 1932).

[3] P.Alexandroff: Introduction a la théorie homologique de la dimension et la
topologie combinatoire, Mir (Moscow), 1977.

[4] F.Apéy: Models of the Real Projective Plane, Vieweg (Braunschweig), 1987.
[5] M.A.Armstrong: Basic Topology, McGraw-Hill (London), 1979.

[6] G.A.Baker: "Combinatorial Laplacians and Sullivan-Whitney Forms', in Progressin
Mathematics, Vol. 32, Birkhaiiser (Boston), 1983, pp. 1-33.

[7] D.Badomir: "Differential formsand electromagnetismin 3-dimensional Euclidean space
R*', IEE Proc., Pt. A, 133, 3 (1986), pp. 139-43.

[8] S.Barr: Experimentsin Topology, Th. Y. Crowdl (New Y ork), 1964.
[9] M. Berger, B. Gostiaux: Géomeétrie Différentielle, Armand Colin (Paris), 1972.

[10] E. Betti: "Sopragli spazi di un numero qualunque di dimensioni”, Annali di Mat. pura
ed applicata, 2° série, 4 (1871), pp. 140-58.

[12] D. Bleeker: Gauge Theory and Variational Principles, Addison-Wedey (Reading,
Mass.), 1981.

[13] J.Blum, L. Dupas, Leloup, B. Thooris: "Calcul des courants de Foucault dans les coques
minces d'un Tokamak", in Actesdu Colloqgue MODELEC (A. Bossavit, ed.), Pluralis
(Paris), 1984, pp. 37-48.

[14] Y.Bossard: Rosaces, frises et pavages (2 Vols.), CEDIC (Paris), 1979.

[15] A.Bossavit: "The Exploitation of Geometrical Symmetry in 3-D Eddy-Currents
Computation”, |[EEE Trans.,, MAG-21, 6 (1985), pp. 2307-09.

[16] A.Bossavit: "Symmetry, Groups, and Boundary Vaue Problems(. . .)", Comp. Meth.
Appl. Mech. Engng., 56 (1986), pp. 167-215.

[17] A. Bossavit: "Mixed Finite Elements and the Complex of Whitney Forms', in The
Mathematics of Finite Elements and Applications VI (J.R. Whiteman, ed.), Ac.
Press (London), 1988, pp. 137-44.



136 Alain Bossavit

[18] A.Bossavit: "Magnetostatics with scalar potentialsin multiply connected regions’, 1EE
Proc. A, 136, 5(1989), pp. 260-61.

[19] A.Bossavit: "Un nouveau point de vue sur les éléments mixtes', M atapli (Bull. Soc.
Math. Appl. Industr.), 20 (1989), pp. 23-35.

[20] A.Bossavit: "Eddy-currents and forces in deformable conductors’, in M echanical
Modellings of New Electromagnetic Materials (Proc. IUTAM Symp., Stockholm,
April 1990, R.K.T. Hsieh, ed.), Elsevier (Amsterdam), 1990, pp. 235-42.

[21] A.Bossavit: "On various representations of fields by potentials and their use in boundary
integra methods', COM PEL, 9 (1990), Supplement A, pp. 31-36.

[22] A.Bossavit: "On non-linear magnetostatics. dual-complementary models and 'mixed’
numerical methods', in Proc. Third European Conference on Mathematicsin
Industry (J. Manley et al., eds.), Kluwer Ac. Pub. B.G. Teubner (Stuttgart), 1990, pp.
3-16.

[23] A.Bossavit: "A Numerical Approach to Transient 3D Non-linear Eddy-current
Problems’, Applied Electromagnetics in Materials, 1, 1 (1990), pp. 65-75.

[24] A.Bossavit: "Mixed Methods and the Marriage Between '‘Mixed' Finite Elements and
Boundary Elements’, Numer. Meth. for PDEs, 7 (1991), pp. 347-62.

[25] U.Brehm: "How to Build Minimal Polyhedral Models of the Boy Surface”, The
Mathematical Intelligencer, 12, 4 (1990), pp. 51-56.

[26] W.L. Burke: Spacetime, Geometry, Cosmology, University Science Books (20
Edgehill Road, Mill Valley, CA 94941, USA), 1980.

[27] W.L. Burke: Applied Differential Geometry, Cambridge University Press (Cambridge,
U.K.), 1985.

[28] S.S. Cairns: "On the triangulation of regular loci”, Ann. of Math., 2, 35 (1934), pp.
579-87.

[29] C.J. Carpenter: "Comparison of aternative formulations of 3-dimensional magnetic-field
and eddy-current problems at power frequencies’, Proc. |EE, 124, 11 (1977), pp.
1026-34.

[30] I. Chavel: Eigenvaluesin Riemannian Geometry, Academic Press (Orlando, Fa.),
1984.

[31] M.J. Crowe: A History of Vector Analysis, University of Notre Dame Press, 1967
(Dover edition, New Y ork, 1985).

[32] W.D. Curtis, F.R. Miller: Differential Manifolds and Theoretical physics, Academic
Press (Orlando, Fa.), 1985.

[33] G.A.Deschamps: "Electromagnetics and Differential Forms', Proc. |EEE, 69, 6 (1981),
pp. 676-96.

[34] J. Dodziuk: "Laplacian on Forms', in Ref. [30].



Differential Geometry for Electromagnetism 137

[35] A.Di Carlo, A. Tiero: "The geometry of linear heat conduction”, in Trends and
applications of mathematics to mechanics (F. Ziegler, W. Schneider, H. Troger,
eds.), Longman (New Y ork), 1991.

[36] J. Dodziuk: "Finite-Difference Approach to the Hodge Theory of Harmonic Forms”,
Amer. J. Math., 98, 1 (1976), pp. 79-104.

[37] J. Dodziuk, V K. Patodi: "Riemannian Structures and Triangulations of Manifolds’, J.
Indian Math. Soc., 40 (1976), pp. 1-52.

[38] B. Doubrovine, S. Novikov, A. Fomenko: Géométrie contemporaine, M éhodes et
applications (Deuxiéme partie: Géométrie et topologie des variétés), Mir
(Moscow), 1982.

[39] D.G.B. Edelen, D.C. Lagoudas. Gauge theory and defectsin solids, Elsevier
(Amsterdam), 1988.

[40] M. Farge: "Choix des palettes de couleurs pour la visualisation des champs scalaires
bidimensionnels', L' Aéronautique et I' Astronautique, 140 (1990), pp. 24-33.

[41] G.K. Francis: A Topological Picturebook, Springer-Verlag (New Y ork), 1987.

[42] R.P. Feynman, R.B. Leighton, M. Sands. The Feynman L ectures on physics, Addison-
Wedey (Reading, Mass.), 1964 (French trand.: Interéditions, Paris, 1979).

[43] K.O. Friedrichs: "Differential Forms on Riemannian Manifolds’, Comm. Pure Appl.
Math., 3 (1953), pp. 551-90.

[44] M.J. Greenberg, J.R. Harper: Algebraic Topology, A First Course,
Benjamin/Cummings (Reading, Ma.), 1981.

[45] J.C. deC. Henderson: "Topological Aspects of Structural Linear Analysis', Air cr aft
Engng., 32 (May 1960), pp. 137-41.

[46] A.Henlee A Combinatorial Introduction to Topology, Dover (New Y ork), 1994.
(First pub., Freeman (San Francisco), 1979.)

[47] A.Hickethier: Colour mixing by numbers, Batsford (Londres), 1970 (orig. pub. as
Ein-Mal-Einsder Farbe, Otto Maier Verlag (Ravensburg), 1963).

[48] W.V.D.Hodge: Thetheory and applications of harmonic integrals, Cambridge
U.P. (Cambridge), 1989 (1* edition: 1941).

[49] M. Hulin: "Dimensional Analysis: Some suggestions for the modification and
generalisation of itsuse in physicsteaching”, Eur. J. Phys., 1 (1980), pp. 48-55.

[50] R.S. Ingarden, A.Jamiotkowski: Classical Electrodynamics, Elsevier (Amsterdam) and
PWN (Varsovie), 1985.

[51] S.lyanaga, Y. Kawada(eds.): Encyclopedic Dictionary of Mathematics, The MIT
Press (Cambridge, Ma.), 1980.

[52] B.Jancewicz: Multivectors and Clifford Algebras in Electrodynamics, World
Scientific (Singapore), 1988.



138 Alain Bossavit

[53] K. Janich: Topology, Springer-Verlag (New York), 1984 (orig. pub. as Topologie,
Springer-Verlag, Berlin, 1980).

[54] JM. Kantor: "Les surprise de labande de M6bius', L a Recherche, 102, 10 (1979), pp.
772-73.

[55] S. Kobayashi, K. Nomizu: Foundations of Differential Geometry (2 Vals.), J. Wiley
Sons (New Y ork), 1963.

[56] P.R. Kotiugas Hodge Decompositionsand Computational Electromagnetics
(Thése), Dpt. of Electrical Engng., Mc Gill University (Montréal), 1984.

[57] P.R.Kotiuga: "On making cuts for magnetic potentialsin multiply connected regions’, J.
Appl. Phys., 61, 8(1987), pp. 3916-18.

[58] P.R. Kotiuga: "An Algorithm to make cuts for magnetic scalar potentialsin tetrahedral
meshes based on the finite element method”, | EEE Trans., MAG-25, 5 (1989), pp.
4129-31.

[59] P.R.Kotiuga: "Magnetostatics with scalar potentialsin multiply connected regions’, |EE
Proc. A, 137, 4 (1990), p. 231.

[60] G. Kron: "Non-Riemannian Dynamics of Stationary Electric Networks', The M atrix
and Tensor Quarterly (Dec. 1966), pp. 51-59.

[61] L.Landau, E. Lifschitz: Electrodynamique des milieux continus, Mir (Moscow),
1965.

[62] S.Lang: Introduction to Differentiable Manifolds, Wiley (New Y ork), 1962 (French
trand.: Introduction aux variétés différentiables, Dunod (Paris), 1967).

[63] D. Leborgne: Calcul Différentiel et Géométrie, P.U.F. (Paris), 1982.

[64] J-M. Lévy-Leblond: "On the conceptua nature of physical constants', Cahiers
Fundamenta Scientiee (Univ. L. Pasteur, Strasbourg), 65 (1976), pp. 1-43.

[65] S.MacLane: Categoriesfor the Working Mathematician, Springer-Verlag (New
York), 1971.

[66] G.E. Martin: Transformation Geometry (An Introduction to Symmetry), Springer-
Verlag (New York), 1982.

[67] W.S. Massey: A Basic Coursein Algebraic Topology, Springer-Verlag (New Y ork),
1991.

[68] J.E. Marsden, T.J.R.Hughes: Mathematical Foundations of Elasticity, Prentice-Hall
(Englewood Cliffs, N.J.), 1983.

[69] K.Maurin: Analysis, D. Reidel (Dordrecht) PWN (Warsaw), 1980.

[70] J.C. Maxwell: A Treatise on Electricity and Magnetism, Clarendon Press (Oxford),
1891 (Dover edition, New Y ork, 1954).



Differential Geometry for Electromagnetism 139

[71] B. Meyer: Object-oriented Software Construction, Prentice Hall (New Y ork), 1988.

[72] A.Milani, A. Negro: "On the Quasi-stationary Maxwell Equations with Monotone
Characteristicsin aMultiply Connected Domain”, J. Math. Anal. Appl., 88 (1982),
pp. 216-30.

[73] C.W.Misner, K.S. Thorne, JA. Wheeler: Gravitation, Freeman (NewY ork), 1973.

[74] K.Miya, J. Ed Akin, S. Hanai: "Finite element analysis of an eddy current induced in thin
structures of amagnetic fuson reactor”, Int. J. Numer. Meth. Engnrg., 17 (1981), pp.
1613-29.

[75] JM. Montesinos. Classical Tessellationsand Three-Manifolds, Springer-Verlag
(Berlin), 1985.

[76] C.B. Morrey: Multipleintegralsin the calculusof variations, Springer-Verlag (New
Y ork), 1966.

[77] R.Pdais. "Definition of the exterior derivativein terms of the Lie derivative’, Proc. AM S,
5 (1954), pp. 902-08.

[78] L. Paguet: "Problemes mixtes pour le probleme de Maxwell", Annales Fac. Sc.
Toulouse, 4 (1982), pp. 103-41.

[79] J. Penman, JR. Fraser: "Unified approach to problems in electromagnetism”, |EE Proc.,
131, Pt. A, 1 (1984), pp. 55-61.

[80] J.-Ph. Pérez, R. Carles, R. Fleckinger: Electromagnétisme, Masson (Paris), 1991.
[81] I. Peterson: "Twists of Space”, Science News, 132 (Oct. 1987), pp. 264-66.

[82] J.C. Pont: Latopologie algébrique, desorigines a Poincar €, PUF (Paris), 1974.
[83] G.deRham: Variétésdifférentiables, Hermann (Paris), 1960.

[84] V.Rohlin, D. Fuchs: Premier coursde topologie, Mir (Moscow ), 1981.

[85] J.P.Roth: "An application of algebraic topology to numerical analysis. on the existence
of asolution to the network problem”, Proc. Nat. Acad. Sc., 41 (1955), pp. 518-21.

[86] P.Rougée: "Axiomatique pour les dimensions physiques, les scalaires et les vecteurs du
physicien”, Bull. A.P.M.E.P., 293 (1974), pp. 295-325.

[87] D. Schattschneider: "The plane symmetry groups. their recognition and notation”, Amer.
Math. Monthly, 85 (1978), pp. 439-50.

[88] JA. Schouten, D. Van Dantzig: "On ordinary quantities and W-quantities', Comp.
Math., 7 (1939), pp. 447-73.

[89] B.Schutz: Geometrical methods of mathematical physics, Cambridge University
Press (Cambridge, G.B.), 1980.

[90] L. Schwartz: Cours d'analyse, Hermann (Paris), 1981.



140 Alain Bossavit

[91] G.E. Schwarz: "The Dark Side of the Modbius Strip*, Amer. Math. Monthly, 97, 10
(1990), pp. 890-97.

[92] R. Sorkin: "On the relation between charge and topology”, J. Phys. A, 10, 5 (1977), pp.
717-25.

[93] J-M.Souriau: Géométrie et relativité, Hermann (Paris), 1964.
[94] W. Strunk, E.B. White: The Elements of Style, Macmillan (New Y ork), 1979.

[95] W. Thomson: "On Vortex Motion", Trans. Roy. Soc. Edinburgh, 25 (1869), pp.
243-60.

[96] W. Thirring: A Coursein Mathematical physics. 1. Classical Dynamical Systems,
Springer-Verlag (New York), 1978.

[97] W. Thirring: A Coursein Mathematical physics. 2: Classical Field Theory,
Springer-Verlag (New Y ork), 1982.

[98] E. Tonti: "On the mathematical structure of alarge class of physical theories', Rend.
Acc. Lincel, 52 (1972), pp. 48-56.

[99] E. Tonti: La Struttura Formale delle Teorie Fisiche, CLUP (Milano), 1976.

[100] J.C. Véité "Computation of Eddy Currents on the Alternator Output Conductors by
Finite Element Methods", Electrical Power and Energy Systems, 1, 3 (1979), pp.
193-98.

[101] A. Vourdas, K.J. Binns. "Magnetostatics with scalar potentials in multiply connected
regions', |IEE Proc. A, 136, 2 (1989), pp. 49-54, and 137, 4 (1990), p. 232.

[102] N. Weck: "Maxwell's Boundary Vaue Problem on Riemannian Manifolds with
Nonsmooth Boundaries®, J. Math. Anal. Appl., 46 (1974), pp. 410-37.

[103] C.von Westenholz: Differential Formsin Mathematical physics, North-Holland
(Amsterdam), 1981.

[104] H. Whitney: Geometric Integration Theory, Princeton U.P. (Princeton), 1957.

[105] T.J. Willmore: Total curvaturein Riemannian Geometry, Ellis Horwood
(Chichester), 1982.



Differential Geometry for Electromagnetism 141

| ndex

A

= ot To g I (o] = Y [ oo ) 37
=10 (o 6
ATINE AR, . 5
AfINE SUDSPECE. ...t e 6
= T T= o = ol (o0 o] (o]0 VAN PPV UPPRPPT 83
o LS g (] o [ 0o I P 54
N 010 68
ANE COMIMUEBLIVE. ... e et e e e e e e e e e et e e e e e e e e et e e eaneeeens 57
N S o1 = P 17
Bl e 11
B

072 8 Y(0r= 0 ol o0 0] o ] 7= =T 6
0 Yo 01 = S PRSPPI 6
07 5 PPN 24, 26, 27
DBSIS 2-COVECIONS ... e e 56
DESIS P-COVECIONS ...t 57
DESIS COVECIONS. ... it 44, 46, 52, 53
basisvectors.........cccovveiiiiiieii 44, 45, 46, 50, 52, 53, 55, 60, 65, 74, 76, 132
T 1 PP PTPSPPRN 35
27 1 0100 o 35
DI-COVECLON ... e e e 54
BIOt AN0 SAVAIT. ... 126
DOUNA VECION ... e e e ea e 6, 39
070107 7Y 83
BIOUWEY ... o 25
bundle......ooveii e 18, 24, 26, 29, 31, 36, 51, 53, 64, 122
BUNAIE M. ... e 30, 47, 66
BUIKE . . 3,4, 72
C

CA DD e 22
€ANONICAl PrODIEM. ... 124
(0 (=0 (0] VPP 47
CEIL COMPIEX ..t et e e e e eens 23
(007 (0 PR 2,73, 77, 80, 86
ChargE NS ..oeee e e 77,87, 114
Charge distriBULION ........oouiii e 119
ChaIgEO PATICIE. ... 54
[0 07 1 £ PSPPI 12
(o] (oi = (o o PP UPTR PP 68
ClOSEA FOMMNL . e e 83
COTMTFOIENEIAL ... e e 97
codifferential (IN Ey) ...ccoovvviiiiiiiiiiiiiic 105
(o0 o [ 011= 01T o [P 63, 66, 95
(oo (010107 1 o [ PP 1
(o] 1014070 Foo |V AP P U UPPRPPP 83
o1 o PP 17
compatibility (Of tWO Charts)........ccuuvieuiiiiiie e 13, 14, 30, 45
COMPIEMENEANY INJECLION .....oeeeie et 56
COMPIELE (BHIAS) ..o 15

COMPIELE (MELTTC SPACE). .- et e ettt ettt e e e et e e e e et e e eb e eeaaaeens 98



142 Alain Bossavit

component (of avector, tensor, etC.)..........cooovvveiiiieenne 2,12, 44, 45, 77, 99, 125, 133
compPoNent INthe FIDFE. ... e
component of v WIth reSPECE 0 N.......viiiiniiii e, 88
ol a0 11 o i e U1 (= | P 128
COMAUCTIVITY . ..ottt e e e e et e e et e e e e ean s 35, 127
(e009107= o (= o [P 15, 33, 39, 65, 66, 74
o001 1o 1o T 31
(o]0 < oV 1] o B PTUPPTUTUPTRUPRRIN 116
(003 = o PP 41
o011 =" 1o o 64
COotaNGENt DUNAIE....... e e 47
(o0 Y= oo PR 2, 41, 54-57, 72
(o)< oo P 32, 33, 34, 35, 36, 37, 64, 65
(o (01557 o] 100 0o PPN 55, 56, 100
001t = o 1[0 o DS PPR 54, 67, 71
CUNTENnt denSity......covuveviviieiiiiieeei e, 31, 68, 70, 79, 80, 81, 84, 100, 118-20, 127
o PP 35, 68, 69, 70
(0SSP 83
CYCHIC GIOUP. « ettt et et e et e et e e e 34
D
[0 I (o]0 < = (o ) IO SPP T PPTR 97
DR RNEIM ... e 71
density (non-vanishing N-form)...........cccoeovveiiieiiin e, 73, 78, 79, 85-90, 96, 100
density (Of Charge, €C.) ....vvvniiii i 73, 77, 78, 86, 100, 115
GENVAIVE ..t e e et e e e et e e e e e aeans 47
0= (= 1001] 07 o | SO PPR 56, 57, 92
0TI o TP 123
QIBMAONELIC ... e et ettt et e e e e e 120
(01 1< o U o PSP PU 120
differentiablemanifold ... 40
diffeomorphism.........ccooiiiiiii 28, 33, 53, 63, 67, 70, 78, 91
differentiable manifold ..o 13
oL = (LU= PP 52
differential CACUIUS .........oeeiiiii e 49, 51, 52
differential fOrMIS .. ... 47, 53
0T = o =0 1= 59
AiSPIACEMENT CUMTENT ...t ettt et e e e et e e e e e e eees 128
01 = 3 o PP 90
distribution (in the sense of Schwartz) ...........ccoevviiiiiiiiin e 8, 99, 129
distribution (Of Charge, EC.) ... ... i 2,115
oY PP 87
QIVEIGEINCE .ttt 87
(000 7= ] o U TTUPT PP 1
[N = ot Tl o ) I 108
[0 07 o TP 88, 89, 102
AUAlILY ..vvee s 8, 41, 43, 49, 52, 53, 57, 73, 79, 81, 85, 115
E
L= 11 ) PRSP PPRRPN 115
] S = o PPN 114, 131
Elastic SHEISTNEOMY ... .o e 31
EECtiC Charge ... 77, 84, 114
electric field. ..o 3, 115, 117, 118, 127, 128
"l ECtrOKINELICS' MOTE! ... ceei e e e e e e eees 129
electromagnetic fiEld. ... .. ooeee e 9, 115, 117
ElECtrOMAgNELIC fOMCE. ...evn i e e 126
ElECHrOQUASISALICS . ..ot 126
EIECITOSIALICS et eee ettt ettt et aa e 124
EMBDEATING ... 21, 63, 74, 96
BUCTIAEAN SPACE ... 5
BULEIIAN .. 86
EVEN TUNCHION....cee e e 70
EVEN PEIMULBLION ...ttt ettt e et e e et e e e e e e e ebe s 77
e ol ({011 1) PP UPTRUPRRPN 103
o= o 1 o 1 0 PP 83
LSS (100 = 1AVZ A= 52, 82, 103
exterior derivative (in Ep)..........oiiiiii 103

Lo o g 00 o 1 o AP 56



Differential Geometry for Electromagnetism 143

F

L= =S 74
1 0= PN 117, 118, 122
Faraday'SIaW ... .o 81, 123
L= L0 0070 01 1 120
fibered Manifold..........oouuiiii 24
Lo = 26, 28
fibre above apoint.........cocu i 24, 26, 29, 46, 65
fIDre COMPONENT ... e 31
FIEld (PRYSICA) e 114
field Of NOMMAIS.......oiie e 2, 64, 68, 72, 107
field Of tranNSVEISE VECLOIS .. ..ccvu e 64
field Of tWISEA VECIONS. ... it e e e e e e ean s 72
field Of UNIt NOMMEIS. ... .. e 104
FINItE ElEMENTS ... e 75, 125
fIrst NOMOIOGY GrOUPD ... et 35
I PP 91, 102
L PP SOPPPTRSPPIN 53, 108
FIUX OF Charge. ..o 116
L0 = P 53
L 10 PP 59
free (aCtiON Of A QIOUD). ... eun ettt e 37
1100 o PSP 47
fundamental CONSLANES. ... ..oeeeei e 122
G

QAUGE rANSFOIMELION . ...ttt et e e e e e e e e eees 120
(01 01 = (o PP PP 127
[01C 01001 ol o] o 1= v (=T PN 132
(015 0] 001= 1127 1o [ 122, 132
Gibbs (notation for Cross-Proauct) ..........oeeuveieieiiiie e 55, 56
G et 29, 46
[0 1T oo [ PSPPI 20, 21
OIUING FUNCHION ... et eens 23
L0 = 1 01 PP 17
0o 91
0= 1= | 50, 53, 84, 99, 18, 117
LT =0 1 0 ) P 91
(€= S0 00 TP P TP 17
GrassMaNN AlgBIIA. ... .ceee et 57
L= < o PP 98
GrEEN fOMMUIBS. ......ve e 113, 114
L= S o 11 11| = T 98
[0 (o1 o PP PRPP 28, 36, 46, 64
(o1 Co N o ol (o] o WP 37
groups Of "Wall-paper PatterNS".... ... 37
H

[ I 1= v SN 131
NArMONIC FOMM .. e e e e 99
Hausdorff manifold........ ..o 15, 23, 24
HITDEIT SPACE. ... 2, 85, 98
HOOAQE AECOMPOSITION ... .eeeeeie e e e e e e e e e e e e e e e ean s 99
(070 10 Y00 = (o 92, 94, 95, 122
Hodge operator (iN E,) .vvvvvveiieeiiiiiiiiiiiiicccce e 102
HOAJE OPErator (0N 9X)....ceeue ettt ettt e e e e e e 95
[gT07070] oo |V PPN 35, 83
I

imbedding See embedding

[F 01 6 T 1 1 63, 66, 79, 83, 88
(1970 (§0r=s Mol g 1= g 1= 1o o DA 67, 96, 107
INAUCEION PRENMOMENEL .. ...t e e e e e e eens 117-8

ENJECLIVE. ...ttt e ettt ettt et e e e 44, 63, 74



144

Alain Bossavit

1= o 0o 1 64, 100
L1 e = PP PPRPPTPIN 76, 78
112 = (0 g 7= o - £ PSP 95
101V Lo o O PP 67
INVOIULTON. ...e e 65, 66, 71, 73, 89
1 01Y7o 11111 o PR 70
101011 1Y 9], 94
K

(= 1Y/ o TP PR 7
(=T a1 oo 11 = PP 20, 22
[0 110 T = 35, 124
S0 (0 8
L

L2 ettt ettt et ettt ettt n e 2
"o =" o = o LR 87
[0 = oY 0= - o] S 99
IS 0= o 1P OPPRTPPPIN 86
LBNGEN. L et e e 0
=Y o 011 o 29, 46
1 PP 65, 70
[OCal OFiENtALION .....ceeie e 71, 72, 73, 79, 91, 96
10CAl VOIUME. ... 56, 67, 79, 80, 82, 85, 99
[0 (=4 v {0 (v =X PP PSPPI 100
M

MAONELIC CNBIGE. ... ettt e et e e et e eeaaans 87
MBGNELIC CIFCUIT. ... eete et ettt et et e et e et e e et e e eaeeenaaes 68
MAgNELiC FIEld ... e 7,17, 34, 68, 117-119
MBAGNELTIC FIUX. c. e e e e 81
MAGNELiC INAUCTTION. ... et 7,54, 117-8
MAGNELIC POLENTIAL .......ieei e e e e e e e e e aa e 35
MAGNELOGUBSISEALICS. ... oottt ettt ettt ettt e e et e e e et e e e eai e eean 126
MNBONELOSIALICS - ...+t eee et e et ettt ettt et e e et e et e et e e et e e et e e ea e e ean e e e aeanas 124
07071 {0 o SRR 11
Manifold With DOUNCAIY .........cooeeii e 16, 37
Y Y= | P 7,17, 130, 131
MaXWEll @QUALIONS........ccvueiei e e e e e e e e ae 115, 120-4, 133
MaXWEI MOAE! ... .o e 120
measurable Manifold.............oooiiii s 85
(001 S U PP 86
00151 R 9, 81, 85, 90, 94, 115
YT 1= o PP 116
MINKOWSKI IMEETIC ..ttt e e 122
MIXEd fiNItE Bl EMENES . ... e 124
MIXEA FOrMUIBLIONS. ... .ee e e e e 125
MODIUS SEIP. .ceeevieee e 18-22, 25-9, 34, 60-7, 77, 80, 84
107070 = PP 113, 131
MOdel (fOr CONAUCLION) ... eee et e e e e 129
07070 = 11 g 5P 113
MUItIVAIUE POLENLIAIS . ...oeeeee e e 34
N

I LS (0 17
NON degenerate (MAPPING) -« «euueeeneeee et e e et e e et e et e et e e et eeen e ean e ean e eenaeenaaes 49
NON O ENtaDIE FUNCIION . ......ui e 67
nonorientable Manifold ...........ooovviiiii i 23, 61, 62, 64, 65, 70
NOMMEAl AENVALIVE. .. .ceeie e e e e e e e e e aans 113
NOMME FIEI. ... e 63, 95
010 €0 0T R o PP PSPPI 97
normal trace (i E.)......ccuviiii 104
0]

object oriented ProgramMIMING. ... .. .c.. aeue ettt e e e e et e e e e e e ean e eenaeeenaee 133
07 [0 b {0 1 o [ PO P 57, 73
(oo 0 I {170 o1 T o RO PP PP NPT 70
(o0 (o o] o)1= o < TP 71
(o0 (o 1= .11 7= 10 VP 77

(670 [0 RV o 0 = [ TP 71



Differential Geometry for Electromagnetism 145

(@] [0 0= = TN 127, 131
OPErAtor d (IN E3). .. i 103
OPErAOr d (SUMFACIC) ... eevn ettt e e e e e ees 109
OPEALOr O (SUMTACIC). . eevn ettt ettt et et e e e e e eaes 109
(010 = (0 g o VAN (0 g ='o:[o) 1P 109
(0707 = o o | ] e 110
(olo /= (o] g 0 I Qo = o PRSP 110
OPEFEOr TOL (SUMBCIC). .. euu ittt 109
(o] o] | VPSPPI 37
(o 1= 1= o] o T PP 9, 60, 102
orientable (FUNCHION) ... .cvviii e 66, 67, 78, 79, 83
orientable (manifold) .........ccoooeviiii i 22, 34, 60, 64, 65, 67, 78, 79
(o ] g1z o L= o0 Y= 4T o T 70, 71
orientation.........oooveevveeiiiiiiieeeeeas 9, 54, 56, 59, 60, 64, 69, 77, 80, 104, 107, 116, 118
orientation (twisted DY the) ... 67, 72
O ENEALTION COVEITNG -t ettt ettt ettt ettt et e e et e et e e e e e ea e e et e eeaeeeens 65
orientations (8SSOCIALION OF) .......u.iiii e e e e e 66, 97
Lo 1= 910 I (o] o) = ) IS 71
(01070010117 [N 93, 94, 96
L0 S 1070 =0 S (| PR 8, 88
(o181 10 o FoTo [ (V7= v (o ) F PP 45
P

020006V o (o PSPPI 54
2 10112 PO PP 54
P-COVECLOr OF Ej..ovviiiiiiiiiiiiii 101
PAlAIS. . eaa s 83
PAIAMAONELIC. ...ttt ettt ettt et e e e e e e eaa s 120
ParaMELriC FEPIESENTAIONS. ... ... eieeeee e e e e e e e e e et e e e e e eaaeees 23
parity (Of @ PEMULALION) .. ...u.ieii e e e e e e e e e e 77
PArtial FUNCHION. .....ceeei et 1
"PErOTiCItY" CONTITIONS. ... .. eeeee ettt e e 36
PEMEBDITITY ...t e 35
POIMCAE. ... e e e e e et e e eaeens 99, 122, 131
oLl (Y = 00100 TSP 103
0107111 K 125
PrinCiple Of SUPEIPOSITION. .....ieeiti ettt e eeees 119
S0 [0 o PP PP PPPPT 99
010} L] F PRSPPI 29
PrOJECHIVE PLANE. ... ettt et 19, 20
PSEUAO-DOUNGEIY ... e 17
PSEUAO-MENITOI ... e 17
(055 W0 [0S o = PSPPSRI 87
PUIT-DBCK. ... e 96
Q

[0 0 {0 (= o | PP PPN 36
R

L5 016 PP 1
= T101= 107 | PRSPPI 75
FEflECtiON SYMIMELIES ......ee e e 37
=010 = g (10 gt 1o ) PSP 15
= 1= LTV =Y €S U o 1) 35
1= = o 127
L= 1= 1T VPSR 67
retrograde (OTENEAION) ... .. eee ettt e e et e e e et e e e e eanaees 59
FEIrOGraE TTAME. ... e ettt e e 59
=010 P 74, 76
RIEMBNNIAN. ..ttt e e ettt e e ettt e e e et e e e ent e eeee 93
Riemannian manifold .............ooiiiri e 90
L= 1010 = 1 1 T 85, 91



146 Alain Bossavit

S

SCAlA FIEI. . 39
Scalar ProduCt.........eveeeeieiiie e 2, 4,5, 85,90, 94, 95, 97, 99, 103, 112
S 1111 v 8
SECHION. ettt ettt ettt 26, 30, 31, 37, 46, 47, 50
S < 07z = o) [P 15
S = o F PSP PT RSP 91
S Lo 0 LU (PP 56
S 101 P 74
simplicial teSSEllation..........cvueiiiii e 74, 75, 77, 83
SIMPlICIAI MBPPING -« ettt e e e e e et e et e et e e e e eannas 74
SKEW-SYIMIMELTIC ... et et e e e et e e e e e e e e e e e e e et e e et e e eaneeaanaees 54, 101
LS00 o 13
S0 e s 64
SODOIEV SPACES. ... ettt 98-9
LS 7= o 1 1 T PSP 122
SANAArd AENSILY ... 9, 88, 89, 92, 95, 96, 100
Sz 00 < = (o] SR PP UPRPPRPPN 92
S 0] == P 81
SEOKES thEOrEIM ... 84, 88, 97, 110, 116, 118
SEFEAMEFUNCHION ... e e 69, 70
SErONG CUMTENES MO ...t 124
SEPUCEUNAl GFOUP .. ettt e e e e 29, 34, 46, 47, 65, 67
SUBTIVISION. .. e 75, 76, 78
ST = oY= =0 11 o | 54
ST = o [olo "o RO PP 110
SYMIMELIY ..ttt e 9, 17, 34, 35, 37, 54
SYMMELTY CEIL ... e 35
T

T-0MEGAMELNOU. ... 123
tangent (FUNCLIONS) ... ... e 40
162010 1= 0 W (s = w0 (== P 40, 44
tANGENt BUNIE. ..o 46
€210 S g =0 o] oo T PSP 47
tangent to the BOUNDANY............oiii i 45
TANOENE VECKON ..o 41
TANGENE VECTONS. ... 9, 24, 30, 45, 50, 77, 104, 105
tangential COMPONENT ..........iiit i e e e e e e aens 129
TANGENTIAL TrBCE. ... ve et 96
tangential trace (in By) ... 104
LI L0 = %00 =01 Lo o T 129
[0S 115 0 PP 53, 57
LI 11 (PSP 122
TON AIBGIAM ... 123, 124, 126, 127, 130
topological Manifold ..........coouuiiiiii 13
[ (070 o] [T | PP 15, 35, 63, 98
BOTUS .. 36
L= o T PP 96
L= [ 0] PP 39
EFANSITION .t 13
tranSItionN FUNCHION ........uii e e e e e 28
tranSVErsefield ... .c.uiie e 64, 66, 80, 81, 95-6
tHANQUIBDIE ... 74,75
EANGUIBLTION ... 75
AV S o I o o0 Y= o (o PP 72
EWISEEA P-FOMML e e e 72
EWISEEA TUNCEION. ... e e 69, 70, 71, 83, 87
LA S0 o o = o PP 71
EWISEEA VKON . ...ttt e s 71
LTS (= o A= o (o 1= Lo 72
U

U PP TP PP 43
PP 43
UNIT EBNGENT VECTOIS. ... e et e e e e e e e e e e e e e e e 109

UNIVErSEl COVEITNG. ettt ettt e et e e e e e e 33,34



Differential Geometry for Electromagnetism 147

\%
L= oo PP 5
(V= ot (o) g A TP 6
VECTOr BUNAIE ... e 29
VECLO FIEIO ..o e 46
(Y= o (0 (0o [ o 55, 100
vector-valued differential form ...........oooviiiiiii i 101
[V o w1 YA = o (o 39, 42, 44, 49
volume (non-vanishing N-form)............coooeiiiiiiiiii e, 56, 60, 77, 87, 93, 104
VOIUME PIrESEIVING MED. .. et eeeteeet et e e ettt e et e e et e et e et e e et e e et e e e e eannas 89
w
WEBK CUMTENES MOTE] ...t r e e e e e e e an s 123
WEOGE PFOTUCT ...ttt ettt ettt e e ettt e e ettt e e e e et e e e enbaaeeeens 56
{0z o 1 o TP 20
WV ITNEY . et et 19
WHITNEY FOMMIS. ... eeeeei e e e e e e e e e eans 8
WHItNEY'S COMPIEX ... eveceie e e e e e e e e e an s 130
z
Z (group Of relatiVe INtEOEIS). ... .ccuu ettt et e e e 34
D (SBEAISD "IA"). eee it 91
H(SPEAISO "SNAIP™) wevietiiii ettt 91
X (522 @S0 "CrOSS-PrOTUCE™) ... ettt e eeees 8, 100
A (Seeal S0 "WEHGE-PrOAUCE") .. et 55

0 0LV (| SN 54





