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Introduction

0.1  Prerequisite and notations

Beyond calculus, and a previous encounter with Maxwell equations, some
familiarity is assumed with what could be called "the functional point of view" in
mathematics:  that things like functions and vector fields can be considered as
points in some abstract space.  The reader should therefore know about distances,
norms, linear operators, integrable functions, Hilbert space, etc.  Some notions
about vector and affine spaces, elementary but undertaught, are recalled below.

Notations are classical, except perhaps for a few idiosyncrasies:

First, all functions are a priori partial:  if  f  goes from  X  to  Y, it is defined
on a part of  X, denoted  dom(f), its domain1, which in general is not all of  X.
The set of possible values  f(x), called here codomain of  f  (instead of the more
familiar range), is denoted  cod(f).  The set of all partial functions from  X  into  Y
is denoted  X → Y, and one will write

f ∈ X → Y

to assert that  f  is such a function (one will say that  f  is  "of type  X → Y").
"Injective" will refer to a function  f  such that a point of  cod(f)  is the image of a
single point of  dom(f).  Then its reciprocal  f−1 ∈ Y → X  is defined,  dom(f−1) =
cod(f), and  cod(f−1) = dom(f).  "Mapping" and "function" will be synonymous.  If
two functions have the same expression by formulas but different domains, they are
deemed distinct.

Next, a construct like

(1) x → E(x),

where  E  is a  Y-valued expression depending on  x, denotes a function  f  of type
X → Y.  Since (1) and  f  then denote the same object of  X → Y, one will feel

1  Italics are used either for emphasis, or to warn that a definition of the italicized word is implied or suggested by
the context.  The distinction between both uses should be easy in all cases.

authorized to write



2 Alain Bossavit       

f = x → E(x)

as a definition of  f.  This is non-ambiguous if  dom(f) = X.  (Otherwise, one may
write, according to the same principle,

f = x ∈ A → E(x),

where  A  is a subset of  X, which is then  dom(f).  But this is heavy notation, and
we shall try to avoid it.)  As an example of the use of this formalism, take the
following example:  The potential of a charge distribution  q  can be considered as a
function of position  x,

ϕ = x → (4π)−1∫ q(y) |x − y|−1 dy,

but as well (and the point of view is then quite different) as an operator which
associates  ϕ  with  q.  If  G  is this operator, one may define it by writing

 G = q → (x → (4π)−1∫ q(y) |x − y|−1 dy).

Provided some precautions are taken, like being generous with parentheses when
there is risk of ambiguity, this notation is very helpful.

Last, one will use  E3, or simply  E, to denote the Euclidean three-dimensional
affine space, and the dot " · " for the scalar product of two vectors of the associated
vector space (more on these concepts in Section 0.2).  A field of normals is always
denoted  n.  Differentiation is always denoted with  ∂, never with a prime.  All
vector spaces will be real, i.e., with  IR  as underlying field.  One uses  L2(D)  for
the Hilbert space of square integrable real functions on a domain  D  of space,  
(f, g) = ∫D f g = ∫D f(x) g(x) dx  for the scalar product, and the norm in this space is
| f | = (f, f)1/2 = [∫D |f(x)|2 dx]1/2.

 One has tried to adopt a geometrical style, that would avoid confusion
between abstract objects and their various concrete representations, and a few
words of warning about this may perhaps be helpful.  If  v  is a vector, belonging to
a vector space  Vn  of dimension  n, the list  {v1, . . .,v

n}  of its components in a
given basis, denoted  v, is not the same object as  v:  v  is also a vector, but one
which belongs to   IRn  (the Cartesian product of  IR  by itself,  n times), and though
it represents  v, it should not be confused with it.  Indeed, if the basis is changed,  v
will be represented by a different element of  IRn.  In the same spirit, one
distinguishes between vectors, elements of a vector space  Vn, and covectors, ele-
ments of its dual  Vn*.  A covector is thus a function on  Vn, linear, and real-valued.
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One well knows that a linear function  c ∈ Vn → IR  can be represented, after
having selected a basis in  Vn, by a vector of  IRn, since

(2) c(u) = Σ i = 1, ..., n ci v
i ,

thus  c = {c1, . . ., cn}  does represent  c.  But one should not confuse  c  with  c, or
with the vector of  Vn  represented by  c.  In other words, if the choice of a basis
allows one, thanks to (2), to establish a bijection between  Vn  and  Vn*, it does not
warrant their identification:  Vn  and  Vn*  are isomorphic, as vector spaces, but
nothing beyond that, and the isomorphism depends on the basis.  It is not, as one
says, "canonical", i.e., determined by the sole vector space structure of  Vn.

The distinction between vectors and covectors is rarely stressed, even less
often illustrated by graphical means.  Burke [26] has promoted a very natural and
not widely enough known convention to this effect (Fig. 1), which seems to come
from Schouten [88].  He represents covectors by two parallel straightlines (two
parallel planes, in dimension  3), one of them through the origin, the other one a bit
farther away, capped with an arrowhead.  These two lines (or planes) are meant to
represent two level lines (or surfaces) of the function  c:  the one through the origin
is the locus of the  v's  such that  c(v) = 0,  the other one of the  v's  such that  c(v)
= 1.  The closer these two level sets, the larger the covector (beware!).  For
vectors, Burke uses arrows, as we all do.

This convention has many good points for it.  First, the action of covector  c
on vector  v  can be read off the picture (Fig. 2):  it's a ratio of two lengths
measured along the same line, a well defined number (independent of the direction
of this line), which makes sense without any reference to notions like distance, or
angle, which have no meaning in  Vn.  Next, it provides a very natural graphical
rendering of the notion of "tangent" covector to a surface, which is ubiquitous in
physics, where displacements are generally vectors, and forces, covectors.  The
electric field, for instance, is rightfully represented by a covector at each point of
space, since it makes itself being felt by the force it exerts on charged particles.
This covector is tangent to conductive surfaces (Fig. 3):  this property characterizes
such surfaces.  Remark the invariance of Figs. 2 and 3 with respect to affine
transformations:  whatever the position of your eye, you see covectors as tangent
to the surface (whereas the right angle between a surface and its normal does not
project as a right angle in general).
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Figure 1.  Vectors and covectors according to Burke [26].  On the right, a
covector in spatial dimension  3.
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Figure 2. The effect of covector  c  on vector  v, that is  c(v), is the ratio  b/a.
(This ratio is an affine entity, which does not need a metric in order to be
defined.)  Cf. [26, 27].

When a scalar product is defined on  Vn, one may pair vectors and covectors
in a more canonical way.  One will denote the scalar product in  Vn  with a dot.
Let thus

 ·  ∈ Vn × Vn → IR

be such a scalar product, i.e., a bilinear, symmetric function, such that  v · v > 0 ⇔
v ≠ 0.  If  c  is a covector, there exists a unique vector  uc  of  Vn  such that

 c(v) = uc · v.

Thus one may define an electric field "vector", a force "vector", etc.  But this
is taking advantage of an additional structure on  Vn  (the one conferred on it by
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the operation   · ) which may not exist, or be quite fortuitous when it does exist.
For instance, the position of a pendulum can be specified by two angles  θ1  and  θ2

(Fig. 4).  Let  δθ = {δθ1, δθ2}  be a displacement of its bob and  δθ'  another
displacement.  Which physical meaning can be attributed to the scalar product  
δθ1 δθ'1 + δθ2 δθ'2 ?  None whatsoever.  On the contrary, the expression  c1 δθ1 +
c2 δθ2  can be interpreted as the effect of a covector  c  on the displacement  δθ
(Exercise 1: what is the physical meaning of the  cis?  and of the full expression?).
With the latter scalar product, one may always associate a vector with  c.  But what
sense would it make to identify something which physically is a torque with
something which looks rather like an angle, or the variation of an angle?

E

Figure 3.  The "electric field" covector at a few points of the space lying
between an electrode  E  at potential 1 and the ground.

So we shall not confuse  Vn  with its dual.  However, there are cases in which
a distinguished scalar product exists on  Vn.  One then calls Euclidean space of
dimension  n  the pair  {Vn, · }, i.e.,  Vn  endowed with the structure which stems
from this scalar product (including the notions of distance, angle, area, volume,
etc.), and one reserves the notation  En  for it.  Ordinary space is  E3, as we said
earlier.

We shall not confuse vector and affine space  either.  An affine space (whose
elements are then called "points") is a vector space "deprived from its origin", so
that one cannot add two points, or multiply a point by a scalar.  But one can still
consider the midpoint of the segment linking two points, and more generally the
barycenter w.r.t. to real weighting coefficients, and take the ratio  b/a  of Fig. 2.
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The difference of two points is a vector (belonging to a vector space which is said
to be associated with the affine space), and this is what gives meaning to

(3)  x = Σ i = 0, ..., n λ
i
 xi 

 
where the  xis  are points, and  Σ i λ

i = 1.  For (3) reads as

Σ i = 0, ..., n λ
i (xi − x) = 0,

meaning that  x  is the barycenter of the  xis  with weights  λi.  The set of points of
the form (3) is what is called an affine subspace.  If it happens to be the whole
space, and if all points  xi  are necessary for this to be true,  n  is the dimension of
the space.  In that case, the  λis  of (3), considered as functions of  x, are the bary-
centric coordinates of  x  in the basis of the  xis.  A function (of the variable  x)
which is linear with respect to the barycentric coordinates  of  x, in some basis, is
said to be affine.  (This property then holds in any basis.)

θ1

θ2

Figure 4.  Configuration parameters for a pendulum.

No particular notation has been reserved for affine spaces:  the context (the
fact that we have been speaking of points or of vectors) should be enough to tell
whether we mean the affine or the vector space.  Actually, when working in  Vn  or
En, both structures are often needed simultaneously, for physics needs not only
vectors and covectors, but "bound vectors", which are pairs consisting of a point  x
and a vector  v  (one will then say, with some abuse, that  v  is a "vector at  x").
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0.2  Why study differential geometry ?

While the intrusion of differential geometry in eddy-currents theory is a recent
phenomenon [7, 33, 50, 56], Electromagnetism in the large has for long made a
substantial use of its concepts, especially differential forms (cf. e.g., [27], [89]).  This
modern point of view was anticipated by Maxwell himself [70], and by Kelvin [95].
Moreover, physics as a whole, nowadays, undergoes geometrization, and in some
areas, like mechanics of the continua, the use of differential geometry is much more
intensive than what we shall try to foster here (cf., e.g., [1], [68], [39]).

But eddy-currents theory, and their computation, are parts of engineering
science, and the latter seems to be less concerned, up to now, by this geometrizing
trend.  One easily understands why.  Engineering sciences are less interested in
understanding phenomena than in predicting them, in precise quantitative terms.
Hence they require computation, which implies a representation of abstract
geometric objects with the help of numbers.  Measuring a magnetic field about a
point  x , for instance, will yield three numbers, corresponding to the intensity of
the field (or rather, of the magnetic induction) along three directions.  These three
numbers being all one needs to know about this induction (and its effects), the
temptation is strong to identify them with the induction at  x  (call it  b(x)).  We
may well argue that they are only a particular concrete representation of  b(x), that
this object  b(x)  is of a very different nature than a mere triple of numbers, that it
is, as we shall see, a  "2-covector".  Such a discourse has no urgent appeal to an
engineer, who has other and more pressing things to care about.  Only the proof
that this new viewpoint brings computational advantages can divert the attention of
engineers and convince them to take the time to study it.

There is a historical precedent:  vector calculus.  Strange as it may appear
today, it is only during the Fifties that notions like "vector space", "linear transfor-
mation", etc., have become commonplace in engineering science.  (In France, they
did not enter the curricula of so-called "preparatory classes", where candidates to
engineering schools are trained, before about 1960.)  When this happened, it was
clearly due to the realization of the power of the matrix formalism as a computing
tool (enhanced, as it then was, by electronic computers), not to some late
recognition of the conceptual simplification brought into science by the notions of
vectors and of linearity in general, which was obvious since the end of 19th
century.

Time does marvels.  One is so fond of vectors today that students protest
when you strip them of these so pretty arrows, straight or curved as the case may
be, and that some Journals set them in a special face (and insist on your compliance
to such conventions).
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One could jeer for pages on such inertia phenomena, observe that physicists
have not yet fully adopted Schwartz's distributions, a tool custom-made to fit their
needs, or quote from Kron, persecuted all his life by international institutions of
electric science and their mandarins, who maliciously tried to force him to substitute
"matrix" for "tensor" everywhere in his papers [60].  That nowadays, among
eddy-current specialists, one still prefers to see  h  and  b, for instance, as vector
fields and not as differential forms of degree  1  and  2  respectively, should be
blamed on this kind of inertia.  But this is besides the point.  If we are right in
thinking that novel mathematical objects enter the toolkit of engineers only when
they lend themselves to computation, we must consider whether things are ripe,
from this point of view, as far as differential forms are concerned.

The answer is not obvious.  On the one hand, yes, there exists a calculus based
on differential forms.  The classical formulas—Green, Ostrogradskii, etc.—, or
vector analysis identities like  rot rot = grad div − ∆, all have much simpler expres-
sions in terms of differential forms.  From this point of view, we do have there a
workable computing tool, even better than vector analysis.  The understandable
objection that "computers can perhaps understand real numbers, but not differential
forms" does not hold water:  one may code numerical methods based on
differential geometric concepts, thanks to elementary objects (in both senses:
mathematical objects and program objects) called Whitney forms [104], which are
to differential forms what shape-functions are to functions in finite element theory
[6].

But on the other hand, no, differential forms cannot exclude vector fields from
current usage.  Consider, for instance, the two Green's formulas1

(4) ∫D div b  ϕ + ∫D b · grad ϕ = ∫∂D n · b  ϕ,

(5) ∫D rot h · a − ∫D h · rot a = ∫∂D n × h · a.

They are special cases of a single formula, which applies in dimension  n  for all
integers  p  from  1  to  n − 1. Here  n = 3, so there are only two possible values of
p, hence the two above formulas.  But for this reason, there is also a symmetry, a
duality between the cases  p = 1  and  p = 2, which are particular to dimension  3,
and which play an essential rôle.  Quite often, to be "forced" by conventional
vector notation to write twice the "same" formula will be illuminating, by emphasiz-
ing this duality.  One may find there a good reason to stick with the "old" notations

1  I find convenient to call them that, but it's an abuse (cf. the index of [50]).  But a mild one, since there are
already so many Green's formulas around . . .

rot,  div, etc.
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Actually, as we shall see in Chap. 5, all differential forms in dimension  3  are
representable either by functions or by vector fields.  (In dimension  4, things
already go differently:  the electromagnetic field tensor  Fij  is a form of degree  2,
and it has no representation as a vector field in general.)  Thus, everything that can
be done with forms can be done with vector fields as well, and often more
simply1.  The advantage of differential forms, in this context, is that they help
understand what one is doing:  They explain some formal analogies (like between
(4) and (5) above) which otherwise would look fortuitous, they suggest interesting
symmetries.

  So:  the conceptual interest of differential forms is certain, but their benefits to
computation are not so obvious if one does not go beyond dimension  3.

A reasonable stand at the present time could therefore be:  talk vectors, work
with functions and vector fields, but while being fully aware of their geometric
nature as differential forms, and being able to make it explicit when needed, espe-
cially when such a move helps understand symmetries and analogies.  The present
lecture notes should be enough from this point of view, even if they fall short from
what should be requested of a development which would frankly rely on differential
geometry2.  (There is no shortage, anyway, of texts of such a nature [32, 33, 50,
73, 89, 97, 103, etc.].)

The first three Chapters proceed along the same path as most treatises (cf.,
e.g., [62]):  notion of manifold, construction of manifolds, tangent vectors, tangent
space and its dual, differential forms, orientation and integration.  (More space than
usual, however, is devoted to orientation-related notions:  "twisted" differential
forms, etc.)  All this can be done without introducing more structure than that of
differentiable manifold.  The structures added in Chap. 4:  "standard density",
"metric", then allow us to make the connection with standard objects of vector
analysis.  One thus arrives, in Chap. 5, to three-dimensional Euclidean space, where
all the familiar notions:  operators  grad,  rot,  div, Green formulas, etc., are waiting
to be revisited.

We do however acknowledge the right to be reluctant to follow this classical
itinerary, which is unavoidably wearing, even if most mathematical technicalities are
left aside, as we tried to do.  It's a fact, a bit paradoxical but inherent in the nature

1  But not always:  in some field-computation problems in spatially periodic structures, one meets exotic
three-dimensional manifolds, non orientable, on which the "translation" in terms of vector fields may become
exacting.

2  The most salient omission is the "Lie derivative", indispensable to the student of electromagnetic forces.

of mathematical apprenticeship, that the richer the structures, the easier they are to
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understand and to handle:  E3  is subjectively "simpler" than the underlying three-
dimensional manifold, and closer to our intuition.  For the reader who would
therefore prefer to directly embark on Chap. 5, one has tried to make it logically
independent.  In this chapter, one does not forgo the project to emphasize
distinctions which are blurred by elementary geometry:  vectors vs. covectors, etc.,
quite the contrary.  But thanks to the presence of the strong structures of  E3, the
essential definitions of the first four chapters can be recast in much simpler form.

A possible reading strategy may thus consist in beginning with Chap. 5.  One
will find there frequent cross-referencing to Chaps. 1 to 4, which one will probably
want to follow up, in order to absorb this material on a piecemeal basis.  The reader
doing so is however advised to neglect, at first reading, all mentions of "twisted
forms" and of orientation-related problems.
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Chapter 1

Manifolds

A manifold is a set equipped with some structure which makes it look like  IRn  in
the vicinity of any of its points:  a closed surface, for instance, looks like  IR2

locally, the set of all possible rotations of a solid with respect to one of its points
locally looks like  IR3, etc.

The concept of manifold is intended to model the somewhat fuzzy idea of
"multi-dimensional continuum", as encountered in physics.  The Earth surface, for
instance (from the point of view of geodesy) is a bidimensional continuum:  two
coordinates are needed to specify a location.  The variety of colors that a normal
human eye can perceive is, it seems, a three-dimensional continuum.  The set of all
possible configurations of a car, from the point of view of the driver trying to enter
a tight parking slot, is a continuum in four dimensions:  two for the position of the
centre of the car, one for its orientation, one for the angle of the front wheels.  Etc.
The mathematical concept of manifold is designed to serve in the modelling of
situations where such continua play a rôle.

1.1  Definitions

For this, it must reflect the intuitive image we have of such continua:  besides
the possibility of specifying points by giving their coordinates, which will be taken
into account by the notion of chart, the concept of manifold should incorporate
some flavor of homogeneity and regularity.  For instance, the sets pictured in Fig. 5
are not manifolds, for lack of homogeneity.  The surface of a cube, for lack of
regularity at the corners, is a "topological" manifold, not a "differentiable" one.  The
definition will either discard them, or make the distinction precise.

1.1.1  Differentiable manifolds

Definition 1 (Fig. 6):  A manifold of dimension  n  is the assembly of the following
elements:  1°-  a set  X,  2°- a family of functions  ψα, of type  X → IRn, the
so-called charts (their collection, {ψα :  α ∈ A},  being called the atlas), with the
following properties:
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(a)  cod(ψα) is a connected open set of  IRn  (non empty),

(b)  ψα  is injective,

(c)  X  is the set-union of the  dom(ψα),

(d)  The  ψαs  are "compatible" (as will be explained).

A
A

Figure 5.  The union of two planes, or of a half-line and a plane, is not a
manifold:  no neighborhood of  A  looks like a chunk of  IRn, whatever  n.
("Neighborhood" should here be understood in the sense of the natural
topology of these sets, the one induced by  IR3.)

If  X  is not empty, there is at least one chart, according to point  (c).  A single
chart may sometimes be enough:  if for instance  X  is a vector space, and if  ψ(x)
= {x1, . . ., x

n}, where the  xi  are the components of the vector  x  in some frame of
basis vectors, then  ψ  turns  X  into a manifold of dimension  n  (the one dubbed
Vn  in the Introduction).  Similarly, if  X  is an affine space,  n  barycentric
coordinates (out of  n + 1) constitute a chart.  The charts are what physicists call
"reference frame", or "system of coordinates".

When one looks at two different charts in a real-life atlas, for instance those of
Europe and of former USSR, one can tell them as "compatible":  the Russia of
both charts is the same territory, only with different scales, shapes and orientations.
Condition  (d)  is crafted in order to grasp this notion of compatibility:  Let us set,
for two charts  α  and  β, with overlapping domains,
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ψαβ = ψα dom(ψβ)
, ψβα = ψβ dom(ψα),

i.e., for each of these charts, its restriction to the domain of the other one, and

(6) γαβ = ψβα  ψαβ
−1.

Then the transition function  γαβ  is of type  IRn → IRn  (its domain is a part of
cod(ψα), cf. Fig. 7) and its continuity, its differentiability, etc., make sense (whereas
such notions are meaningless as regards the charts themselves).  According to the
geographical analogy,  γαβ  should at least be continuous.  Hence the following
complement:

Definition 1 (continued):  The  ψα  are Ck-compatible, meaning that, for some
k ≥ 0, the  γαβ  of (6) are all of class  Ck  (i.e., with open domain and  k  times
continuously differentiable).

dom(    )

X
ψ
β

ψ
α

ψ
β

ψ
α

dom(    )

IR
2

IR
2

ψ
β

ψ
αcod(    )

cod(    )

Figure 6.  Concept of manifold.

If  k = 0, we are dealing with a topological manifold, and with a differentiable
manifold if  k ≥ 1.  The required differentiability may depend on the situation.  We
shall agree once and for all that all our manifolds are smooth, i.e., of class  Ck  for all
k, or as one says,  C∞.  (Smooth also refers to the transition functions themselves.
Note that one might be interested in other properties of these functions:  their
linearity, their analyticity, etc., hence as many specialized notions of manifolds.)
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cod(      )

cod(      )

ψ
β

ψαβ

ψ
α

ψβα

ψαβ
ψβα ψαβ

− 1

ψ αβ

dom(      )ψαβ

dom(      )ψβα

Figure 7.  Compatibility of two charts.

0 x

y

ψ
1

ψ
2

IR

IR X

Figure 8.  By orthogonal projection of  X  (the set-union of two half-axes)
onto non parallel lines of the plane, one gets charts of  X  (each with domain
X), which are not  C1-compatible.

Exercise 2:  Consider the manifold made of the subset  {{x, y} :  (x =  0  and  y ≥ 0)  or  (x ≥  0
and  y = 0)}  of the plane  IR2, with the two charts suggested by Fig. 8.  Show that it is of class  C0,
but no more.  Discuss the above reference to the surface of a cube.
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Thus  X, which, stripped of its charts, would be an amorphous set, inherits
from them a very rich structure.  For instance,  X  has a topology, the one for
which open sets are the preimages of the open sets of  IRn  under the  ψα  (they do
satisfy the axioms for open sets, thanks to the compatibility condition).  So one is
entitled to speak of a continuous function from one manifold into another one, of a
homeomorphism, etc.  But there is more:  If  X  and  Y  are two manifolds of class
C1, of respective dimensions  m  and  n, one may speak of the differentiability of a
function  f  of type  X → Y:  one refers for this to the maps of type  IRm → IRn

obtained by composition of  f  with appropriate charts.  (One will call regular a
function which can be differentiated indefinitely1.)  Two manifolds are diffeomor-
phic if they admit of a one-to-one mapping, differentiable in both directions.  Then,
their dimensions are the same.  (Later, we shall see what the derivative of a
function of type  X → Y  is.)

This structure, however, does not allow one to talk about a "distance" on  X.
If one has a need for this, one must endow  X  with additional structure, as we shall
do later.  It is not sufficient either to decide whether  X  has the Hausdorff separa-
tion property, i.e., whether non-intersecting neighborhoods can always be found
around two distinct points.  This is an independent hypothesis, which is generally
understood:  all our manifolds will be Hausdorff, unless this is explicitly denied.
Similarly,  X  has no reason to be separable (i.e., to possess an enumerable set of
open sets from which all open sets can be obtained by union operations), but all our
manifolds will be supposed to have this property.

Exercise 3.  Under which conditions is a manifold connected?

To which extent does this structure on  X, as provided by charts, depend on
these charts?  The geographical analogy, again, suggests the answer.  Consider two
atlases of Britain,  A1  and  A2:  one can tell they chart the same territory from the
fact that any chart from the first one is compatible with any chart from the second
one (when their domains do overlap), which allows one to merge the two atlases as
a single one.  One will therefore say that two manifolds  {X, A1}  and  {X, A2}, on
the same set  X, are equivalent if all charts of  A1  are compatible with all those of
A2.  This suggests that the mathematical objects we really want, i.e., those which
can serve as models for the intuitive idea about continua we started from, are in
fact not the manifolds in the somewhat narrow sense of Def. 1, but their equiva-
lence classes with respect to the relation just defined.  Each of these classes contains
a distinguished representative, the atlas of which is the collection of all mutually

1  or at least, as many times as required by the situation.

compatible charts.  This atlas is said to be complete (or maximal).  So when we



16 Alain Bossavit       

shall mention a manifold, we shall be referring to the structure conferred on set  X
by the complete atlas (even if as few as one or two charts may be enough to
describe it, and to perform computations when necessary).

1.1.2  Manifolds with boundary

Now, an objection.  With the previous definition, all points of a manifold are similar,
to the extent that their neighborhoods all look, in the precise sense we just
elaborated, like a part of  IRn.  This is not always satisfactory.  For instance, if a car
is blocked against the kerb, or if its steering wheel is locked, the car is clearly "at
the boundary" of its configuration set:  the neighborhood of such a configuration
does not look like an open set of  IR4.  Many multidimensional continua do have, in
this way, a boundary.  The corresponding mathematical notion is that of manifold
with boundary, which is obtained by allowing  X  to look like a closed half-space of
IRn, instead of  IRn, in the neighborhood of some points.  Fig. 9 should be enough to
convey the idea (and one may refer to [46] or [84], for instance, for precise
definitions).  A manifold in the former narrow sense (i.e., one without boundary)
then becomes a special case of manifold with boundary.  (In the sequel we shall
omit the words "with boundary", unless this is required for the sake of clarity.)

X

IR
2

cod(   )ψ

ψ

ψdom(   )

ψ(x)

Figure 9.  By convention, heavy lines correspond to the boundary, and thin
lines are not part of  X.

Let us concede that even this broadened definition is not completely
satisfactory, for it does not discriminate between various kinds of boundary points:
edges, corners, etc.  There does not seem to have been much interest in
Mathematics in the task of working out the concepts necessary to deal with such
fine distinctions, but it could be done if really needed (cf., e.g., the concepts of
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"pseudo-manifold" and "pseudo-boundary" in [90], vol. 2, pp. 148 and 158), and
we shall rest on this.

Exercise 4:  A color is often specified by giving three intensities of primary colors.  In another
system, one makes use of three variables, called luminance, hue and saturation.  Show that these
systems can be understood as two charts on the same "manifold of colors".  Describe it.  Allow for
the possibility of continuously going from red to purple by two essentially different routes.  (For
an account of the "theories of color", cf. [40], which refers to the classics:  Aristotle, Newton,
Gœthe, Grassmann, Maxwell . . .  Cf. [47] for a precise description  of one of these "theories", i.e.,
from the present point of view, one of the charts which have been proposed for the colors
manifold.)

Exercise 5:  Normal vectors (of all lengths) to a surface form a manifold (not to be confused with
the set-union of lines normal to the surface!).  Provide an atlas for it.

Exercise 6:  In a given plane, the set of all equilateral triangles of unit side-length has a manifold
structure.  Describe it (dimension?  charts?  other, diffeomorphic manifold(s)?).

Exercise 7:  Give the set of all triangles inscribed in the unit circle, non degenerated, and isosceles,
a manifold structure.

Which manifolds can one come across with in numerical electrotechnics?  First
of all, regions on which one may have to compute fields:  parts of  E, open or
closed, or (in the case of, e.g., the computation of eddy-currents on thin conductive
sheets) surfaces embedded in  E, with or without a boundary.  But that is not the
end of it.  When one wants to compute a spatially periodical field, as e.g., in an
alternator, the computational domain can be reduced to some fraction of space, that
may be called the "symmetry cell".  But the underlying manifold is not this part of
space, it is what is obtained by suitable identification of opposite sides of the
symmetry cell (more about this later, Section 1.4.2).  Finally, other kinds of
continua than "spatial" ones (as were all the previous ones) may claim consider-
ation.  For instance, when one measures a magnetic field in some spatial region, one
is really roaming inside a manifold of dimension six (three for the position  x, three
for  b(x), so that each measurement result is described by six parameters).

We shall therefore examine how such non-elementary manifolds can be
constructed from simpler manifolds.  There are basically two ideas:  1°-  gluing,
2°-  forming products, which find their synthesis in the notion of "fibered
manifold", or "bundle".
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1.2  Construction of manifolds:  gluing

To illustrate the notion of gluing, let us start from a manifold (with boundary)
like the unit square  C 2  of Fig. 10.  Let us introduce the relation

A ~ A'  if  (y(A') = 1,  y(A) =  0  and  x(A) = x(A')).  

By assuming that  A ~ A  and that  A' ~ A  if  A ~ A', one obtains an equivalence
relation over C 2.  Let  C  be the set of equivalence classes, or quotient of  C 2  with
respect to this relation.  One will easily see how to provide  C  with charts in order
to turn it into a manifold (with boundary) of dimension 2 (Exercise 8: describe
such a chart in the neighborhood of the point  A ≡ A'  of  C).  Clearly, there is a
surjection  f ∈ C 2 → C, with  f(A) = f(A'), which respects the manifold structure
except at points like  A  or  A'.

The upper and lower edges of  C 2, can be glued in another way, the relation
then being

A ~ A'  if  (y(A') = 1  and  y(A) = 0  and  x(A) = 1 − x(A')).  

The manifold thus obtained is of course something else entirely.  (It's the Möbius
strip, denoted  MS.)

1

0 1

y

A'

A

C2

A

A'

C

ψ

ψ

f

Figure 10.  Manifold  C  obtained by identification of the upper side and
lower side of a square.



Differential Geometry for Electromagnetism 19     

1

0 1 x

y

C2

A

A'

A' A

C

Figure 11.  Möbius strip obtained by identifying upper side and lower side
after reversal of one of these.

A warning, at this stage:  Fig. 10 (or Fig. 11) shows more than the manifold  C
(or  MS), it shows this manifold as embedded in space  E, thanks to a perspective
view.  Let it be well understood that this is a tribute, not mandatory on principle
grounds, to the taste of many of us for the visualization, plane or spatial, of
mathematical objects.  A manifold should actually be conceived in abstracto, for
itself, not as a part of some "ambient space".  For instance, let us think of the
manifold each point of which is a line of  E3  passing through the origin.  This is a
two-dimensional manifold which can be conceived without any reference to any of
its possible representations as a surface immersed in  E3.  Its name is projective
plane.  Similarly, Klein' bottle of Fig. 12 is a quite simple manifold of dimension  2.
What makes the quaint charm of such geometric objects is not their intrinsic
structure as manifolds but the complexity of their representations in  E3:  by playing
with scissors and a Möbius strip, one does not actually study the manifold  MS  but
rather its various possible immersions into  E3.  (Cf. [8, 25, 41, 54, 81], among
others, for games of this kind, sometimes actually quite serious [91].)  In fact,
according to a general result due to Whitney, a separable manifold of dimension  n
can always be embedded into  IR2n+1 (the words "embed", "immerse", etc., have a
precise meaning, that will be disclosed later:  cf. Def. 9, p. 63).  But there is no
particular physical interpretation to this encompassing manifold.  For instance, the
configuration space of a double pendulum oscillating in a given vertical plane is the
surface of a torus, but the three-dimensional space in which one can visualize this
torus is conceptually irrelevant:  it has no particular physical meaning.

Exercise 9:  What is the configuration space of the pendulum of Fig. 4 (p. 6)?

Exercise 10:  What is the configuration manifold of a car with locked front-wheels  1°-  on dry
ground?  2°-  on ice?
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1

0 1 x

y

C2

A

A'

B B'

Figure 12.  Klein bottle.  The equivalence relation  A ~ A'  is defined by
((y(A) = (0 or 1) and x(A) + x(A') = 1) or (x(A) = (0 or 1) and y(A) = y(A'))).

Exercise 11:  Weld two by two the edges of a square in order to get a torus.

Exercise 12:  Describe the projective plane with three charts.  Can two charts be enough?

Exercise 13:  Make a projective plane out of a disk, by gluing the boundary onto itself.  Try to
draw the result as immersed in  E3.

Exercise 14:  Weld two by two the edges of a square in order to get a projective plane.

Exercise 15:  Show how to glue two Möbius strips into a Klein bottle.

Our gluing moves, so far, yielded manifolds, but this is not always so.  For
instance, let us start from  IR  and let us identify  x = 1  with  y = −1  by putting
them into the same equivalence class (each of the remaining point being a class by
itself).  One gets a topological space this way, but not a manifold, for the
neighborhoods of the welding point cannot be assimilated to neighborhoods in  IR
(Fig. 13).  Same thing about the equivalence relation  x ~ y  ⇔  (|x| ≥ 1  and  y =
− x).  There is no simple general criterion, aside from the definition itself, saying
whether the result will be a manifold or not:  one has to check that the charts
around points to be identified do match properly.  (See [46] for a few tempering
examples.)

So far we have made our gluing job by identifying two parts of the same
manifold.  One may as well work with two manifolds  X  and  Y  by identifying a
part  A  of  X  and a part  B  of  Y, provided there exists an injective mapping
f ∈ X → Y, with  dom(f) = A  and  cod(f) = B.  One first takes the manifold
X ∪ Y  (over the set  X ∪ Y, with the union of the two atlases for its atlas), then
the relation  y = f(x)  between pairs of points of  X ∪ Y, and one goes on as above.
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−1 1

− x xy−1 1

Figure 13.  Ways of gluing which do not yield manifolds

One may for instance glue two half-planes (Fig. 14) and get a plane.  Fig. 14
represents an injection of it into space, which is not an embedding (not an
immersion either).  Such situations are not to be excluded in physical applications:
suppose one has to compute direct currents (not induced currents) on a conductor
made out of two conductive sheets welded together, as in Fig. 14.  The geometric
singularity at the junction of the two sheets, being physically irrelevant, should not
be a concern in the mathematical modelling process.  It all goes as if one had to
work on the manifold of dimension  2  obtained by (mathematical) gluing, without
any regard to which way it is injected into  E.

 

Figure 14.

In the same spirit, Fig. 15 represents a "wild" injection into  E  of a manifold
with boundary of dimension  2  obtained quite regularly by gluing.  One has taken
a rectangle (manifold with boundary), removed two disks (hence, again, a manifold
with boundary), then glued the edges of the holes together in the way indicated by
the figure (instead of the other possible one).  One will check (by describing a chart
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around a point of the edge of the hole) that this procedure does yield a manifold.
The latter is not orientable (a concept on which we shall have more to say), just like
a Möbius strip, but it's not  MS.  (It's a Klein bottle minus a disk.)  There, again,
one may very well have to compute currents on a contraption like that of Fig. 15,
for instance in order to determine its ohmic resistance.

Figure 15.

As a slightly more complex variation, Fig. 16 shows a manifold of dimension
2  obtained by gluing a cylinder (the manifold with boundary of Fig. 10) to the
edges of two holes left by the removal of two disks from a rectangle.  One may
easily imagine an eddy-currents problem on such a surface, or on an even more
complex one.  In all these cases, the domain of computation is therefore a manifold
of dimension  2  with boundary, not necessarily orientable.

Such manifold constructions are not made in the mind only.  When one
designs a workpiece with the help of a CAD system, one is actually charting some
manifold.  There are three differences, however.  First (the less consequential one)
the charts "go the other way", in general:  from a part of  IR3  to the manifold to be
constructed.  Next, objects constructed this way are not always manifolds, for some
of the "monsters" previously barred by the definition (cf. Fig. 5) might be relevant,
and should be describable by the system.  The right mathematical concept does
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exist:  that of "cell complex" (cf. [44], p. 134, or [53], Chap. 7, or [3], or [84]), but
such complexes are more general than manifolds.  Last, these software systems are
designed to describe manifolds embedded in three-space only, and they don't take
the concept of atlas into account:  each part of the workpiece is described by a
single chart.  One may view these characteristics as weaknesses of such systems,
and think that some differential geometry could help in improving them.

Figure 16.  Non orientable surface obtained by surgical procedures:
dissecting, rearranging, gluing back...

The point of view of "inverted charts" (let's say, more elegantly, of
"parametric representations") can be systematized.  Let  U  and  V  be two open
sets of  IRn, and  f ∈ U → V  a bijection (between  dom(f) ⊂ U  and  cod(f) ⊂ V),
differentiable in both directions.  By gluing according to  f, one gets a manifold.
This can be generalised to a family of open sets  Ui  and to "gluing functions"
fij ∈ Ui → Vj, which must be compatible, in a sense which can easily be made
precise.  This does correspond well to the idea of a continuum which locally looks
like  IRn, since it was built by patching up pieces of  IRn.  One could give of
manifolds a definition different from Def. 1 (although equivalent) by working from
this point of view, which can be qualified as constructive, or synthetic:  one builds a
manifold by patching pieces together, whereas the point of view of Def. 1 was
rather analytic:  given a manifold, one scans it piece by piece, with the help of
charts.

Exercise 16:  Fig. 17 describes two manifolds of dimension 1 obtained by gluing two copies of
the segment  ]0, 2[.  One of them is not Hausdorff.  Why?  (See [9] for other examples of
"unreasonable" manifolds.)
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Figure 17. Gluing according to the bijections  x ∈ ]1,2[ → x  above and
x ∈ ]1,2[ → x − 1  below

Exercise 17:  Show that by gluing two copies of  IRn  according to a bijection  f  between two
open sets  U  and  V  (thus  dom(f) = U  and  cod(f) = V), one gets a Hausdorff manifold if and
only if neither  f  nor  f−1  admits of a continuous continuation to a larger open set.

1.3  Construction of manifolds:  bundles

The second way to make manifolds consists in taking products.  For instance:  on a
surface  B, the "base", one may consider tangent vectors.  The continuum formed
by all these vectors (each considered as attached to some point of the surface) can
be assimilated, locally at least, to the product of  B  by the vector space  V2.  One
says this is a fibered manifold or bundle, of base  B, of fibre  V2.  The set of all
pairs  {x, v}, where  v  is a tangent vector at point  x, forms the fibre above  x.

The reader who wishes to arrive quickly to the notions of tangent vector and of differential
form can safely jump to Chap. 2 right now.

1.3.1  Bundles

There is no problem in defining the Cartesian product of two manifolds  {X, A}
and  {Y, B}:  it's  X × Y, with the following collection of charts as atlas:

{x, y} ∈ X × Y → {ϕα(x), ψβ(y)} ∈ IRn × IRm.  

Indeed, as one may check, all these charts are compatible two by two if the  ϕαs
were, as well as the  ψβs.  But the notion of bundle does not reduce to the notion of
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product.  For instance, the ring of Fig. 10 (p. 18) is a product:  that of  S1  (the
unit circle) by the segment  [0, 1].  But the Möbius strip of Fig. 11 is not one
(otherwise, it would have the same global topological structure as the ring, which
clearly is not the case).  But locally, both the ring and  MS  do look like the product
of  IR  by  [0, 1].  So what makes the difference?  We shall try and understand this
point in this Section on bundles.

Other example:  the manifold of all vectors tangent to a sphere embedded in
E3  (Fig. 18).  Again, it looks locally like a product, but is not one.  Its points are
pairs consisting of a point of the sphere and a vector, based at this point, lying in
the tangent plane.  Its dimension is  4.  If one just looks at tangent vectors whose
tails are in a small chunk  U  of the sphere, this piece of manifold is clearly identifi-
able with the product  U × IR2.  The whole manifold (which we shall meet again
under the name of  TS2) looks locally like a Cartesian product.  But if it was one,
one might assign to each point of the sphere a tangent vector, continuously depend-
ing on this point, and nowhere vanishing (cf. Exer. 18).  But this is a notorious
impossibility (it's the problem of "combing the hedgehog"), ruled out by a cel-
ebrated theorem of Brouwer ([5], p. 110, [38], p. 131).

Exercise 18:  Make the above argument precise by showing that the mapping  x → {x, f}  of  S2

into  S2 × IR2, where  f ≠ 0  is a fixed vector of  IR2, is continuous.

2

x

f(x)

IR

S2

≠
x

f(x)

Figure 18.  TS2  is not the Cartesian product of  S2  and  IR2

This example may help grasp the deep difference between a continuum like
TS2  and (for instance) the one obtained by assigning to each point on the Earth the
local values of pressure and temperature.  One must not confuse a vector field on a
two-dimensional surface with a pair of scalar fields:  they are objects of different
types, they are, more specifically, two "sections" of two different "bundles" on the
same "base"  S2.  It is now time to define these concepts.
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Just as when defining manifolds, one may here adopt the analytic or the
synthetic point of view.  We shall begin with the latter, which is more intuitive.

F

ξα

F

ξ β
IR2

x

Fx

B

ψα

ψ
β

Figure 19.  The fibre  Fx  "above"  x  is obtained by identifying two copies of
F, one above  ξα = ψα(x), one above  ξβ. 

 But this identification is not
necessarily the identity mapping.

Let thus  F  be a manifold, the fibre, and  B  another one, the base.  For
simplicity, we assume  F  is described by a single chart.  For each chart of  B, say
ψα ∈ B → IRn, let us build the product manifold  cod(ψα) × F  and let's try to patch
these products into a whole.  So, consider two charts  ψα  and  ψβ  with
overlapping  domains (Fig. 19).  The first idea which comes to mind is to glue
cod(ψα) × F  and  cod(ψβ) × F  by identifying the pairs  {ξα, f}  and  {ξβ, f}  of
IRn × F if and only if

(7) ψα
−1(ξα) = ψβ

−1(ξβ). 

But what one obtains this way is the product  B × F, since a class of equivalent
pairs  {ξ, f}  in the sense of (7) is characterised by a point of  B  (the preimage  x =
ψα

−1(ξα) = ψβ
−1(ξβ)) and a point  f  of  F.  So this assembly rule (which consists in

identifying the fibre above  ψα(x)  with the one above  ψβ(x)) is too restrictive.

What more flexible rule could one adopt?  The example of  MS  will give a
clue in this respect (Fig. 20).  Let  F = [−1, 1]  be the fibre,  S1  the base, conceived
as the unit circle in the plane, a point of  S1  being specified by its polar angle.  Two
charts are enough to cover it, with domains (and codomains as well, cf. Fig. 20)

dom(ψα) = ] −ε, π + ε [,  dom(ψβ) = ] π − ε, 2 π + ε [
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with  0 < ε < π.  Then  dom(ψα) ∩ dom(ψβ)  consists of two open segments  U
and  V.  One gets a Möbius strip by gluing fibre to fibre "without flipping" above
U  but "with flipping" above  V.  The equivalence is thus (7) above  U, but above
V  the identification is made according to the non-trivial rule:

{ξα, f} ~ {ξβ, fβ} ⇔ (ψα
−1(ξα) = ψβ

−1(ξβ)  and  fα = − fβ). 

2π + ε 
U

V

− ε

π + ε 

cod(     )ψ
α

cod(     )ψβ

ψ
β

ψα

π − ε

x
S1

αβ
g      : f        f→

F

F

Fx

g     : f          fαβ → − cod(     )ψ
β

cod(     )ψα F

[

[p

F

[

[

Figure 20.  Patching two rectangles into a Möbius strip.  (Remark the
notational abuse which consists in giving identical names to  dom(ψi), which is
a part of  S1, and  cod(ψi),  a part of  IR.)
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The two copies of the fibre above a point are indeed identified via a bijection from
F  onto itself, but this bijection is not necessarily the identity.

This should be enough to motivate the following construction rule:

Definition 2:  Given,

1°- A manifold  B, the base, of dimension  n, with an atlas  {ψα :  α ∈ A},

2°-  A manifold  F, the fibre,

 3°-  A family  G  of diffeomorphisms of  F,

4°-  For each pair  {α, β}, a  transition function  gαβ, of type  B → G, of
       domain  dom(ψα) ∩ dom(ψβ),

the bundle made out of these elements is the manifold  V  obtained by identifying
the pairs {ξ, f} ∈ IRn × F  according to the following rule:  {ξα, fα}  and   {ξβ, fβ}
are equivalent if, on the one hand,

(8) ψα
−1(ξα) = ψβ

−1(ξβ), 

i.e., if  ξα  and  ξβ  are the images of the same  x ∈ B, and if, on the other hand,

(9) fα = gαβ(x) fβ.  

Condition (8) tells how to glue the  cod(ψα)  together in order to get  B, and
(9) tells how to assemble the fibres.  The definition is still incomplete, because a
transition function cannot be just any function.  First, from (9),  gαβ º gβα  is the
identity.  By the same argument, if  x  belongs to the domains of three distinct
charts, one has  gαβ º gβγ = gαγ.  So the values of the  gαβ(x)  form, taken all
together, a group:  therefore, one will require that  G  be a group of diffeomor-
phisms of the fibre.  Moreover, for  v  a point of  V, i.e., an equivalence class of
{ξα, fα}, the functions  v → {ξα, fα}  are charts about  v, which must be
compatible.  By writing down explicitly the correspondence  {ξα, fα} → {ξβ, fβ},
we see that the function

{ξ, f} → {ψβ º ψα
−1(ξ), gβα(ψα(ξ)) f}

must be differentiable.  So the  gβα  themselves must have this property, and for this
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to make sense,  G  has to wear a structure of differentiable manifold.  Groups
which are also manifolds (and in such a way that group operations be differentiable)
are called Lie groups.  So, finally,

Definition 2 (continued):  G  is a Lie group, called structural group of  V, and the
transition functions are differentiable.

Thus we have finally formalized the notion of smooth patching of the fibres
that we wanted.

"The" group  G  is not, in fact, uniquely determined by the structure of the
fibre.  One has some leeway in choosing it, and one generally takes it as small as
possible, so it is often finite1.  (In the case of  MS, it contains two elements:  the
identity and the "flip"  f → − f.)  In that case, the end of Def. 2 is redundant, the
G-valued transition functions being piecewise constant.

If it happens, when one builds a bundle, that the fibre has more structure than
a plain manifold (like, for instance, a linear space), one naturally tries to preserve
this structure, in such a way that the fibre  Fx  above  x  inherits from it.  So
transition functions must themselves respect the structure of  F, and one has to
choose the group  G  accordingly.  For instance, if  F  is a vector space of dimen-
sion  n,  G  will be the group  GLn  of isomorphisms of  F, i.e., the linear invertible
mappings of  F  onto itself.  (Thus, in the case of  TS2, the structural group is  GL2.)
What one gets this way is called a vector bundle.  Most of those we shall encounter
are of this kind.

According to (8), to each  v ∈ V  (an equivalence class of  {ξα, fα}) cor-
responds a point  x  in the base, the one such that  ψα(x) = ξα  for all charts about
x.  This point is the projection of  v, denoted  x = p(v)  (cf. Fig. 20).  The preimage

Fx = p−1(x),

called fibre above  x, inherits any structure belonging to the fibre  F: if  F  is a
linear space,  Fx  is one, etc.  Mappings which transform fibres into fibres while
respecting whatever structure they have are called bundle maps.  So if
u ∈ V → V'  is such a mapping, it sends a fibre  Fx  above  x  onto a fibre  Fx'

above  x'  (and the restriction of  u  to  Fx  respects the structure of  F:  it is linear
when  F  is a linear space, etc.).  Moreover, there exists  g ∈ B → B'  such that the

1  A finite set, once equipped with the discrete topology, bears a manifold structure, thus finite groups are Lie
groups (as also are groups like  Û,  Ûn, etc.).

diagram
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p'  

V V'
u    

p 
g  

B B'

where  p  and  p'  are the projections, commute.  The bundle maps play with
respect to the structure of bundle the same rôle as held by continuous—or linear,
or differentiable, etc.—functions with respect to the structures of topological
space—or linear space, or manifold, etc.

1.3.2  Sections

Now, a very important notion:

Definition 3:  One calls section of a bundle  V  of base  B  any function
s ∈ B → V  such that

(10) p(s(x)) = x    ∀ x ∈ dom(s).

Thus a section assigns to each point  x  within its domain in the base a point of
the fibre  Fx  above  x  (Fig. 21).  (Note that a bundle map transforms sections into
sections.)

F

s(x)

Fx

B x

Figure 21.  Notion of section.

One is strongly tempted to say "s  is (thus) an  F-valued function over  B".
But this is the wrong idea.  Section  s  is not an object of type  B → F, but an
object of type  B → V  which satisfies condition (10).  The distinction is clear-cut in
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the case of  TS2:  an example of  IR2-valued function over  S2  is the mapping
{position} → {temperature, pressure}, whereas a section of  TS2  is a field of
tangent vectors, and we have already noticed the difference.  We shall now analyze
it in full generality.

By the very definition of  V, we have charts about  s(x), i.e., mappings such as
s(x) → {ξα, fα}.  Consider such a chart of  V, which assigns to  s(x)  the pair
{ξα, fα}, and let  fα = ϕα(s(x)).  Locally, thanks to this chart, we can study the
continuity, the differentiability, etc., of  fα  as a function of  x.  By compatibility of
charts, these are intrinsic properties of a section.  So we should like to call  fα  the
"fibre component" of  s(x), just as  x  is its "base projection".  But can we?  To say,
for instance, that this fibre component  fα  is "constant" in the neighborhood of  x
is saying something which is valid in this particular chart, but not in another one,
and thus cannot be attributed to the section.  To speak of a "constant" section is
thus meaningless.  More generally, there is no way in which the "fibre components"
of  s(x)  and  s(y)  can be compared when  x ≠ y, their possible equality being a
chart-dependent phenomenon, devoid of any intrinsic meaning.

A bundle, thus, is only fibered "vertically" (Fig. 22).  The notion of "horizontal
strata", or of "sections parallel to the base", does not exist.  When there is a need
for it, one must endow the bundle with an additional element of structure (called a
"connection" [12, 55]).

Sections of bundles are the right objects by which to model physical fields.
When for instance one is studying conduction on a metallic surface, or elastic
deformation of the same, there is no intrinsic way—and no need—to compare the
current density vectors, or the stress tensors, at two points remote from each other:
such a comparison would not make physical sense.  Other example, the field of
displacements of an elastic structure.  In all these instances, as one knows, it pays to
make use of local frames, i.e., not in any fixed relationship one with respect to the
other when the shape of the body under study is changing:  such a practice is
tantamount to considering said fields as sections of some bundle, the base of which
is some reference configuration of the body, and the fibres, vector spaces of various
dimensions.  No comparison of "values" of the field at remote points is called for,
and there is no need, when modelling the situation, to choose a richer mathematical
structure than necessary.  To the contrary, excess structure can be a nuisance (as
some cumbersome treatments of elastic shells theory testify).
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Figure 22.  The "component in the fibre"  fα, contrary to the projection  x, is
chart-dependent, and has no intrinsic meaning.

1.4  Coverings

Midway between the two manifold construction methods we have examined
(gluing and fibre assembly), there is an intermediate case:  when the fibre is a set of
isolated points.  The bundle and its base, then, are manifolds of equal dimensions.

Everything we have said is valid in this case, since a set of isolated points has a
manifold structure (charts are functions  ψ ∈ F → IR0, where  IR0  is by convention
reduced to a single point (point  0), and each point  f  of  F  contributes one chart
ψf, for which  dom(ψf) = {f}).  But owing to the fact that the structural group is a
permutation group, more precisely, a subgroup of the group of permutations acting
on  F, there are special properties.

1.4.1  The notion of covering

Let's begin with two examples (Fig. 23).  The base is the circle  S1, the fibre is a set
of two points.  Fig. 23 shows the two possible bundles.  As one may notice, the
preimage of a small enough neighborhood of  x  consists in two non-intersecting
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neighborhoods, and the restriction of  p  to each of them is a local diffeomorphism.
This is, by definition, the characteristic property of coverings.  They are also
requested to be connected, which eliminates the case of Fig. 23, left.  Another
example (Fig. 24):  the base is  S1, the fibre    (the set of signed integers), and the
group    as well, acting on itself via the operations  gn = m → n + m.  The
bundle, as one sees, is nothing else than the real line.  When a covering is, as in the
present case, simply connected, one calls it "the" universal covering of the base
[67].  This terminology is supported by a theorem asserting existence and
uniqueness, up to diffeomorphism, of this universal covering [67].

F

] [

] [
]
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p

V

S1

xF

x

[]
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x

[]
x

p

V

S1

Figure 23.  Two coverings of the circle.  On the left,  G  reduces to the
identity.  On the right,  G  is the group of permutations of two objects.

x

p
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S1

   
           Figure 24.  IR  as a covering of  S1.                      Figure 25.
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Exercise 19:  With the two charts of Fig. 20 (p. 27) on  S1, describe in detail (i.e., by writing
down the equivalence classes) the bundle of Fig. 23, right.

Exercise 20:  Same problem, with as a fibre  F = {0, 1, 2}, the structural group being  Û3, i.e., the
cyclic group with three elements.  (Hint:  Fig. 25.)  This is a "three-sheet" covering.

Exercise 21 (Fig. 26): Cut out a paper ribbon of about  20 cm × 2 cm.  Patch it into a Möbius
strip.  "Cover" it with a paper strip  45 cm  long.  Glue the ends of the latter together.  Cut the  MS
and pull it off.  What do you observe?

Figure 26.  Two-sheet covering, orientable, of a Möbius strip.

1.4.2  Interest of the notion of covering

How relevant are such coverings to electrotechnics?  How can they ever be?  The
fact is, they are, essentially in two ways:  When discussing "multivalued potentials",
and when symmetry is present.

Consider a ring in which flows a current of total intensity  I  (Fig. 27).  Call  B
the open region around the ring, and  h  the magnetic field.  Since  rot h = 0  in  B,
there exists, locally, a potential  ϕ  such that  h = grad ϕ.  But since the circulation
of  h  along a circuit like  c  (Fig. 27) is equal to  I,  ϕ  is not globally defined over
B.  It's a mathematical freak, called a "multivalued function".  At each point of  B,
there is not a single value, but an infinity of values of the potential, their differences
two by two being multiples of  I.  Thanks to the concept of covering, this
multivalued potential gains access to the status of a bona-fide function, living not on
B, but on the universal covering of  B  (fibre  , group  ).
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I
c

B

Figure 27. The magnetic potential outside the ring is a multivalued function.

In the same spirit, but with more complexity, the study of eddy-currents on
conducting surfaces of convoluted shape, like e.g., tokamak shieldings [13, 74], or
sheaths around alternator outputs [100], calls for multivalued functions whose
natural home is a covering of the surface.  Such questions are commonly treated by
way of "cuts" of the surface, and by allowing the stream-function to be discontinu-
ous across these cuts.  But then the very determination of these cuts can be a
non-trivial problem.  Its solution requires a good understanding of certain notions of
topology:  first homology group, Betti numbers, which cannot be introduced here.

Remark 1.  Making cuts is an old problem:  in structural computations, it was identified,
and the importance of the above notions acknowledged, decennials ago [45].
(Actually, Betti himself took interest in making cuts, cf. [10], as quoted in [82].)  The
problem was only recently solved in both a rigorous and constructive way.  See on this
the work by Kotiuga [57, 58], and the discussion hosted in 1990 by the IEE Journal
[101, 18, 59].  ◊

Now about symmetries.  Many structures, in electrotechnical applications, are
repetitive, possibly at different levels:  one may often generate a sizable part of the
structure by suitable assembly of copies of a single element.  If a field has to be
computed in such a case, it is natural, at least at an early stage of the modelling, to
pretend this repetitivity goes on indefinitely in all spatial directions.  The problem
then becomes one on an infinite domain with periodicity (with respect to space) of
such physical properties as conductivity, permeability, etc.  This spatial periodicity is
also shared (in a sometimes not obvious way) by the field values.  One may then
[15, 16] limit the computation to a "symmetry cell" of the structure (Fig. 28).
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Figure 28.  A repetitive structure and a periodicity cell for a bidimensional
problem in magnetostatics.

To be specific, let us take the case of Fig. 28, where one wants to compute the
perturbation to an initially uniform field due to a pattern of materials with two
different permeabilities (i.e.,  µ  periodical as a function of  x  and  y).  The field
thus modified has the same periodicities1 as the structure:  h(A'') = h(A') = h(A),
thus one may compute its values on the symmetry cell  C, with appropriate
"periodicity" conditions (i.e., conditions imposed to the field components at
homologous points on two opposite sides of the cell).  But this amounts to solving
the same equations on the manifold  B  obtained by gluing opposite sides of  C, as
was done in Exer. 11 (B  is a torus).

This manifold can be obtained in another way.  Let  G  be the group (with an
infinity of  elements) generated by the translations  AA'  and  AA''.  One may
identify the points of  B  with equivalence classes of points in the plane  E2, two
points being considered as equivalent if one is sent to the other by one of the
translations in the group.  (One says that  B  is the quotient manifold of  E2  by the
equivalence relation.)  Clearly, now, the whole plane  E2  is a covering of  B:  one
may thus conceive it as a bundle, with fibre  G  and group  G.  The fibre above  x,

1  Even when this is not so, spatial periodicity of the underlying medium can still be put to advantage, by a
procedure which generalizes the Fourier decomposition method, provided the problem is a linear one.  Cf. [16].

which is the set of points
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Gx = {gx :  g ∈ G}

is called the orbit of  x  under the action of  G.

Once the computation has been performed on the base, finding the field on the
covering amounts to specifying a certain section of a bundle over  B, with fibre  
E2 × G.

All of this works well provided all orbits are of the same kind, which is true
when the group acts freely, i.e., no point is fixed by any group transformation other
than the identity.  But when there are reflection symmetries, this condition is not
satisfied.  For this reason, the notions of fibre, of coverings, etc., introduced so far,
are not powerful enough to really account for what is done in the presence of
symmetries.  We already spotted, when discussing the notion of manifold with
boundary, a few weaknesses of the run-of-the-mill mathematical apparatus, and this
is another one.  The "right" notions do exist (cf. [75], Chapter "Orbifolds"), but
only small circles of specialists are familiar with them.

Exercise 22.  The symmetry groups of "wall-paper patterns" like the one of Fig. 28 are all
isomorphic to one of the groups of a list of seventeen, which can be found for instance in [14], or
[66], [87], etc.  Get the list of these  17  groups, then, for each of them, describe the analogue of  B
above.  In which cases is it a differentiable manifold?
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Chapter 2

Vector fields
and differential forms

2.1  Vectors and covectors

The notion of tangent vector at  x  to a surface  S  seems familiar:  one thinks of a
"bound vector", at point  x, whose supporting line is tangent to the surface at
point  x.

But this requires some ambient space, and if one is thinking for instance about
the configuration manifold of a mechanical system, there is no natural ambient
space to speak of, in general.  So one should be able to define tangent vectors
without any reference to such an ambient space.  The mechanical notion of "veloc-
ity vector" will suggest how this can be done:  we'll start from the idea of speed
along a trajectory, in a manifold, a thing of obviously intrinsic character, and try to
abstract out the right notion from there.

In a chart, the velocity vector is easily defined.  In the case of the above-
mentioned car, for instance, it has four components:  two for the speed with respect
to the ground, one for the speed of gyration around the vertical axis, one for that of
the driving wheel.  But there are other possible charts.  In another one (with other
coordinate axes on the ground, angles measured in degrees instead of radians, etc.),
one would get a different set of four numbers.  The velocity vector should be a
chart-independent entity, only represented, in different charts, by such systems of
four numbers.  This entity, the "tangent vector", does exist, and we are about to
define it.

A trajectory, in a manifold  X, is a smooth function (cf. p. 13) of type
IR → X  whose domain is connected.  This domain is therefore a segment of  IR.
A scalar field over  X  is a smooth function of type  X → IR.  Its codomain is a
segment of  IR  (since  X  is connected).  A trajectory  g  is through  x  ("at time
0" will always be understood) if  0 ∈ dom(g)  and if  g(0) = x.  A scalar field  f
vanishes at  x  if  f(x) = 0.  Cf. Fig. 29.
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A trajectory is thus, intuitively, a curve in  X  described according to some
specific time-schedule, or as one may prefer, a graded and oriented curve.  A scalar
field  f  can be understood (cf. Fig. 29) as a partition of  dom(f)  into "level
surfaces"  Xa = {x ∈ X :  f(x) = a}.  ("Scalar", or "real" field, is of course meant
here to contrast with "vector" field.  We shall simply say "function" when no
confusion is feared.)

0

1

2

IR

f = 0     

f = 1

f = 2   

x

− 1 0 1

g(1)

g(   1)−

g

f

Figure 29.  Trajectories and scalar fields.

Two trajectories  g  and  g'  through  x  are tangent ("at point  x" being
understood) if, for all charts ψ  of a neighborhood of  x,

(11) |ψ(g(t)) − ψ(g'(t))|/t = o(t)

(meaning:  tends to  0  faster than  t  when  t → 0).

One will easily check that if (11) is valid for any chart about  x, this is true in
all  C1-compatible charts.  (We are speaking here of differentiable manifolds, i.e., of
class  C1  or better.)  So this is an equivalence relation on trajectories.

Two functions  f  and  f'  vanishing at  x  will be said to be tangent (again, at
x) if, for all  y ∈ dom(ψ),
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(12) f(y) − f'(y) = o(|ψ(y) − ψ(x)|)

(meaning:  tends to  0  faster than the distance of  x  and  y, as measured in the
chart  ψ, when  y → x).  Here again, this property is chart-independent.

Following the lead of [27], we have emphasized the duality between the two
notions (from which a duality between vectors and covectors will stem).  Fig. 30
suggests what tangent trajectories or functions look like.  One also says that they
are in "contact of order one".  (All this is part of a more general theory about the
contact between mappings of type  X → Y, where  X  and  Y  are two manifolds.)

x

X

IR

g
g'

x

X

IR

0

1

f

f'  

2

Figure 30.  Tangent trajectories and tangent functions at point  x.

Now,

Definition 4:  One calls tangent vector at  x  an equivalence class, in the sense of
(11), of smooth trajectories through  x.

Definition 5:  One calls covector at  x  an equivalence class, in the sense of (12),
of smooth functions vanishing at  x.

For reasons which should become clear below, I denote by  g*  and  f*  the
equivalence classes of a trajectory  g  and of a function  f  at point  x.
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x

f*
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Figure 31.  Vector and covector at point  x.  Vector and covector are supposed
to lie in the tangent plane.

The intuitive meaning of Def. 4 is clear when  X  is  Vn.  For an equivalence
class of tangent trajectories includes a particular, distinguished trajectory (or as one
says, a "canonical representative"):  the straight, uniform, trajectory (there is only
one of this kind in the class).  It can be characterized by a vector based at  x,
namely the velocity vector common to all trajectories of the class.  Thus it is only
natural to call the class itself a "vector" in the general case.  (Why it should be
qualified as "tangent" is clear if  X  is embedded in  IRn+1, cf. Fig. 31.)

Exercise 23:  Show that when  g  and  g'  are equivalent in the sense of (11), either their images by
all charts are tangent, or their class  g*  is the one which contains the constant trajectory  t → x
(denoted  g* = 0).

As for Def. 5, the approach is the same:  one gives to the whole class the
name of the geometric object which best characterizes it in the case  X = Vn, i.e.,
the covector at  x  associated with the one function of the class which is affine.  The
graphic representation of the covector introduced p. 4 consists, when  n = 3, in
drawing two parallel planes, tangent to the level surfaces of this function.

In the general case, there are neither "straight" nor "uniform" trajectories, but
the same graphic symbolism can be used, hence Fig. 31.
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2.2  Tangent and cotangent bundles, and duality

The existence of the "tangent plane" of Fig. 31 is not due to the fact that  X  is
embedded in  E3  in this particular drawing.  Such a plane has an independent
reality.  Indeed, as we shall now check, the set of tangent vectors at point  x
(denoted  TxX), and the set of covectors (denoted  Tx*X), both have a natural
structure of vector space1, of same dimension as  X.  Moreover, they are dual to
each other in a way which also is natural, i.e., chart-independent.

The shortest path to this result takes the following detour:  how do vectors
and covectors transform when one maps a manifold to another one?

2.2.1  Tangent space

So let  X  and  Y  be two manifolds and  u ∈ X → Y  a smooth mapping.  Let  y =
u(x).  If  g  is a trajectory through  x,  u º g  is a trajectory through  y, which
defines a tangent vector, for  u º g  and  u º g'  are equivalent (in the sense of (11))
if  g  and  g'  are, thanks to the differentiability of  u.  We shall denote this vector
u* g*  (x  understood).  We just obtained a mapping  u*(x)  from  TxX  to  TyY.

Similarly, if  f  is a function on  Y  (vanishing at  y),  f º u  is a function on  X
(vanishing at  x), the corresponding covector can be denoted  u* f*, and this
defines a mapping  u*(y) ∈ Ty*Y → Tx*X.

Note that, by construction, the following associativity rules hold when  
u ∈ X → Y  and  v ∈ Y → Z:

(v º u)* = v*u*,     (v º u)* = u* v*,

each expression being of course evaluated at  x,  y = u(x)  or  z = v(y), as the case
may be2.  (Mind the transposition of  u  and  v  in the second equality!  The maps
u*,  v*,  (v º u)*, go right to left.)

Let us work out in detail (and once for all) what  u*  and  u*  are when  X
and  Y  are affine spaces:  X = Vm,  Y = Vn  and  u ∈ Vm → Vn.  Let us arbitrarily
select an origin in  X, in order to match each point  x  of  Vm  (the affine space)
with a vector  x  of  Vm  (the vector space).  Same thing in  Y.

1  At least if  x ∉ ∂X.  More on this point later (next Remark).

2  One may dislike the notation, and prefer something like  (v º u)  = v* º u*, etc., but  v*  and  u*  are linear
operators, and tradition wants their composition product written by simple juxtaposition, as for matrices.



44 Alain Bossavit       

Let  eJ,  J = 1, . . ., m, be the basis vectors of  Vm  and  ei,  i = 1, . . ., n, those of
Vn.  (This convention, indices in small capitals on one side and in small case on the
other, tends to become standard.  Cf. for instance [68].)  It is only natural to
represent the point  u(x), image of the point  x, by listing the components  ui  of
vector  u(x)  as functions of the components of vector  x.  Thus,

x = Σ J = 1, ..., m  xJ eJ,  u(x) = Σ i = 1, ..., n y
i ei, 

with  yi = ui(x1, . . ., x
m), where  ui  is a function of type  IRm → IR.  Let us consider

the trajectory  t → x + t eJ.  Its velocity vector (at  x) is equal to  eJ, so one may
name  eJ  also the vector of  TxX  that is represented by this trajectory.  Its image
by  u  is a trajectory through  u(x), namely  t → u(x + t eJ), whose velocity vector
at  t = 0  is by definition  u*(x) eJ.  One sees, by differentiating  t → u(x + t eJ), that

(13) u*(x) eJ = Σ i = 1, ..., n ∂ui/∂xJ(x) ei,

so  u*(x)  is in that case a rectangular matrix, indeed a familiar one:  the Jacobian
of the  uis.

In the same vein, let  εJ  be the basis covectors of  Vm:  those are the linear
functions  x → xJ  (so that  εI(eJ) = δI

J, i.e.  1  if  I = J  and  0  otherwise).  Let  εi

be those of  Vn.  A covector at  y = u(x)  is (the class of) the affine function  
y' → εi(y' − u(x)), and it is again natural to name this  εi.  By way of definition,
u*(y) εi  is the (class of the) function  x' → ui(x') − ui(x), therefore (take the linear
part of this difference with respect to  x' − x):

u*(y) εi = Σ J = 1,..., m∂ui/∂xJ εJ.  

We just realized that if  X = Vm  and  Y = Vn, the mapping  u*  (at point  x) is
the matrix of the  ∂ui/∂xJ  and  u*  (at point  u(x)) is the transpose of this matrix.
The whole point of the present development (which will not end before p. 49) is to
show that in the general case also,  u*  and  u*  are two mutually transposed linear
operators.  For this, we have first to see that  TxX  and  TyY  are vector spaces.

In  X  of dimension  n, let  g*  be a vector at  x  and  ψ  a chart about  x.
Then  ψ*g*  is a vector at  ψ(x).  The mapping  ψ*  is injective, for if two
trajectories in  Vn, say  ψ º g  and  ψ º g', are tangent,  g  and  g'  are (it's what
"tangent" means).  It is thus legitimate to carry onto  TxX  the vector space
structure of  Vn, which is done by defining the sum of two tangent vectors  g*  and
h*  as the tangent vector  ψ*

–1(ψ*g* + ψ*h*).  This move not only turns  TxX
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into a vector space, but also gives a basis, dependent on  ψ.  The basis vectors are
the classes of the trajectories  gi = ψ−1 º γ

i, with

γi = t → ψ(x) + t ei,

ei  being the  ith  basis vector in  Vn  (Fig. 32).  By associating the  n  components of
ψ(y)  with the  n  components of  ψ*(x) g*(y)  (a vector at  ψ(y)), one gets a chart
for the manifold of pairs  {y, g*(y)}, i.e., the manifold of all tangent vectors.  The
latter is thus of dimension  2n.  We shall denote it by  TX.
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g 1
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*
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Figure 32.   Basis vectors, for  n = 2.

Remark 2.  If  x  is a boundary point of  X  (Fig. 33), we obviously have a problem.  For
such a point, TxX  is not a vector space (but only a half-space, or more generally a cone),
if Def. 4 is to be taken literally.  Indeed, recall that  X  "looks like a half-space" in the
neighborhood of a boundary point.  So there are two kinds of trajectories through  x:
those "tangent to the boundary" (this makes sense in a chart, and is a chart-independent
feature) and the "incoming" ones.  If  g  is one of the latter, and  g*   the associated
tangent vector,  − g*   is not part of  TxX, according to Def. 4.  This is too drastic, and
one will rather define  TxX  as the vector space spanned by the tangent vectors at  x.
Vectors such that  g*

2  or  g*
3  (Fig. 33) are said to be incoming, the sames with the

opposite sign are said to be outgoing, and those like  g*
1  (or  − g*

1) are said to be
tangent to the boundary.  The latter form an  (n − 1)-dimensional subspace of  TxX,
which will easily be seen to be isomorphic to  Tx∂X.  ◊

Exercise 24:  Let  ψα  and  ψβ  be two charts about  x,  u = ψβ º (ψα)
−1, and  ei  the basis vectors in

IRn.  Show that, if  ξ = ψα(x),

u* (ξ) ej = Σ i ∂ui/∂xj(ξ) ei 

and conclude to the  Ck−1-compatibility of charts of  TX  if those of  X  are  Ck-compatible.
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Figure 33.  Do tangent vectors at  x  form a vector space or a cone?  (The
trajectory  g1  is tangent to the boundary,  g2  is incoming.)

The manifold  TX  is a bundle, the so-called tangent bundle.  Its fibre is  Vn,
the fibre above  x  is  TxX, and the foregoing exercise has shown what transition
functions are.  The structural group is  GLn, the group of all invertible linear maps
from  Vn  onto itself.  (It is a Lie group:  the representation of its elements by
matrices, once chosen a frame base, is a chart, which is enough to endow the group
with a manifold structure.)  Sections of  TX  are called vector fields.

2.2.2  Cotangent space

Let us turn to the covectors.  Let  f*  be a covector at  x.  If  ψ  is a chart about  x,
then  (ψ−1)* f*  is a covector at  ψ(x), and here again  Tx*X  can be identified with
Vn.  The basis covectors are the equivalence classes which contain the functions

fi = y → ψi(y) − ψi(x) 

that is,  fi =  ϕi º ψ, where  ϕi, of type  IRn → IR, is  ϕi = η → ηi − ψi(x), and  ψi  is
the  ith  component of the chart  ψ  (Fig. 34).

By associating the  n  components of  ψ(y)  with the  n  components of
(ψ−1)*(x) f*(y)  (a covector at  ψ(y)), one gets a chart for the manifold of pairs  
{y, f*(y)}, i.e., the manifold of all covectors.  The latter is thus of dimension  2n
and will be denoted by  T*X.

Exercise 25:  Show that (just as for Exer. 24) these charts are compatible.

Remark 3:  If  x ∈ ∂X, same problem as in Remark 2, same solution.  ◊
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Like  TX,  T*X  is a bundle, the so-called cotangent bundle, with the same
structural group as  TX.  The sections of  T*X, or fields of covectors, are called
differential forms of degree 1, or  1-forms.

x

X

f1

f1
*

f 2
*

ψ

f2 = 0

= 0

(x)ψ2

(x)ψ

IR2

(x)ψ1e1

ϕ

ϕ
1

2

Figure 34.  Basis covectors, for  n = 2.

One often denotes by  v  the sections of  TX:  The value of  v  at a point  x  of
X  is thus a pair, consisting of  x  and of a tangent vector  v(x) ∈ TxX  at this point.
A popular generic notation for  1-forms is  ω.

If  X  and  Y  are two manifolds and  u ∈ X → Y  is a differentiable mapping
between them, we now know (at last!) what the derivative of  u  is (Fig. 35).  It's
the bundle map  u* ∈ TX → TY  that maps the pair  {x, g*}, where  g  is a
trajectory through  x, to  {u(x), u*(x) g*}.  This is sometimes called the tangent
mapping.  (Note that  u  may not be differentiable everywhere;  in that case,
dom(u*)  is only a part of  X.)  As one sees,  u  gives birth to another map of
different type,  u*.  It also induces a map  u* ∈ T*Y → T*X, of yet another type.
What goes on here well illustrates the notion of functor:  a mechanism which, given
maps between objects of some category (here, the manifolds), builds other maps,
which operate between objects of a different category (here, vector bundles).  The
words "objects", "functors", "categories", here, are used in an informal way, but
they take on a precise meaning in the frame of the theory of categories, which was
purportedly devised to study this kind of phenomena.  (See [65] on this.)  Its realm
is the study of diagrams similar to the one in Fig. 36, the meaning of which should
be obvious (the  p's  denote projections of the various bundles onto their bases).
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Figure 35.  The "tangent mapping"  u* ∈ TX → TY.

Remark 4.  To  g ∈ IR → X  (g(0) = x)  and  f ∈ X → IR  (f(x) = 0)  correspond the
mappings  g*   and  f*, which send the unit vector  e  of  T0IR  and the unit covector  ε
of  T0*IR  onto  g* (0)e  and  f*(x)ε  respectively.  Identifying  T0IR  and  T0*IR  with  IR,
and thus  e  and  ε  with  1, one easily sees that  g* (0)e  and  f*(x)ε  are the vector of
TxX  and the covector of  Tx* X  that we called respectively  g*   and  f*  up to now.
This is a posteriori justification for this notation, as promised p. 41.  ◊

T  Y

X Y

TX TY  

T  X∗ ∗

 p
u
*

u*

u

 p  p

 p

Figure 36. The functors  *   and  *.

Exercise 26:  Let  v  and  v'  be two sections of  TX.  Define  v + v'  and  αv, where  α ∈ X → IR.
(Same thing for  ω  and  ω', sections of  T*X.)  Conclude that  TX  and  T*X  are modules on the
ring of functions over  X.  (A module is to a ring what a vector space is to a field.)  Verify that if
u ∈ X → Y, the operations  u*  and  u*  do distribute with respect to addition, and that  u*(αv) =
α u*v, as well as  u*(αω) = α u*ω.

2.2.3  Duality between vectors and covectors

We still have to deal with the vector-covector duality.  Given  g ∈ IR → X, a
trajectory through  x, and  f ∈ X → IR, a function vanishing at  x, both smooth,
one may take the derivative at  0  of the composition product  f º g  (of type
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IR → IR).  Note this:

(14) <g*, f*> = d/dt (f º g)|t = 0.

This number only depends on the classes of  f  and  g  (thanks to (11) and (12), as
usual).  We have thus obtained a bilinear mapping on  TxX × Tx*X.  It is non-
degenerate, i.e., it vanishes for all  f*  only if  g* = 0, and vice-versa. This
establishes a duality between  TxX  and  Tx*X.

Let us now consider  u ∈ X → Y, a trajectory  g  through  x, and a function
f  vanishing at  y = u(x), hence the following diagram:

        g      u       f
IR → X → Y  → IR.

Then, after (14), one has

       d/dt (f º u º g)t = 0 = <u*(x)g*, f*>TyY, Ty*Y  = <g*, u*(y) f*>TxX, Tx*X,

showing that the linear maps  u*(x)  and  u*(y)  are mutually transposed (or
"dual"), as we saw was the case when  X = Vm  and  Y = Vn.

2.3  Differential calculus on manifolds

We shall now see how a differential calculus, as powerful as the familiar one is in
vector spaces, can be developed about manifold mappings.

On the face of formula (14), one would like to write

(15) <g*, f*> ≡ ∂f/∂x dg/dt|t = 0 ,

i.e., to chain the differentiations of  f  and of  g.  Even though such a chain rule has
no validity, since the right-hand side of (15) has no meaning yet, it is quite sugges-
tive:  the action of covector  f*  on vector  g*  may be conceived as the differentia-
tion of  f  "in the direction of  g*".  In fact, this interpretation would be correct if
X  were  Vn,  ∂f/∂x  then being the gradient of  f  at  x.  So we are entitled to define
the gradient of  f  at  x  as the covector  f*, just as  g*  was the velocity vector at
x  on the trajectory  g.

This interpretation of (15) as the derivative of  f  is evidence that a vector field
(i.e., a section of  TX) can always be seen as a differential operator:  the one that
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associates with function  f  the function  x → <vx, f*>, that is, according to (15), the
derivative of  f  at  x  in the direction of  vx.  Conversely, if  ∂  is a first-order
differentiation operator, one may prove the existence of a unique vector field  v
such that

(16) ∂f = x → <vx, f*>.

In other words, vector fields are first-order differential operators on manifolds.
Some text-books, like e.g., [96, 105], define tangent vectors this way.  We did not,
but we still can reflect this point of view at the notational level by denoting  ∂v

both the vector field  v  and the differentiation operator, and  ∂vf  the function
which appears on the right-hand side of (16).  The basis vectors (relative to a chart
about  x) are often denoted as  ∂/∂xi, but the plain (and more logical) notation  ∂i

seems to be gaining favor.  Let us adopt it.  So, denoting by  vi  the components of
v  in this basis, we have

∂v = Σ i = 1, ..., n v
i ∂i 

which legitimates the notation

(17) ∂vf = Σ i = 1, ..., n v
i ∂if

(which, if  v = g*,  is nothing else than (15)!).

Remark 5:  Life would be hard if notation could not be abused.  It is now quite natural
to write, for a vector  vx  at  x,

vx = Σ i = 1, ..., n v
i
x ∂i ,

and for a vector field  v ,

v = x → Σ i = 1, ..., n v
i(x) ∂i, 

the  vi(x)'s  being the coordinates of  vx  in some basis about  x.  This is an abuse, on two
counts:  First, though  v(x)  is a point of the fibre  TX, i.e., a pair consisting of a point  x
and a vector at  x, only the latter is made explicit;  but this is only natural.  On the other
hand, a section of  TX  is denoted as if it was a function taking its values in the fibre,
whereas we toiled to emphasize the difference between these two concepts.  But again,
this abuse is natural:  for locally, in the domain of a chart about  x,, sections are indeed
functions taking their values in the fibre, by the very definition of a bundle.  From here
on, we shall indulge in the abuse without any further apologies.  ◊
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Consider, again,  u ∈ X → Y, with  X  and  Y  of dimensions  m  and  n, and
f ∈ Y → IR.  Let  v  be a vector field on  V, and  w = u*v.  One has a basis  
{∂J :  J = 1, . . ., m}  for  TxX, a basis  {∂i :  i = 1, . . ., n}  for  TyY, with  y = u(x).
(Note again the use of small caps.)  In these bases, induced by charts about  x  and
y  which need not explicitly be written, one has, following the pattern of (17),

(18) ∂v = Σ J = 1, ..., m vJ ∂J,   ∂w = Σ i = 1, ..., n w
i ∂i. 

On the other hand, by way of definition of  u*,

∂wf = ∂v(f º u), 

and this suggests the following development, where we let the rules of differential
calculus play freely:

∂v(f º u) = Σ J = 1, ..., m vJ ∂J(f º u) = Σ J v
J Σ i = 1, ..., n ∂if/∂Ju

i,  

that is,

(19) ∂w = Σ J v
J Σ i ∂Ju

i ∂i.

This is not formally valid, since  ∂Ju
i  has no precise meaning for the time being, but

let us persist.  One also has  ∂w = u*∂v, thus, after (18),

∂w = Σ J v
J u*∂J .

But  u*∂J  is a vector which can be written as follows, in the base of the  ∂is:

(20) u*∂J = Σ i = 1, ..., n ∂Ju
i
 ∂i,

if we decide to call  ∂Ju
i  its components (compare with (13), p. 44!).  Thus we get

back (19), and this gives meaning to the  ∂Ju
is  of (19):  these are the components

of vector  u*∂J.  Now (19) is legal, so we know how to apply the chain rule:  this is
all that was required to extend to manifolds the familiar rules of differential calculus.

After (13) (p. 44), one may as well denote by  ∂ui/∂xJ  the  ∂Ju
is  of (19) and

(20).  Let us stress that none of these expressions have intrinsic meaning:  we just
gave one to them, with (20).  (To compute these numbers, if need be, one uses
charts.)  The notation is such that one may now apply the rules of differential
calculus "as if" the manifolds  X  and  Y  were affine spaces.  This combines with
Einstein's convention of implied summation with respect to repeated indices (not
adopted in this book) to make a powerful tool, which of course one should know,
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and this is why we insisted on its foundations.  But to exclusively rely on its use
would not be a good idea (no more, to suggest an analogy, than to systematically
rely on analytical methods in matters of geometry).

What about covectors?  The basis covectors, in a given chart, are in general
denoted by  dxi, but the notation  di  seems, as for basis vectors, more logical.
These basis covectors are the linear mappings which to  v ∈ TxX  assign the
components  vi.  Thus

div = vi,

hence the different possible expressions of the duality between a vector  v  and a
covector  f*:

<v, f*> = Σ i ∂if v
i = Σ i ∂if d

iv = ∂vf

           = (Σ i v
i ∂i) f = Σ i ∂if d

iv = (Σ i ∂if d
i) v,  

which suggests the following notation:  df  for the field of covectors generated by
f, and

df = Σ i ∂if d
i 

for its expression in the covector basis.  The operator  d  thus introduced is called
exterior derivative.  One is now entitled to write

df(v) = ∂vf 

as another version of (15) (when  g* = v).

This certainly leaves much to be desired.  One should like more symmetric
expressions, like e.g.,  dfv  in lieu of  df(v).  But can one go against tradition, which
so firmly backs the use of  df ?  The object thus denoted, the so-called gradient of
f, is a field of covectors, i.e., a  1-form, associated with  f, whose effect on a vector
field  v  consists in taking the derivative of  f  in direction  v  at each point.  One is
facing here a familiar notion, sometimes very difficult to grasp during the calculus
curriculum, that of differential.  The differential is a machinery whose purpose is to
evaluate "the (first order) variation of a function  f  in the neighborhood of a point
x".  Answer:  "this variation is a function of the displacement vector  v;  this
function is called the differential of  f;  its expression is  df(v)".  Differentiation and
derivation, as one can see, correspond to dual points of view, because one might as
well answer as follows:  "this variation is a function of  f, the function under
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consideration, once given the displacement vector;  this function consists in taking
the derivative of  f  along  v;  its expression is  ∂vf".

Remark 6:  The gradient is often defined as a vector field, instead of as a  1-form.  We'll
have more to say on this later.  ◊

Exercise 27:  Write down the counterpart of formula (20) for the covectors  u* d
i.

Exercise 28:  In case  u  is a diffeomorphism (which implies  dim(X) = dim(Y)), show that

(u−1)* = (u*)−1 

and the same about  u*.

At this stage, we may begin to see vectors and covectors as "geometric
objects" which, so to speak, "live" on manifolds.  When one goes via  u  from a
manifold  X  to another manifold  Y, vectors on  X  are "pushed forward" by  u*,
while covectors on  Y  are "pulled back" to  X  by  u*.  Vectors and covectors can
be written as linear combinations of basis vectors and basis covectors.  Basis
vectors are akin to derivations along the coordinate lines (the  gi  of Fig. 32).  The
basis covectors assign to a vector its components.  The effect of a vector on a
covector is a real number, invariant with respect to changes of charts.  The bilinear
mapping thus obtained is non-degenerate (cf. p. 49), hence a duality between
vectors and covectors.  Vectors are akin to derivation operations, and covectors to
differentials of functions.

We shall now discover other objects which live on a manifold, those of the
same family which stand at a given point forming the fibre of some bundle.  These
are the tensors.  Among them, differential forms play a major rôle.

2.4  Differential forms

2.4.1  Multi-covectors

We already met with two "vectors" of classical physics which are in fact, from the
geometrical viewpoint, covectors:  force (whose effect on a displacement-velocity
vector is a power) and the electric field  e, which one can identify with the force it
exerts on charged particles.  There are "vectors", like for instance the magnetic
induction  b, which correspond to still different objects.  One knows the rôle played,
in several instances, by the flux of  b  across a surface, or a surface element.  But a
"surface element" is, in precise terms, a pair of vectors,  v1  and  v2, say, tangent at
some point of the surface referred to.  The flux across this element is obviously a
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linear function of  v1  and  v2.  Moreover, it changes sign when the order of the
vectors is changed, according to the intuitive idea that surface elements  {v2, v1}
and  {v1, v2}  are the same, but with opposite orientations.  (We shall come back to
the notion of orientation, with a precise definition, in a moment.)  So, if we state the
following definition:

Definition 6:  One calls a bi-covector, or  2-covector at  x, any  IR-valued
mapping  ω  on  TxX × TxX, linear with respect to both arguments, and
antisymmetric (or skew-symmetric), i.e.,

(21) ω(v1, v2) = −ω(v2, v1)   ∀ v1, v2 ∈ TxX,

we realize it is custom-made to fit  b(x), the magnetic induction at point  x:  b(x)  is
indeed a  2-covector at  x.  The field  b  itself is a field of such objects, that is, a
cross-section of the bundle of  2-covectors:  this is what is called a  2-form.

The way to generalization is straightforward:  one will call  p-covector at  x  a
multilinear alternating map on  TxX, i.e., following up on (21), one that changes
sign when two among the  p  vector factors are exchanged (one also says "skew-
symmetric").  Hence the notion of a "p-form":

Definition 6 (continued):  A  p-form, or differential form of degree  p, is a field of
p-covectors.

The definition of a  p-covector carries over to the case  p = 0:  it is then an
argument-free function, i.e., a plain number, based at  x.  A  0-form is thus a
function on   X.  (A smooth function, of course:  recall this is understood for all
sections of bundles we may be led to consider.)

So here is a new family of bundles (vector bundles, clearly) on  X.  What is the
dimension of the fibre?  Let us begin with the case  p = 2.  Let  ωx  be a  2-
covector at  x  and  {∂i :  i = 1, . . ., m}  a basis for  TxX.  If  vj = Σ i v

i
j ∂i, with  j =

1  or  2, one has

ωx(v1, v2) = ωx(Σ i v
i
1 ∂i, Σ j v

j
2 ∂j) = Σ i, j ωx(∂i, ∂j) v

i
1 v

j
2.

By antisymmetry, knowing the  n(n − 1)/2  numbers  ωx(∂i, ∂j)  for  i < j  is enough
to compute  ω, so the dimension of the fibre is  n(n − 1)/2.  One may thus write

ωx(v1, v2) = Σ 1 ≤ i < j ≤ n ωx(∂i, ∂j)(v
i
1 v

j
2 − vi

2 v
j
1).
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There are two kinds of factors in this expression:  the  ωx(∂i, ∂j), that can be
denoted as  ωij(x), which characterize  ωx, and the bilinear (with respect to  v)
expressions.  Each of these is the result of applying to  v1  and  v2  a  particular
2-covector, denoted  di ∧ dj:

(22) (di ∧ dj)(v1, v2) = vi
1 v

j
2 −vi

2 v
j
1.

These  di ∧ dj  are the basis vectors in the fibre of  2-covectors above x.

Remark 7.  People formed in some European traditions may be mistaken by the use of
the symbol  ∧, and think they recognize in (22) an old acquaintance, in the case  n = 3.
But this is an illusion:  the notion of vector product of two vectors (the "cross product",
in Gibbsian tradition) has nothing to do here, and will not be met before long.  ◊

If  ω  is a  2-form, it is thus only natural to write, in the neighborhood of a
point  x,

ω = x → Σ i < j ωij(x) d
i ∧ dj.  

The notational abuse is the same as the one (lambasted, then forgiven) in Remark 5.

When  p > 2, the dimension of the fibre is given by the exercise that follows.

Exercise 29:  Let  ω  be a  p-form on   X.  Justify the notation

(23) ω = x → Σ σ ∈ C (n, p) ωσ(x) dσ(1) ∧  . . . ∧ dσ(p)

where  C (n, p)  is the set of increasing injections from the segment  [1, p]  of  IN  into the segment
[1, n].  What is the dimension of the fibre?

As one sees, the game stops when  p > n, because a multilinear alternating
mapping yields  0  when its vector factors are not linearly independent, and  p
vectors cannot be independent if  p > n.  So there are no non-trivial covectors  for
p > n.

The case  p = n  is special.  On  Vn, there is a well-known  n-covector, namely
the determinant of  n  vectors, in a given basis.  Changing the basis yields another
n-covector (another  n-linear alternating map), but proportional to the former, as
one well knows, and as is easily seen by doing the computation in some basis.
Conversely, every  n-linear alternating map is a multiple of some determinant.  So
the fibre of  n-covectors is of dimension 1.  A field of  n-covectors is called a
volume if it does not vanish on  X  (a local volume at  x  if it does not vanish in
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some neighborhood of  x).  The word is well-chosen, for the determinant of  n
vectors is indeed, in elementary geometry, the volume of the parallelotope built on
them.  The sign is characteristic of the orientation of the set of  n  vectors, a
concept we shall soon encounter again.

Exercise 30:  Let  u ∈ X → Y  and  ωy  be a  2-covector at  y = u(x).  Set, on  TxX × TxX,

(u*ω)x = {v1, v2} → ωy(u*v1, u*v2). 
 

Check this is a covector at  x.  Take a basis for  TxX.  Consider the bases (induced by  u) for  TyY
and for the  p-covectors at  x  and  y.  Write an expression for  u*ω  in these bases.

2.4.2  The algebra of covectors:  exterior product

As one may suspect, the notation  di ∧ dj, for one of the basis  2-covectors, is not a
single block.  It can be conceived as the result of an operation, denoted  ∧, that
creates a  2-covector from covectors  di  and  dj.  The operation can be iterated,
according to (23), to yield  p-covectors.  In fact, it can be defined for forms of any
degree.  Let us first agree that if  σ  is an increasing injection from the integer
segment  [1, p]  into  [1, p + q], then  ς  is the complementary injection, of domain
[1, q], whose image is the set of integers that do not belong to the codomain of the
first one, and that  sign(σ, ς)  is the signature of the permutation of  [1, p + q]  thus
obtained.  Then:

Definition 7:  Let  ω  and  η  be a  p- and a  q-covector.  Set, if  
p + q ≤ n,

(24) (ω ∧ η)(v1, . . ., vp+q) =

        Σ σ ∈ C (p, p + q) sign(σ, ς) ω(vσ(1), . . ., vσ(p)) η(vς(1), . . ., vς(q)).  

If  p = 0  (i.e., if  ω  is a function),  ω ∧ η  is simply denoted  ω η.

The reader will satisfy herself that  di ∧ dj  of (22) does correspond to this
definition, and that  d1 ∧ . . . ∧ dn  is indeed the determinant of  n  vectors.
Operation  ∧  is called the exterior product, or simply wedge product.  It is
associative (contrary to the cross product, also denoted  ∧  by some, although the
Gibbsian notation with a cross is obviously preferable) and anticommutative, in the
following sense:

(25) ω ∧ η = (−1)pq η ∧ ω.  

All this is easily verified.  Note that  ω ∧ ω = 0  if  p  is odd.
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Exercise 31:  Write  ω ∧ η  in the form (23).

Exercise 32: Show that  sign(σ, ς) = (−1)k, where  k = Σ i = 1, ..., p (σ(i) −1), and that  sign(ς, σ) =
(−1)p q sign(σ, ς).  Prove (25).

Thus, the fibres of covectors above a point are not foreign to each other.
Actually, one should rather consider all  p-covectors at  x  as elements of a single
family, the algebra of covectors:  the structure of algebra is conferred on it by the
operation  ∧.  It is named "Grassmann algebra".

Some dissymmetry has crept in with this proliferation of covectors, with the
effect to spoil the simple vector-covector duality we had at the beginning.  One
regains balance by introducing objects dual to the  p-covectors for  p > 1.  One
thus calls  p-vector an element of the dual of the vector space of  p-covectors.
(Beware that a  p-vector is not a collection of  p  vectors!)  A field of  0-vectors is a
function.  The Grassmann algebra of multi-vectors also exists, but is less popular
and less often applied than the multi-covectors one.  (A noteworthy exception is
[52], an account of classical electrodynamics based on multi-vectors.)

Exercise 33:  Derive the following coordinate expression for a field of  p-vectors:

u = x → Σσ ∈ C (n, p) uσ(x) ∂σ(1) ∧  . . . ∧ ∂σ(p),

where the  ∂i ∧  . . . ∧ ∂j  are  p-vectors that will be defined with reference to the basis  p-covectors
di ∧  . . . ∧ dj.

A word about tensors, to conclude.  These are fields of multilinear mappings,
but not necessarily alternating ones, which do not work exclusively on vectors of
the tangent space (as  p-covectors do) or on covectors (like  p-vectors) but on both
kinds.  We'll encounter one later (the metric tensor).
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Chapter 3

Orientation and integration

3.1  Orientability of a manifold

3.1.1  Volumes

Let  X  be of dimension  n,  x  a point and  Ωx  an  n-covector, non-zero (i.e.,
Ωx(v1, . . ., vn) ≠ 0  if the  vi  are independent).  Suppose first  n = 1  or  n = 2.  The
presence of  Ωx  then orients the tangent space (Fig. 37).  This is clear if  n = 1:  a
line is oriented if one can know left from right, rear from front, past from future,
etc.  All this amounts to be able to tell "positive" and "negative" vectors apart:  a
vector  v  will be positive if  Ωx(v) > 0.  Similarly, for  n = 2, one has an orientation
when one knows the meaning of "turning left", or "counter-clockwise":  if  v1  and
v2  are two vectors,  v2  is "left to  v1", or else "v1  and  v2  form a direct frame", if
Ωx(v1, v2) > 0.  For  n = 3, space is oriented when one can know whether three
vectors form a direct frame:  so is the case when  Ωx(v1, v2, v3) > 0.  As two
different  3-forms,  Ωx  and  Ω'x, yield numbers with either matching or opposite
signs, there are only two possible orientations (and the "right-hand rule" is there to
remind us of which of the two classes of  3-forms orients positively).  In dimension
n, a basis  v1, . . ., vn  will be directly oriented, or a direct frame, if  Ωx(v1, . . ., vn) >
0, a retrograde frame in the other case.

One may choose a consistent orientation system in a whole neighborhood  U
of  x, provided one has a smooth field of  n-forms  x → Ωx, whose domain includes
U, and non-vanishing in  U.  Then, not only one may tell, at every point  y  of  U,
whether a system of  n  independent vectors at  y  is or is not positively oriented,
but this orientation, this sign associated with the system of vectors, continuously
depends on  x:  if, for  n  smooth vector fields  vi, one has  Ωx(v1(x), . . ., vn(x)) > 0
at point  x, this stays valid by continuity if one substitutes a nearby  y  for  x.
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(v  , v  ) > 0
1 2xΩ(v) > 0xΩ

Figure 37.  Notion of orientation for  n = 1  and  n = 2.

In particular, there is a system of  n  vector fields whose orientation is the same
all over the domain of a chart about  x:  these are the basis vectors  x → ∂i(x), as
defined p. 50.  To orient the neighborhood of  x  amounts to deciding whether
these  n  vectors form a direct or a retrograde frame.

Thus one may locally orient a manifold, and in two different ways.  The
question of orientability is whether one can do that, in a consistent manner, over
the whole manifold.

The Möbius strip example (Fig. 38) suggests how to do it, and also how one
can fail at this task.  How to do it:  Choose an atlas, orient the domain of each
chart.  When two such domains overlap, the orientations are either the same or
opposite, but one may (at least if the intersection of domains is in one piece, which
can always be arranged) change one of the orientations and proceed step by step,
thus trying to make all orientations compatible.  But this process can fail:  it does
fail with  MS, because this particular manifold can be described by using three
charts whose orientations, whatever the combination one chooses among the six
possible ones, are inconsistent.  Our intuition of an "orientable" manifold is one for
which this process succeeds.  But if so is the case, one may obtain, by smoothly
patching the local  n-forms together, an  n-form which never vanishes on  X, what
we called earlier a volume.  Hence the following definition:

Definition 8:  A manifold is orientable if one may endow it with a volume.  Two
volumes  Ω  and  Ω'  "define the same orientation" if  Ω' = α Ω, with  α > 0.

An orientation is thus, in full rigor, an equivalence class of volumes, the
equivalence relation being the one given in Def. 8 above.  Thus, on a connected
manifold, there are two possible orientations, or none.
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Figure 38.  Orienting a Möbius strip, by continuation:  the method, with here
three charts, and (try something else, and see) its failure.

Whether we live in an orientable manifold has been much speculated about,
and remains an unanswered question.  Imagine the manifold obtained by removing
from  E3  the interior of two spheres (Fig. 39) and by gluing the surfaces according
to the indicated identification.  It cannot be oriented, as one will convince oneself by
looking at what happens to an oriented frame which slips along the trajectory  γ,
when it reaches point  A  and goes through.  If we lived in such a universe, and
assuming that it inherits from  E3  its metric (a concept on which we shall return),
we could see, from Earth  T, two images of the same galaxy  G, sent along the two
geodesics  GT  and  GBT.  An astronaut traveling along  TG, then  GBT, would
come back with the heart on the right side.  Maybe it's what happens to the heroes
of the movie The Black Hole, the epilogue of which leaves us uncertain about what
the post-mortem disclosed.

Exercise 34:  How is determined point  B  on Fig. 39?

Exercise 35:  Check that the manifolds of Figs. 15 and 16 (p. 23) are non-orientable.

Exercise 36 (Fig. 40):  Describe a manifold of dimension  3, non orientable, without boundary,
compact, obtained by identifying opposite faces of a cube in some specific way.
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Figure 39.  By identifying two spheres of identical radius, at distance  a  one
from the other, according to the equivalence  x ~ x + a, one turns the
remaining space into a non-orientable manifold of dimension  3.
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Figure 40.  A suggestion for Exer. 36.
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3.1.2  Transverse fields

The non-orientability of the Möbius strip is sometimes "proved" as follows:  Choose
a continuous field of normals in the neighborhood of some point, which can always
be done.  Then try to extend such a field to the whole ribbon.  That fails.
Therefore . . .

Such reasoning is incorrect, and it is worthwhile to understand why.  Let us
first give a long overdue definition:

Definition 9.  An immersion of a manifold  X  into a manifold  Y  is a mapping
u ∈ X → Y, of domain  X, such that  u*(x)  is injective at all points of  X.

Note that an immersion is not necessarily itself injective:  if it is, and if  u  is a
diffeomorphism of  X  into  u(X)  (important!  cf. Fig. 41), one calls it an embed-
ding.  (Cf., e.g., [62].)

] [ ] [ ] [

Figure 41.  Three immersions of  ]0, 1[ into  IR2.  Only the last one is an
embedding.  The one in the middle is indeed injective (no double point), but its
image in  IR2, with the topology induced by  IR2, is not a manifold.

Exercise 37.  Find an injection of  ]0, 1[  into  IR2  which is not an immersion.

Let thus  u  be an immersion, the dimensions of  X  and of  Y  being  m − 1
and  m  respectively.  So the image of  TxX  under  u*  is a subspace of
codimension  1  in the tangent space  TyY  at  y = u(x).  Let there be for each  
x ∈ X  a vector  n(x)  of  TyY, non vanishing, not included in  u*(TxX).  If now
x → n(x)  is continuous, one says that  n  is transverse with respect to  X.
(Example:  the field of outward going unit normals to a closed surface of  E3.)
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When a submanifold  X  is thus endowed with a continuous field of transverse
vectors, it can inherit an orientation from the ambient manifold  Y, to the extent
that  Y  itself is oriented.  For if  Ω  is a volume on  Y, the  (m − 1)-form

{ξ1, . . ., ξm−1} → Ω(n, u*ξ1, . . . , u*ξm−1)

does constitute a volume for  X.  So if  Y  is orientable, the existence of a
transverse field on  X  implies the orientability of  X  (and the other way round,
too—but this is not easily proved).

But if  Y  is not orientable, it may contain orientable submanifolds deprived of
any transverse field, or the other way round, as one will see by working out the
following two exercises.

Exercise 38:  Check:  the midcircle of a Möbius strip has no transverse field.

Exercise 39:  Find, on Fig. 40, an immersed Möbius strip, equipped with a continuous field of
normals.

So the fact that  MS, when immersed in  E3  the usual way, has no continuous
field of normals does not prove anything about its orientability.  The reasoning was
wrong because the existence of such a field of normals is not a property of  X  or
of the ambient manifold  Y, but a property of the immersion  u.  What is involved is
in fact the orientability of  u  itself (a concept we shall define in a moment).

Remark 8.  Let  ω  be a  p-form,  v  a vector field.  The operation which consists in
building the  (p − 1)-form

{ξ2, . . ., ξp} → ω(v, ξ2, . . ., ξp)

(used above to give a volume to  X) is called contraction of  ω  by  v, or inner product.
The result is often denoted  ivω.  We'll have use for it later.  ◊

Exercise 40:  Is the manifold  SO3  (of all rotations about a fixed point) orientable?  (Hint:  first
check that  SO3  can be obtained from a sphere of radius  π  by identifying antipodal surface
points.)

3.1.3  Orientation covering

To any manifold  X, orientable or not, one can associate an orientable
manifold as follows (look at Fig. 26, p. 34).  It will be a bundle on base  X, with
for fibre a two-points set, say  {1, −1}, and for structural group the group  S2  of
permutations of two objects, also denoted  {1, −1}.  To build it, consider an atlas
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on  X, say  {ψα :  α ∈ A}, and glue local Cartesian products (which consist in two
copies of  dom(ψα), namely  {−1} × dom(ψα)  and  {+1} × dom(ψα)) with
transition functions gαβ = 1  or  −1  depending on whether the orientations of the
basis vectors do or do not coincide on the intersection  dom(ψα) ∩ dom(ψβ)
(which may always be taken connected, provided there are enough charts).  The
result is a two-sheeted covering of  X, say  X

~
, which will easily be seen to be

orientable:  Indeed, the foregoing recipe is but a paraphrase of the definition of
orientability given earlier.

Exercise 41:  Satisfy yourself that  X
~

  does not depend on the chosen system of charts.

One calls  X
~

  the orientation covering of  X.  When  X  is connected and
orientable,  X

~
  consists in two disjoint connected parts (two copies of  X).  When

X  is connected but not orientable,  X
~

  is connected.

The fibre above  x, for  x ∈ X, consists in two points, that we shall note  x+

and  x−.  Thus, if  p  is the projection onto the base,  px+ = px− = x, and  p−1(x) =
{x+, x−}  (Fig. 42).

p

p

X
~

i

i
X

x

x

+

−

                   Figure 42.  (The involution  i  will be used later.)

Exercise 42:  Let an orientation of  X
~

  be given.  Consider a positively oriented system of basis
vectors at  x+, and an other one at  x−.  Show their images by  p*  are bases at  x, with opposite
orientations.

Exercise 43:  Show that the continuous "lifts"  r+ = x → x+  (such that  pr+  be the identity) and  r−,
that one can always define locally, cannot be continued all over  X  unless  X  is orientable.

A first application of these notions is the definition of the orientability of a
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function  u ∈ X → Y:  it will be orientable if it can be lifted to a bundle map of  X
~

into  Y
~

  with isomorphism from fibre to fibre.  In precise terms,

Definition 10:  A smooth function  u ∈ X → Y  is orientable if there exists a
smooth  u~ ∈ X

~
 → Y

~
  which makes the following diagram commute:

X Y

Y
~X

~ u~

u

p q

(where  p  and  q  are the projections), and under which the two points of  p−1(x)
have distinct images.

This amounts to saying that one may "associate, in a continuous way, the
orientations of a neighborhood of  x  and of a neighborhood of  u(x)" (a sentence
to which, actually, only Def. 10 is able to give precise meaning!).  Such an
association mechanism was described above in the case when  u  is an immersion of
codimension 1 endowed with a transverse field.  Such a mapping is therefore
orientable.

Note that if  u~  does exist,  u~ º i  (where  i  is the involution of Fig. 42)
satisfies the same requirements:  There are thus two ways (or none) to orient a
mapping when  X  is connected.

Exercise 44:  If  X  and  Y  are orientable,  u ∈ X → Y  is.

x
x'

u(x) (= u(x'))

u(y)

y

Figure 43.  Retraction of  MS  onto its middle line
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Exercise 45:  The "retraction" of  MS  onto its midline (Fig. 43) is not orientable.  More generally,
if  dom(u) = X, if  Y  is orientable, but not  X,  then  u  is not orientable.  (Suggestion:  continuous
maps preserve connectedness.)

Exercise 46:  A diffeomorphism is always orientable.

3.2  "Twisted" objects

3.2.1 Twisted functions

We'll now indulge in an apparently gratuitous game, the point of which will only
later become apparent.  It's again a matter of building a non-trivial bundle, one
which is, so to speak, "warped by the orientation", just like the above one, but the
fibre this time will be  IR, instead of being a pair of points.  The structural group
again contains two elements (which are mappings from  IR  onto  IR):  the identity
λ → λ  and the inversion  λ → −λ.

Let thus  X  be a manifold,  {ψα :  α ∈ A}  a system of charts, with domains
so chosen that all their intersections be connected.  Let us consider the Cartesian
products  IR × dom(ψα)  and  IR × dom(ψβ), and let us identify them according to
the following rule:  a pair  {λ, x}  belonging to one is equivalent to a pair  {µ, y}
belonging to the other if  x = y  to start with, and if  λ = + µ  or  − µ, depending
on whether the orientations induced by the charts coincide or not in the common
domain  dom(ψα) ∩ dom(ψβ).

The fibered manifold produced by this operation (let us call it  AŸ(X))  is
independent of the chosen system of charts.  If  X  is orientable,  AŸ(X)  is simply
the Cartesian product  IR × X, and sections of this bundle are nothing else than
real-valued functions defined on  X.  But if  X  is not orientable, they are objects of
a new kind.  To better understand their nature, let us observe that if  ψα  and  ψβ

have a common domain, but contrary orientations, the above procedure calls for
the identification of  {λ, x}  with  {−λ, x}.  So if one insists on considering a
cross-section  s  of  AŸ  as a function defined on  X, its values are not real numbers,
but pairs  {real value, orientation}, or more accurately, equivalence classes of such
pairs, the equivalence relation being

{λ, Ω} ~ {−λ, −Ω}

where  Ω  is a local volume giving the orientation.
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Sections of  AŸ(X)  are called twisted functions, which well fits such bizarre
objects.  Can it be that physics really needs them?

To make sure of that, let us consider the problem of Fig. 44, which consists in
computing eddy-currents induced in a thin metallic conductor.  Suppose one wants
to apply the stream-function method.  As described in the standard case when the
surface is endowed with a field of normals  n, this method consists in expressing the
current density  j  as  j = − n × grad a, where  a  is a function on  C  to be
determined.  One meshes  C, and unknowns are the nodal values of  a.

A notorious problem with this method is the possibility that  a  be multivalued,
which can be remedied by properly placing cuts (Remark 1, p. 35).  This difficulty
is not the one we want to discuss, so we make sure to avoid it by introducing the
perfectly permeable magnetic circuit  M  of Fig. 44.  The magnetic field vanishes
there, so, by Ampère's Theorem, there is no global current, hence no grounds for
multivaluedness.

The other difficulty, the one which does concern us, is the absence of a
continuous field of normals.  This, however, does not rule out the stream-function
method, because we may define  a  locally (Fig. 45).  Let's pick a point  x0, decide
that  a(x0) = 0, and assign to  a(x)  the circulation along some path joining  x0  to  x
of vector  j⊥  (that is,  j  rotated ninety degrees to the left).  Since  div j = 0,  rot  j⊥

= 0, so  a(x)  is independent on the chosen path, and  j = −(grad a)⊥  by
construction.

C

M

µ = ∞

js

Figure 44.  Induced eddy currents in an electrically conductive Möbius strip
C.  The presence of the perfect magnetic circuit  M  forces the total intensity in
C  to be  0.
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x

y j

j⊥

a = 0

Figure 45.  Construction of the stream-function  a  near  x0.

The above use of the words "to the left" testifies on the paramount rôle of
orientation in this procedure:  if right and left are permuted, this changes the sign of
a  (without changing  j!).  The physically relevant object at point  x  is thus not the
real value  a(x), but the pair formed by  a(x)  and the orientation about  x  (with the
convention that the pair  {−a(x), opposite orientation}  represents the same object).
Thus  a  is not a "genuine" function, but the local, and orientation-dependent
representation of a geometric object in which one recognizes a "twisted function"
as defined above.

Exercise 47:  Having cut the strip, as in Fig. 46, one may choose an orientation.  Check then that,
for two points facing each other on opposite sides of the cut (like  B  and  B'), one has  a(B) = −
a(B').

B

B'

A

A'

x
j(x)

a = 0

a = 0

Figure 46.  On the edge of the strip,  a = 0  (no incoming nor outgoing
current).
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Exercise 48:  Let  j  be a given current density on the non orientable surface of Fig. 16.  Draw the
cuts which are necessary to make the defintion of a stream-function possible, and tabulate all the
relations between values of  a  on opposite sides of a cut.  They take two distinct forms (hence two
different kinds of cuts).  Explain this.

3.2.2  Odd functions

As one will have guessed, there are some links between the above twisted functions
and ordinary functions defined on the orientable covering.  Let us describe them.

For this, let  i  be the mapping (from  X
~

  into itself) defined by  i(x+) = x−  and
i(x−) = x+.  (The label  +  or  −  is assigned to both points of the fibre in an arbitrary
way, since they play symmetrical rôles, but this does not prevent  i  from being well
defined.)  This map is a diffeomorphism (Exercise 49:  check this) and, since  i º i
is the identity, an involution of  X

~
  onto itself.  Now, we'll say a function

f ∈ X
~

 → X
~

  is even (resp. odd) if

f º i = f           (resp.  f º i = −f).  

Of course, a function can be neither even nor odd.

Since an even function  f  assumes the same values at both points of  X
~

above  x, one may "pull down to  x" this common value, thus associating with  f  a
function living on  X.  The converse being possible, one sees that even functions on
X
~

  can be identified with functions on  X.

Odd functions will prove more interesting.  Choose an orientation on  X
~

.
Sitting at  x+, above  x ∈ X, let us take a basis at  x+, positively oriented.  Take the
image of these vectors by  p*, hence a basis at  x.  One thus has at point  x  a real
value,  f(x+), and an orientation.  The same operation at point  x−  yields the
opposite value  f(x−)  and the opposite orientation, by the very definition of  X

~
.

These two opposite pairs are but a single element of the fibre above  x  of the
bundle  AŸ(X), according to the above-mentioned construction rules.  In other
words, to each odd function on  X

~
  corresponds a twisted function on  X.

Conversely, one may lift any twisted function defined on  X  to an odd
function on  X

~
, which is easier to conceive and to handle.  But one will remark

(Exercise 50:  try it) that such a lift can be performed in two different ways, which
yield functions of opposite signs, the sign depending on the chosen orientation of
X
~

.  There is thus no canonical correspondence between twisted functions on  X
and odd functions on  X

~
.  (A twisted function is actually a pair  {odd function on

X
~

, orientation of  X
~

}, with the same quotient operation as above.)  This slight
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difference motivates the contrasted use done here of two terms ("twisted" and
"odd") which historically were applied to the same thing.  (De Rham [83] calls
"odd" the objects — functions, differential forms, tensors . . . — which I call here
"twisted", according to modern usage.  One also says "oriented".)

Remark 9:  How to practically represent twisted functions, for computational
purposes?  The manifold  X  is described by a limited number of charts, whose domains
are orientable.  So one selects (arbitrarily) an orientation for each of them.  A twisted
function is then represented, in each chart, by a function  a  and a sign,  ε = +1  or  −1.
One will call this sign, with a slight abuse, "the local orientation of the twisted function
a".  (Of course,  {−a, −ε}  represents the same twisted function in this chart.)  If one has,
for some reason, to change the orientation of a chart, one changes the sign of the  ε
(relative to this chart) in the data structure of each twisted function.  ◊

3.2.3  Other twisted objects

Once understood, the process is easily generalized:  thus there are fields of twisted
vectors, twisted differential forms, etc.  A twisted vector is a pair {vector, local
orientation}, with the now standard proviso that the pair consisting of the opposite
vector and the other orientation represents the same twisted vector.  Here also, one
may introduce the notion of odd vector field on  X

~
:  it's a cross-section  v  of  T X

~

that satisfies

i*v = −v.

(Cf. Fig. 47.  Note incidentally that  i*  is an involution on  TX
~

.)

X~
X

Figure 47.  Odd vector field, above  x.

The Möbius strip case (Fig. 48) proves that one may find on the orientable
covering an odd field, continuous, which does not project on  X  (whichever
definition of such a global projection one tries) as a continuous field.  On the
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contrary, the corresponding twisted field is continuous.  Burke, with his characteris-
tic felicity in choosing graphical conventions, had found a way to visualise this
continuity (Fig. 48).  (Remark the use of an arrowed segment to represent a twisted
vector.  The length of the segment is the vector's modulus, the arrow is a kind of
orientation, but "external", like the one conferred upon a surface by a field of
normals, as seen earlier.)

In data structures, fields of twisted vectors are represented, for each chart, by
a field of ordinary vectors and a sign (called "local orientation" of the field), in a
similar way as functions.

Exercise 51:  Let  u ∈ X → Y  and  v~   be a field of twisted vectors on  X.  How can one define
u* vŸ?  (Suggestion:  cf. Def. 10.)

Let us finally define twisted forms.  A twisted  p-covector at  x  is an element
of the twisted (by the orientation) bundle of  p-covectors, that is, following the
method we already used several times, a pair  {p-covector, local orientation}, the
pair formed of the opposite  p-covector and of the other orientation representing
the same object.  A twisted  p-form on  X  is a field of twisted  p-covectors.

Figure 48.  Field (regular and nowhere vanishing) of "twisted vectors" on a
Möbius strip, and the impossibility of representing it by a (regular) field of
"genuine" vectors.
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Again, as was the case with twisted vectors, reasoning on ordinary forms
living on  X

~
 may be easier.  Let  i  be the involution which permutes the two

points of  X
~

  above a given point of  X, and  ω  a  p-form on  X
~

.  One can define,
as already done above,

i*ω = {ξ1, . . ., ξp} → ω(i*ξ1, . . ., i*ξp),

where the  ξis  are vectors of  TX
~

.  (An involution again.)  A  p-form  ω  on  X
~

qualifies as odd if  i*ω = −ω.

Once chosen the orientation of  X
~

, there is a one-to-one correspondence
between odd forms on  X

~
  and twisted forms on  X.

Vectors and twisted covectors are in duality.  Let  vŸ = {v, ε}  and  ω~ =
{ω, ε'}, in local representation (the chosen local orientations may not coincide).  Set

<ω~, vŸ> = ε' ε <ω, v>.

This duality bracket is an orientation independent quantity, since changing the
orientation of the representation of  ω~, for instance, yields

<ω~, vŸ> = ε' (−ε) <−ω, v>,

i.e., the same value.

Similarly, if  ω~  is a  p-covector, represented by  {ω, ε}, and  ξ
~

i, with  i =
1, . . ., p,  a set of twisted vectors, each represented by  {ξi, εi}, the effect of  ω~  on
them is

ω~(ξ
~

1, . . ., ξ
~

p) = ε ε1 . . .  εp  ω(ξ1, . . ., ξp).

This justifies a redefinition of twisted  p-covectors as alternating multilinear
mappings on the vector space of twisted vectors.  The dual objects are twisted
p-vectors.

We shall now examine the case  p = n.  Twisted  p-forms are then called
"densities" [27], because they well model, as one will see, the physical notion of
density (of charge, of matter, of energy, etc.).  This is so because twisted  n-forms
can be integrated, i.e., they may appear as integrands under summation signs.
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3.3  Integration

Let  X  be a connected manifold of dimension  n, not necessarily orientable, which
will be assumed in all this Section to be triangulable, according to the definition to
be given below.  This hypothesis is done for technical reasons, to help define the
integral in a sense similar to Riemann's.  The object we wish to integrate is a twisted
n-form, or density.  Remarkably, this will prove feasible without any preexisting
notion of measure, contrary to what happens in standard integration theory.

3.3.1  Triangulation

We shall call reference p-simplex the following closed set of  IRp:

(26) Sp = {x ∈ IRp
 :  xi ≥ 0    ∀ i,  Σ i xi ≤ 1}.

Subsets of  Sp  obtained by replacing one or more of the inequalities in (26) by
equalities are called faces of  Sp.  Thus, in particular, the vertices of  Sp  and the
empty set are faces.  One denotes by  e1, . . ., ep  the basis vectors of  IRp.

A (plain)  p-simplex will be an embedding  s ∈ IRp → X, with  dom(s) = Sp.
(One may occasionally call "simplex" the image  s(Sp)  — then denoted  |s|  — but
it will be an abuse:  a simplex is a mapping, for some  p, of  Sp  into  X  (Fig. 49).)

For convenience in what follows, we introduce the following notion:  a map of
type  Sp → Sq  will qualify as simplicial if it is affine, injective, and transforms
vertices into vertices.  (It then transforms all faces of  Sp  into faces of  Sq  of same
dimension.)  By convention, a function with empty domain is also taken as
simplicial.

Definition 11:  A simplicial tessellation of a manifold  X  of dimension  n  is a
family  S  of  n-simplices in  X  with the following properties:

(a)  If  s  and  σ  are two simplices of  S, the mapping  s º σ
−1  is simplicial,

(b)  If  s ≠ σ,  then   |s| ≠ |σ|,

(c)   ∪s ∈ S |s| = X,

(d)  Any compact part of  X  is covered by a finite union of images  |s|.
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Figure 49.  A few simplices, in dimension 2.

These axioms do correspond to the notion of mesh familiar to finite elements
users.  Note however that the shape of the elements is optional, and can thus be
adapted to the curvature of the boundary  ∂X.

Finite elements theory leads to introducing  p-simplices, with  p < n, relative to
a tessellation, to account for the notions of nodes, edges, faces, etc.  For our present
needs,  n-simplices will do.

By various subdivision procedures (which need not be detailed here, cf. e.g.
[5], p. 125), one may associate with each simplex  s  of  S  a family of simplices
forming a simplicial tessellation of  |s|, and whose union for all  s  of  S  forms a
simplicial tessellation of  X, which is then called a refinement of the first one (Fig.
50).

A manifold is triangulable when it can be endowed with a simplicial
tessellation.  Smooth manifolds (p. 13) are always triangulable ([51], p. 1291,
[28]).  By subdivision, one may refine a triangulation at will.
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Figure 50.  Subdivision of a  3-simplex.  Note that the central octahedron can
be divided in three different ways.  (Beware, this is not a "barycentric
subdivision" [2, 84], which would introduce other vertices at the centres of the
faces and of the tetrahedron, for a total of 24 tetrahedra.)

3.3.2  The integral of an  n-form:  tentative definition

Let  ω  be an  n-form on  X.  How could one define a linear mapping, that would
be denoted  ω → ∫X ω, and would have the linearity properties one expects from
an integral?  By imitation of Riemann's procedure, one might think of assigning to
each simplex  s  of a given triangulation a real number  <ω, s>, to then take the
sum

(27) IS(ω) = Σ s ∈ S <ω, s>.

If this sum tends to a finite limit  I(ω),  when S  is repeatedly subdivided, one will be
entitled to say that  ω  is integrable and to call this limit the integral of  ω.

The problem is thus to put forward a reasonable definition for  <ω, s>.  (All
the rest, showing that the limit exists, is independent of the initial triangulation, etc.,
is far from being technically trivial, but the reader is assumed to have taken this
kind of medicine at least once, and thus not to be in need of it any more.)

As we have nothing like a notion of length or a measure on  X, there is not
much leeway in the definition of  <ω, s>  The only thing  ω  can do is to act on  n
vectors of  TX  to yield a number.  So we need to associate  n  vectors with  s  in a
natural way.  How?  the only candidates are the images  s*ei  of basis vectors of
IRn.  So let us try this:

(28) <ω, s> = 1/n!  ω(s*e1, . . ., s*en) ≡ 1/n!  s*ω(e1, . . ., en).
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Exercise 52:  Before reading on, satisfy yourself that "it works" on the following example:  X =
[0, 1],   ωx = f(x) dx  (the 1-form which to vector  ξ  at  x  assigns the product of its unique
component  ξ  by  f(x)).  Consider the simplicial tessellation

si = t ∈ [0, 1] → xi−1 + t (xi − xi−1) 

where the  xis  are points of  X  such that  0 = x0 < x1 < . . .  < xm = 1, and interpret (28).

At first glance, it looks as if we had grasped the wanted notion:  Suppose  ω
represents the density of electric charge in a region  X.  One subdivides  X  into
small (warped) tetrahedra, the  s* ei  are tangent vectors which roughly match their
(curved) edges, the values  ω(s*e1, . . ., s*en)  are, to a multiplicative factor (which is
the charge density), the volumes of parallelepipeds built on these vectors, the factor
n!  (here,  n = 3) connects these with the volumes of tetrahedra, and one gets with
(27) an approximation of the total charge.

Orientation problems, unfortunately, ruin this scenario.  Let us substitute for
some  s  another simplex  s', with  |s'| = |s|, such that the map  ϕ = s−1 º s'  be
simplicial (a condition imposed by point  a  of Def. 11).  Then  ϕ  permutes the
vertices of  Sn.  According to the parity of this permutation, even or odd, one will
have  <ω, s'> = ± <ω, s>, thus all our construction breaks down.

A simple fix would consist in only considering orientable manifolds.  For if  X
is endowed with an orientation, as given by a volume  Ω, one may arrange for all
simplices  s  to be "positively oriented", i.e., such that  Ω(s* e1, . . ., s*en) > 0.  Or
else, and this is equivalent, one may set1

(29) <ω, s> = 1/n!  ω(s*e1, . . ., s*en)  sgn(Ω(s*e1, . . ., s*en))

instead of (28).  This time, the definition of  IS(ω)  is indeed insensitive to the
orientations of the  s's.

However, with this new definition, the sign of the resulting integral depends
on the orientation of  X, and one can only integrate on orientable manifolds.  This is
very unpleasant, for why should global quantities like total mass, charge, etc.,
depend on the orientation — quite arbitrary — conferred on ambient space?
Moreover, one may wish to integrate on non-orientable manifolds (for instance, to
compute the mass of a Möbius strip of known density).

1  sgn  is the "sign" fonction:  −1  or  1  depending on the sign of the argument,  0  when it is  0.
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3.3.3 The integral of a twisted n-form

So we'll approach the problem in another way:  give up on integrating ordinary
n-forms, and concentrate on twisted  n-forms, or densities, which bear with them,
by their very definition, the necessary orientation.  Let  ω~  be a density, locally
represented by  {ω, Ω}, where  Ω  is a volume (arbitrarily selected) defined in a
neighborhood of  |s|.  One defines  <ω~, s>  as in (29), i.e.,

(30) <ω~, s> = 1/n!  ω(s*e1, . . ., s*en) sgn(Ω(s*e1, . . ., s*en)).

This number is independent of the choice of  Ω, now.  Similarly, the sum

IS(ω
~) = Σs ∈ S <ω~, s> 

is left unchanged if one substitutes  s'  for  s  as above, for the possible change of
sign in (30) is compensated by that of  Ω.  From this point, one carries on with the
theory (subdivision of  S, existence of a limit which does not depend on  S, linearity
and additivity of the integral, etc.) without any further problem.

The introduction of twisted forms finds a posteriori justification in this
remarkable result:  a density is (or is not) integrable on a manifold  X, irrespective
of its orientability, and without any preliminary construction of a measure.

The theory extends to ordinary  n-forms, provided  X  is orientable:  one just
turns the given form into a density by adjoining an orientation to it.  On the other
hand, an  n-form cannot be integrated on a non-orientable manifold.

Exercise 53:  Did you ever worry about the fact that

∫a
b
 f(x) dx = − ∫b

a 
 f(x) dx 

according to an elementary approach to integration (the one which relies on the notion of primitive)
whereas in more elaborated theories the number  ∫A f(x) dx  (where  A  is a part of  IR) can be
defined without any reference to orientation?  Show that in the former case  f(x) dx  is a  1-form,
and a density in the latter.

Exercise 54:  Let  u ∈ X → Y  be a diffeomorphism.  Show that

∫X u* ωŸ = ∫Y ωŸ .

(Remind that  u  is orientable, cf. Exer. 46, p. 67.)

Exercise 55:  Let  ρ  be a density (in the common sense of the word) of charge in a region  X  of
E3. 

 Define a twisted  3-form whose integral on  X  will be the total charge.
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Exercise 56:  What is the relationship between the notions of "measure" and of "density"?

3.3.4  Integrals of  p-forms

If  ω~  is a twisted p-form on a manifold  Y  of dimension  n, with  p < n, one will
be able to integrate it on an immersed manifold of dimension  p:  If  u ∈ X → Y  is
this immersion, one will define (cf. Exer. 54)

∫u(X) ω
~ = ∫X u*ω~, 

once a proper definition of  u*ω~  will be at hand.  Let thus  ω~ = {ω, Ω}  be a
local representation of  ω~  in the neighborhood of  y = u(x).  One knows how to
pull-back  ω  to  u*ω  at  x.  If one may adjoin to it a local orientation  Ω'  about
x, naturally derived from  Ω, the pair so obtained will be, by way of definition,
u*ω~.

As we saw above (Section 3.1.2), this is possible if  u  is orientable (Def. 10, p.
66).  To any given local volume  Ω  one may then associate a local volume  Ω'
on  X.  One will check that the pair  {u*ω, Ω'}  so obtained does represent a
twisted  p-form on  X.  By definition, this form is  u*ω.

Thus twisted  p-forms can be integrated on some immersed manifolds of
dimension  p, those with an orientable immersion.  (One also says that such
manifolds have an "external orientation", a dubious terminology, since an external
orientation is not an orientation, cf. Exer. 39.)  The integral establishes a duality
between the two kinds of objects.

One should not jump to the conclusion that ordinary differential forms cannot
be integrated:  provided the manifold is orientable, one may always turn them into
twisted forms (just select an orientation) and the whole theory applies.  The only
difference is the dependence of the sign of the integral on orientation.

Physical entities for which integration makes sense are in general twisted
p-forms.  Here follows an especially important example.

Electric current density (let us denote this entity by  j
~

) is commonly regarded
as a vector field.  Actually, it's a twisted  2-form.  To make this point, let us start
from the idea that one should be able to associate with j

~
(x)  some differential

object, whose integral would have to be a flow of charge.  More to the point, if  S
is a closed surface, an integration over  S  should yield the outgoing flow (or
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incoming, at will).  But such a flow is independent, by its very nature, on
orientations of both  S  and space.  The to-be-defined  2-form (2, because the
dimension of  S  is two) is thus not an ordinary  2-form, whose integral depends on
orientation as we know, but a twisted form.  Another compounding argument is:
the words "incoming" or "outgoing" suggest that the surface through which one
wants to compute a flow must be endowed with an external orientation.  (Indeed,
the idea of a flow of charge through a Möbius strip doesn't lend itself to any
reasonable definition.)  But, as we know, such externally oriented surfaces are
precisely those on which  2-forms can be integrated.

All this concurs to suggest the proper mathematical object to model the notion
of current density is some twisted  2-form.  Knowing this, we necessarily arrive at
the following definition: j

~
(x)  is the twisted  2-covector for which a representation

is the pair  {j(x), Ω}, where  Ω  is a local volume and  j(x)  the  2-covector which
assigns to a pair of vectors at  x, say  ξ  and  η, the flow of charge (through the
parallelogram built on them) in the direction of a vector  n(x)  such that  
{ξ, η, n(x)}  be a direct frame for the orientation  Ω.  In order to check the
correctness of this definition, we must verify that the other representation of  j

~
(x),

to wit the pair  {− j(x), − Ω}, measures the same flow of charge.  Indeed, the
covector  − j(x)  assigns to  ξ  and  η  a number which is this flow with a change of
sign, thus the flow in the direction of  − n(x), and  {ξ, η, − n(x)}  is effectively a
direct frame for the orientation  − Ω.

Let now  S  be a surface, closed or not, endowed with a transverse field  n
(which defines the "crossing direction").  The pull-back of j

~
(x)  on  S  is a twisted

2-form, whose integral over  S  is the flow crossing this surface along the direction
indicated by  n.  Thus the twisted  2-form j

~
(x)  well performs its intended

function:  it tells about the flow across externally oriented surfaces.

This long discussion may have been more irritating than convincing for some
readers, who may have objected:  "This is a lot of trouble for a rather modest
result.  If your purpose was to model the notion of current density (be it of
electrical current or of any kind of 'fluid'), why not use a vector field?  I call 'flux
density' at  x, on the surface  S  as oriented by  n, the real number  j(x) · n(x).  To
get the total flow, I integrate this function of  x  over  S, and the result is indeed
independent of any orientation.  (I concede all this assumes an underlying
integration theory, including the definition of a measure borne by  S, but as you
said, I did my homework about this in the past, so why not cash in on it?)"

The words I have emphasized are the weak point in this line of argument.  The
problem is not the technical difficulty of defining a measure on  S, it roots in the
absence of metric information on which to base such a definition:  whatever the
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unit length and the unit of area on  S, the flow through it (as expressed, for
instance, in amperes) will be the same.  This is the point of defining current density
as a twisted  2-form:  this way no metric, no previous notion of length, area, etc., is
assumed.

Even if such notions have been introduced for other reasons, making use of
them is not necessarily a good idea.  Think for instance of a problem featuring the
current flow through a deformable material surface.  It will be simpler in such a
case to think in terms of a  2-form, without any recourse to a measure of areas that
would vary with time, with the easy to imagine complications this would bring in at
the computational level.

What have been said about current density is valid for other kinds of flow:
heat, fluids, etc.  One may also think of adding to the list the magnetic flux, i.e., the
induction field  b.  However,  b  is not a twisted  2-form, as we shall see later.  (One
may suspect this by noticing how the flux of  b  is linked with the circulation of the
electric field by Faraday's law, for orientation plays a part in the matter.)

3.4  Stokes Theorem

Another famous topic, to which we won't pay as much attention as is customary,
because the clanking technique involved hides a single and simple idea:  one defines
an operator, denoted  d, in such a way that Stokes' Theorem, i.e.,

(31) ∫X dω = ∫∂X ω,

hold locally.  One then easily finds it to hold globally.  Operator  d  thus appears as
a formal adjoint to  ∂  in the duality between  p-forms and  p-submanifolds.

Consider first a manifold  X  of dimension  n, and a  (p−1)-form  ω.  Sitting at
x, one considers  p  vectors  ξ1, . . ., ξp.  One may always define a simplex  s  such
that the images  s*ei  of basis edges of the reference  p-simplex  Sp  coincide with
the  ξis.  One of the vertices is  x  (Fig. 51).  Let us orient  |s|  so that the  ξis  form
a direct frame.  This induces an orientation on  ∂|s|  (for which a transverse field is
at hand, the one obtained by mapping an outgoing vector field on the boundary of
Sp  to one on  |s|, via  s).  One then integrates  ω  on  ∂|s|  with this orientation,
hence a number, denoted  α(1).
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Figure 51.  Definition of  d.  The  λi  are the coordinates of a generic point in
Sp  (here,  p = 2).

Let now  sε  be the simplex built from  s  by applying the transform

sε(λ) = s(ε λ),

where  λ ∈ Sp  (Fig. 51).  Integrating on  sε  yields a number  α(ε).  As easily
shown by working in a chart about  x, the quantity  α(ε)/ε  tends to a limit when
ε → 0, and this limit is multilinear and alternating with respect to the  ξis.  We now
set

(32) η(ξ1, . . ., ξp) = lim α(ε)/ε 

hence a covector at  x.  Then,

Definition 12:  dω  is the field of the covectors in (32).

The definition can be extended to twisted forms, by setting  d{ω, Ω} =
{dω, Ω}, where  Ω  is a local volume.  The operator  d  thus obtained is called
exterior derivative.

Exercise 57:  Consider  u ∈ X → Y.  Show that  d u*ω = u* dω.  (Hint:  Exer. 54, a simplex  s  at
x, and the simplex  u º s  at  y = u(x).)
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One then proves (31), in the case  p = n, by working on a simplicial
tessellation of  X, and by taking into account the cancellation of contributions of
most  (n − 1)-simplices to the second integral (this, because both opposite induced
orientations appear, for all simplices but those belonging to  ∂X).

Exercise 58:  Note that  ∂ ∂X  is always empty, and derive  d2 = 0  from this.

Last, thanks to (31) and Exer. 57, one tackles the case of an immersed
manifold  X  of dimension  p.  (The immersion has to be orientable if  ω  is a
twisted form, whereas  X  has to if  ω  is an ordinary form.)

Remark 10:  One says that a  p-form  ω  is closed if  dω = 0, is exact if  ω = dα  for some
(p−1)-form  α.  Since  d2 = 0, an exact form is closed.  On the same pattern, a manifold  X
is "closed" if  ∂X = 0  (but one will rather say that it is "a cycle"), it is "a boundary" if
there exists some  Y  such that  X = ∂Y.  The question of the converse statement then
arises.  When is a cycle a boundary?  When is a closed form exact?  Such questions
make the subject matter of the Chapters "homology" and "cohomology" of algebraic
topology [2, 5, 44, 53, 67, . . .].  ◊

In spite of the simplicity of the definition of  d, the explicit formula, due to
Palais [77], which expresses  dω(ξ1, . . ., ξp)  in terms of intrinsic quantities like
ω(ξ2, . . ., ξp), etc., is not simple (cf. [68], p. 107).  Better here to use a chart.  If

ω(x) = Σ σ ωσ(x)  d
σ(1) ∧ . . .  ∧ dσ(p) 

(for the meaning of this notation, cf. (23), p. 55), one has

(33) dω(x) = Σ i = 1, ..., p  Σ σ ∂i ωσ(x)  d
i ∧ dσ(1) ∧ . . .  ∧ dσ(p).

This can be taken as an analytical definition of  d.  Indeed,  d  is often introduced
this way.

Exercise 59:  With the help of (33), verify that the basis covector  di  of Section  2.3  (p. 52) is
actually the  d  of the function "ith  coordinate",  x → xi.

Exercise 60:  Show (by first putting  ω  and  η  in the form (23)), that

(34) d(ω ∧ η) = d ω ∧ η + (−1)deg(ω) ω ∧ d η.

Exercise 61:  A  twisted  0-form (say  a~ ) is a twisted function, i.e., at each point, a value  a(x)  and
a sign  ε(x), with  {a, ε} = {−a, −ε}.  Show that the integral of  a~   over a finite set of points  A  is

Σ x ∈ A ε(x) a(x).
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Apply Stokes theorem on a path joining  x1  to  x2  and recover the notion of gradient.

Exercise 62:  One heats up a heat-conducting Möbius strip from its boundary.  Define on  MS  an
appropriate twisted  1-form, such that Stokes theorem, when applied to all  MS, expresses heat
conservation.  (Note this should be an intrinsic  1-form, one defined on  MS  directly, and not as
the pull-back of some  1-form on  E3.)

Exercise 63:  Discuss the relationship between current density (a twisted  2-form) and electric
charge (a twisted  3-form); between heat flux (a twisted  2-form) and thermal power.
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Chapter 4

Additional structures
on a manifold

The structure of differentiable manifold by itself, as provided by charts, has proved
very rich, allowing the definition of vectors, forms, the  d, the integral, etc.
However, the time has come to add something to it.

What is to follow will more easily be understood by way of analogy.  As one
knows, vectors of  Vn  and covectors of  Vn*  are in duality.  (This simply means
that to any pair   {ω, v}  one can assign a number  <ω, v>, this correspondence
being bilinear and non-degenerate (cf. p. 49).)  Thus  Vn  and  Vn*  are isomorphic
to each other, but there is no canonical isomorphism, i.e., no natural way to match
a vector with a given covector, and the other way round.  On the other hand, as
soon as  Vn  is endowed with a scalar product (which turns it into the Euclidean
vector space  En), such associations become possible:  for the mapping  v → u · v,
where  u  is a fixed vector, defines a covector  ωu, hence a canonical isomorphism.
The same phenomenon happens in Hilbert space (it's the Riesz theorem).  The
scalar product, in both cases, is the additional element of structure which makes the
definition of such an isomorphism possible.

Something analogous will happen here:  the additional element of structure
will first be a density, then a metric.

4.1  Measurable manifolds

Let  X  be a manifold and  Ω
~

  a density, or twisted  n-form on  X, fixed, nowhere
vanishing on  X.  We shall call such a structure a measurable manifold.

By way of definition,  Ω
~

(x)  is represented in the domain of a chart by a pair
{n-covector, orientation}, and the orientation in turn is represented by a local
volume, which can be the  n-covector itself (Ω, say), since it does not vanish
anywhere.  So  Ω

~
  is, locally, the pair  {Ω, Ω}  (or  {−Ω, −Ω}).  Integration of  Ω

~

on a part  A  (of dimension  n) will thus yield (cf. (30)) something which is positive



86 Alain Bossavit       

and additive with respect to  A, from which one may define a measure on  X, in
the sense of Lebesgue measure theory (hence the name of "measurable manifold"
we tentatively use here).

Examples where such a structure can provide a good model are:  For  X, the
continuum of material points of a deformable solid, and for  Ω

~
, the mass;  For  X,

a given territory, and for  Ω
~

, the population density.

Exercise 64:  Find other similar examples, i.e., with a natural density but no natural metric on
manifold  X.

4.1.1  Duality between densities and functions

Consider now on  {X, Ω
~

}  another density  ω~, locally represented by  {ω, Ω}.
Then the real number

ρ(x) = ω(ξ1, . . ., ξn)/Ω(ξ1, . . ., ξn)

is obviously independent of the  ξis  (by linearity) and insensitive to orientation.
Therefore  x → ρ(x)  is a function (a genuine one, not a twisted one) associated
with the density  ω, and one may legitimately write

(35) ω~ = ρΩ
~

.  

(Note that  ρ  is not necessarily positive.)  One says that  ρ  and  ω~  are dual to
each other.

For instance, if  X  is a deformable solid and  Ω
~

  the mass,  ω~  can be the
heat content, or the charge, or the volume of space occupied, or etc.  Then  ρ(x)  is
what is commonly called the "density" of this substance:  quantity of heat per unit
of mass (i.e., specific enthalpy), charge per unit of mass, specific volume, etc.  (This
vindicates, a posteriori, the use of the name "density" for twisted  n-forms.)

One could wonder about the choice of sophisticated mathematical objects like
densities to model the physical notion known by this name.  Why not simply the
scalar  ρ?  Because  ρ  alone is not enough:  one needs a measure with respect to
which integrate it (the density of charge, for instance, is understood "with respect
to" mass, or volume, etc.).  The density  ω~, after (35), incorporates both notions:
scalar density and measure.

The distinction we are doing there is often obscured by the "Eulerian" setting
one usually favors, which consists in considering physical space  E3  as the ambient
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manifold.  Once a unit of length has been chosen, there is a natural volume (the one
which is usually called volume, precisely), a conventional orientation, and thus a
natural density  Ω

~
, to which all other densities can be compared.  But when field

computation in deformable bodies is in order, it is very profitable to outgrow this
point of view and to shift to the "Lagrangian" one, where the ambient manifold is
the body itself.  The geometric notions introduced here then take all their interest
(cf. [20]).

In short, there is, on a measurable manifold, a canonical isomorphism between
twisted  n-forms and functions.

This works the same way as regards ordinary  n-forms and twisted functions:
If  ω  is such a form, it can be matched with the twisted function  {ρ, Ω}, with  ρΩ
= ω.  It happens that Electromagnetism features a natural  3-form:  the magnetic
charge (div b, in ordinary language, and  db  if one considers  b, as one should, as a
2-form).  The corresponding charge density function is thus actually a twisted
function, or as Treatises have it, sometimes a bit esoterically, a "pseudo-scalar".
(Fortunately, free magnetic charges do not exist in nature, up to now, which makes
this dependence of the sign of charge on orientation rather irrelevant.  The absence
of magnetic charge, on the other hand, may have something to do with its
geometric nature.  Cf. [92].)

4.1.2  Duality in general

Let now  j  be a field of (genuine) vectors.  Since the mapping

(36) {ξ2, . . ., ξn} → Ω(j, ξ2, . . ., ξn),

considered at point  x, is an  (n − 1)-covector, one obtains, by pairing it with the
orientation  Ω, a twisted  (n − 1)-form  j

~
  (said dual to  j).  Conversely, there

corresponds to a given  (n − 1)-covector a unique vector, after (36) (just check
uniqueness, which implies existence, in a finite dimensional space), so things go both
ways there again:  to the twisted  (n − 1)-form j

~
  corresponds a dual vector

field,  j.

For  n = 3, this corresponds to the already discussed case of electric current.

As one may have anticipated, the notion of divergence of a vector field now
comes in a natural way (but only now!).  The divergence of the vector field  j, dual
to the twisted  (n − 1)-form j

~
,  is the function  div j  such that
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(37) d j
~
 = (div j) Ω

~
.

Exercise 65:  Let  u ∈ X → Y  be an immersion, with  dim(X) = m − 1  and  dim(Y) = m.  One
assumes the existence of a transverse field  n  on  X.  Let  v  be a vector field on  Y.  Show that the
expression "component of  v  with respect to  n" can be given a precise meaning.  (Suggestion:
Fig. 52.  One denotes this component by   vn  for the rest of this exercise.)

x

n

v

ξ

η

Y

u(X)

Figure 52.

Exercise 65 (continued):  Let now  Ω
~

  be a standard density on  Y.  Build from it and from  n  a
density on  X,  denoted  nΩ

~
.  Find back  vn  by comparing with  nΩ

~
  the  (m−1)-form which is

dual to  v.

Exercise 65 (end):  From (37), Stokes theorem, and what precedes, derive Ostrogradskii's
theorem:

∫∂X jn = ∫X div j,

and explain the notation.  (Beware,  n  is a field of outgoing vectors, but not the field of normals,
for lack of any metric structure on which to base the notion of orthogonality!)

Thus, the presence of a standard density allows one to pair objects of different
types which otherwise would be unrelated:  functions and densities, vector fields
and twisted  (n − 1)-forms.  More generally,  Ω

~
  associates an ordinary (resp.

twisted)  p-form to a field of twisted (resp. ordinary)  (n − p)-vectors, as displayed
in Fig. 53, by a transformation which is called the "dual map".  (Its geometric
definition is only palatable if  p = 0,  1,  n − 1  or  n.  See [89], p. 25, for the
analytical definition.)

There does not seem to exist a standard symbol to denote this dual map with.
Let us adopt    for this purpose (not to be used beyond this Section).  Thus j

~
 =
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 j.  In the other direction, one prefers to set  j
~
 = (−1)n j, instead of  j

~
 = j, to

get rid of a few minus signs in some formulas, so the transformation    is not quite
an involution.  Actually,

 = (−1)p(n − p) 

when applied to a  p-form or to a  p-vector.

p-forms~

(n    p)-forms−

(n    p)-vectors−

p-vectors~Ω
~

Figure 53.  Correspondences under the dual map induced by a standard
density  Ω

~
.  (The sign  ~   is an abbreviation for "twisted".)

Exercise 66 ("covariance" of the flux, and more generally of the integral of an  (n − 1)-form):
Show that, with proper hypotheses on  u ∈ X → Y  and  S,

∫S u* j~  = ∫u(S) j~ , 

where  j~   is a twisted  (n − 1)-form (dim(X) = dim(Y) = n).

Exercise 67:  Let  (X1, Ω
~

1)  and  (X2, Ω
~

2)  be two measurable manifolds, and  u ∈ X1 → X2  an
orientable map.  One will say that  u  is a volume-preserving map if  u*Ω

~
2 = Ω

~
1  (or  − Ω

~
1).

Study in that case the commutativity of the diagram:

∗u

∗u

T X  2T X  1

T  X  2
∗T  X  1

∗
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4.2  Riemannian manifolds

4.2.1  Metrics

Definition 13.  One has a metric  g  on a manifold  X  when there exists, at each
point  x, a bilinear map

gx ∈ TxX × TxX → IR,

symmetric with respect to both arguments, positive definite, i.e.,:

(38) gx(v, v) > 0  ⇔  v ≠ 0, 

with smooth dependence on  x.

In coordinates,

gx(v,v) = Σ i, j gij(x) vi vj, 

the  gij  (or "coefficients of the metric tensor") being smooth functions of  x, with
gij = gji.

A manifold endowed with a metric is a Riemannian manifold.  Note that  gx

is a scalar product on  TxX, thus a metric gives each tangent space a Euclidean
structure.  So one will abbreviate, if there is only one metric in sight, as follows:

gx(v, v) = v · v .

Given such a structure, things like the norm of a vector, the angle of two vectors,
orthogonality, etc., make sense.  (But beware:  only in the tangent space at a point.
There is no way to take the scalar product of tangent vectors at two distinct points.)

Distance between two points also makes sense, as follows.  The map  v →
[gx(v, v)]1/2,  of type  TxX → IR, is not a covector, since it lacks linearity.  But by
restriction to one-dimensional submanifolds, it yields a density, called "the length
element", which can be integrated, for instance along an arc connecting  x  with  y.
The result is the length of this arc.  By taking the infimum of lengths of all arcs
from  x  to  y, one gets the distance between  x  and  y.  Axioms for a distance are
easily checked.

One also gets new correspondences.  Let  v  be a vector field.  Then
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(39) x → (ξ → v(x) · ξ)

defines a  1-form, often denoted with a flat sign:  v.  Conversely, to a  1-form  ω
corresponds (according to the Riesz theorem) a vector field denoted with a sharp,
#v, such that  ω(ξ) = (#v) · ξ.  Of course,

# = #   = 1.

The same operators can be defined in an obvious way for twisted vectors and
forms.

Exercise 68:  Let  (X1, g1)  and  (X2, g2)  be two Riemannian manifolds.  One says that  
u ∈ X1 → X2  is an isometry if  g2(u* v, u* w) = g1(v, w)  for any pair of vectors  v  and  w  at  x.
Study in that case the commutativity of the diagram:

∗u

∗u

T X  2T X  1

T  X  2
∗T  X  1

∗

##

(Note that  u  has to be a diffeomorphism and  dim(X) = dim(Y).)

Remark 11:  If  f ∈ X → IR  is a function,  #df  is a vector field, denoted  grad f  (cf.
Remark 6).  If  v ∈ X → TX  is a vector field,  #d v  is vector field, denoted  rot v.  ◊

Exercise 69:  Study the commutativity of  u*   with the operators  grad  and  rot.  (Cf. Exer. 68.)

One may also sharpen a  p-form into a field of  p-vectors, or flatten such a
field into a  p-form.  (This is more easily done in coordinates, and the exercise is left
to the reader.)  One thus obtains the diagram of Fig. 54.

4.2.2  Hodge operator

But this diagram doesn't tell the whole story.  For the existence of a metric entails
that of a (local) volume, thanks to (38).  To get it, one first selects a local
orientation.  Then, for a given set of vectors  ξ1, . . ., ξn, one builds the Gram matrix
G  with the dot-products  ξi · ξj  as entries, and one sets

(40) Ω(ξ1, . . ., ξn) = ± [det(G)]1/2
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(where  det  is the determinant), with the sign + or  −  according to the orientation
of the  ξis.  Then  Ω

~
 = {Ω, Ω}  (also equal to  {−Ω, −Ω})  constitutes a standard

density.

p-forms~

(n    p)-forms−

(n    p)-vectors−

p-vectors~
#

#

Figure 54.  Correspondences set by a metric.

So the Riemannian structure encompasses that of measurable manifold, so  #,
, and the dual map are available.  One calls Hodge operator (denoted  ∗) the

composition of    and of the dual map:

∗  =  .

One shows (Exercise 70:  do it in the case of a  1-form) this is equal to   #.  This
"star operator" thus takes ordinary (resp. twisted)  p-forms to twisted (resp.
ordinary)  (n − p)-forms.  Hence the scheme of Fig. 55, obtained by superposition
of the two previous ones.

Exercise 71:  Show that

(41) ∗ ∗ = (−1)p(n − p). 

Remark 12:  It would be natural to call Hodge operator as well the one indicated on
Fig. 55, which turns p-vectors into  (n − p)-vectors (twisted or not as the case may be).
Common usage, however, seems to reserve the name for the operator which works on
forms.  ◊

Contrary to the dual map, seldom used, the Hodge operator is a major tool, so
the sketchy definitions we just suggested are not enough.  Here follows a direct
one.  First remark that a  p-covector  ω  in Euclidean space is known if one knows
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how it acts on an orthonormal system of  p  vectors:  for, given any  p  vectors,
one may first orthogonalize them without changing the value of  ω, then scale them
to length one and take scaling factors into account thanks to the linearity of  ω.

p-forms~

(n    p)-forms−

(n    p)-vectors−

p-vectors~Ω
~

#

#

∗

∗

Figure 55.  Canonical correspondences for a Riemannian manifold.

Let thus  ω~  be a  twisted  p-covector represented by  {ω, Ω}, where  Ω  is
the volume (40).  Let  ep+1, . . ., en  be a system of  n − p  orthonormal vectors.  To
this incomplete basis, one may append  p  normalised vectors  e1, . . ., ep, orthogonal
between them and to the previous ones, and such that  Ω(e1, . . ., en) > 0.  Then,

Definition 14:  ∗ω~  is the  (n − p)-covector

(42) {ep+1, . . ., en} → ω(e1, . . ., ep).

This is unambiguous, because  ω(e1, . . ., ep)  is the same for any eligible system
of  ei's.

Exercise 72:  Justify the foregoing assertion.  (Hint:  begin with  p = n;  then there exists a
constant  λ  such that  ω(e1, . . ., ep) = λΩ(e1, . . ., ep), and this latter quantity is indeed invariant.)

For a  p-covector  ω,  ∗ ω  is the twisted covector obtained by pairing the
covector defined by (42) with the orientation  Ω.

There is a remarkably simple coordinate expression of the Hodge operator
when the chosen basis is orthonormal:
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(43) ∗ (d
1 ∧ . . . ∧ dp) = dp+1 ∧ . . . ∧ dn. 

(In particular, in dimension 3,  ∗ dx = dy ∧ dz, ∗ dy = dz ∧ dx, etc.)  From (43), one
gets  ∗ (d

σ(1) ∧ . . . ∧ dσ(p))  for any injection  σ  of the segment  [1, p]  of  IN  into
[1,  n].  The only problem is to find the right sign, a simple and dull exercise in
combinatorics, but a prerequisite for the one which follows.

Exercise 73:  Write down  ∗ω, where  ω  is the covector

ω = Σσ ∈ C (n, p) ωσ  d
σ(1) ∧ . . . ∧ dσ(p).

(Cf. (23) for the notation.)

Exercise 74:  Let  u ∈ X → Y  be an isometry.  Investigate the commutativity of the diagram:

F p~
(X)   F p~

(Y)

∗ ∗

F n - p(X)   F n - p(Y)

∗u

∗u

∗u− 1(      ) 

∗u− 1(      ) 

(where  F p(X)  denotes the space of  p-forms on  X, and  ~  the twisted forms).

4.2.3  Scalar product

If one could take the scalar product of two  p-covectors at  x, this would yield by
integration over all  X  a bilinear form on  F p(X)  with all the properties of a scalar
product, like the one defined on the functional space  L2  (which would then
correspond to the special case  p = 0).

The presence of a metric should make this program feasible:  for if  u · v
makes sense,  u  and  v  being vectors, setting  ω · η = (#ω) · (#η)  transfers this
scalar product to covectors, which covers the case  p = 1.  Can this be generalized?

Yes, thanks to the Hodge operator.  Let  Ω
~

  be the standard density, and  ω
and  η  two  p-covectors at  x.  Since  ∗η  is a twisted  (n − p)-covector and
(n − p) + p = n, the wedge product of  ω  by  ∗η  is a twisted  n-covector, i.e., a
multiple of  Ω

~
.  The multiplicative factor (a true function) is the wanted scalar

product.  One thus defines  ω · η, at point  x, by
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ω(x) ∧ ∗ η(x) = ω(x) · η(x) Ω
~

x,

and one sets

(44) (ω, η) = ∫X ω ∧ ∗ η,

which is but the integral of  x → ω(x) · η(x)  with respect to the measure induced
by  Ω

~
.

Exercise 75:  Going back to Def. 7 (p. 56), check that  (ω, η)  is symmetric and that  (ω, ω) ≥ 0.

Exercise 76:  Show that if  ω  and  η  are  1-forms,  (ω, η) = (#ω, #η), as expected.

4.3  Hilbertian structures on spaces of forms

Starting from (44), we now establish an integration par parts formula, that will
generalize the familiar ones involving the divergence,

∫X ϕ div b + ∫X b · grad ϕ = ∫∂X n · b  ϕ 

(cf. (4)), and the curl, (5).

4.3.1  Traces (tangential and normal) of a form

We begin with the notion of "outgoing (unit) normal field".

Let's recall (cf. Remark 2, p. 45) that if  x ∈ ∂X, there are three kinds of
vectors at  x:  "tangent to the boundary" (these span in  TxX  a subspace  Tx∂X, of
codimension one), "incoming", and "outgoing".  Among the latter, a unique one is
orthogonal to  Tx∂X  and of length  1  (with respect, of course, to the metric  gx):
this is the "outgoing unit normal vector", denoted  n(x).  One easily checks, within
a chart, that  x → n(x)  is continuous.  (Hence a transverse field.)

If  Ω
~

  is the standard density associated with  g,  nΩ
~

  (cf. Exer. 65) is a
density on  ∂X.  Since  g, by restriction to  T∂X, defines a metric on it, there is a
naturally defined surfacic Hodge operator, also denoted  ∗  (the distinction with the
one on  X  will always be clear in context) and a standard density on  ∂X, which is
nothing else than  nΩ

~
  (take a direct orthonormal basis in  Tx∂X, and add  n(x)  to

it).
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Exercise 77:  A priori, two standard densities (with opposite signs) can be constructed from the
metric induced on  ∂X.  Selecting  nΩ

~
  amounts to orienting the map  i, and also to deciding,

among two possibilities, how the local orientation of  X  induces a local orientation on  ∂X.  Verify
that the choice thus done conforms to standard conventions (Fig. 56).

x

n

X

m = 2

ξ
2

∂X

x

n

ξ
X

m = 3

2

ξ
3

∂X

Figure 56.  Induced orientation in two and three dimensions.  The frames  
{n, ξ2}  and  {n, ξ2, ξ3}  are direct orthonormal.

We now define traces, normal and tangential, on the manifold's boundary, for
a  p-form (twisted or not).  The tangential trace of  ω ∈ F 

p(X)  is its pull-back
i*ω, where  i ∈ ∂X → X  is the canonical embedding of  ∂X  into  X.  (Since  i  is
oriented, thanks to the transverse field  n, twisted forms can be pulled-back, so
ω~ ∈ FŸ 

p(X)  also has a trace.)

To avoid overloading the symbol  ∗, we shall denote this  p-form on  ∂X  by
tω.  So,

tω(ξ1, . . ., ξp) = ω(ξ1, . . ., ξp) 

when the  ξis  are tangent to the boundary at  x ∈ ∂X.

Remark 13:  The Stokes theorem can thus be written

∫X dω = ∫∂X tω,

which corrects the slight notational abuse in (31).  ◊

Exercise 78:  Verify (cf. Def. 7, p. 56) that  t  distributes with respect to  ∧:
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t(u ∧ v) = t u ∧ t v.

As for the normal trace, it is not only a matter of notation, but a new notion,
that could not be defined before having introduced a metric.  One calls normal
trace of a  p-covector  ω  at  x ∈ ∂X  the  (p−1)-covector

(45) nω(x) = {ξ2, . . ., ξp} → ω(n(x), ξ2, . . ., ξp). 

The definition extends to  p-forms and also (if orientations are associated according
to the above-mentioned rule, Exer. 77) to twisted  p-forms.  The reader will check
that  n, as an operator from  F 

p(X)  into  F 
p − 1(∂X), or from  FŸ 

p(X)  into
FŸ 

p− 1(∂X), satisfies

(46) n = (−1)(p−1) dim(X) ∗ t ∗ 

(which could be used as a definition).

Exercise 79:  Prove the equivalence of (45) and (46), and check that

(47) ∗ n = t ∗,  n ∗ = (−1)p ∗ t .

4.3.2  Green's formula

Now things start to fly.  Let  u  be a  (p −1)-form and  v  a  p-form on  X, with
dim(X) = m.  Denote  (  ,  )  the scalar product defined in (44) and  <  ,  >  the
analogous scalar product on  ∂X.  Since  u ∧ ∗ v  is a twisted  (m − 1)-form, one
may invoke Stokes theorem, hence

∫X d(u ∧ ∗ v) = ∫∂X t(u ∧ ∗ v).  

Expanding the left-hand side with the help of (34) and the right-hand side thanks to
(47) and Exer. 78 , one gets

∫X du ∧ ∗ v − (−1)p ∫X u ∧ d ∗ v = ∫∂X t u ∧ ∗ n v 

i.e., (46) and (44) being taken into account,

(du, v) − (−1)p + (p − 1)(m − p + 1) (u, ∗ d∗ v) = <tu, nv>.  

One then defines  δ  (the codifferential), as applied to a form of degree  p, by
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(48) δ = (−1)m(p − 1) + 1 ∗ d ∗

hence the integration by parts formula

(49) (du, v) − (u, δv) = <tu, nv>,

which can be called Green's formula as rightly as (4)(5), since all formulas named
after Green stem from it.

Exercise 80:  Show that, if  u  and  u'  are  p-forms,

(du, du') + (δu, δu') = (− ∆u, u') + <n du, t u'> − <t δu, nu'>

where  ∆ = − (d δ + δ d).  (This is what is called "Green's formula" in calculus textbooks.)

Exercise 81:  Prove that, if  u  and  u'  are  p-forms,

(δ d u, u') − (u, δ d u') = <tu, n du'> − <tu', n du>

("second Green's formula").

Exercise 82:  Check  d t = t d.  Show that  δ∗ = ± ∗d, and  d∗ = ± ∗δ, and watch for the
dependence of the sign on the degree of the form to which these operators are applied.  Conclude
that  nδ = − δn.  Then work out the following formulary:

∗ td = nδ∗,   ∗δt = dn∗,  *tδ = − nd∗.

4.3.3  Extensions of the theory

From this stems a theory of the Laplace operator on a manifold, quite similar to the
standard one.  The essentials are in [43] and [76] (cf. also [1, 34]).  Let's take a
glance at it.

The corner stone is the scalar product (44).  One completes the vector space
of square integrable  p-forms with respect to this scalar product, hence a Hilbert
space, denoted  Fp(X)  (or  F

~ p, in the case of twisted forms).  Thanks to the Hodge
operator, there is an isometry between  F p(X)  and  F

~ n − p(X).  A theory similar to
that of Sobolev spaces develops, by considering the scalar product

((ω, η)) = (ω, η) + (dω, dη) 

and by completing, hence a space  Fd
p(X), the topology of which is such that
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d ∈ Fd
p(X) → Fp + 1(X) 

(of domain  Fd
p(X)) is continuous.  The codifferential  δ  of (48) then appears as the

adjoint of  d.  Setting

∆ = − (dδ + δd), 

one gets an unbounded operator of  Fp(X), the Laplace operator.  Differential
forms such that  ∆ω = 0  are called harmonic.  Last, any form of  Fp(X)  can be
written as a sum

ω = d α + δβ + γ 

with  α ∈ Fp
d
− 1,  β ∈ Fp

δ
+ 1  and  γ  harmonic.  This is "Hodge decomposition" [48].

Doing this requires the same kind of technical results as used in the elementary
theory:  trace theorems, Poincaré-like inequalities, etc.  The method consists in
working within a chart, where a  p-form  ω  is represented by a family of functions,
whose traces on  ∂X  are distributions belonging to miscellaneous Sobolev spaces.
In particular, one may call  H−

p
1/2(∂X)  the space of traces (of p-forms) on  ∂X  such

that these functions be in  H−1/2(∂X).  Then the following result holds [78]:  traces
on  ∂X  of forms belonging to  Fd

p(X)  span the space

{α ∈ H−
p
1/2(∂X) :  dα ∈ H−

p
1
+

/2
1(∂X)}.

The minus sign may come as a surprise:  for if  p = 0, we are used to find the trace
in  H1/2(∂X), not merely in  H−1/2(∂X).  But this is indeed what this general result
says in that case:  d α ∈ H1

−1/2  means that the  n − 1  components of the gradient
of  α  (taken in  ∂X)  are in  H−1/2, so  α ∈ H1/2.  The case  n = 3  and  p = 1  is
especially interesting and one will come back to it in Section 5.1.

4.4  Back to dimension 3:  the cross product

To prepare for this transition, here follows a new viewpoint on an old subject.  Let
X  be a Riemannian manifold of dimension three and  Ω

~
  the associated standard

density.  Let  u  and  v  be two vector fields.  Select an orientation in the vicinity of
x, and call  Ω  the local volume.  Then

ξ → Ω(u, v, ξ)
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is a covector.  Paired with the orientation, it forms a twisted covector, whose sharp
is a twisted vector:  this is the one that is denoted  u × v, the cross product of  u
and  v.  As a twisted vector, it can be represented by a vector, once the orientation
has been fixed, but its sign will change with the orientation.  This explains the
oddities of the cross product, the reason why it only exists in three dimensions, and
the rationale behind the subtle distinction done by the Treatises ([80], p. 200,  . . .)
between "polar" vectors (the true ones) and "axial vectors" (the twisted ones).

Exercise 83:  If  u  is twisted and  v  ordinary, show that  u × v  is an ordinary vector.  What
happens in the case of two twisted vectors  u  and  v?

Careless use of the cross product may lead to confusion.  Consider, for
instance, the formula which gives Lorentz force,

f = j × b.

Force is, by its very definition, a covector, since it operates linearly on virtual
displacement vectors, yielding the virtual work.  But if we were right in treating  b
as a  2-form and  j  as a twisted  2-form, how can such a formula make sense?
What kind of "product" is it that would yield a covector from two  2-covectors, one
of them twisted?  A step forward consists in defining  f  as the covector  v →
b(v, j)  where  j  is the current density vector field.  (The argument  v  is but the
field of virtual displacements.)  This shows that the metric was irrelevant, but since
going from  j

~
  to  j  involves the operator  , some density has to intervene.

Which density?  Clearly the one that measures volumes, since  f  is a density of
force per volume unit ("volume" and "density" being taken with their common
meaning in this sentence).

Can one go further and get rid of even this standard density?  For this, one
should combine  b  (a  2-form) and j

~
  (a twisted  2-form) in order to find some-

thing like a covector-valued, not real-valued, density (twisted  3-form), so that by
integration over some region, one could find the total force.  There is a geometric
object which fits this description:  v → ivb ∧ j, where  i  denotes the inner product
of Remark 8, p. 64.  This is the correct representation of the field of Lorentz
forces.  One sees the concept of "vector-valued differential form " emerging here,
and this opens new avenues.  We shall refrain from walking them (not without
some regret), to concentrate on dimensions two and three, and on structures
specific to these dimensions.
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Chapter 5

Differential forms in E3
and the structure of Maxwell equations

5.1  Differential forms in dimension 3

In this Chapter, we take for granted the notions of function  ϕ ∈ E3 → IR  and of
vector field  v ∈ E3 → E3  (being understood that  E3  means the affine space on
the left of the arrow, the vector space on the right).  The scalar product of two
vectors  u  and  v  is denoted  u · v, and the mixed product of three vectors is
vol(u, v, w).  Recall that  vol(u, v, w) = u · (v × w).  The frame formed by three
independent vectors is said to have a "direct orientation" if their mixed product is
positive.

5.1.1  Vector fields and differential forms

Definition 15:  A  p-covector  ω  of  E3  is a function of type  E3 × . . . × E3 → IR
(p  factor spaces), linear with respect to all its arguments, and alternating, i.e.,
changing sign when one permutes two of the arguments:

ω(ξ1, ξ2, . . .) = −ω(ξ2, ξ1, . . .),

etc.  (One also says "skew-symmetric".)

As a direct consequence of the definition,  ω = 0  for  p > 3, and for  p = 0,
ω  is a real constant.

A vector  u  generates a  1-covector, that will be denoted  1u:

(50) 1u = ξ → u · ξ,  

and a  2-covector, denoted  2u:

(51) 2u = {ξ, η} → vol(u, ξ, η). 
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Conversely, if  ω  is a  p-covector, with  p = 1  or  2, there exists a unique vector
u  such that  ω = pu.  (This would not happen in dimension higher than  3.)  Simi-
larly, a real number  ϕ  generates a  0-covector, which is just the constant  ϕ, and a
3-covector, denoted  3ϕ, which is the product of  ϕ  by  vol(ξ, η, ζ):

3ϕ = {ξ, η, ζ} → ϕ vol(ξ, η, ζ)

Definition 16:  A differential form  ω  of degree p, or  p-form, on  E3, is a smooth
field of  p-covectors.

The notion is only interesting when  0 ≤ p ≤ 3.  To any smooth function  ϕ,
there corresponds a  0-form  0ϕ  and a  3-form  3ϕ, and to any smooth vector field
u, a  1-form  1u  and a  2-form  2u, thanks to the above correspondences.  One will
denote by  F 

p  the vector space of smooth  p-forms, with compact support1,
on  E3.

Exercise 84:  One defines the operation   ∧  by  0ϕ ∧ pϕ' = p(ϕ ϕ')  for  p = 0  or  3, by  0ϕ ∧ pu =
p(ϕ u)  for  p = 1  or  2, and by  1u ∧ 1v = 2(u × v), thence  1u ∧ 2v = 3(u ⋅ v).  Show this is indeed
the wedge product of Def. 7, p. 56.

Remark 14:  After (50), the correspondence  u → 1u  does not depend on the orienta-
tion of  E3.  To the contrary, after (51), the form associated with  u  is  −2u  if one reverses
the orientation.  The geometric object associated with  u  via (51) is thus not really a
2-form but a pair  {2-form, orientation}, the kind of thing we called a "twisted 2-form" in
3.2.3, and the correspondence defined by (51) is the "dual map" of Fig. 53.  On the
other hand,  1u  is a genuine 1-form, and the correspondence (50) is the "flat" of (39).
Similarly,  3ϕ  is a twisted form.  Since in all this chapter we assume a fixed, once and for
all, orientation, these distinctions will not be done (but the reader who has already
tackled the subject matter of Chap. 3 is invited to do it on his or her or its own).  ◊

5.1.2  Operators  d  and  ∗∗∗∗

Definition 17 (cf. Def. 14, p. 93):  One calls Hodge operator, denoted  ∗, one or
the other correspondence defined by the equalities

∗0ϕ = 3ϕ,  ∗ 3ϕ = 0ϕ, 

∗ 1u = 2u,   ∗ 2u = 1u, 

Remark 15:  In (41), p. 92, we had  ∗∗ = (−1)(n −−−−    1)p, where  n  was the spatial dimension.

1  Recall that the support of a field is the closure of the set of points where it does not vanish.

Here,  n = 3, hence the absence of any sign change.  ◊
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Definition 18:  The scalar product of two  p-forms is, for p = 0 or  3,

(pϕ, pψ) = ∫E3
 ϕ(x) ψ(x) dx 

and for  p = 1 or  2,

(pu, pv) = ∫E3
 u(x) · v(x) dx

One calls  Fp  the space obtained from  F 
p  by completion with respect to the

distance induced by this scalar product.

Last, one takes for granted the "naive" definitions, in Cartesian coordinates, of
grad,  rot  and  div.  Then,

Definition 19:  One defines the operator  d ∈ F 
p → F 

p+1  ("exterior derivative")
by

d(0ϕ) = 1(grad ϕ),  d(1u) = 2(rot u),  d(2u) = 3(div u ),  d(3ϕ) = 0,

for  p = 0, 1, 2  and  3  respectively, and  δ ∈ F 
p → F 

p−1 for  1 ≤ p ≤ 3, by

δ = (−1)p ∗ d ∗

and  δ(0ϕ) = 0  for  p = 0.

Exercise 85:  Show that  δ(1u) = −    0(div u),  δ(2u) = 1(rot u),  δ(3ϕ) = − 2(grad ϕ).

Figs. 57 and 58 are two possible graphical displays of the structures we have
just set out.  We shall make use of the former in the sequel.

Exercise 86:  Place the relation  2h = − δ(3ϕ)  on Figs. 57 and 58.

Note that  d2 = 0  and  δ2 = 0.  As one knows,  rot u = 0  ⇒  u = grad ϕ, and
div u = 0  ⇒  u = rot a.  The collection of all these results, which is "Poincaré's
Lemma", is thus expressed in the language of differential forms:  A closed  p-form
ω  on  E3 (i.e., such that  dω = 0)  is exact (i.e., there exists  α  such that
ω = dα).
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5.1.3  Forms on a surface, traces

Let  S  be a surface embedded in  E, endowed with a field of unit normals  n.  One
will make use of the following notation (Fig. 59):  ϕS  for the restriction of a
function,  uS(x)  for the projection of  u(x)  onto the tangent plane at point  x,  uS

for the function  x → uS(x)  with domain  S.  One has  uS = −    n × (n × u).  Last,
tω, the tangential trace on  S  of a  p-form  ω, is

tω = {ξ1, . . ., ξp} → ω(ξ1, . . ., ξp),

(cf. Section 4.3.1), and  nω, its normal trace, is

nω = {ξ2, . . ., ξp} → ω(n, ξ2, . . ., ξp).

0
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grad 

rot

div

grad 
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div

Figure 57.  A graphical convention for the visualization of spaces  F p  and of
their relationships.  Here, for instance, one has  2b = ∗1h = d(1a) = 2(rot a)  and
1h = d0ϕ = 1(grad ϕ).

The metric of  E3  and its orientation descend to  S  as follows.  If  ξ  and  η
are two tangent vectors at  x ∈ S, then  ξ · η  is naturally defined.  Thanks to  n,
one may select an orientation on  S  by deciding that if  vol(n, ξ, η) > 0  (i.e., when
η  is "to the left" of  ξ  with respect to the normal, cf. Fig. 59), the frame  {ξ, η}  is
direct.  One will easily see that the  2-volume (or "area") of the parallelogram built
on  ξ  and  η  is  vol(n, ξ, η), which therefore is the standard volume  2-form on  S.
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Figure 58.  Another possible graphical convention.
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Figure 59.  Notations.

Thanks to these metric elements, one may associate functions or vector fields
defined on  S  and  p-forms, exactly as above.  To the function  ϕ  of domain  S,
corresponds the  0-form  0ϕ, and also the  2-form

2ϕ = x → ({ξ, η} → vol(n(x), ξ, η)).  

To the field of tangent vectors  u  corresponds the  1-form

(52) 1u = x → (ξ → u(x) · ξ).
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But now there is another way to get a  1-form, that we'll denote by  1u~  (because it
is actually a twisted form, cf. Section 3.3.3):

(53) 1u~ = x → (ξ → vol(n(x), u(x), ξ)).

Remark that  1u~ = 1(n × u).

The one-to-one correspondence between these two  1-forms is achieved by the
Hodge operator (still denoted  ∗ ;  the context will suffice to distinguish it from the
∗  of dimension three).  One has (by way of definition, but the reader is invited to
justify this definition by referring to (42)):

∗u = 1u~ = 1(n × u), ∗ 1u~ = −1u.

As for other values of  p, one has of course

∗ 0ϕ = 2ϕ, ∗ 2ϕ = 0ϕ.

It is now natural to study the relationship between traces on  S  of a function
or vector field, on the one hand, and traces of the associated differential forms, on
the other hand.  It's an exercise, whose solution is given by the following table:

p  ω   t ω     n ω

0 0ϕ 0ϕS

1 1u 1uS   0(n · u)

2 2u 2(n · u) − 1(n × u)

3 3ϕ    2ϕS

Remark 16:  That  n 2u = −1(n × u), and not  1(n × u), is a bit unaesthetic, but unwelcome
minus signs will pop up somewhere in the theory, whatever the sign conventions one
starts with.  ◊

From (52), (53) and the previous table, one gets the formulas

t ∗ = ∗ n, ∗ t = (−1)p n ∗,

obtained above in the general case (Exer. 79).
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5.1.4  Integration

We know (cf. Section 3.3.4) that a  p-form can be integrated on an oriented
manifold of dimension  p  (Fig. 60).  A point  x  (dimension  0) is oriented by
giving it a sign,  +  or  −.  The integral of  0ϕ  is then defined as  ± ϕ(x), the sign
being consistent with the orientation.  An arc connecting  x0  with  x1  is oriented
by giving a field of unit tangent vectors, which one can take as being

s → τ(s) = ∂sγ(s) / ||∂sγ(s) ||,

where  γ ∈ [0,1] → IR  is a parametric representation of the arc.  (Note there are
two possible such fields,  τ  and  −    τ, which depend on the parameterization by
their signs only.)  The integral of  1u  is, by definition,

∫γ  
1u = ∫γ τ · u = ∫[0,1] τ(s) · u(s) ds.

That of  1u~  is

∫γ  
1u~ = ∫γ τ · (n × u),.

x

n(x) 

∂Sτ

ν

S

x

(x)
+

−

ν

ν

+

p = 0

p = 1

p = 2

τ

Figure 60.  Orientation of  p-manifolds,  p = 0, 1, 2, and induced orientations
on their boundaries.  One is reminded (Exer. 77, p. 96, and Fig. 56) that the
boundary of an orientable manifold inherits from it an orientation, thanks to
the outgoing vector field (here  ν), which can always be defined if the
boundary is smooth enough.

A surface  S  is oriented by giving a field of normals  n.  If the  2-form is
defined by a function  ϕ  on  S, like  2ϕ, its integral is, still by definition,
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∫S 
2ϕ = ∫S ϕ = ∫S ϕ(x) dx 

where  dx  is the surfacic measure.  If it comes from a vector field by pulling back
ω = 2u, one has

∫S tω = ∫S 
2n · u = ∫S (n · u)(x) dx.

(This is the flux of  u  through  S.)

5.1.5  The surfacic  d

The operator  dS  is defined, according to the principles set in Section 3.4, in order
to express the local form of Stokes theorem.  First, let  ϕ  be a function on  S  and
v  a tangent vector at  x.  There exists a trajectory  g ∈ IR → S, with  0 ∈ dom(g),
with  v  as its tangent vector at the origin (i.e.,  v = g* , with the notation of 2.2.1).
The map

v → d/dt ϕ(g(t)) t=0 ≡ ∂vϕ,

being linear in  v, defines a  1-covector at  x, that is denoted  1gradSϕ.  The gradient
itself is thus the vector  gradS ϕ  such that

(gradS ϕ) · v = ∂vϕ.

The expected relation

ϕ(γ(1)) − ϕ(γ(0)) ≡ ∫γ  
1(grad ϕ),

which is Stokes theorem, does hold.

Remark 17:  So, nothing new with this definition, which does correspond to the
intuitive notion of surfacic gradient.  We went into details in order to stress two points:
1°-  ϕ  need not be defined outside  S,  2°-  The metric on  S, inherited from   E3, only
plays a rôle if one insists on  gradSϕ  being a field of (surfacic) vectors.  The associated
1-form  1(gradSϕ)  does not depend on it (thus the  dS  we are about to define will be
metric independent as well).  ◊

Let now  u  be a vector field on  S, and  O  an open set, with smooth
boundary  ∂O, around  x  (Fig. 61).  The boundary  ∂O  admits of an outgoing
unitary field of tangent vectors to  S, called  ν.  One sets, as a definition,
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divSu = lim[(∫∂O ν · u)/area(O)],

the limit being taken by letting the area of  O  tend to  0.  One finally sets

(54) rotS u = −    divS(n × u).

Then, calling  F 
p(S)  the set of  p-forms on  S,

Definition 20:  One defines  dS ∈ F 
p(S ) → F 

p+1(S)  via

dS 
0ϕ = 1(gradSϕ),  dS 

1u = 2(rotS u),  dS 
2ϕ = 0,

and  δS ∈ F 
p + 1(S) → F 

p(S)  via

δS = (−1)p ∗ dS ∗.

x

n(x) 

∂S

τ

ν
S

∂0

                 Figure 61.

This is an "ad-hoc" definition, just like Def. 19:  one introduces  dS, starting
from naive definitions of  gradS, rotS, etc., in order to retrieve the operator  d  of
differential geometry (Def. 12, and (33), p. 83).  The virtue of this procedure is to
quickly get to the point.  Its drawback is to blur the distinction between different
structural levels.

Exercise 87:  Show that  2(divS u) = dS 
1u~ ,  and  δS 

1u = − 0(divS u).
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Figure 62.  The structure made of the spaces  F 
p(S), the different realizations

of  d, and the Hodge operator  ∗.

As above (Fig. 57, p. 104), we have a graphic representation of the foregoing
structures (Fig. 62).  Beware however of sign changes.  One will notice the
intervention, which is necessary in order to make this diagram complete, of ope-
rator  − n × gradS, often itself denoted  rotS, just like the one in (54) (the distinction
being brought to attention by various typographical tricks), because of this:  if  u =
{0, 0, ϕ}  in a Cartesian system, and if  ϕ  does not depend on  x3, then  rot u =
{∂2ϕ, −∂1ϕ, 0}, i.e., precisely  −n × grad ϕ, where  n = {0, 0, 1}.  This is perhaps
not reason enough to adopt such a notation, which is prone to confusion.  Some
advocate  "grotS"  for  − n × gradS.  This could be a fine substitute.

Exercise 88:  Let  u  be a vector field, whose domain contains  S, such that  n × u = 0.  Under
which conditions is the equality  (rot u)S = − n × gradS(n · u)  valid?

Exercise 89:  Show that  δS 
2ϕ = − 1(n × grad ϕ), and draw a diagram analogous to that of Fig. 62,

but featuring  δS.

Remark 18:  Even if  S  is not orientable, one may erect a structure similar to that of Fig.
62.  But the right side of the diagram is then occupied by "twisted forms", and  n × u
must be replaced by a field of twisted vectors, like the one of Fig. 48.  ◊

5.1.6  Stokes Theorem

One will not be surprised to meet at this stage the different versions of Stokes'
theorem, in particular

∫γ  τ · grad ϕ = ϕ(γ(1)) − ϕ(γ(0))
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or else

∫S  n · rot u = ∫∂S τ · u = ∫S rotS u.

What we did was actually a preparation for that.  One will check in particular the
relation  dt = td  (cf. Exer. 82), whose realizations fill the following table:

p   ω    t ω     t dω   d t ω

0 0ϕ 0ϕS
1(grad ϕ)S

1(gradS ϕS)

1 1u 1uS
2(n ⋅ rot u) 2(rotS uS)

The row  p = 2  is missing, since a  3-form on  S  is necessarily zero.

Exercise 90:  Complete the table, by adding to it  columns for  n ω,  ∗ ω,  n δ ω,  δ n ω,  ∗ t ω, etc.,
and read off the relations  ∗ t d = n δ ∗,  ∗ δ t = d n ∗,  ∗ t δ = −n d ∗,  of the "formulary" of Exer.
82.

The foregoing exercise featured the forms

n d 
0ϕ = n (

1grad ϕ) = 0(n · grad ϕ) = 0(∂ϕ/∂n), 

n d 
1u = n (

2rot u ) = − 1(n × rot u),

 n d 
2u = n 

3(div u) = 2(div u).

The first two will be found again in the renderings of the classical Green formulas in
the language of differential forms.

Let  S  be a closed surface, bounding region  D, and  n  the outer normal1.
Then, as one knows (4), (5),

(55) ∫D u · grad ϕ + ∫D ϕ div u = ∫S ϕ n · u, 

(56) ∫D v · rot u − ∫D u · rot v = ∫S (n × u) · v.

1  D  for "domain", with its technical meaning of "connected open set", which we avoided elsewhere, the word
domain being here reserved for another notion.  Remark however the two acceptions are very near to each other:
D, or its closure, are indeed the domains of the various fields we consider.
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The first formula is nothing else than

(d 0ϕ, 1u) − (0ϕ, δ 1u) = < t 
0ϕ, n 

1u>, 

i.e. (as in (49), only with different notations):

(57) (dω, η) − (ω, δη) = <tω, nη>, 

with  η = 0ϕ  and  ω = 1u  on the manifold with boundary formed by the closure of
D.  The second formula is

(d 1u, 2v) − (1u, δ 
2v) = <t 1u, n 2v>

for  n 2v = − 1(n × v), and the scalar product of  1u  and  − 1(n × v)  is equal to
−    u · (n × v) = (n × u) · v.  But this is not the only possible interpretation:  the
reader will see that (55) can also be understood as

(d 2u,3ϕ) − (2u, δ 3ϕ) = <t 2u, n 3ϕ>

and (56) as

−    (d 
1v, 2u) + (1v, δ 

2u) = −    <t 
1v, n 2u>.

Could one derive from (57) other interesting formulas?  Not so, obviously,
since all possible cases have been considered:  ω = 0ϕ,  1u  and  2u.  The fact that
only two formulas exist in the present case stems from the symmetry of (57) with
respect to the Hodge operator:  if the dimension is  2q  or  2q − 1, there are only  q
different Green formulas.

Thus, in dimension  2, there is only one, corresponding to  ω = 0ϕ  and  η =
1u:

∫S u · gradSϕ + ∫S ϕ divSu = ∫∂S ϕ  ν · u,

(ν  is the outgoing normal, with respect to  ∂S, in the tangent plane to  S).  The
other one (ω = 1u  and  η = 2ϕ) only looks different, because of (54) (Exercise 91):

∫S ϕ rotSu + ∫S (n × gradSϕ) · u = ∫∂S ϕ  τ · u,

where  τ  is the tangent vector to  ∂S  of Fig. 61.
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By setting  η = dω'  in (57), one gets a second group of Green formulas,
which are of frequent use (cf. Exer. 80):

∫D grad ϕ · grad ϕ' = ∫D −    ∆ϕ ϕ' + ∫S ∂nϕ ϕ'

(where  ∂nϕ  is the normal derivative), and

∫D rot u · rot u' = ∫D (rot rot u) · u' − ∫S vol(n, rot u, u').

From this would stem a third group, basic to boundary integral methods, whose
geometric structure is discussed in [21].

5.2  Maxwell's equations

We shall end with a study of Maxwell equations, with the help of the geometric
tools introduced in this course.  First, a few words on the nature of the intellectual
exercise we shall thus indulge in.

5.2.1  Modelling

It's a modelling process, that is to say, the construction of a mathematical structure
which is supposed to represent a definite compartment of the real world (in our
case, "classical" electromagnetic phenomena, to the exclusion of quantal ones).  The
use of a word like "model", so rich in connotations, may wrongly suggest that the
outcome of such a work could be a kind of coarse image, or perhaps a mock-up, of
reality.  This is only partially correct.  The physicist's ambition goes beyond a mere
description of the world, it aims at gaining predictive and operative power.  Models
are thus meant to be interrogated, to produce new information, or more to the
point, they should make explicit the implicit information built into them.  This is
requiring a strong, almost paradoxical property:  how could mind constructs, a
priori totally transparent to us, their makers, tell us something new about the
world?  This tiny miracle is commonplace, however.  It is performed by these
mathematical objects, equations:1  to solve an equation consists in producing an
object — its solution — endowed with specified properties, but which happens to
have also other, unpredicted, properties, which reveal themselves to us as we look
at it.  This is why physical models reduce, when all is said and done, to equations:
we formalize our knowledge of reality by setting them, we enrich it by solving

1  Provided, of course, the word is taken in a broad sense.  For instance, sending queries to a data-retrieval system
by using a combination of key-words, or submitting a predicate to the evaluation of an expert system, consists
from the present point of view in setting up an equation.

them.
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Does this mean that in every modelling, there would exist at the onset a solid,
objective, unquestionable corpus of knowledge, and then a completely free choice
of the building blocks of a new mathematical structure to be appended to it?  Such
a view would be too drastic, for this corpus is itself nothing but a system of models,
whose constitutive parts and organization principles guide and restrain our choice.
Indeed, all really innovative new modellings (like the one Einstein did to account for
gravitation) turn the whole edifice upside down before settling in.

From the pedagogical point of view, however, such a presentation is conve-
nient.  So we shall suppose known and familiar to us, besides classical mechanics, a
part of electromagnetism:  the one that deals with the existence and empirical
properties of electric charge.  Consider the latter as a substance, the existence of
which is an experimental fact (cat skin, electrolysis, Millikan's experiment,
whatever):  the question "how much charge is there in that region of space" thus
makes sense.  Moreover, we record the existence of what will be called the field, a
time- and location-dependent physical reality which makes itself be perceived
through the behavior of these charges.  Our objective is to set up an electrody-
namics, that is to say a theory (with some predictive power) of this behavior.

At the onset, we thus have a rather scanty1 mathematical structure:  space
E3, time (a real variable spanning  IR), and a  3-form, the charge density  3ρŸ.  Up to
first infinitesimal order2, the charge contained in a parallelepiped built on vectors
ξ1,  ξ2,  ξ3  at point  x  is3  ρ(x) vol(ξ1, ξ2, ξ3), the total charge in a region  D  is
the integral  ∫D 3ρŸ, i.e.,  ∫D ρ(x) dx.  On this basis, we shall model what we know
(from experimental evidence) of the effects of the field, while following an Occam-
like (or Strunk-and-White-like . . . [94]) golden rule:  omit unnecessary mathemati-
cal structures.

5.2.2  Electrical phenomena: first equation

Let us begin with the observed effects of the ambient field on non-moving charged

1  Up to a point.  After all, Newtonian space-time  E3 × IR  is a formidable edifice, the achievement of a
protracted modelling process, which is clearly perceived as such now that physics has led us beyond Newtonian
conceptions.  We shall come back to this in the Conclusion.

2  with respect to the norms of the three vectors.

3  If the frame  {ξ1, ξ2, ξ3}  is direct.  Otherwise, the sign has to be reversed.  So we are indeed dealing with a
twisted  3-form.

4  A virtual movement, that one may conceive as a limit case for an arbitrarily slow real movement (think to
reversible transformations in thermodynamics).

particles:  they sum up to this observation that to move a charge4 some distance
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implies a work proportional, to first order, to this distance.  We shall call "electric
field" the physical entity which is responsible for these effects.  (Of course this field
is only a facet of the electromagnetic field:  experience shows that moving charged
particles are subject to other effects (deflection of the trajectories), which will later
be ascribed to another facet of the field, the "magnetic field".)  Which mathematical
object shall we select to model the electric field with?

Consider a charge unit, concentrated at point  x.  To mathematically model
what we mean by its "displacement", we have the right object at hand:  it's a vector
at  x, say  v(x).  The work involved being experimentally found to be proportional
to the displacement, we model it as a linear function of type  TxE3 → IR, i.e., as a
covector at  x.  Specifying such a covector at each point thus suffices, by definition,
to describe the electric field (cf. Fig. 3).  The latter will thus be represented by a
field of such covectors, i.e., by a  1-form, that we shall denote  1e.

In this composite symbol, one may rightly distinguish the vector field  e  and
the tag  1, standing for an operator which transforms  e  into a  1-form, provided
one is well aware that the metric of  E3  has been summoned in order to make this
separation possible.  If the metric was changed, the vector field  e  would be
different, whereas the electric field, as a physical entity, would of course stay the
same.  So the  1-form  1e  better represents the electric field than the vector field  e,
and the form, from now on, not the vector, will be for us "the" electric field1.

One knows (Sections 3.3, 5.1.4) that a  1-form can be integrated along an
oriented path, yielding a number.  Because of our interpretation of the field, this
integral  ∫γ 

1e  is the work received when one pushes a unit charge along the
trajectory  γ.  (The sign convention we are doing at this stage, work received rather
than given, is unimportant for our purpose.)  We shall call it "electromotive force
(e.m.f.) along  γ ".

Considering now a charge distribution of density  3ρ, instead of a point charge
at  x, one will easily see (Exercise 92) that the work received during a movement
described by the vector field  v  in the electric field  e  is, to first order,
∫E3

 ρ(x) <e(x), v(x)> dx, where  < , >  denotes the duality covector-vector.  This
quantity is of course invariant with respect to changes of metric, in spite of the

1  We won't go so far as saying the electric field "is" a  1-form.  This would amount to identify some "elements
of physical reality" (if this makes sense!) with some mathematical elements of the modelling one makes, and this
would go against our objective.  Moreover, this would verge on dogmatism, since there is no reason for this
representation of the field by a  1-form to be in all circumstances and for all purposes the best one.  This being
said, we shall not deny to ourselves the convenience of saying that, for instance, "charge is a twisted  3-form", etc.
But it will be just an indication about the rôle held by the mathematical object (here  3ρŸ) in the structure one is
building, not an ontological statement.

presence of the volume element  dx  under the integral.
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Exercise 93.  Prove this by showing the integral can be written  ∫E3
 iv

3ρ ∧ 1e, with the notation of
Remark 8, p. 64.

Let us now look for the right object with which to model the electric current,
i.e., the flux of charge.  It must bear with it the information needed to answer the
question:  "What is the quantity of charge which crosses a given surface in a
prescribed direction (per unit of time)?".  So it has to be (cf. p. 80) a  2-form, say
2 j
~

, represented (in a metric-dependent way, just as  1e  above was represented by
e) by a vector field  j, the one usually called current density.  Given two vectors at
x, say  ξ1  and  ξ2, the flux of charge across the parallelogram defined by the two
vectors  ξ1  and  ξ2, in the direction defined by some vector  n  at  x, is to first
order the quantity  vol(j(x), ξ1, ξ2) sgn(vol(n, ξ1, ξ2)).  The latter is indeed
independent of the orientation of ambient space, as it should, since if the orientation
is reversed, the sign of  vol(j(x), ξ1, ξ2)  is reversed, but the sign of  vol(n, ξ1, ξ2)  is
reversed too.  We are led to the conclusion that the information on the flux is borne
by the pair consisting in the form  x → ({ξ1, ξ2} → vol(j(x), ξ1, ξ2))  and the
orientation, i.e., the twisted form associated with  j  (p. 153), hence the tilda in  2 j

~
.

Moreover, one may change not only the sign of the volume form, but the
metric as well:  the vector field  j  will be totally different, but the associated twisted
2-form will still be  2 j

~
.  So the twisted  2-form  2 j

~
  legitimately represents the

current density.  The integral  ∫S 
2j
~

  on a surface  S  endowed with an external
orientation (cf. Section 3.3.4), for instance by a normal field, or a transverse field
(cf. p. 64), is the flux of charge, per unit of time, through  S, in the crossing
direction thus defined.  This indifference to orientation is specific to integrals of
twisted forms, as we saw in 3.3.3.

At this stage, we may enrich the modelling with a first physical property (that
one may view as coming from experience):  charge conservation.  From the Stokes
theorem and Def. 19 (or the definition of divergence in  (37)), we have

(58) ∂t(∫D 3ρŸ) + ∫S 
2 j
~

 = ∫D [∂t(
3ρŸ) + d(2 j

~
)]

≡ ∫D [∂t(
3ρŸ) + 3~(div j)] ≡ ∫D 3~(∂tρ + div j)

for a region  D  of surface  S.  The outer orientation of  S  being from inside to
outside (according to the convention adopted Fig. 56, p. 96), the left-hand side of
(58) is only  0  if charge cannot be destroyed nor created, only displaced.  So the
principle of charge conservation can be expressed by the inequality

(59) ∂t 
3ρŸ + d 2j

~
 = 0,
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i.e.,  ∂tρ + div j = 0, in familiar notation.

Let's proceed.  Like for all  3-forms in dimension  3, one has  d 3ρŸ = 0.  By
Poincaré's Lemma (p. 153), there exists a  2-form  2δ

~   (twisted, just as  3ρŸ  was)
such that  3ρŸ = d 2δ

~, therefore, after (59), d[∂t 
2δ
~ + 2 j

~
] = 0.  (Of course,  2δ

~  is
not unique, and we'll wait till this indetermination is lifted before giving it its proper
name and symbol.)  Again by Poincaré's Lemma, there exists a  1-twisted form  1η

~

(non unique) such that

(60) − ∂t 
2δ
~ + d 1η

~
 = 2 j

~
.

Exercise 94.  Check the vector field  δ  is only defined up to a curl, and  η  to a gradient, and that
only the transformations of the form1  δ ← δ + rot u,  η ← η − ∂tu + grad ϕ  leave eq. (60)
satisfied.  Show that these so-called "gauge" transformations form a group.

Remark 19.  The reader may have decided to get rid of symbols  1,  2,  ~, etc., in order to
solve Exer. 94, and why not, for all this Section.  One of course wishes to promote this
transition towards the "differential forms" viewpoint (without imposing it, however, for
the reasons given in the Introduction).

5.2.3   Magnetic phenomena: second equation

Let us now turn to the "magnetic" facet of the field.  It could be perceived through
the effect of the electromagnetic field on moving charged particles, as suggested
above, but one will rather invoke induction phenomena and Faraday's experiment,
historically much more significant.  Just as we perceive the electric field by the
force it exerts on electrically charged particles, we test for the presence of a
magnetic field with the help of specific experiments.  But what is perceived this way
is in general a variation of the field:  in space, when one looks at a compass, or in
time, when one measures the e.m.f. induced in a closed circuit by the movement of
a magnet (Fig. 63).  In the latter experiment, one notices that the e.m.f.  V  is an
additive function of the surface  S  which bounds the circuit (I do say "surface", not
"area"), and is proportional to the rate of change (speed of the magnet, etc.).  So
the empirical law of induction, as indeed Faraday put it forward, has to be  ∂tΦ(S)
+ V = 0, where  Φ  has the linearity properties which characterize a flux through
S, i.e., is the integral over  S  of some  2-form.  So the right mathematical object to
stand for the magnetic field is a  2-form, that we shall denote by  2b, whose integral
over  S  is the above flux  Φ(S).  One calls it magnetic induction.  Knowing that  V

1  The expression  x ← f(x)  should be understood as in programming practice (evaluate  f(x), then assign its
value to variable  x), and read:  "x  takes the value  f(x)".

= ∫∂S 
1e, one gets
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∂t ∫S 
2b + ∫∂S 

1e = 0,

which, after Stokes' theorem, is equivalent to

(61) ∂t 
2b + d 1e = 0.

A

S

∂S

Figure 63.  Demonstration of the induction phenomenon:  moving the magnet
evokes an e.m.f. in the circuit, acknowledged by the displacement of the
pointer.

Remark 20.  The name "magnetic field" would fit  2b  better, and some eminent authors
use it in that acception [42].  But it is more traditionally reserved for another entity,
namely one of the gauge-equivalent  1-forms  1η~  of (60), whose connection with  2b
will soon be discussed.  ◊

Remark 21.  Readers who have been through Section 3.3.4 may have reacted this way:
"Why a  2-form and not a twisted  2-form, to stand for something which has to be
integrated over a surface in order to yield a flux?  Why should the above argument
about current density  stop being valid here?"  Because here the orientation does plays
a rôle.  If one reverses the (inner) orientation of  S, the flux  ∫S 

2b  changes sign.  If, as
one must do to apply Stokes theorem, one simultaneously reverses the orientation of
∂S, the e.m.f.  V  changes sign, since  1e  is an ordinary  1-form.  (This amounts to saying
that there are two ways of plugging the ammeter, resulting in opposite values for  V.)
The choice of an ordinary  2-form for the magnetic induction  b  is thus consistent with
the electric field itself being an ordinary  1-form.  The same argument could be more
quickly presented as follows:  a form and its  d  are of the same kind, both ordinary or
both twisted, so  2b  in (61) is of the same kind as  1e.  ◊

So far, we twice appealed to experimental evidence, first when introducing
charge and acknowledging its conservative character, then with Faraday's law.
From this point, purely mathematical considerations led us to the following proto-
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model (written in vectorial notation):

(62) ∂t b + rot e = 0,   − ∂t δ + rot η = j,  div δ = ρ,

where the last two equations imply the conservation of charge:

(63) ∂t ρ + div j = 0.

We reached this point by modelling the effects of the field, but without accounting
for the way it is generated by charges and currents.  This, which is the essential
part, we still have to do.

Experimental facts in this respect show that currents create a magnetic field,
charges create an electric field.  One may solicit them a little further, to have them
suggest a principle of superposition, whose mathematical translation will be, as in
other areas of physics, the postulated linearity of equations:  the superposition of
two distributions of charge (resp. of currents) has the same effects as the sum of the
two corresponding electric (resp. magnetic) fields.1

The point is therefore to link  b  and  e  to  j  and  ρ, or at least to objects
already associated with them.  We have that:  the  δ  of (62), associated with  ρ.
The easiest way to achieve our goal is to postulate that one of these  δ, say  d, is
proportional to  e:  d = ε e.  This leaves, in a way which is almost forced on us, a
relation to establish between  b  and one of the  η  (which are linked with  j),
denoted  h:  so,  b = µ h.

We thus obtain the model of Maxwell's equations:

(64) ∂t b + rot e = 0,   − ∂t d + rot h = j,   div d = ρ,

(65) b = µ h,               d = ε  e.

When the charge distribution  ρ  and the current density  j  are given as functions
of time, and satisfy the conservation relation (63), this model determines (as the
mathematical analysis, now free to go in full gear, will show) the four constituents
of the field,  b,  e,  h,  d.  The coefficients  µ  and  ε  are functions of position, and
their numerical values at a point can thus depend on the nature of the material

1  Of course, this principle can fail to apply, for instance in presence of ferromagnetic materials.  But as
elsewhere in physics, we'll manage to treat such non-linearities at the level of "behavior laws", non-linear, specific
to these materials.  It suffices for this to avoid any premature identification between objects (such that, as we shall
see,  b  and  h, or  d  and  e) which are linked by the linear relations suggested by the superposition principle.

about this point.  This gives the model enough flexibility to account for phenomena
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encountered with some dielectrics (where  ε > ε0, its vacuum value) and with some
so-called para- or diamagnetic materials (for which  µ > µ0  and  µ < µ0  respective-
ly,  µ0  being the value in the vacuum).  By allowing  µ  to be a function of the
local state of the field, one may even account for some aspects of ferro-
magnetism.1

5.2.4  Maxwell's model, in terms of differential forms

One may very well feel unconvinced by the foregoing justification, in standard
vectorial language, of the Maxwell model.  We shall recast the argument in the
language of differential forms, which helps make it stronger.

For this, let us first construct a diagram analogous to that of Fig. 57.  Notice
the way the latter diagram is doubled, in order to represent a  p-form and its time-
derivative in two parallel vertical planes (Fig. 64).  As in Fig. 57, ordinary forms are
on the left, and twisted forms on the right.

Next, let us place on this diagram the mathematical entities introduced up to
now, beginning with charge and current density (Fig. 65).  (To avoid overloading
the diagram, we have denoted them  ρ,  j, etc., but we do mean the forms, not the
functions or vector fields that stand for them.)  Due to the conservation relation
(59), there is only one way to place  ρ  and  j.  The reasoning based on Poincaré's
Lemma by which we introduced  d  and  h  then simply consists in walking down
the right part of the diagram while giving names to the entities encountered at each
node along the way.  As one will realize, there is not much of a choice in doing
that:  once  j  and  ρ  have been placed upstairs on the right,  d  and  h  will be
located one floor below thanks to Poincaré Lemma, and the elements of the "gauge
transformation" of Exer. 94 another level below (Exercise 95:  place them).  As for
relation (61), i.e.,  ∂tb + rot e = 0, its location is also forced.

Exercise 96.  On Fig. 65, place  a  and  ψ  (respectively a  1-form and a  0-form, named "vector
potential" and "electric potential"), such that  b = rot a  and (thus)  e = − ∂ta + grad ψ.  Study the
"gauge transformations" from a pair  {a, ψ}  into another.

So now, all the mathematically implied consequences of the existence of
charge and its conservative character appear on the right side of the diagram, all
what has to do with the effects of the field is on the left side.  Knowing that charges
and currents create the field, and having the Hodge operator as a vehicle from one
side of the diagram to the other, what else can one do than assess the

1  Within limits.  Let us, incidentally, recall the MKSA values:  µ0 = 4π 10−7, and  ε0 = 1/(c2 µ0), where  c  is
the speed of light, about  3 108.

proportionality of  b  and  e  and  of  ∗h  and  ∗d, hence (65)?  Thus is model
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(64)(65) found back, up to notations:
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grad  
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div

∂ t

∂ t−

Figure 64.  Combination of two copies of the diagram of Fig. 57, linked by
the time-differentiation operator.  This algebraic-differential structure is
"home" to Maxwell equations.  The horizontal bars on the back and front
walls correspond to the Hodge operator.
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Figure 65.  The "Tonti diagram" [98, 99] of Maxwell equations.
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(64) ∂t 
2b + d 1e = 0,   − ∂t 

2 d
~

 + d 1 h
~

 = 2 j
~

,   d 2 d
~

 = 3ρŸ,

(65) 2b = µ ∗ 1 h
~

,              2 d
~

 = ε ∗ 1e.

Coefficients  ε  and  µ  appear now as dependent on the choice of units, and their
numerical values thus account for physical properties of space.  One may thus
distinguish in system (64)(65) the "vertical" equations (64), which are the geometric
translation of fundamental principles (Faraday's law, charge conservation) and the
"horizontal" equations (65), which express physical properties of space and (since  ε
and  µ  can assume other values than  ε0  and  µ0, as  already pointed out) how
they are modified by the presence of matter.

 The "Tonti diagram" of Fig. 65 summarizes and condenses all these
considerations into a single structure:  it explains how (to draw on the metaphor)
Maxwell equations "live" in the structure of Fig. 64.  Tonti seems to have been
among the first to point at the universality of diagrams of this kind in physics.  (See
also [85].)

Remark 22.  One now perceives the rôle played by the Hodge operator, and thus by
the metric structure of space  E3 × IR, in modelling:  Whereas the structure of
differentiable manifold, operator  d  included, had been enough to geometrize the
separate description of cause and effect, one needs a metric structure to geometrize the
behavior laws, which are relations between cause and effect.  This point of view
suggests that the respective rôles of the constants like  ε  and  µ  and of the metric
structure proper are not so strictly distributed.  One might very well include the
constants in the Hodge operator, and have the same Hodge operator intervene at both
levels of Fig. 65:  it's a matter of choice of units, of time and length units in particular (so
that  c = 1).  In this spirit, putting an appropriate metric on the manifold  E3 × IR  helps
ironing out the distinction between anisotropic behavior laws (the case where  ε  and  µ
are tensors) and isotropic ones (scalar  ε  and  µ, possibly dependent on position).  This
relativizes the "fundamental" character of some "fundamental constants" of physics (as
remarked, e.g., in [49] or [64] ;  cf. also [86]).  One might push the geometrization of
behavior laws even further, to the point where it would take some non-linearities in
charge:  one should for this introduce a metric not only on the base  E3 × IR  but on
some bundle on this base, whose fibre would consist in the set of possible states of the
field.  ◊

Remark 23.  The discussion could have been shortened (though perhaps to the
detriment of clarity) by working directly on a four-dimensional manifold  M, space-time.
Then  b  and  e  [resp.  j  and  ρ]  appear as the two descriptive elements of one and the
same  2-form  F  [resp. of a twisted  1-form  α], and Maxwell equations reduce to  dF = 0
(this is the reduced form of (64)),  dG = α  (consequence, as above, of  dα = 0, charge
conservation, and reduced form of (65)), and  G = ∗F, where this time  ∗  is the Hodge
corresponding to an "indefinite" metric, the Minkowski metric, on  M.  In this



Differential Geometry for Electromagnetism 123     

presentation, which is quite standard [27, 32, 69, 73, 89, 103,  . . .], one well
distinguishes the three panels of the modelling triptych:  Faraday's law translates as  dF
= 0, charge conservation as  dG = α, and the principle of superposition, or of linear
dependence of cause on effect, as  G = ∗F.  Since  ∗  here intervenes only to yield a
linear map from the vector space of  2-forms onto that of twisted  2-forms, one may
wonder whether the Minkowskian metric underlying  ∗  is not a redundant element of
structure, which could be done without.  A result by di Carlo [35] seems to suggest
otherwise:  giving the map  G → F  (endowed with reasonable properties) would suffice
to determine the metric.  If so is the case, the metric of space-time is determined by the
very nature of electromagnetic phenomena, and the remarkable "simplicity" of Maxwell
equations is no more surprising.

Exercise 97.  In a famous method of eddy-currents computation, known as "T-Ω" [29], one
represents the field  h  in the form  h = T + grad Ω, where  T  is subject to some restrictions
(consisting, for instance, in forcing to  0  one of its components).  Place  T  and  Ω  on the diagram
of Fig. 65.  (One will edit the notation a little:  for instance  τ  and  ω, for the sake of consistency
with the style which is prevalent in these notes.)

Exercise 98.  Compare the diagram of Fig. 65 with the one that appears in [79], p. 59.

5.2.5  Quasi-static and static models

In electrotechnical applications, linear dimensions and time-constants are such that,
in any appropriate system of units, the speed of light  c  assumes a very high
numerical value.  One then very naturally wishes to consider it as infinite, and to go
to the limit in Maxwell's system.  As  c = (ε µ)−1/2, this amounts to letting one of the
parameters  ε  and  µ  tend to  0.  Which one, this depends on the nature of
sources:  when there are high densities of slowly moving charges ("weak
currents"), one lets  µ  go to zero.  In the opposite case (small or null charge
densities, strong currents), one cancels  ε  instead.

Thus, in the weak currents model, there is an uncoupling into a one-parameter
family of electrostatic problems:

(66) div d = ρ(t),   d = ε e,   rot e = 0,

to be solved first, followed by the solution of an analogous family of magnetostatic
problems:

(67) div (µr h) = 0,   rot h = j(t) + ∂t d,

where  µr  is the (finite) ratio of the two infinitesimals  µ  and  µ0.
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In the strong currents model, the situation is reversed:  one first solves

(68) div b = 0,  b = µ h,  rot h = j(t),

j  being given, then

(69) div(εr e) = ρ,  rot e = − ∂t b,

where  εr  is the ratio of the two infinitesimals  ε  and  ε0.  In both cases (Fig. 66),
one has to successively solve two problems which obviously have the same
structure.

The uncoupling is total with steady sources, since then (66) and (67) [resp.
(68) and (69)] are two independent problems: one in electrostatics (at the front of
the diagrams) one in magnetostatics (at the rear), and we then neatly see the
structure in question:  it always consists in finding a  p-form  ω  and a  (3 − p)-form
η, Hodge conjugate to each other (up to a choice of metric), their  d's  being
known.
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rot

div
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d

ρ

h
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0

0

div
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rot
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∂  b− t

tε
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ε

Figure 66.  Tonti diagrams of the models with infinite  c:  Left, strong
currents, right, weak currents.  The side arrow disappears in the case of steady
(i.e., time independent) sources, hence the uncoupling between electrostatics
(at the front of the diagrams) and magnetostatics (at the rear).

This "paradigm" (as Kotiuga says [56], but we shall prefer to speak here of
the "canonical problem"), as illustrated by Fig. 67, is not special to Maxwell
equations:  it forms the building block for most Tonti diagrams.  It was early
identified in Electromagnetism (cf. [102, 72]), but how to discretize it (by use of
mixed finite elements) was only recently understood.  See [17, 22] on this point.
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Let us just recall that this model can be treated by introducing potentials  ϕ  and  α
such that  ω = ωs + dϕ  and  η = ηs + dα, where  ωs  and  ηs  are forms satisfying
dωs = f  and  dηs = g  (s  for "sources", since these forms can be considered as the
sources of the field, in lieu of  f  and  g).  Since, by elimination and substitution, one
may always cast any of the entities  ω,  η,  α,  ϕ  in the rôle of unknown (and even,
in so-called mixed formulations, two of them together), one has a large array of
possible, equivalent formulations of the canonical problem.  They result, according
to the choice of finite elements, in various numerical schemes, an attempted
classification of which can be found in [22].

p

p + 1

p    1−

n   p −

n   p + 1 −

n   p   1 − −

dd *ω η

f

gϕ

α

Figure 67.  Tonti diagram of the "canonical problem":  to find a  p-form and
an  (n − p)-form, Hodge dual one to the other, knowing their exterior
derivatives.  One has placed in the diagram the "potentials"  ϕ  and  α  that
may play a rôle in solving the problem.

To see how source-forms and potentials are introduced, consider (66) first.
Let  ds  be the "source-field" as defined by

ds = x → grad(x → (4π)−1∫E ρ(y) |x − y|−1 dy))

(so  div ds = ρ).  One then sets  d = ds + rot u, which turns (66) into

rot(ε−1 rot u) = − rot(ε−1 ds).

But one might as well set  e = − grad ψ  (the source-field is  0, in that case) and
arrive at

− div(ε grad ψ) = ρ.
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Symmetrically, one may solve (68) with help of the source field  hs(t)  given by the
Biot and Savart formula:

hs = x → rot(x → (4π)−1∫E j(y) |x − y|−1 dy)),

by setting  h = hs(t) + grad ϕ, hence

− div(µ grad ϕ) = div(µ hs(t)),

or by introducing the vector potential  a  such that  b = rot a  (again, zero source-
field), hence

rot(µ−1 rot a) = j.

Exercise 99.  Apply the same methods to (67) and (69).

Thus, electrostatics as well as magnetostatics lead to "div-grad like" or "rot-rot
like" problems, at leisure.  Electroquasistatics and magnetoquasistatics (the weakly
coupled models (66)(67) and (68)(69) respectively) call for the successive solution of
such problems.  The remarkable symmetries and analogies between them find their
explanation in Fig. 67, a paradigm coming from differential geometry.  This is our
justification for having attempted to present the bases of this discipline in this
course.

All this is far from being exhaustive, since we did not even mention mixed
formulations, nor problems in bounded domains, nor discretization methods.  See
[24] for some complements.

5.2.6  The eddy-currents model

We must now get rid of the fiction according to which currents and charges would
be given and known beforehand.  For, assume a given material configuration
(possibly as a function of time:  let us call it "trajectory" for shortness) and also a
given smooth function   t → {j, ρ}, arbitrary (call it "the current").  One may
deduce the evolution of the field from this information, with help of the previous
models, and thus obtain the forces acting on charged particles.  (The force acting on
a particle of charge  q  moving at speed  v  is  q(e + v × b), cf. e.g. [61].)  But then,
these electromagnetic forces have no reason to be balanced by forces due to other
causes.  So neither this trajectory nor this current are the ones that will actually
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develop, and these can only be found by solving a coupled problem.  The nature of
this problem depends on how charges are linked to matter, and convey these forces
to it.  Depending on whether one deals with gases, liquids, plasmas, etc., the theory
of these coupled problems may assume widely different forms.

There is however one kind of materials for which this theory stays simple (so
simple that one often overlooks the fact that it refers to a coupled problem):  solid
conductors1.  In such media, there is a simple proportionality relationship between
the current density and the electric field:

(70) j = σ e,

where  σ  is the conductivity of the metal.  This is Ohm's law.  One may account
for it by imagining that charges, so loosely linked with the crystal lattice that they
are free to move, and practically inertialess, acquire in the local electric field some
limit speed, for which the "friction" force, proportional to the speed, balances the
force due to the electric field.  (Reality is of course a bit more complex than this,
but never mind:  (70) agrees very well with observations.)

Again, as above with the first version of (65), p. 119, we have there a relation
between two differential forms of different orders, so it only looks like a
proportionality relationship.  Actually, one has

(71) 2j = σ ∗ 1e,

as with the second version of (65), p. 122.  This can be shown by direct reasoning.
For, consider a metallic cube of resistivity  σ−1, of side-length one, built on three
orthogonal vectors  v1,  v2,  v3.  Let us apply a uniform electric field  1e  parallel to
v3.  The potential difference between the two faces parallel to  v1  and  v2  is  V =
1e(v3) ≡ e · v3.  A current density  2j  sets in.  The corresponding intensity is  J =
2j(v2, v3) ≡ vol(j, v2, v3).  But then  J = V/R, where the resistance  R  is  σ−1, so
2j(v1, v2) = σ 1e(v3), hence (71) by the very definition of the Hodge operator (Def.
17, p. 102).

Remark 24.  The same reasoning would apply to (65), p. 122, a reluctance or a
capacitance playing the rôle here devoted to the resistance.  ◊

One must however modify (71) to account for the presence of generators.  A
generator is a region of space where charges, instead of being free to move (and

1  What follows also holds for liquid conductors (liquid metals, salted water...) as far as velocities stay moderate.

thus to behave according to the law (71)) are in some way forced to follow definite
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trajectories.  This involves some work expenditure (to counter the electromagnetic
forces which act on these charges).  Generators are thus regions of space where
power is injected into the electric system.  In most modellings, the current density
in generators,  js  (again  s  for "source"), is thus a data, and one must amend (71)
as follows:

(72) 2 j
~

 = σ ∗ 1e + 2 j
~ s,

with disjoint supports for  js  and  σ, in general (but not always).

After (70), the equation  − ∂td + rot h = j  takes the form  − ∂td + rot h = σ e,
i.e.,

rot h = σ e + ∂t(εe),

which suggests to compare the orders of magnitude of the two terms on the right,
respectively called conduction current and (since Maxwell) displacement current.
For this, let  T  be a characteristic span of time for the phenomenon under study, or
as one says, a "time constant":  orders of magnitude are in the ratio  σ/Tε.  This
dimensionless number is very large in most electrotechnical applications.  This is
why, save a few exceptions, one adopts the "strong currents" model (ε = 0, and
thus  rot h = j, with  j = σ e + js) when Ohm's law intervenes.  One then obtains the
eddy-currents model, that is, in vector notation:

|  ∂tb + rot e = 0,    rot h = j,
(73) |

|  b = µ h,    j = σ e+ js,

and in terms of differential forms:

|  ∂t 
2b + d 1e = 0,   d 1 h

~
 = 2 j

~
,

(74) |
|  2b = µ ∗ 1 h

~
,     2 j

~
 = σ ∗ 1e + 2 j

~ s.

Remark 25.  Hence,  div j = 0, which is the form of the law of electricity conservation in
this model.  One also has  ρ = div(εe) = 0, so the  3-form  3ρ, which is the mathematical
representation of charge, does not feature in the model any more.  One should not from
there conclude too fast that charges are physically negligible . . .  Anyway, (73) does not
determine a unique electric field (one may add to it the gradient of an electric potential
ψ, provided  grad ψ = 0  in regions where  σ = 0).  For this one should specify the
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charge  ρ  outside the support of  σ, i.e., outside conductors.  Let thus for instance1  ρ
= 0  in  E3 − supp(σ).  One solves

rot e = − ∂tb,   div e = 0

in  E3 − supp(σ).  (The necessary boundary values are those of the tangential
component  of  e  (the "trace" of  1e), which is known once  j  is, by Ohm's law.)  One
may then compute  ρ = div(εe):  it's a distribution, concentrated on interfaces between
regions with different conductivities, and it is not zero  (far from it  . . .).  Paradox?  No.
The parameter  ε  being small, one may consider the Taylor expansion of the field in
terms of  ε, in the neighborhood of  ε = 0.  Model (73) only gives the term of order  0  in
this development, a term for which indeed  ρ = 0.  The procedure just suggested yields
the next term, of order  1  in  ε, or at least the part of this term relevant to  e, and thus to
ρ.  This term is in  O(ε), which does not mean it is physically negligible.  Don't put your
hand on a naked conductor.  ◊

Let us finally draw the Tonti diagram of this new model (Fig. 68).  This
consists in taking the "strong currents" diagram (Fig. 66, right), deleting all refer-
ences to  d  and  ρ, and to add Ohm's law, hence Fig. 68, left.  At the cost of a
small abuse of representation, one may flatten the diagram by not representing the
differentiation with respect to time (Fig. 68, right).  The "coupled" character of this
problem is graphically obvious, and even more so if one reads the constitutive laws
backwards (h = µ−1 b,  e = σ−1 j).  One may consider this diagram as resulting from
a merger of two canonical problems, the already met one of magnetostatics, at the
bottom, and at the top, one that characterises a new model, the "conduction", or
"electrokinetics" model:  to find  2j  and  1e, linked by an affine constitutive law,
their respective  d  being given.  The diagram suggests that  e  [resp.  h] can serve
as a vector potential for the model downstairs [resp. upstairs], so there are essential-
ly two ways to solve the eddy-currents problem:  with respect to the unknown  h,
or to the unknown  e.  There are of course many possible variations, since one may
represent  h  and  e  in terms of other entities  (h = τ + grad ω,  e = − ∂ta + grad
ψ, etc.), and thus there is actually a "magnetic" family and an "electric" family
of methods, the latter looking for  h  (hence for  j), the former looking for  e
(hence  b).

1  but not necessarily.  There may be space charges, this is not precluded by having replaced  ε  by  0.  Please read
on . . .
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Figure 68.  Tonti diagram for the eddy-currents equation

5.3  Epilogue: towards numerical schemes

How should one pursue?  By taking the concept of Tonti diagrams in earnest.
Each of them describes a particular way of housing the protagonists of the various
models (e,  b,  h, etc.) in the mathematical structure first met, still empty, at Fig. 64.
The idea is to discretize the structure, once and for all, and not each model on a
piecemeal basis.  This can be done, because this structure is nothing else than the
cohomology of  E3, and mathematicians have developed methods of cohomological
analysis which closely resemble what numerical analysts call discretization:  one has
in particular Whitney's complex [104, 36, 37], a structure associated with the
simplicial tessellation of a manifold, analogous to the structure in Fig. 64, where
each "vacant room"  is a vector space of finite dimension.  It suffices (if I dare
say . . .— see [17, 19, 23] for details) to "accommodate" each of the "tenants" (h,  b,
e, etc.) in the "room" which corresponds to its nature to obtain numerical schemes
for all these models.

But the time has come to stop.
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Conclusion

To model physical space by the mathematical object  E3, and time by a real variable
spanning  IR, as we did all along this course, constitutes an intellectual decision:  no
"natural laws", no "a priori categories of human understanding" force this choice
on us.  The wisdom of such a choice can therefore be questioned, as in all
modellings:  why  E3?  why  IR?  Today's scholars, coming after Einstein and
Poincaré, have the benefit of hindsight about this, but let us replace ourselves in the
situation as it was at the beginning of the 20th century.  The laws of electromagne-
tism were expressed by the system of equations known since Maxwell [70, Chap.
9], and rewritten by his followers under the now classical form:

(75) −∂td + rot h = j, 

(76) ∂tb + rot e = 0

(plus some relations between  b  and  h,  d  and  e,  j  and  e  or  h  — Ohm's law,
Hall effect . . .— depending on the medium).  It was only natural to see them as
describing a dynamics:  a mathematical rule (here a system of partial differential
equations) which governs the evolution of some objects—vector fields—living
in  E3.

The modern point of view, acquired throughout a well known historical
process, is different.  It does not consider the geometric structure (E3  and  IR) as
antedating equations (75)(76) (which would thus be, in a way, less essential,
subordinate).  It envisions this structure and these equations as a whole, "the
model" (a mathematical one) of a definite compartment of reality (namely,
"classical", i.e., non-quantal electromagnetic phenomena).  It then wonders about
the necessity of this model:  hasn't it unnecessary structure?  Is there not a more
economical, hence "simpler" model (which does not mean more easily grasped by
the layman, rather the contrary), that could assume the same function?

To bring this point home, let us consider the term  rot e  in (76).  At first sight,
it's the curl of a vector field, i.e., assuming a direct orthogonal basis  {v1, v2, v3}  on
E3, the vector field whose components are

rot e = {∂2e
3 − ∂3e

2, ∂3e
1 − ∂1e

3, ∂1e
2 − ∂2e

1}.

Let's do this with all the terms of (76), hence three (unwieldy) partial differential
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equations.  Sure, they "say the same thing" as (76), but by marshalling extra
structure—the three basis vectors—which can be dispensed with.  Indeed, the
historical evolution has been, precisely, to do without them, thanks to the invention
of vector analysis [31], hence (75)(76).

But then, why stop there?  Is there not in (76) some unnecessary structure
left?  The vector space structure of  E3, for instance, is not really called for:  to
confer sense on  rot e, which stems from  e  by an obviously local operation, it is
enough to have the  E3  structure present locally.  A three-dimensional manifold
with a metric is all what is needed.  Even metric is redundant, as we observed, since
(76) rewrites as  ∂tb + de = 0, i.e., as a relation between the time-derivative of a
2-form (the object here denoted by  b) with the  d  of a  1-form (the object denoted
e), and all this makes sense on a "naked" manifold (even the dimension of the latter
appears to be incidental).  Same thing with eq. (75).  Does that mean the metric is
contingent and can be ignored?  Not at all, because it played the leading rôle when
we had to express the constitutive laws:

b = µ h,    d = ε e

(and also when, not considering  j  as given any more, we introduced Ohm's law).
But by dissecting the model in this fastidious way, we realize this:  eqs. (75) and
(76), the most fundamental, are those which require the less structure.  A contrario,
the quest for minimal structures, when one models a class of phenomena, helps one
to recognize what in a model is fundamental, not to be tampered with, and what is
inessential, thus modifiable.  This much helps in enriching the model and in
broadening its scope.  This also helps understand analogies between different
models, by revealing their common structure, and exposing their differences.

This analysis, as far as the above equations are concerned, goes even further,
as one knows, to the point of unifying time and space into a single structure.  It's
the whole story of Relativity.

The approach thus suggested can be characterized in one word:
geometrization.  Indeed, it consists in understanding the equations of physics as
necessary relations between some geometric objects, elements of sets endowed with
a peculiar kind of structure (that some mathematicians have tried to characterize, cf.
[93]), those which are called "spaces":  vector spaces, fibered spaces, etc.  All the
manifold denizens we have met are in this sense geometric objects.  To geometrize
thus consists in identifying these objects, as well as the minimal structures necessary
to account for their relationships, and to specify these relationships, all of this not in
succession, but in a single sweep.
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A practicing programmer cannot fail to see the analogy between
geometrization thus conceived and "object oriented programming" [71], a modern
development in the art of computer programming that one could characterize in
terms almost identical to those used in the previous sentence.  The concomitance of
these two trends is perhaps no accident.  As far as I am concerned anyway, their
connection is strong:  the long-term aim being the numerical solution of Maxwell's
equations, which implies the writing, according to the rules of the craft, of
specialized software, the "objects" in this programming cannot be without relation
with the geometric objects whose behavior is ruled by these equations.  Geometri-
zing the equations of electrodynamics is a prerequisite to the rational construction
of computing software systems able to solve them.
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