4 Finite elements
We now tackle the convergence analysis of the discrete version of problem (27), magnetostatics:
(39) Db =0,h=vb,R'h=]j.

A preliminary comment on what that means is in order.

A few notational points. The mesh is denoted m, the dual mesh is m, and we shall subscript
by m, when necessary, all mesh-related entities. For instance, the largest diameter of all p-
cells, p > 1, primal and dual, will be denoted 4,, (with a mild abuse, since it also depends
on the metric of the dual mesh), and called the “grain” of the pair of meshes. The computed
solution {b, h} will be {b,,,h,,} when we wish to stress its dependence on the mesh-pair. And
so on.

A first statement of our purpose is “study {by,, h,,} when 7,, tends to 07. Alas, this lacks
definiteness, because how the shapes of the cells change in the process does matter a lot. In the
case of triangular 2D meshes, for instance, there are well-known counter-examples [4] showing
that, if one tolerates too much “flattening” of the triangles as the grain tends to 0, convergence
may fail to occur. Hence the following definition: A family M of (pairs of interlocked) meshes
is uniform if there is a finite catalogue of “model cells” such that any cell in any m or m of
the family is similar to one of them. The notation “m — 0” will then refer to a sequence of
meshes, all belonging to some definite uniform family, and such that their y,s tend to zero.
Now we redefine our objective: Show that the error, whatever one means by that, incurred by
taking {bm, hy,} as a substitute for the real field {b,h}, tends to zero when m — 0.

The practical implications of achieving this are well known. If, for a given m, the
computed solution {b,,,h,} is not deemed satisfactory, one must refine the mesh and redo
the computation, again and again. If the refinement rule guarantees that all meshes such
a process can generate belong to some definite uniform family, then the convergence result
means “you may get as good an approximation as you wish by refining this way”, a state of
affairs we are more or less happy to live with.

n/

Figure 30. Subdivision rule for a tetrahedron T = {k,I,m n}. (Mid-edges are denoted kI, Im, etc., and o
is the barycenter.) A first halving of edges generates four small tetrahedra and a core octahedron, which
itself can be divided into eight “octants” such as 0 = {o, kl,Im, mk}, of at most four different shapes. Now,
octants like O should be subdivided as follows: divide the facet in front of o into four triangles, and join to o,
hence a tetrahedron similar to T, and three peripheral tetrahedra. These, in turn, are halved, as shown for
the one hanging from edge {o,lm}. Its two parts are similar to O and to the neighbor octant {o,kn, kl, mk}
respectively.

Fortunately, such refinement rules do exist (this is an active area of research [8, 9, 28, 66]).
Given a pair of coarse meshes to start with, there are ways to subdivide the cells so as to
keep bounded the number of different cell-shapes that appear in the process, hence a potential
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infinity of refined meshes, which do constitute a uniform family. (A refinement process for
tetrahedra is illustrated by Fig. 30. As one can see, at most five different shapes can occur,
for each tetrahedral shape present in the original coarse mesh. In practice, not all volumes get
refined simultaneously, so junction dissection schemes are needed, which enlarges the catalogue
of shapes, but the latter is bounded nonetheless.)

For these reasons, we shall feel authorized to assume uniformity in this sense. We shall also
posit that the hodge entries, whichever way they are built, only depend (up to a multiplicative
factor) on the shapes of the cells contributing to them. Although stronger than necessary,
these assumptions will make some proofs easier, and thus help focus on the main ideas.

4.1 Consistency

Back to the comparison between {b,,,h,.} and {b,h}, a natural idea is to compare the
computed Dol arrays, b, and h,,, with arrays of the same kind, r,b = {ffb . f € F}
and rh = {[; h : f € F}, composed of the fluxes and m.mf’s of the (unknown) solution
{b, h} of the original problem (27). This implicitly defines two operators with the same name,
T: one that acts on 2-forms, giving an array of facet-fluxes, one that acts on twisted 1-forms,
giving an array of dual-edge m.m.f.’s. (No risk of confusion, since the name of the operand, b
or h, reveals its nature.)

Since db = 0, the flux of b embraced by the boundary of any primal 3-cell v must vanish,
therefore the sum of facet fluxes ), D,y ff b must vanish for all v. Similarly, dh = j yields the
relation -, R% f} h = [, j, by integration over a dual 2-cell. In matrix form, all this becomes

(50) Dr,b =0, Rr,h =],

since the entries of j are precisely the intensities across the dual facets. Comparing with (39),
we obtain

(51) D(b,, — 7.0) =0, R'(h,, —r,h) =0,
and
(52) (hp, — 7h) — v(by — 10,0) = (VT — 1l2)b = v (1 pt — pr)h.

Let us compute the g-norm of both sides of (52). (For this piece of algebra, we shall use the
notation announced in the previous Section: (b, h) for a sum such as 3, bshy, and [h], for
(h,h) 1/2, the g-norm of h, and other similar constructs.)

As this is done, “square” and “rectangle” terms appear. The rectangle term for the left-
hand side is —=2(b,, — 7,0, h,,, — 7., ), but since D(b,, — 1,,b) = 0 implies the existence of some
a such that b,, — r,,b = Ra, we have

(b, — mb, hy, — rh) = (Ra, h,, — r,h) = (a,R'(h,, — r,h)) =0,
after (51). Only square terms remain, and we get
(53) b — bl 4 b = 1l = (w7 — 1) bl = (e — rp) Rl = (Wb — by b — pr ).

On the left-hand side, which has the dimension of an energy, we spot two plausible estimators
for the error incurred by taking {b,,,h,} as a substitute for the real field {b,h}: the “error
in (discrete) energy” [resp. coenergy], as regards by, — 7,0 [resp. h,, — r,h]. Components of
b,, — 7.0 are what can be called the “residual fluxes” b; — ff b, i.e., the difference between
the computed flux embraced by facet f and the genuine (but unknown) flux ff b. Parallel

considerations apply to h, with m.m.f.’s along [ instead of fluxes. Tt makes sense to try and
bound these error terms by some function of ¥,. So let us focus on the right-hand side of
(53), for instance on its second expression, the one in terms of h.

By definition of r,,, the f-component of r,,(xh) is the flux of b = ph embraced by f. On the
other hand, the flux array pr,.h is the result of applying the discrete Hodge operator to the
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m.m.f. array r,h, so the compound operators r,pt and pr,, will not be equal: they give different
fluxes when applied to a generic h. This contrasts with the equalities (D, — r,d)b = 0 and
(R'ry, — rad)h = 0, which stem from the Stokes theorem. The mathematical word to express
such equalities is “conjugacy”: D and d are conjugate via 7, and so are R* and d, too. Thus,
w and p are not conjugate via r,—and this is, of course, the reason why discretizing entails
some error.

Yet, it may happen that . and pr, do coincide for some hs. This is so, for instance,
with piecewise constant fields, when p is the diagonal hodge of (33) and (34): actually, these
formulas were motivated by the desire to achieve this coincidence for such fields. Also, as
we shall prove later, r,v and wr, coincide on facet-element approximations of b, i.e., on
divergence-free fields of the form Y zb;w’ (which are meshwise constant), when v is the
Galerkin hodge. Since all piecewise smooth fields differ from such special fields by some
small residual, and the finer the mesh the smaller, we may in such cases expect “asymptotic
conjugacy”, in the sense that the right-hand side of (53) will tend to 0 with m, for a piecewise
smooth b or h. This property, which we rewrite informally but suggestively as

(54) Vly — T — 0 whenm — 0,  pr, — rapp — 0 when m — 0

(two equivalent statements), is called consistency of the approximation of p and v by p and
v. Consistency, thus, implies asymptotic vanishing of the error in (discrete) energy, after (53).

Figure 31. As in Fig. 27, fdenotes the vectorial area of facet f: the vector of magnitude area(f), normal

to f, that points away from f in the direction derived from f’s inner orientation by Ampere’s rule. By ]; we
denote the vector that joins the end points of the associated dual edge f (An ambient orientation is assumed

here. One could do without it by treatmg both f and f as axial vectors.) In case v is not the same on
both sides of f, understand I/f as 1/2f2 + I/lfl, where f2 and f1 are as suggested. Region Df is the volume

enclosed by the “tent” determined by the extremities of f and the boundary of f. Note that f and l/f always
cross [ in the same direction, but only in the orthogonal construction are they parallel (cf. Fig. 27): In that
case, (55) can be satisfied by a diagonal hodge—cf. (33) and (34).

Let’s now take a heuristic step. (We revert to vector proxies for this. Figure 31 explains

about ]_; and f, and n and 7 are normal and tangent unit vector fields, as earlier. The norm
of an ordinary vector is | |.) Remark that the right-hand side of (53) is, according to its
rightmost avatar, a sum of terms, one for each f, of the form

[Efll/ff'/!n-B—/jcl/T-BH‘/f,un‘H—Efu”ff” }”T.HL

which we’ll abbreviate as [B, f][H, f]. Each should be made as small as possible for the sum
to tend to 0. Suppose v is uniform, and that boundary conditions are such that B and H are
uniform. Then [B, f] = B - (Zf;ﬂ/ff’f’ — v f). This term vanishes if

(55) Spervt! =]

(This implies ¥ p!f'vj = f, and hence, cancellation of [H, f], too.) We therefore adopt
this geometric compatibility condition as a criterion about v. Clearly, the diagonal hodge of

(34) passes this test. But on the other hand, no diagonal v can satisfy (55) unless f and vf
are collinear.
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Proposition 5. If v is diagonal, with fof = l/f, as required by the criterion, there is
consistency.

Proof. (All C’s, from now on, denote constants, not necessarily the same each time, possibly
depending on the solution, but not on the mesh.) This time, the solution proxy B is only
piecewise smooth, and possibly discontinuous if v is not uniform. but its component parallel
to f, say B, satisfies |B(z) — B(y)] < Clz — y| in the region D; of Fig. 31. One has*
Jin B =area(f)B(z;) and f[;v7 B = length(l/]?)lg(acf)7 for some averaging points z; and
z3, the distance of which doesn’t exceed v, hence [B, f] < Cywr!larea(f), by factoring
out vffarea(f) = length(l/f)7 and similarly, [H, f] < C’ymp,fflength(l/f). Noticing that

>,

area(f)length(vf) = Bfo v, and summing up with respect to f, one finds that

(56) Ih,, — r bl + b — bl < CH2,

the consistency result. {

Going back to (53), we conclude that both the v-norm of the residual flux array and the
p-norm of the residual m.m.f. array tend to 0 as fast as 7,,, or faster,'® a result we shall exploit
next.

One may wonder whether the proof can be carried out in the case of a non-diagonal hodge,
assuming (55). The author has not been able to do so on the basis of (55) only. The result is
true under stronger hypotheses (stronger than necessary, perhaps): When the construction of
v is a local one, i.e., »/f" = 0 unless facets f and f’ belong to a common volume, and when
the infimum 6,, of all cell diameters verifies é,, > [7,,, with  independent of m. Then v
has a band structure, and its terms behave in 7!, which makes it easy to prove that [B, f]
is in O(%2). Handling [H, f] is more difficult, because p is full, and the key argument about
averaging points not being farther apart than v, breaks down. On the other hand, owing to
the band structure of v, and its positive-definite character, p,ff’ is small for distant f and f’,
which allows one to also bound [H, f] by C'y4. The number of faces being in 7. *, consistency
ensues.

There is some way to go from such an argument to a proof, but this is enough to confirm
(55) in its status of criterion as regards v, a criterion which is satisfied, by construction (Fig.
27), in FIT [104] and in the cell method [99], but allows a much larger choice. We'll see in a
moment how and why it is satisfied in the Galerkin approach.

4.2 Stability

So, the left-hand side of (53) tends to 0. Although this is considered by many as sufficient
in practice, one cannot be satisfied with such “discrete energy” estimates. Fields should be
compared with fields. To really prove convergence, one should build from the DoF arrays by,
and h,, an approximation {by,, k. } of the pair of differential forms {b, h}, and show that the
discrepancies b,, — b and h,, — h tend to 0 with m in some definite sense. So we are after some
map, that we shall denote by p,., that would transform a flux array b into a 2-form p,, b and
an m.m.f. array h into a twisted 1-form p, h. The map should behave naturally with respect
t0 T, 1.€.,

(57) TmPmb =b, m.p.h=h,

#7 In case v is not the same on both sides of f, understand length(uf) as yllength(fl) + VQIength(fi). The
underlying measure of lengths is not the Euclidean one, but the one associated with the metric induced by

the Hodge operator v.

18 Convergence in 77, is in fact often observed when the meshes have some regularity, such as crystal-like
symmetries, which may cancel out some terms in the Taylor expansions implicit in the above proof. For
instance, the distance between points x; and z; may well be in 77, rather than 7,,. This kind of phenomenon
is commonplace in Numerical Analysis [86].
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as well as
(58) |prTmb — b, — 0 and |ppnrmh — h|, — 0 when m — 0

(asymptotic vanishing of the “truncation error” pnn, — 1). A satisfactory result, then, would
be that both [b — pn by, and |k — prhy|, tend to 0 with m (convergence “in energy”). As
will now be proved, this is warranted by the following inequalities:

(59) alpubl, <Ibl,, alp.hl, <[],

for all b and h, where the constant a > 0 does not depend on m. Since |b|, and |h], depend
on the discrete hodge, (59) is a property of the approximation scheme, called stability.

Proposition 6. Consistency (54) being assumed, (58) and (59) entail convergence.
Proof. By consistency, the right-hand side of (53) tends to 0, whence |b,, — .0}, — 0, and
|Pmbm — Pmtmbl, — 0 by (59). Therefore p,,b,, — b, “in energy”, thanks to (58). Same
argument about h. ¢

This is Lax’s celebrated folk theorem: consistency + stability = convergence.

Below, we shall find a systematic way to construct p,,, the so-called Whitney map. But
if we don’t insist right now on generality, there is an easy way to find a suitable such map in
the case of a simplicial primal mesh and of Dol arrays b that satisfy Db = 0 (luckily, only
these do matter in magnetostatics). The idea is to find a vector proxy B uniform inside each
tetrahedron with facet fluxes B - ]_; equal to by. (Then, divB = 0 all over D.) This, which
would not be possible with cells of arbitrary shapes, can be done with tetrahedra, for there
are, for each tetrahedral volume v, three unknowns (the components of B) to be determined
from four fluxes linked by one linear relation, 3, D’/b; = 0, so the problem has a solution,
which we take as p.b.

Then,* p,r.b — b. As for the stability condition (59), one has |p,b|2 = [, v[B|?, a
quadratic form with respect to the facet fluxes, which we may therefore denote by (b, Nb),
with N some square regular matrix. Now, suppose first a single tetrahedron in the mesh m,
and consider the Rayleigh-like quotient (b,vb)/(b,Nb). Its lower bound, strictly positive,
depends only on the shape of the tetrahedron, not on its size. Then, uniformity of the family
of meshes, and of the construction of v, allows us to take for e in (59) the smallest of these
lower bounds, which is strictly positive and independent of m. We may thereby conclude that
Puby, converges towards b in energy.

No similar construction on the side of h is available, but this is not such a handicap: if
Pubm — b, then vp, b, — h. This amounts to setting p,, on the dual side equal to vp,p. The
problem with that is, p,, h fails to have the continuity properties we expect from a magnetic
field: its vector proxy H is not tangentially continuous across facets, so one cannot take its
curl. But never mind, since this “non-conformal” approximation converges in energy.

Yet, we need a more encompassing p,, map, if only because Db = 0 was just a happy
accident. Before turning to that, which will be laborious, let’s briefly discuss convergence in
the full Maxwell case.

4.3 The time-dependent case

Here is a sketch of the convergence proof for the generalized Yee scheme (36)(37) of last
Section.

¥ This is an exercise, for which the following hints should suffice. Start from b, piecewise smooth, such that
db = 0, set b = 1, b, get B as above, and aim at finding an upper bound for |B — B|, where B is the proxy of
b, over a tetrahedron T. For this, evaluate VA - fT(B — B), where A is an affine function such that |VA| = 1.

Integrate by parts, remark that ff An-B = Ma;)b;, where z; is the barycenter of f. Taylor-expand n - B
about z;, hence a bound in C}, for faT An - (B — B), from which stems |fT(B —B)| £ C¥;,. Use uniformity
to conclude that |B — B|] < Cyp.
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First, linear interpolation in time between the values of the Dol arrays, as output by the
scheme, provides DoF-array-valued functions of time which converge, when 6t tends to zero,
towards the solution of the “spatially discretized” equations (31)(32). This is not difficult.

Next, linearity of the equations allows one to pass from the time domain to the frequency
domain, via a Laplace transformation. Instead of studying (31)(32), therefore, one may
examine the behavior of the solution of

(60) —-pp+R'H=173, pB+RE =0,

(61) D=¢E, B=pH,

when m — 0. Here, p = £ 4 iw, with £ > 0, and small capitals denote Laplace transforms,
which are arrays of complex-valued DoFs. If one can prove uniform convergence with respect
to w (which the requirement £ > 0 makes possible), convergence of the solution of (31)(32)
will ensue, by inverse Laplace transformation. The main problem, therefore, is to compare
E, B, H, D, as given by (60)(61), with 7.E, 7B, TmH, 5D, where small capitals, again, denote
Laplace transforms, but of differential forms this time.

The approach is similar to what we did in statics. First establish that
(62) pp(H — 1) + R(E — 1,8) = p(rp — pro)H,

(63) —pe(E — 1E) + RY(H — 1,0) = —p(n,€ — €1, )E.

Then, right-multiply (62) (in the sense of (,)) by (H — r,H)* and the complex conjugate of
(63) by —(E — 1.E), add. The middle terms (in R and R*) cancel out, and energy estimates
follow. The similarity between the right-hand sides of (52), on the one hand, and (62)(63),
on the other hand, shows that no further consistency requirements emerge. Stability, thanks
to &€ > 0, holds there if it held in statics. What is a good discrete hodge in statics, therefore,
is a good one in transient situations. Let’s tentatively promote this remark to the rank of
heuristic principle:

As regards discrete constitutive laws, what makes a convergent scheme for static problems
will, as a rule, make one for the Maxwell evolution equations as well.

At this stage, we may feel more confident about the quality of the toolkit: If the discrete
hodges and the meshes are compatible in the sense of (55), so that consistency can be achieved,
if there is a way to pass from DoF's to fields which binds energy and discrete energy tightly
enough for stability (59) to hold, then convergence will ensue. So we need the p,, operator.
We would need it, anyway, to determine fluxes, emf’s, etc., at a finer scale than what the mesh
provides—motivation enough to search for interpolants, but not the most compelling reason
to do so: Field reconstruction from the DoFs is needed, basically, to assess stability, in the
above sense, and thereby, the validity of the method. Whitney forms, which will now enter
the scene, provide this mechanism.

4.4 Whitney forms

Let’s summarize the requirements about the generic map p,,. It should map each kind of DoF
array to a differential form of the appropriate kind: p,.e, starting from an edge-based DoF
array e, should be a 1-form; p,.b. obtained from a facet-based b, should be a 2-form, and so

forth. Properties (57) and (58) should hold for all kinds, too, so in short,
(64) ToPm =1, Pmfm — 1 when m — 0.

The stability property (59) will automatically be satisfied in the case of a uniform family of
meshes. Moreover, we expect db = 0 when Db = 0, de = 0 when Re = 0, etc. More generally,

Ra = b should entail da = b, and so forth. These are desirable features of the toolkit. The
neatest way to secure them is to enforce the structural property

(65) dpm = pud,
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at all levels (Fig. 32): d and d should be conjugate, via p,,, or said differently, Fig. 32 should
be a commutative diagram. Remarkably, these prescriptions will prove sufficient to generate
interpolants in an essentially unique way. Such interpolants are known as Whitney forms
[109], and we shall refer to the structure they constitute as the Whitney complex.

0 1 2 3
Proxies - — grad—> - — rot—> - — dv—> -
# #1 %r %r
Forms o c > oo — C—> o — C > o
B B b B
Prima DoFarrays . — g —> ‘ - D> .+ — R-—> o

Figure 32. Diagrammatic rendering of (65), with part of Fig. 13 added. Flat and sharp symbols represent
the isomorphism between differential forms and their scalar or vector proxies.

4.4.1 Whitney forms as a device to approximate manifolds

We address the question by taking a detour, to see things from a viewpoint consistent with our
earlier definition of differential forms as maps from manifolds to numbers. A differential form,
say, for definiteness, b, maps a p-manifold 5 to the number [, b, with p = 2 here. Suppose we
are able to approximate 5 by a p-chain, i.e., here, a chain based on facets, p! 5 = dofer cf.
Then a natural approximation to [, b is J;tms b. But this number we know, by linearity: since
ff Tmb = by, it equals the sum 3~ c/by, that we shall denote {c;b) (with boldface brackets).
Hence an approximate knowledge of the field b, i.e., of all its measurable attributes—the
fluxes—from the DoF array b. In particular, fluxes embraced by small surfaces (with respect
to the grain of the mesh) will be computable from b, which meets our expectations about
interpolating to local values of b. The question has thus become “how best to represent S by
a 2-chain?”. Figure 33 (where p =1, so a curve ¢ replaces 5) gives the idea.

Once we know about the manifold-to-chain map p! , we know about Whitney forms: For
instance, the one associated with facet f is, like the field & itself, a map from surfaces to
numbers, namely the map 5 — ¢/ that assigns to S its weight with respect to f. We denote this
map by w/ and its value at .5 by [, w’ or by (S ;w’) as we have done earlier. (The notational
redundancy will prove useful.) Note that (pi, 5;b) = [ > bsw/ = [ pub = (5 pub), which
justifies the “p! 7 notation: A transposition is indeed involved.

Figure 33. Representing curve ¢ by a weighted sum of mesh-edges, i.e., by a 1-chain. Graded thicknesses
of the edges are meant to suggest the respective weights assigned to them. Edges such as e, whose “control
domain” (shaded) doesn’t intersect ¢, have zero weight. (A weight can be negative, if the edge is oriented
backwards with respect to ¢.) Which weights thus to assign is the central issue in our approach to Whitney
forms.
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4.4.2 A generating formula

Now, let’s enter the hard core of it. A simplicial primal mesh will be assumed until further
notice. (We shall see later how to lift this restriction.) Results will hold for any spatial
dimension n and all simplicial dimensions p < n. but will be stated as if n was 3 and p =1
or 2 (edge and facet elements). So we shall also write proofs, even recursive ones that are
supposed to move from p to p+ 1 (see, e.g., Prop. 7), as if p had a specific value (1 or 2), and
thereby prefer R, D, or R, D!, to d or @. That the proof has general validity notwithstanding
should be obvious each time.

We use \*(z) for the barycentric weight of point @ with respect to node n, when 2 belongs to
one of the tetrahedra which share node n (otherwise, A*(z) = 0). We’ll soon see that w” = A"
is the natural choice for nodal 0-forms, and again this dual notation will make some formulas
more readable. We define A\* = A\™ + A", when edge ¢ = {m,n}, as well as A/ = X' 4+ ™ 4 A"
for facet f = {l,m,n}, etc. When ¢ = {m,n} and f = {l,m,n}, we denote node [ by f — e.
Thus A/~¢ refers to (in that case) A, and equals A — A°. The oriented segment from point
x to point y is zy, the oriented triangle formed by points x,y, z, in this order, is zyz. And
although node n and its location z, should not be confused, we shall indulge in writing, for
instance, 752 for the triangle based on points z,,2;, and x, when ¢ and j are node labels.

The weights in the case of a “small manifold”, such as a point, a segment, etc.,*® will now
be constructed, and what to use for non-small ones, i.e., the maps we, w?, etc., from lines,
surfaces, etc., to reals, will follow by linearity. The principle of this construction is to enforce
the following commutative diagram property:

(66) ap,, =0,

which implies, by transposition, dp,, = p.d, the required structural property (65)."! We shall
not endeavor to prove, step by step, that our construction does satisfy (66), although that
would be an option. Rather, we shall let (66) inspire the definition that follows, and then,
directly establish that dp,, = p,,d. This in turn will give (66) by transposition.

Definition. Starting from w" = \*, the simplicial Whitney forms are
(67) w' = Z G X dw”, w! = Z RS M~ dw®, v’ = Z D/ A dw!
ncN ecE fer

(and so on, recursively, to higher dimensions).

| A
\ I
.

Figure 34. Left: With edge e = {m,n} and facets {m,n,k} and {m,n,l} oriented as shown, the 2-chain to
associate with the “join” x Ve, alias mnw, can only be A*(z) mnk + A'(x) ranl. This is what (68) says. Right:
Same relation between the join # V n and the 1-chain A*(z) nk + X (z) nl + A™(z) nm.

Let us justify this statement, by showing how compliance with (66) suggests these formulas.
The starting point comes from finite element interpolation theory, which in our present stand

50 The proper underlying concept, not used here, is that of multivector at point z.

51 If moreover ker(d,) = cod(d,,,), i-e., in the case of a trivial topology, ker(d,) = cod(d,_,), just as, by
transposition, ker(d,) = cod(d,_,). One says the Whitney spaces of forms, as linked by the d,, form an exact
sequence.
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consists in expressing a point 2 as a weighted sum of nodes, the weights w”(z) being the
barycentric ones, A\*(z). (Note how the standard p,, for nodal DoFs, p.e¢ = >, ¢,w”, comes
from p! & = >, w"(x)n by transposition.) Recursively, suppose we know the proper weights
for a segment yz, i.e., the bracketed terms in the sum p! yz =3 (yz;w®) e, and let us try to
find p! xyz. By linearity, p! zyz = > (yz; w®) p! (2 V e), where the “join” 2z V e is the triangle
displayed in Fig. 34, left. So the question is: which 2-chain best represents @ Ve? As suggested
by Fig. 34, the only answer consistent with (66) is

(68) ph(zVve)=> RN
feF

Indeed, this formula expresses & V e as the average of mnk and mnl (the only two facets f
for which R} # 0), with weights that depend on the relative proximity of z. So phayz =
5. RN (1) (g2 ue) f = zf<wyz;wf>f, hence

(69) (zyz;w! ZRE N7e(2) (yz ; we).
On the other hand, since a degenerate triangle such as xzz should get zero weights, we expect

0 = (zza;wf) = Y, RN (z)(zx; w®), and the same for (zzy;w’). From this (which will
come out true after Prop. 7 below) we get

(xyz;w! ZRE/\f V{yz + za + zy; w°)
= Z RS M () (0(ay>2) ZRe N7(2) (zyz ; dw®)

for any small triangle xyz, by Stokes, and hence w! =3, RS M=o dwe.

Thus, formulas (67)—which one should conceive as the unfolding of a unique formula—are
forced on us, as soon as we accept (68) as the right way, amply suggested by Fig. 34, to pass
from the weights for a simplex s to those for the join 2 V s. The reader will easily check that
(67) describes the Whitney forms as they are more widely known, that is, on a tetrahedron

{k7 l? m7 n}?

W — \
for node n,
w® = A" = AtdA”
for edge e = {m,n},
wh = 2(AdA™ A dA™ 4 AmAAT A dAT AN A dA™)
for facet f = {l{,m,n}, and
w” = 6(A AN A dA™ A dA™ + NAA™ A dA" A DA £ APAA" A DN A DA MM A AN A dA™)
for volume v = {k,l,m,n}. In higher dimensions [109], the Whitney form of a p-simplex

s ={ng,ny,...,n,}, with inner orientation implied by the order of the nodes, is
w’ = p! Z (—1) w™dw™ A .. {i)... A dw",
1=0,...p

where the (i) means “omit the term dw™”

From now on, we denote by WP the finite-dimensional subspaces of F? generated by these
basic forms.

Remark. To find the vector proxies of w® and w/f, substitute V and X to d and A. The
scalar proxy of w" is simply the function equal to 1/ vol(v) on v, 0 elsewhere. The reader is
invited to establish the following formulas:

w™(z) = (kl X kz)/6vol(klmn), w™*(z) = zl/3vol(v),
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very useful when it comes to actual coding. (Other handy formulas, at this stage, are
rot(z — v X ox) = 2v and div(z — ox) = 3, where o is some origin point and v a fixed
vector. As an exercise, one may use this to check on Prop. 9 below.) &

Remark. One may recognize in (69) the development of the 3 X 3 determinant of the array of
barycentric coordinates of points z,y, z, with respect to nodes [, m,n, hence the geometrical
interpretation of the weights displayed in Fig. 35. ¢

Figure 35. Just as the barycentric weight of point z with respect to node n is vol(klmz), if one takes
vol(klmn) as unity, the weight of the segment zy with respect to edge {m,n} is vol(kizy), and the weight of
the triangle zyz with respect to facet {/, m,n} is vol(kzyz).

4.4.3 Properties of Whitney forms

Thus in possession of a rationale for (67), we now derive from it a few formulas, for their own
sake and as a preparation for the proof of the all important dp,, = p,.d result, Prop. 9 below.

Proposition 7. For each p-simplex, there is one linear relation between Whitney forms
associated with (p — 1)-faces of this simplex. For instance, for each f,

S RN fwt =0
ect
Proof: By (67), >, R§ M cw® =3, M A "R5G] w" = 0, thanks to the relation RG = 0,
because A/¢A¢~", which is the same for all e in df, can be factored out. <
As a corollary, and by using d(Aw) = dA Aw + Adw, we have
wl = —ZR; dA ¢ A we,
ect

and other similar alternatives to (67).

Proposition 8. For each p-simplex s, one has
(70) (i) Ndw’ = (p+1)dN Aw®, (ii) dN Adw’ =0.
Proof. This is true for p = 0. Assume it for p = 1. Then dw’ = 3, R dA=¢ A dw®
= >R} dM Adw® = dN A S, R§ dwe by (7077), hence dM A dwf = 0. Next, Mdw/ =
U RS dM A dwe) = dM A (S, R;/\fdwe) =dN A (v +3, R§A*dwe), which thanks to
(707) equals dA A (w/ +2 37, R dAAw®) = dNM Aw —2dM A RS AN Aw® = 3dM Aw!,
which proves (707) for p = 2. Hence (70¢) for p = 2 by taking the d. ¢

Next, yet another variant of (67), but without summation this time. For any edge e such

that R$ # 0, one has
(71) Rjw! = N 7*dw® — 2dN " A w'.
This is proved by recursion, using Gz,we' = A mdwm — dA "w", where n = e N €', and the

identity G G! = —R;IR;. We may now conclude with the main result about structural
properties (cf. Fig. 32):
Proposition 9. One has

dw® = Z R;wf,

fer
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and hence, by linearity, dp,, = pnd.
Proof. Since both sides vanish out of the “star” of e, i.e., the union st(e) of volumes containing
it, one may do as if st(e) was the whole meshed region. Note that 3, R;/\f =1-—A°on
st(e). Then, Y Rjw! = 3, [Medw® — 2dN " A w] = (1 — X9)dw® — 2d(1 — X)) A w® =
(I — A%)dw® 4+ A° A dw*® = dw®, by using (707). Now, d(pna) = d(>_. a.w) = Y, ; Rja.w/ =
> (R’ = po(da). O

As a corollary, dW?™' C WP, and if ker(d,) = cod(d,_;), then ker(d; W?) = dW?" ', the

exact sequence property of Whitney spaces in case of trivial topology.
4.4.4 “Partition of unity”

For what comes now, we revert to the standard vector analysis framework, where w! denotes
the proxy vector field (i.e., 2(A'VA™ x VA" +...)) of the Whitney form w?.

Recall that barycentric functions sum to 1, thus forming a “partition of unity™: > _\ w" =
1. We shall drop the ugly arrows in what follows, and use symbol f not only as a label, but
also for the vectorial area of f (Fig. 31). Same dual use of f. Same convention for zyz, to be
understood as a triangle or as its vectorial area, according to the context.

Proposition 10. At all points «. for all vectors v,
(72 S (wl(z) - 0) f = .
fer

This is a case of something true of all simplices. and a consequence of the above construction
in which the weights (zyz;w/(z)) were assigned in order to have zyz = 3 (xyz: w!(2))f.
Replacing there w’ by its proxy, and zyz and f by their vectorial areas, we find (72). As a
corollary (replace f by g, v by vw/(z), and integrate in z), the entries »/¢ of the Galerkin
facet elements mass matrix satisfy .

Z Vfgg =vf

geF

where v f is as explained on Fig. 31, but with the important specification that here, we
are dealing with the barycentric dual mesh. That [vw! = vf is an exercise in elementary
geometry, and a similar formula holds for all Whitney forms (Fig. 36). Now, compare this
with (55), the compatibility condition that was brought to light by the convergence analysis:
We have proved, at last, that the Galerkin hodges do satisfy it.

Figure 36. Why fT w® = € in the barycentric construction of the dual mesh. First, the length of the
altitude from n is 1/|Vw"|, therefore fT Vw™ = klm/3. Next, the average of w™ or w™ is 1/4. So fT we =
fT[mew" — w*Vw™] is a vector equal to (klm/3 + kin/3)/4. As the figure shows (all twelve triangles on
the right have the same area), this is precisely the vectorial area of &.

5. Higher-degree forms

Let’s sum up: Whitney forms were built in such a way that the partition of unity property (72)
ensues. This property makes the mass matrix v of facet elements satisfy, with respect to the
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mesh and its barycentric dual, a compatibility criterion, (55), which we earlier recognized as a
requisite for consistency. Therefore, we may assert that Whitney forms of higher polynomial
degree, too, should satisfy (72), and take this as heuristic guide in the derivation of such
formes.

Being a priori more numerous, higher-degree forms will make a finer partition. But we have
a way to refine the partition (72): Multiply it by the A\”s, which themselves form a partition
of unity. This results in

> () ) f =,

JEF neN

hence the recipe: Attach to edges, faces, etc., the products A*w®, \*w/, etc., where n spans
N. Instead of the usual Whitney spaces W?, with forms of polynomial degree 1 at most, we
thus obtain larger spaces W, with forms of polynomial degree 2 at most. (For consistency,
W? may now be denoted WY.) As we shall prove in a moment (under the assumption of
trivial topology, but this is no serious restriction), the complex they constitute enjoys the
exact sequence property : If for instance b = 3 . b, A\"w! satisfies db = 0 (which means it
has a divergence-free proxy) then there are DolF's a,, such that b = d(37, , a,.A"w®). (How to
define W¢, for polynomial degrees k = 3,..., should now be obvious.)

Note however that, because of Prop. 7, these new forms are not linearly independent. For
instance, the span of the A"w*s, over a tetrahedron, has dimension 20 instead of the apparent
24, because Prop. 7 imposes one linear relation per facet. Over the whole mesh, with N
nodes, E edges, F facets, the two products A™w® and A\"w® for each edge e = {m,n}, and the
three products Af~¢w*® for each facet f, make a total of 2F + 3F generators for W}. But with
one relation per facet, the dimension of W, is only 2(E 4+ F). (The spans of the A\*w"s, the
Awfs, and the A"w"s, have respective dimensions N + F, 3(F + V), and 4V. The general
formula is dim(W¥) = (p + 1)(5, + Sp41), where S, is the number of p-simplices. Note that
Yo, (1P dim(WF) = 37 (—1)75, = X, the Euler-Poincaré constant of the meshed domain.)

Owing to this redundancy, the main problem with these forms is, how to interpret the DoF's.
With standard edge elements, the Dol a, is the integral of the 1-form a = >_a,w® over edge
e’. In different words, the square matrix of the circulations (€’;w®) is the unit matrix: edges
and edge elements are in duality in this precise sense (just like the basis vectors and covectors
0; and d' of Note 26). Here, we cannot expect to find a family of 1-chains in such duality
with the \*w®s. The most likely candidates in this respect, the “small edges” denoted {n,e},
etc., on Fig. 37, left, don’t pass., because the matrix of the ({n',e’}; A\*w®) is not the unit
matrix. If at least this matrix was regular, finding chains in duality with the basis forms, or
the other way round, would be straightforward. But regular it is not, because of the relations
of Prop. 7. We might just omit one small edge out of three on each face, but this is an ugly
solution. Better to reason in terms of blocks of DoF of various dimensions, and to be content
with a rearragement of chains that makes the matrix block-diagonal: Blocks of size 1 for small
edges which are part of the “large” ones, blocks of size three for small edges inside the facets.
Each of these 3-blocks corresponds to a subspace of dimension two, owing to Prop. 7, be it
the subspace of forms or of chains. The triple of degrees of freedom, therefore, is up to an
additive constant. Yet, the circulations® do determine the form. if not the DoF, uniquely
(“unisolvence” property).

7" Since the matrix has no maximal rank, small-edge circulations must satisfy compatibility conditions for the

form to exist. (Indeed, one will easily check that any element of W, has a null circulation along the chain
made by the boundary of a facet minus four times the boundary of the small facet inside it.) This raises a
minor problem with the 7, map, whose images need not satisfy this condition. The problem is avoided with
a slightly different definition of the small edges [57], as suggested on the right of Fig. 37.
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Figure 37. Left: “Small” edges, in one-to-one correspondence with the forms A"w®, and how they are
labelled. Right: A variant where some small edges, such as {k,e}, are broken lines. These three crooked
small edges, with proper signs, add up to the null chain, hence the compatibility condition of Note 52 is built
in.

The reader will easily guess about “small facets” (16 of them on a single tetrahedron, for
a space of dimension 3(F' +71) = 3(44+ 1) = 15) and “small volumes” (four), in both variants.

Which leaves us with the task of proving the exact sequence property, that is to say, the
validity of Poincaré’s Lemma in the complex of the W%: Show that db = 0 for b € W5 implies
the existence, locally at least, of @ € W2™' such that b = da. We'll treat the very case this
notation suggests, i.e., p = 2, and assume trivial topology (“contractible” meshed domain),
which does no harm since only a local result is aimed at. We use rot and div rather than d
for more clarity. First, two technical points:
Lemma 1: If Y, .\ 8, A"(2) = (B, for all z, where the s are real numbers, then 3, = 3, for
all nodes n € N.

Proof. Clear, since y_, A" = 1 is the only relation linking the A*(z)s. ¢
Lemma 2: If a € W', then 2rot(A\"a) — 3 A" rota € W?.
Proof. If « = w® and n = f — e, this results from (71). If n is one of the end points of e, e.g.,
e = {m,n}, a direct computation, inelegant as it may be, will do: 2dA" A (A"dA” — A*dA™)
= =2A%dA" A dA® = Ardws. O

Now,
Proposition 11. If the W¥ sequence is exact, the WY sequence is exact.
Proof (at level p = 2). Suppose b = by+3_, . A"D,,, with by and all the b, in W?, and divd = 0.
Taking the divergence of the sum and applying Lemma 1 in each volume, one sees that div b,
is the same field for all n. So there is some common b in W? such that div(b, — b) = 0 for
all n, and since the W? complex is exact, there is an a, in W?' such that b, = b + rot a,.
Hence, b = by + b + >, A"rot a,. By Lemma 2, there is therefore some b in W? such that
b=1b+ Zrot(), A*ay). Since divh = 0, the solenoidal b in W3 we started from is indeed the
curl of some element of Wy. ¢

Very little is needed to phrase the proof in such a way that the contractibility assumption
becomes moot. Actually, the complexes W# and W have the same cohomology, whatever
the topology of the domain and the culling of passive simplices (i.e., those bearing a null Dol")
implied by the boundary conditions.

4.6 Whitney forms for other shapes than simplices

This simple idea, approximate p-manifolds by p-chains based on p-cells of the mesh. is highly
productive, as we presently see.

4.6.1 Hexahedra

First example, the well-known isoparametric element [39] on hexahedra can thus be un-
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derstood. A 2D explanation (Fig. 38) will suffice, the generalization being easy. Let us
take a convex quadrangle based on points xyg, %19, %01, 211, and wonder about which weights
w”(2) should be assigned to them (label n designates the generic node) in order to have
T =3 efoo0101) W(2) Ty in a sensible way. The weights are obvious if @ lies on the bound-
ary. For instance, if 2 = (1 — §)zgp + €219, a point we shall denote by z, weights are
{1 -¢,£,0,0}. Would it be 2 = z¢4 = (1 — §)zo + £211, we would take {0,0,1 — £, £}, Now,
each x is part of some segment [z ], for a unique value £(z) of the weight £, in which case
r = (1 —n)xgp + nrg, for some = n(x), hence it seems natural to distribute the previous
weights in the same proportion:

(73) 2= (1 =n@))(1 = &) 2o + (1 = n(2))&(2) 210 + n(2)(1 = £(2)) @or + n(2)E(2) 211,

and we are staring at the basis functions. They form, obviously, a partition of unity.

— ~
3 I
nA h ap
n
» Xy
X [
n= 1 B Xy oY n(y)
\ X/ n()
n= £0
X —\ -
© o =X &(y) X 10 E

1
o

Figure 38. The system of projections, in dimension 2.

Looking at what we have done, and generalizing to dimension 3 or higher, we notice a system
of projections, associated with a trilinear® chart, * — {&(x),n(2),((2)}, from a hexahedron
to the unit cube in {n(-space. The successive projections (which can be performed in any
order) map a point @ = wg, to its images 2o, and 1,¢ on opposite facets™ £ =0 and £ = 1,
then, recursively, send these images to points on opposite edges, etc., until eventually a node
n is reached. In the process, the weight (z;w") of z is recursively determined by formulas
such as (assuming for the sake of the example that n belongs to the facet £ = 0)

(ege;w") = (1 = E){age ; w")

The final weight of @ with respect to n is thus the product of factors, such as here (1 — ¢),
collected during the projection process. (They measure the relative proximity of each
projection to the face towards which next projection will be done.) The last factor in this
product is 1, obtained when the projection reaches n. Observe the fact, essential of course,
that whatever the sequence of projections, the partial weights encountered along the way are
the same, only differently ordered, and hence the weight of = with respect to node n is a
well-defined quantity.

The viewpoint thus adopted makes the next move obvious. Now, instead of a point z, we
deal with a vector v at &, small enough for the segment zy (where y = 2 4 v) to be contained
in a single hexahedron. The above projections send z and y to facets, edges, etc. Ending the
downward recursion one step higher than previously, at the level of edges, we get projections
z.y. of zy onto all edges e. The weight (zy;w®) is the product of weights of x collected
along the way, but the last factor is now the algebraic ratio z.y./e (which makes obvious

53" thus called because &, n, and ¢, though cubic polynomials in terms of the Cartesian coordinates of z, are

affine functions of each of them, taken separately.

™ Be aware that p-faces need not be “flat”, i.e., lie within an affine p-subspace for p > 1, in dimension higher
than 2. We assume a mesh generation which avoids this.
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sense) instead of 1. Hence the analytical expression of the corresponding Whitney form, for
instance, in the case of Fig. 39, w® = n(d¢. (Notice the built-in “partition of unity” property:
zy = N (ay;w)e.) The proxies, w® = n(VE in this example, were proposed as edge elements
for hexahedra in [107].

Figure 39. Weight we(zy) is the £n¢-volume of the “hinder region” of zy with respect to edge e.

One may wonder whether weights such as (zy;w®) have a geometric interpretation
there too. They have: (xy;w¢) is the relative volume, in the reference hexahedron®
H={n¢:0<¢<1,0<np<1,0< ¢ <1,of the “hinder region” of Fig. 39,
made of points “behind” zy with respect to edge e. This may seem fairly different from the
situation in Fig. 35, middle, but a suitable reinterpretation of the system of projections in the
tetrahedron (Fig. 40) shows the analogy.

A similar reasoning gives facet elements: the last weight, for a small triangle zyz, is
z;y;z;/f, which again makes sense: Take the ratio of the areas (an affine notion) of the
images of these surfaces in the reference cube, with sign + if orientations of z;y;2z; and f
match, — otherwise. Whitney forms such as w? = £ diyd{ (when f is the facet £ = 1) result.
The proxy of that particular one is £ Vip X V(.

Figure 40. There too, weight w®(zy) is the relative volume of the hinder region.

4.6.2 Prisms

So, Cartesian coordinates and barycentric coordinates provide two systems of projections
which make obvious the weight allocation. These systems can be mixed: one of them in use

% Recall that all tetrahedra are affine equivalent, which i1s why we had no need for a reference one. The
situation 1s different with hexahedra, which form several orbits under the action of the affine group.

99



for p < n dimensions, the other one for the n — p remaining dimensions. In dimension 3, this
gives only one new possibility, the prism (Fig. 41).

Such a variety of shapes makes the mesh generation more flexible [35]. Yet, do the
elements of a given degree, edge elements say, fit together properly when one mixes tetrahedra,
hexahedra, and prisms? Yes, because of the recursivity of the weight allocation: If a segment
xy lies entirely in the facet common to two volumes of different kind, say a tetrahedron and a
prism, the weights (zy; w*) for edges belonging to this facet only depend on what happens in
the facet, i.e., they are the same as evaluated with both formulas for w®, the one valid in the
tetrahedron, the one valid in the prism. This is enough to guarantee the tangential continuity
of such composite edge elements.

Ehdv—vd) v

A

Figure 41. Projective system and edge elements for a prism. Observe the commutativity of the projections

4.6.3 “Degeneracies”

Yet one may yearn for even more flexibility, and edge elements for pyramids have been
proposed [29, 45]. A systematic way to proceed, in this respect, is to recourse to “degenerate”
versions of the hexahedron or the prism, obtained by fusion of one or more pair of nodes and
or edges.

To grasp the idea, let’s begin with the case of the degenerated quadrilateral, in two
dimensions (Fig. 42). With the notations of the Figure, where {\, u,v} are the barycentric
coordinates in the left triangle, the map {u,v} — {n, &}, where n =v/(p+v) and £ = p+ v,
sends the interior of the triangle to the interior of the right quadrilateral. When, by
deformation of the latter, x,; merges with g, the projective system of the quadrilateral
generates a new projective system on the triangle.

c A Xy (©)
W\ X‘ X (B)
A B Yo (a) - =

Figure 42. Projective systems for the same triangle, in the barycentric coordinates on the left, and by
degeneracy of the quadrilateral system on the right.

The weights assigned to the nodes, and hence the nodal elements, are the same in both
systems, for £n = v for point C' (cf. (73)), £(1 — ) = p for B, and the sum (1 — &)(1 — 7)
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+ (1 — &)n, attributed to A by adding the loads of 24y and x4, does equal A. But the edge
elements differ: For AC, ndé = —(1 — A\)"'ud\ on the right instead of Adv — vdA on the left,
—(1 = A)'udA for AB, and dv + (1 — A)'vdA for BC. (The singularity of shape functions

at point A is never a problem, because integrals they enter in always converge.)

In dimension 3, the principle is the same: When two edges merge, by degeneration of a
hexahedron or of a prism, the Whitney form of the merger is the sum of the Whitney forms
of the two contributors, which one may wish to rewrite in a coordinate system adapted to the
degenerate solid. Figs 43 and 44 show seven degeneracies, all those that one can obtain from
a hexahedron or a prism with plane facets under the constraint of not creating curved facets
in the process. As one sees, the only novel shape is the pyramid, while the prism is retrieved
once and the tetrahedron four times.

\

Figure 43. Projective systems in four degenerations of the hexahedron. Thick lines indicate the merged
edges.

But, as was predictible from the 2-dimensional case, it’s new Whitney forms, on these
solids, that are produced by the merging, because the projection systems are different. In
particular, we have now five distinct projective systems on the tetrahedron (and two on the
pyramid and the prism), and the equality of traces is not automatic any longer. One must
therefore care about correct assembly, in order to get the same projection system on each
facet.
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Figure 44. Projective systems in three degenerations of the prism. Note how the pyramid has two ways to
degenerate towards the tetrahedron.

The advantage of having the pyramid available is thus marred by the necessity of an
extended shape-functions catalogue (on at least two triangular facets of a pyramid, the
projection system cannot match the tetrahedron’s one), and by the existence of cumbersome
assembly rules. Yet, finding the new shape-functions is not too difficult, as exemplified by

Figs 45 and 46.

(1-0n

Figure 45. Nodal and edge elements for the projective system of Fig. 43. One passes from the previous
coordinate system {£,7,(} to the prism-adapted {{, A, s, v} system by the formulas é = p+v, n=v/(p+v),
with A+ pu+v=1.
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(1-C)v

Figure 46. Degeneration of the prism of Fig. 46. Two edges disappear, and a new edge element, p(1—X)~*dA
is created by the merging. The coordinate system is the same here as in Fig. 45, so {A, y, v} should not be
confused with barycentric coordinates of this tetrahedron. Denoting the latter by {&, A, 1,7}, and using the
formulas v = 7+ % and { = /(7 +R), hence { = p+ v+ & =1—- X, ( = 7/(? + k). Thus, for instance, the
shape function p(1 — X)~*d\ rewrites as (1 — A)~*d) in barycentric coordinates.

4.6.4 Star-shaped cells, dual cells

Let’s end all this by an indication on how to build Whitney forms on any star-shaped
polyhedron.

Suppose each p-cell of the mesh m, for all p, has been provided with a “center”, in the
precise sense of §3.3, i.e., a point with respect to which the cell is star-shaped. Then, join the
centers in order to obtain a simplicial refinement, ™ say, where the new sets of p-simplices are
S,, the old sets of cells being &,. In similar style, let u and @ stand for Dol arrays indexed
over S, and S, respectively, with the compatibility relation u, = ¥, & u, for all s in S,, the
sum running over all small simplices in the refinement of cell s, and the signs taking care of
relative orientations. To define p,,u, knowing what pzu is, we just take the smallest, in the
energy norm, of the pzu’s, with respect to all w’s compatible with u.

The family of interpolants thus obtained is to the cellular mesh, for all purposes, what
Whitney forms were to a simplicial mesh. Whether they deserve to be called “Whitney forms”
is debatable, however, because they are metric-dependent, unlike the standard Whitney forms.
The same construction on the dual side provides similar pseudo-Whitney forms on the dual
mesh. (More precisely, there is, as we have observed at the end of §3.3, a common simplicial
refinement of both m and m. The process just defined constructs forms on both, but it’s easy
to check that the pseudo-whitneys on the primal mesh are just the Whitney forms.) This fills
a drawer in the toolkit the emptiness of which we took some pain to hide until now, although
it was conspicuous at places, on Fig. 32, for instance.

63



