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� Finite elements

We now tackle the convergence analysis of the discrete version of problem ����� magnetostatics�

���� Db 	 
�h 	 ��b�Rth 	 j�

A preliminary comment on what that means is in order�

A few notational points� The mesh is denotedm� the dual mesh is em� and we shall subscript
by m� when necessary� all mesh�related entities� For instance� the largest diameter of all p�
cells� p � 
� primal and dual� will be denoted �

m
�with a mild abuse� since it also depends

on the metric of the dual mesh�� and called the �grain� of the pair of meshes� The computed
solution fb�hg will be fb

m
�h
m
g when we wish to stress its dependence on the mesh�pair� And

so on�

A �rst statement of our purpose is �study fb
m
�h
m
g when �

m
tends to 
�� Alas� this lacks

de�niteness� because how the shapes of the cells change in the process does matter a lot� In the
case of triangular �D meshes� for instance� there are well�known counter�examples ��� showing
that� if one tolerates too much ��attening� of the triangles as the grain tends to 
� convergence
may fail to occur� Hence the following de�nition� A familyM of �pairs of interlocked� meshes
is uniform if there is a �nite catalogue of �model cells� such that any cell in any m or em of
the family is similar to one of them� The notation �m� 
� will then refer to a sequence of
meshes� all belonging to some de�nite uniform family� and such that their �

m
s tend to zero�

Now we rede�ne our objective� Show that the error� whatever one means by that� incurred by
taking fb

m
�h
m
g as a substitute for the real �eld fb� hg� tends to zero when m� 
�

The practical implications of achieving this are well known� If� for a given m� the
computed solution fb

m
�h
m
g is not deemed satisfactory� one must re�ne the mesh and redo

the computation� again and again� If the re�nement rule guarantees that all meshes such
a process can generate belong to some de�nite uniform family� then the convergence result
means �you may get as good an approximation as you wish by re�ning this way�� a state of
a�airs we are more or less happy to live with�

Figure ��� Subdivision rule for a tetrahedron t � fk� l�m� ng� �Mid�edges are denoted kl� lm� etc�� and o
is the barycenter�� A �rst halving of edges generates four small tetrahedra and a core octahedron� which
itself can be divided into eight �octants	 such as o � fo� kl� lm�mkg� of at most four di
erent shapes� Now�
octants like o should be subdivided as follows� divide the facet in front of o into four triangles� and join to o�
hence a tetrahedron similar to t� and three peripheral tetrahedra� These� in turn� are halved� as shown for
the one hanging from edge fo� lmg� Its two parts are similar to o and to the neighbor octant fo� kn� kl�mkg
respectively�

Fortunately� such re�nement rules do exist �this is an active area of research ��� �� ��� �����
Given a pair of coarse meshes to start with� there are ways to subdivide the cells so as to
keep bounded the number of di�erent cell�shapes that appear in the process� hence a potential

��



in�nity of re�ned meshes� which do constitute a uniform family� �A re�nement process for
tetrahedra is illustrated by Fig� �
� As one can see� at most �ve di�erent shapes can occur�
for each tetrahedral shape present in the original coarse mesh� In practice� not all volumes get
re�ned simultaneously� so junction dissection schemes are needed� which enlarges the catalogue
of shapes� but the latter is bounded nonetheless��

For these reasons� we shall feel authorized to assume uniformity in this sense� We shall also
posit that the hodge entries� whichever way they are built� only depend �up to a multiplicative
factor� on the shapes of the cells contributing to them� Although stronger than necessary�
these assumptions will make some proofs easier� and thus help focus on the main ideas�

��� Consistency

Back to the comparison between fb
m
�h
m
g and fb� hg� a natural idea is to compare the

computed DoF arrays� b
m

and h
m
� with arrays of the same kind� r

m
b 	 f

R
f b � f � Fg

and r
m
h 	 f

R
�f h � f � Fg� composed of the �uxes and m�m�f��s of the �unknown� solution

fb� hg of the original problem ����� This implicitly de�nes two operators with the same name�
r
m
� one that acts on ��forms� giving an array of facet��uxes� one that acts on twisted 
�forms�

giving an array of dual�edge m�m�f��s� �No risk of confusion� since the name of the operand� b
or h� reveals its nature��

Since db 	 
� the �ux of b embraced by the boundary of any primal ��cell v must vanish�
therefore the sum of facet �uxes

P
f Dvf

R
f b must vanish for all v� Similarly� dh 	 j yields the

relation
P

f R
e
f

R
�f h 	

R
�e j� by integration over a dual ��cell� In matrix form� all this becomes

��
� Dr
m
b 	 
� Rtr

m
h 	 j�

since the entries of j are precisely the intensities across the dual facets� Comparing with �����
we obtain

��
� D�b
m
� r

m
b� 	 
� Rt�h

m
� r

m
h� 	 
�

and

���� �h
m
� r

m
h�� ���b

m
� r

m
b� 	 ���r

m
� r

m
��b � ���r

m
�� ��r

m
�h�

Let us compute the ��norm of both sides of ����� �For this piece of algebra� we shall use the
notation announced in the previous Section� �b�h� for a sum such as

P
f�F bfhf � and jjjhjjj� for

���h�h�
���� the ��norm of h� and other similar constructs��

As this is done� �square� and �rectangle� terms appear� The rectangle term for the left�
hand side is ���b

m
� r

m
b�h

m
� r

m
h�� but since D�b

m
� r

m
b� 	 
 implies the existence of some

a such that b
m
� r

m
b 	 Ra� we have

�b
m
� r

m
b�h

m
� r

m
h� 	 �Ra�h

m
� r

m
h� 	 �a�Rt�h

m
� r

m
h�� 	 
�

after ��
�� Only square terms remain� and we get

���� jjjh
m
�r

m
hjjj��� jjjbm�r

m
bjjj�� 	 jjj���r

m
�r

m
��bjjj�� � jjj���r

m
�r

m
��hjjj�� � ���r

m
b�r

m
h� r

m
b���r

m
h��

On the left�hand side� which has the dimension of an energy� we spot two plausible estimators
for the error incurred by taking fb

m
�h
m
g as a substitute for the real �eld fb� hg� the �error

in �discrete� energy� �resp� coenergy�� as regards b
m
� r

m
b �resp� h

m
� r

m
h�� Components of

b
m
� r

m
b are what can be called the �residual �uxes� bf �

R
f b� i�e�� the di�erence between

the computed �ux embraced by facet f and the genuine �but unknown� �ux
R
f b� Parallel

considerations apply to h� with m�m�f��s along �f instead of �uxes� It makes sense to try and
bound these error terms by some function of �

m
� So let us focus on the right�hand side of

����� for instance on its second expression� the one in terms of h�

By de�nition of r
m
� the f �component of r

m
��h� is the �ux of b 	 �h embraced by f � On the

other hand� the �ux array ��r
m
h is the result of applying the discrete Hodge operator to the
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m�m�f� array r
m
h� so the compound operators r

m
� and ��r

m
will not be equal� they give di�erent

�uxes when applied to a generic h� This contrasts with the equalities �Dr
m
� r

m
d�b 	 
 and

�Rtr
m
� r

m
d�h 	 
� which stem from the Stokes theorem� The mathematical word to express

such equalities is �conjugacy�� D and d are conjugate via r
m
� and so are Rt and d� too� Thus�

� and �� are not conjugate via r
m
�and this is� of course� the reason why discretizing entails

some error�

Yet� it may happen that r
m
� and ��r

m
do coincide for some hs� This is so� for instance�

with piecewise constant �elds� when �� is the diagonal hodge of ���� and ����� actually� these
formulas were motivated by the desire to achieve this coincidence for such �elds� Also� as
we shall prove later� r

m
� and ��r

m
coincide on facet�element approximations of b� i�e�� on

divergence�free �elds of the form �f�Fbfw
f �which are meshwise constant�� when �� is the

Galerkin hodge� Since all piecewise smooth �elds di�er from such special �elds by some
small residual� and the �ner the mesh the smaller� we may in such cases expect �asymptotic
conjugacy�� in the sense that the right�hand side of ���� will tend to 
 with m� for a piecewise
smooth b or h� This property� which we rewrite informally but suggestively as

���� ��r
m
� r

m
� � 
 when m� 
� ��r

m
� r

m
�� 
 when m� 


�two equivalent statements�� is called consistency of the approximation of � and � by �� and
��� Consistency� thus� implies asymptotic vanishing of the error in �discrete� energy� after �����

Figure ��� As in Fig� �
� �f denotes the vectorial area of facet f � the vector of magnitude area�f�� normal

to f � that points away from f in the direction derived from f �s inner orientation by Amp�ere�s rule� By �f
�

we
denote the vector that joins the end points of the associated dual edge �f� �An ambient orientation is assumed

here� One could do without it by treating both �f and �f
�

as axial vectors�� In case � is not the same on

both sides of f � understand � �f
�

as �� �f
�

� � �� �f
�

�� where �f
�

� and �f
�

� are as suggested� Region Df is the volume

enclosed by the �tent	 determined by the extremities of �f and the boundary of f � Note that �f and � �f
�

always
cross f in the same direction� but only in the orthogonal construction are they parallel �cf� Fig� �
�� In that
case� ���� can be satis�ed by a diagonal hodge�cf� ���� and �����

Let�s now take a heuristic step� �We revert to vector proxies for this� Figure �
 explains

about �f and �f
�

� and n and � are normal and tangent unit vector �elds� as earlier� The norm
of an ordinary vector is j j�� Remark that the right�hand side of ���� is� according to its
rightmost avatar� a sum of terms� one for each f � of the form

��f ���
ff �
Z
f �
n � B�

Z
�f
� � � B��

Z
f
�n � H� �f ����

ff ��
Z
�f ��
� � H��

which we�ll abbreviate as �B� f ��H� f �� Each should be made as small as possible for the sum
to tend to 
� Suppose � is uniform� and that boundary conditions are such that B and H are
uniform� Then �B� f � 	 B � ��f ���

ff ��f � � � �f
�

�� This term vanishes if

���� �f ��F ��
ff ��f � 	 � �f

�

�

�This implies �f ��F ��
ff �� �f

�

� 	 �f � and hence� cancellation of �H� f �� too�� We therefore adopt
this geometric compatibility condition as a criterion about ��� Clearly� the diagonal hodge of

���� passes this test� But on the other hand� no diagonal �� can satisfy ���� unless �f and � �f
�

are collinear�

��



Proposition �� If �� is diagonal� with ��ff�f 	 � �f
�

� as required by the criterion� there is

consistency�

Proof� �All C�s� from now on� denote constants� not necessarily the same each time� possibly
depending on the solution� but not on the mesh�� This time� the solution proxy B is only
piecewise smooth� and possibly discontinuous if � is not uniform� but its component parallel
to �f � say B� satis�es jB�x� � B�y�j � Cjx � yj in the region Df of Fig� �
� One has��R
f n � B 	 area�f�B�xf� and

R
�f � � � B 	 length�� �f

�

�B�x�f�� for some averaging points xf and

x�f � the distance of which doesn�t exceed �
m
� hence �B� f � � C�

m
��ffarea�f�� by factoring

out ��ffarea�f� � length�� �f
�

�� and similarly� �H� f � � C�
m
��ff length�� �f

�

�� Noticing that

area�f� length�� �f
�

� 	 �
R
Df

�� and summing up with respect to f � one �nds that

���� jjjh
m
� r

m
hjjj�� � jjjb

m
� r

m
bjjj�� � C��

m
�

the consistency result� �

Going back to ����� we conclude that both the ��norm of the residual �ux array and the
��norm of the residual m�m�f� array tend to 
 as fast as �

m
� or faster��� a result we shall exploit

next�

One may wonder whether the proof can be carried out in the case of a non�diagonal hodge�
assuming ����� The author has not been able to do so on the basis of ���� only� The result is
true under stronger hypotheses �stronger than necessary� perhaps�� When the construction of

�� is a local one� i�e�� ��ff � 	 
 unless facets f and f � belong to a common volume� and when
the in�mum �

m
of all cell diameters veri�es �

m
� 	�

m
� with 	 independent of m� Then ��

has a band structure� and its terms behave in ���
m
� which makes it easy to prove that �B� f �

is in O���
m
�� Handling �H� f � is more di�cult� because �� is full� and the key argument about

averaging points not being farther apart than �
m

breaks down� On the other hand� owing to
the band structure of ��� and its positive�de�nite character� ��ff � is small for distant f and f ��
which allows one to also bound �H� f � by C��

m
� The number of faces being in ���

m
� consistency

ensues�

There is some way to go from such an argument to a proof� but this is enough to con�rm
���� in its status of criterion as regards ��� a criterion which is satis�ed� by construction �Fig�
���� in FIT �

�� and in the cell method ����� but allows a much larger choice� We�ll see in a
moment how and why it is satis�ed in the Galerkin approach�

��� Stability

So� the left�hand side of ���� tends to 
� Although this is considered by many as su�cient
in practice� one cannot be satis�ed with such �discrete energy� estimates� Fields should be
compared with �elds� To really prove convergence� one should build from the DoF arrays b

m

and h
m

an approximation fb
m
� h
m
g of the pair of di�erential forms fb� hg� and show that the

discrepancies b
m
� b and h

m
�h tend to 
 with m in some de�nite sense� So we are after some

map� that we shall denote by p
m
� that would transform a �ux array b into a ��form p

m
b and

an m�m�f� array h into a twisted 
�form p
m
h� The map should behave naturally with respect

to r
m
� i�e��

���� r
m
p
m
b 	 b� r

m
p
m
h 	 h�

�� In case � is not the same on both sides of f � understand length�� �f
�

� as ��length��f
�

�� � ��length��f
�

��� The
underlying measure of lengths is not the Euclidean one� but the one associated with the metric induced by
the Hodge operator ��

�� Convergence in ��
m

is in fact often observed when the meshes have some regularity� such as crystal�like
symmetries� which may cancel out some terms in the Taylor expansions implicit in the above proof� For
instance� the distance between points xf and x �f may well be in ��

m
rather than �m� This kind of phenomenon

is commonplace in Numerical Analysis �����

��



as well as

���� jp
m
r
m
b� bj� � 
 and jp

m
r
m
h� hj� � 
 when m� 


�asymptotic vanishing of the �truncation error� p
m
r
m
� 
�� A satisfactory result� then� would

be that both jb � p
m
b
m
j� and jh � p

m
h
m
j� tend to 
 with m �convergence �in energy��� As

will now be proved� this is warranted by the following inequalities�

���� 
jp
m
bj� � jjjbjjj� � 
jp

m
hj� � jjjhjjj�

for all b and h� where the constant 
 � 
 does not depend on m� Since jjjbjjj� and jjjhjjj� depend
on the discrete hodge� ���� is a property of the approximation scheme� called stability�

Proposition �� Consistency ���� being assumed� ���� and ���� entail convergence�

Proof� By consistency� the right�hand side of ���� tends to 
� whence jjjb
m
� r

m
bjjj� � 
� and

jp
m
b
m
� p

m
r
m
bj� � 
 by ����� Therefore p

m
b
m
� b� �in energy�� thanks to ����� Same

argument about h� �

This is Lax�s celebrated folk theorem� consistency � stability 	 convergence�

Below� we shall �nd a systematic way to construct p
m
� the so�called Whitney map� But

if we don�t insist right now on generality� there is an easy way to �nd a suitable such map in
the case of a simplicial primal mesh and of DoF arrays b that satisfy Db 	 
 �luckily� only
these do matter in magnetostatics�� The idea is to �nd a vector proxy B uniform inside each

tetrahedron with facet �uxes B � �f equal to bf � �Then� divB 	 
 all over D�� This� which
would not be possible with cells of arbitrary shapes� can be done with tetrahedra� for there
are� for each tetrahedral volume v� three unknowns �the components of B� to be determined
from four �uxes linked by one linear relation�

P
f D

f
vbf 	 
� so the problem has a solution�

which we take as p
m
b�

Then��� p
m
r
m
b � b� As for the stability condition ����� one has jp

m
bj�� 	

R
D �jBj

�� a
quadratic form with respect to the facet �uxes� which we may therefore denote by �b�Nb��
with N some square regular matrix� Now� suppose �rst a single tetrahedron in the mesh m�
and consider the Rayleigh�like quotient �b� ��b���b�Nb�� Its lower bound� strictly positive�
depends only on the shape of the tetrahedron� not on its size� Then� uniformity of the family
of meshes� and of the construction of ��� allows us to take for 
 in ���� the smallest of these
lower bounds� which is strictly positive and independent of m� We may thereby conclude that
p
m
b
m

converges towards b in energy�

No similar construction on the side of h is available� but this is not such a handicap� if
p
m
b
m
� b� then �p

m
b
m
� h� This amounts to setting p

m
on the dual side equal to �p

m
��� The

problem with that is� p
m
h fails to have the continuity properties we expect from a magnetic

�eld� its vector proxy H is not tangentially continuous across facets� so one cannot take its
curl� But never mind� since this �non�conformal� approximation converges in energy�

Yet� we need a more encompassing p
m

map� if only because Db 	 
 was just a happy
accident� Before turning to that� which will be laborious� let�s brie�y discuss convergence in
the full Maxwell case�

��	 The time
dependent case

Here is a sketch of the convergence proof for the generalized Yee scheme �������� of last
Section�

�� This is an exercise� for which the following hints should su�ce� Start from b� piecewise smooth� such that
db � �� set b � rmb� get B as above� and aim at �nding an upper bound for jB� Bj� where B is the proxy of
b� over a tetrahedron T� For this� evaluate r� �

R
T
�B � B�� where � is an a�ne function such that jr�j � ��

Integrate by parts� remark that
R
f
�n � B � ��xf �bf � where xf is the barycenter of f � Taylor�expand n � B

about xf � hence a bound in C��
m
for
R
�T

�n � �B� B�� from which stems j
R
T
�B� B�j � C��

m
� Use uniformity

to conclude that jB� Bj � C�m�

��



First� linear interpolation in time between the values of the DoF arrays� as output by the
scheme� provides DoF�array�valued functions of time which converge� when �t tends to zero�
towards the solution of the �spatially discretized� equations ��
������ This is not di�cult�

Next� linearity of the equations allows one to pass from the time domain to the frequency
domain� via a Laplace transformation� Instead of studying ��
������ therefore� one may
examine the behavior of the solution of

��
� �pD�Rt
H 	 J� pB�RE 	 
�

��
� D 	 

 E� B 	 ��H�

when m � 
� Here� p 	 � � i�� with � � 
� and small capitals denote Laplace transforms�
which are arrays of complex�valued DoFs� If one can prove uniform convergence with respect
to � �which the requirement � � 
 makes possible�� convergence of the solution of ��
�����
will ensue� by inverse Laplace transformation� The main problem� therefore� is to compare
E� B� H� D� as given by ��
���
�� with r

m
e� r

m
b� r

m
h� r

m
d� where small capitals� again� denote

Laplace transforms� but of di�erential forms this time�

The approach is similar to what we did in statics� First establish that

���� p���H� r
m
h� �R�E� r

m
e� 	 p�r

m
�� ��r

m
�h�

���� �p

 �E� r
m
e� �Rt�H� r

m
h� 	 �p�r

m

� 

 r

m
�e�

Then� right�multiply ���� �in the sense of � � �� by �H � r
m
h�� and the complex conjugate of

���� by ��E � r
m
e�� add� The middle terms �in R and Rt� cancel out� and energy estimates

follow� The similarity between the right�hand sides of ����� on the one hand� and ���������
on the other hand� shows that no further consistency requirements emerge� Stability� thanks
to � � 
� holds there if it held in statics� What is a good discrete hodge in statics� therefore�
is a good one in transient situations� Let�s tentatively promote this remark to the rank of
heuristic principle�

As regards discrete constitutive laws� what makes a convergent scheme for static problems

will� as a rule� make one for the Maxwell evolution equations as well�

At this stage� we may feel more con�dent about the quality of the toolkit� If the discrete
hodges and the meshes are compatible in the sense of ����� so that consistency can be achieved�
if there is a way to pass from DoFs to �elds which binds energy and discrete energy tightly
enough for stability ���� to hold� then convergence will ensue� So we need the p

m
operator�

We would need it� anyway� to determine �uxes� emf�s� etc�� at a �ner scale than what the mesh
provides�motivation enough to search for interpolants� but not the most compelling reason
to do so� Field reconstruction from the DoFs is needed� basically� to assess stability� in the
above sense� and thereby� the validity of the method� Whitney forms� which will now enter
the scene� provide this mechanism�

��� Whitney forms

Let�s summarize the requirements about the generic map p
m
� It should map each kind of DoF

array to a di�erential form of the appropriate kind� p
m
e� starting from an edge�based DoF

array e� should be a 
�form� p
m
b� obtained from a facet�based b� should be a ��form� and so

forth� Properties ���� and ���� should hold for all kinds� too� so in short�

���� r
m
p
m
	 
� p

m
r
m
� 
 when m� 
�

The stability property ���� will automatically be satis�ed in the case of a uniform family of
meshes� Moreover� we expect db 	 
 when Db 	 
� de 	 
 when Re 	 
� etc� More generally�
Ra 	 b should entail da 	 b� and so forth� These are desirable features of the toolkit� The
neatest way to secure them is to enforce the structural property

���� dp
m
	 p

m
d�

��
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p
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Primal DoF arrays

Forms

Proxies

c

e

at all levels �Fig� ���� d and d should be conjugate� via p
m
� or said di�erently� Fig� �� should

be a commutative diagram� Remarkably� these prescriptions will prove su�cient to generate
interpolants in an essentially unique way� Such interpolants are known as Whitney forms

�

��� and we shall refer to the structure they constitute as the Whitney complex�

Figure ��� Diagrammatic rendering of ����� with part of Fig� �� added� Flat and sharp symbols represent
the isomorphism between di
erential forms and their scalar or vector proxies�

����� Whitney forms as a device to approximate manifolds

We address the question by taking a detour� to see things from a viewpoint consistent with our
earlier de�nition of di�erential forms as maps from manifolds to numbers� A di�erential form�
say� for de�niteness� b� maps a p�manifold S to the number

R
S b� with p 	 � here� Suppose we

are able to approximate S by a p�chain� i�e�� here� a chain based on facets� pt
m
S 	

P
f�F c

ff �
Then a natural approximation to

R
S b is

R
pt
m
S b� But this number we know� by linearity� sinceR

f rmb 	 bf � it equals the sum
P

f c
fbf � that we shall denote hhc �bii �with boldface brackets��

Hence an approximate knowledge of the �eld b� i�e�� of all its measurable attributes�the
�uxes�from the DoF array b� In particular� �uxes embraced by small surfaces �with respect
to the grain of the mesh� will be computable from b� which meets our expectations about
interpolating to local values of b� The question has thus become �how best to represent S by
a ��chain �� Figure �� �where p 	 
� so a curve c replaces S� gives the idea�

Once we know about the manifold�to�chain map pt
m
� we know about Whitney forms� For

instance� the one associated with facet f is� like the �eld b itself� a map from surfaces to
numbers� namely the map S � cf that assigns to S its weight with respect to f � We denote this
map by wf and its value at S by

R
S w

f or by hS �wfi as we have done earlier� �The notational
redundancy will prove useful�� Note that hhpt

m
S �bii 	

R
S

P
f bfw

f 	
R
S pmb � hS � p

m
bi� which

justi�es the �pt
m
� notation� A transposition is indeed involved�

Figure ��� Representing curve c by a weighted sum of mesh�edges� i�e�� by a ��chain� Graded thicknesses
of the edges are meant to suggest the respective weights assigned to them� Edges such as e� whose �control
domain	 �shaded� doesn�t intersect c� have zero weight� �A weight can be negative� if the edge is oriented
backwards with respect to c�� Which weights thus to assign is the central issue in our approach to Whitney
forms�
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����� A generating formula

Now� let�s enter the hard core of it� A simplicial primal mesh will be assumed until further
notice� �We shall see later how to lift this restriction�� Results will hold for any spatial
dimension n and all simplicial dimensions p � n� but will be stated as if n was � and p 	 

or � �edge and facet elements�� So we shall also write proofs� even recursive ones that are
supposed to move from p to p�
 �see� e�g�� Prop� ��� as if p had a speci�c value �
 or ��� and
thereby prefer R�D� or Rt�Dt� to d or ��� That the proof has general validity notwithstanding
should be obvious each time�

We use �n�x� for the barycentric weight of point x with respect to node n� when x belongs to
one of the tetrahedra which share node n �otherwise� �n�x� 	 
�� We�ll soon see that wn 	 �n

is the natural choice for nodal 
�forms� and again this dual notation will make some formulas
more readable� We de�ne �e 	 �m � �n� when edge e 	 fm�ng� as well as �f 	 �l � �m � �n

for facet f 	 fl�m� ng� etc� When e 	 fm�ng and f 	 fl�m� ng� we denote node l by f � e�
Thus �f�e refers to �in that case� �l� and equals �f � �e� The oriented segment from point
x to point y is xy� the oriented triangle formed by points x� y� z� in this order� is xyz� And
although node n and its location xn should not be confused� we shall indulge in writing� for
instance� ijx for the triangle based on points xi� xj � and x� when i and j are node labels�

The weights in the case of a �small manifold�� such as a point� a segment� etc��	
 will now
be constructed� and what to use for non�small ones� i�e�� the maps we� wf � etc�� from lines�
surfaces� etc�� to reals� will follow by linearity� The principle of this construction is to enforce
the following commutative diagram property�

���� �� pt
m
	 pt

m
��

which implies� by transposition� dp
m
	 p

m
d� the required structural property �����	� We shall

not endeavor to prove� step by step� that our construction does satisfy ����� although that
would be an option� Rather� we shall let ���� inspire the de�nition that follows� and then�
directly establish that dp

m
	 p

m
d� This in turn will give ���� by transposition�

De�nition� Starting from wn 	 �n� the simplicial Whitney forms are

���� we 	
X
n�N

Gn
e �

e�ndwn� wf 	
X
e�E

Re
f �

f�edwe� wv 	
X
f�F

Df
v �

v�fdwf

�and so on� recursively� to higher dimensions��

Figure ��� Left� With edge e � fm�ng and facets fm�n� kg and fm�n� lg oriented as shown� the ��chain to
associate with the �join	 x� e� alias mnx� can only be �k�x�mnk� �l�x�mnl� This is what ���� says� Right�
Same relation between the join x � n and the ��chain �k�x�nk � �l�x�nl � �m�x�nm�

Let us justify this statement� by showing how compliance with ���� suggests these formulas�
The starting point comes from �nite element interpolation theory� which in our present stand

	
 The proper underlying concept� not used here� is that of multivector at point x�
	� If moreover ker���p� � cod���p���� i�e�� in the case of a trivial topology� ker�dp� � cod�dp���� just as� by
transposition� ker�dp� � cod�dp���� One says the Whitney spaces of forms� as linked by the dp� form an exact
sequence�

�	



consists in expressing a point x as a weighted sum of nodes� the weights wn�x� being the
barycentric ones� �n�x�� �Note how the standard p

m
for nodal DoFs� p

m
�� 	

P
n ��nw

n� comes
from pt

m
x 	

P
nw

n�x�n by transposition�� Recursively� suppose we know the proper weights
for a segment yz� i�e�� the bracketed terms in the sum pt

m
yz 	

P
ehyz �w

ei e� and let us try to
�nd pt

m
xyz� By linearity� pt

m
xyz 	

P
ehyz �w

ei pt
m
�x	 e�� where the �join� x	 e is the triangle

displayed in Fig� ��� left� So the question is� which ��chain best represents x	e As suggested
by Fig� ��� the only answer consistent with ���� is

���� pt
m
�x 	 e� 	

X
f�F

Re
f �

f�e�x� f�

Indeed� this formula expresses x 	 e as the average of mnk and mnl �the only two facets f
for which Re

f 
	 
�� with weights that depend on the relative proximity of x� So pt
m
xyz 	P

e�f R
e
f �

f�e�x� hyz �weif �
P

fhxyz �w
fi f � hence

���� hxyz �wfi 	
X
e

Re
f �

f�e�x� hyz �wei�

On the other hand� since a degenerate triangle such as xzx should get zero weights� we expect

 	 hxzx �wfi 	

P
eR

e
f�

f�e�x�hzx �wei� and the same for hxxy �wfi� From this �which will
come out true after Prop� � below�� we get

hxyz �wfi 	
X
e

Re
f �

f�e�x� hyz � zx� xy �wei

	
X
e

Re
f �

f�e�x� h��xyz� �wei 	
X
e

Re
f �

f�e�x� hxyz � dwei

for any small triangle xyz� by Stokes� and hence wf 	
P

eR
e
f �

f�e dwe�

Thus� formulas �����which one should conceive as the unfolding of a unique formula�are
forced on us� as soon as we accept ���� as the right way� amply suggested by Fig� ��� to pass
from the weights for a simplex s to those for the join x 	 s� The reader will easily check that
���� describes the Whitney forms as they are more widely known� that is� on a tetrahedron
fk� l�m� ng�

wn 	 �n

for node n�
we 	 �md�n � �nd�m

for edge e 	 fm�ng�

wf 	 ���ld�m � d�n � �md�n � d�l � �nd�l � d�m�

for facet f 	 fl�m� ng� and

wv 	 ���kd�l � d�m � d�n � �ld�m � d�n � d�k � �md�n � d�k � d�l � �nd�k � d�l � d�m�

for volume v 	 fk� l�m� ng� In higher dimensions �

��� the Whitney form of a p�simplex
s 	 fn
� n�� � � � � npg� with inner orientation implied by the order of the nodes� is

ws 	 p!
X

i�
�����p

��
�iwnidwn
 � ���hii��� � dwnp �

where the hii means �omit the term dwni��

From now on� we denote by W p the �nite�dimensional subspaces of F p generated by these
basic forms�

Remark� To �nd the vector proxies of we and wf � substitute r and � to d and �� The
scalar proxy of wv is simply the function equal to 
� vol�v� on v� 
 elsewhere� The reader is
invited to establish the following formulas�

wmn�x� 	 �kl � kx��� vol�klmn�� wmnk�x� 	 xl�� vol�v��

�
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very useful when it comes to actual coding� �Other handy formulas� at this stage� are
rot�x � v � ox� 	 �v and div�x � ox� 	 �� where o is some origin point and v a �xed
vector� As an exercise� one may use this to check on Prop� � below�� �

Remark� One may recognize in ���� the development of the ��� determinant of the array of
barycentric coordinates of points x� y� z� with respect to nodes l�m� n� hence the geometrical
interpretation of the weights displayed in Fig� ��� �

Figure ��� Just as the barycentric weight of point x with respect to node n is vol�klmx�� if one takes
vol�klmn� as unity� the weight of the segment xy with respect to edge fm�ng is vol�klxy�� and the weight of
the triangle xyz with respect to facet fl�m� ng is vol�kxyz��

����	 Properties of Whitney forms

Thus in possession of a rationale for ����� we now derive from it a few formulas� for their own
sake and as a preparation for the proof of the all important dp

m
	 p

m
d result� Prop� � below�

Proposition �� For each p�simplex� there is one linear relation between Whitney forms

associated with �p� 
��faces of this simplex� For instance� for each f �X
e�E

Re
f �

f�ewe 	 
�

Proof� By �����
P

eR
e
f �

f�ewe 	
P

e�n �
f�e�e�nRe

fG
n
e w

n 	 
� thanks to the relation RG 	 
�
because �f�e�e�n� which is the same for all e in �f � can be factored out� �

As a corollary� and by using d���� 	 d� � � � � d�� we have

wf 	 �
X
e�E

Re
f d�

f�e � we�

and other similar alternatives to �����

Proposition 
� For each p�simplex s� one has

��
� �i� �sdws 	 �p� 
� d�s � ws� �ii� d�s � dws 	 
�

Proof� This is true for p 	 
� Assume it for p 	 
� Then dwf 	
P

eR
e
f d�

f�e � dwe

	
P

eR
e
f d�

f � dwe � d�f �
P

eR
e
f dw

e by ��
ii�� hence d�f � dwf 	 
� Next� �fdwf 	
�f�
P

eR
e
f d�

f � dwe� 	 d�f � �
P

eR
e
f�

fdwe� 	 d�f � �wf �
P

eR
e
f�

edwe�� which thanks to
��
i� equals d�f � �wf ��

P
eR

e
f d�

e�we� 	 d�f �wf�� d�f �
P

eR
e
f d�

f�e�we 	 �d�f �wf �
which proves ��
i� for p 	 �� Hence ��
ii� for p 	 � by taking the d� �

Next� yet another variant of ����� but without summation this time� For any edge e such
that Re

f 
	 
� one has

��
� Re
fw

f 	 �f�edwe � � d�f�e � we�

This is proved by recursion� using Gn
e�
we� 	 �e��ndwn � d�e��nwn� where n 	 e 
 e�� and the

identity Gn
e�
Gn

e 	 �Re�

f R
e
f � We may now conclude with the main result about structural

properties �cf� Fig� ����

Proposition �� One has
dwe 	

X
f�F

Re
fw

f �

��
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and hence� by linearity� dp
m
	 p

m
d�

Proof� Since both sides vanish out of the �star� of e� i�e�� the union st�e� of volumes containing
it� one may do as if st�e� was the whole meshed region� Note that

P
f R

e
f�

f 	 
 � �e on
st�e�� Then�

P
f R

e
fw

f 	
P

f ��
f�edwe � � d�f�e � we� 	 �
 � �e�dwe � � d�
 � �e� � we 	

�
� �e�dwe � �e � dwe � dwe� by using ��
i�� Now� d�p
m
a� 	 d�

P
e aew

e� 	
P

e�f R
e
faew

f 	P
f�Ra�fw

f 	 p
m
�da�� �

As a corollary� dW p�� � W p� and if ker�dp� 	 cod�dp���� then ker�d �W p� 	 dW p��� the
exact sequence property of Whitney spaces in case of trivial topology�

����� �Partition of unity�

For what comes now� we revert to the standard vector analysis framework� where wf denotes
the proxy vector �eld �i�e�� ���lr�m �r�n � � � ��� of the Whitney form wf �

Recall that barycentric functions sum to 
� thus forming a �partition of unity��
P

n�N wn 	

� We shall drop the ugly arrows in what follows� and use symbol f not only as a label� but
also for the vectorial area of f �Fig� �
�� Same dual use of �f � Same convention for xyz� to be
understood as a triangle or as its vectorial area� according to the context�

Proposition ��� At all points x� for all vectors v�

����
X
f�F

�wf�x� � v� f 	 v�

This is a case of something true of all simplices� and a consequence of the above construction
in which the weights hxyz �wf�x�i were assigned in order to have xyz 	

P
fhxyz �w

f�x�if �
Replacing there wf by its proxy� and xyz and f by their vectorial areas� we �nd ����� As a
corollary �replace f by g� v by �wf�x�� and integrate in x�� the entries ��fg of the Galerkin
facet elements mass matrix satisfy X

g�F

��fgg 	 ��f

where ��f is as explained on Fig� �
� but with the important speci�cation that here� we
are dealing with the barycentric dual mesh� That

R
�wf 	 ��f is an exercise in elementary

geometry� and a similar formula holds for all Whitney forms �Fig� ���� Now� compare this
with ����� the compatibility condition that was brought to light by the convergence analysis�
We have proved� at last� that the Galerkin hodges do satisfy it�

Figure ��� Why
R
T
we � �e in the barycentric construction of the dual mesh� First� the length of the

altitude from n is ��jrwnj� therefore
R
T
rwn � klm��� Next� the average of wn or wm is ���� So

R
T
we �R

T
�wmrwn � wnrwm� is a vector equal to �klm�� � kln������ As the �gure shows �all twelve triangles on

the right have the same area�� this is precisely the vectorial area of �e�

�� Higher
degree forms

Let�s sum up� Whitney forms were built in such a way that the partition of unity property ����
ensues� This property makes the mass matrix �� of facet elements satisfy� with respect to the

��



mesh and its barycentric dual� a compatibility criterion� ����� which we earlier recognized as a
requisite for consistency� Therefore� we may assert that Whitney forms of higher polynomial

degree� too� should satisfy ����� and take this as heuristic guide in the derivation of such
forms�

Being a priori more numerous� higher�degree forms will make a �ner partition� But we have
a way to re�ne the partition ����� Multiply it by the �ns� which themselves form a partition
of unity� This results in X

f�F � n�N

��nwf�x� � v� f 	 v�

hence the recipe� Attach to edges� faces� etc�� the products �nwe� �nwf � etc�� where n spans
N � Instead of the usual Whitney spaces W p� with forms of polynomial degree 
 at most� we
thus obtain larger spaces W p

� � with forms of polynomial degree � at most� �For consistency�
W p may now be denoted W p

� �� As we shall prove in a moment �under the assumption of
trivial topology� but this is no serious restriction�� the complex they constitute enjoys the
exact sequence property � If for instance b 	

P
n�f bnf�

nwf satis�es db 	 
 �which means it
has a divergence�free proxy� then there are DoFs ane such that b 	 d�

P
n�e ane�

nwe�� �How to
de�ne W p

k � for polynomial degrees k 	 �� � � �� should now be obvious��

Note however that� because of Prop� �� these new forms are not linearly independent� For
instance� the span of the �nwes� over a tetrahedron� has dimension �
 instead of the apparent
��� because Prop� � imposes one linear relation per facet� Over the whole mesh� with N
nodes� E edges� F facets� the two products �mwe and �nwe for each edge e 	 fm�ng� and the
three products �f�ewe for each facet f � make a total of �E ��F generators for W �

�
� But with

one relation per facet� the dimension of W �
�
is only ��E � F �� �The spans of the �nwns� the

�nwfs� and the �nwvs� have respective dimensions N � E� ��F � V �� and �V � The general
formula is dim�W p

� � 	 �p � 
��Sp � Sp���� where Sp is the number of p�simplices� Note thatP
p��
�p dim�W p

� � 	
P

p��
�pSp � �� the Euler"Poincar#e constant of the meshed domain��

Owing to this redundancy� the main problem with these forms is� how to interpret the DoFs�
With standard edge elements� the DoF ae� is the integral of the 
�form a 	

P
e aew

e over edge
e�� In di�erent words� the square matrix of the circulations he� �wei is the unit matrix� edges
and edge elements are in duality in this precise sense �just like the basis vectors and covectors
�i and dj of Note ���� Here� we cannot expect to �nd a family of 
�chains in such duality
with the �nwes� The most likely candidates in this respect� the �small edges� denoted fn� eg�
etc�� on Fig� ��� left� don�t pass� because the matrix of the hfn�� e�g ��nwei is not the unit
matrix� If at least this matrix was regular� �nding chains in duality with the basis forms� or
the other way round� would be straightforward� But regular it is not� because of the relations
of Prop� �� We might just omit one small edge out of three on each face� but this is an ugly
solution� Better to reason in terms of blocks of DoF of various dimensions� and to be content
with a rearragement of chains that makes the matrix block�diagonal� Blocks of size 
 for small
edges which are part of the �large� ones� blocks of size three for small edges inside the facets�
Each of these ��blocks corresponds to a subspace of dimension two� owing to Prop� �� be it
the subspace of forms or of chains� The triple of degrees of freedom� therefore� is up to an
additive constant� Yet� the circulations	� do determine the form� if not the DoF� uniquely
��unisolvence� property��

	� Since the matrix has no maximal rank� small�edge circulations must satisfy compatibility conditions for the
form to exist� �Indeed� one will easily check that any element of W �

�
has a null circulation along the chain

made by the boundary of a facet minus four times the boundary of the small facet inside it�� This raises a
minor problem with the rm map� whose images need not satisfy this condition� The problem is avoided with
a slightly di
erent de�nition of the small edges ��
�� as suggested on the right of Fig� �
�

��
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Figure �	� Left� �Small	 edges� in one�to�one correspondence with the forms �nwe� and how they are
labelled� Right� A variant where some small edges� such as fk� eg� are broken lines� These three crooked
small edges� with proper signs� add up to the null chain� hence the compatibility condition of Note �� is built
in�

The reader will easily guess about �small facets� �
� of them on a single tetrahedron� for
a space of dimension ��F �T � 	 ���� 
� 	 
�� and �small volumes� �four�� in both variants�

Which leaves us with the task of proving the exact sequence property� that is to say� the
validity of Poincar#e�s Lemma in the complex of the W p

� � Show that db 	 
 for b �W p
� implies

the existence� locally at least� of a � W p��
� such that b 	 da� We�ll treat the very case this

notation suggests� i�e�� p 	 �� and assume trivial topology ��contractible� meshed domain��
which does no harm since only a local result is aimed at� We use rot and div rather than d
for more clarity� First� two technical points�

Lemma �� If
P

n�N 	n�
n�x� � 	
 for all x� where the 	s are real numbers� then 	n 	 	
 for

all nodes n � N �

Proof� Clear� since
P

n �
n 	 
 is the only relation linking the �n�x�s� �

Lemma �� If a �W �� then � rot��na�� ��n rot a �W ��

Proof� If a 	 we and n 	 f � e� this results from ��
�� If n is one of the end points of e� e�g��
e 	 fm�ng� a direct computation� inelegant as it may be� will do� � d�n � ��md�n � �nd�m�
	 ���nd�n � d�m 	 �ndwe� �

Now�

Proposition ��� If the W p
� sequence is exact� the W p

� sequence is exact�

Proof �at level p 	 ��� Suppose b 	 b
�
P

n�N �nbn� with b
 and all the bn inW �� and div b 	 
�
Taking the divergence of the sum and applying Lemma 
 in each volume� one sees that div bn
is the same �eld for all n� So there is some common $b in W � such that div�bn � $b� 	 
 for
all n� and since the W p complex is exact� there is an an in W � such that bn 	 $b � rot an�
Hence� b 	 b
 � $b �

P
n �

n rot an� By Lemma �� there is therefore some %b in W � such that

b 	 %b � �

�
rot�

P
n �

nan�� Since div %b 	 
� the solenoidal b in W �
�
we started from is indeed the

curl of some element of W �
�
� �

Very little is needed to phrase the proof in such a way that the contractibility assumption
becomes moot� Actually� the complexes W p

� and W p
� have the same cohomology� whatever

the topology of the domain and the culling of passive simplices �i�e�� those bearing a null DoF�
implied by the boundary conditions�

��� Whitney forms for other shapes than simplices

This simple idea� approximate p�manifolds by p�chains based on p�cells of the mesh� is highly
productive� as we presently see�

����� Hexahedra

First example� the well�known isoparametric element ���� on hexahedra can thus be un�

��
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derstood� A �D explanation �Fig� ��� will su�ce� the generalization being easy� Let us
take a convex quadrangle based on points x

� x�
� x
�� x��� and wonder about which weights
wn�x� should be assigned to them �label n designates the generic node� in order to have
x 	

P
n�f

��
��
���gw

n�x�xn in a sensible way� The weights are obvious if x lies on the bound�
ary� For instance� if x 	 �
 � ��x

 � �x�
� a point we shall denote by x�
� weights are
f
� �� �� 
� 
g� Would it be x � x�� 	 �
� ��x
� � �x��� we would take f
� 
� 
� �� �g� Now�
each x is part of some segment �x�
x���� for a unique value ��x� of the weight �� in which case
x 	 �
 � ��x�
 � �x��� for some � 	 ��x�� hence it seems natural to distribute the previous
weights in the same proportion�

���� x 	 �
� ��x���
� ��x��x

 � �
� ��x����x�x�
 � ��x��
� ��x��x
� � ��x���x�x���

and we are staring at the basis functions� They form� obviously� a partition of unity�

Figure �
� The system of projections� in dimension ��

Looking at what we have done� and generalizing to dimension � or higher� we notice a system
of projections� associated with a trilinear	� chart� x� f��x�� ��x�� ��x�g� from a hexahedron
to the unit cube in ����space� The successive projections �which can be performed in any
order� map a point x � x��� to its images x
�� and x��� on opposite facets	� � 	 
 and � 	 
�
then� recursively� send these images to points on opposite edges� etc�� until eventually a node
n is reached� In the process� the weight hx �wni of x is recursively determined by formulas
such as �assuming for the sake of the example that n belongs to the facet � 	 
�

hx��� �w
ni 	 �
� ��hx
�� �w

ni�

The �nal weight of x with respect to n is thus the product of factors� such as here �
 � ���
collected during the projection process� �They measure the relative proximity of each
projection to the face towards which next projection will be done�� The last factor in this
product is 
� obtained when the projection reaches n� Observe the fact� essential of course�
that whatever the sequence of projections� the partial weights encountered along the way are
the same� only di�erently ordered� and hence the weight of x with respect to node n is a
well�de�ned quantity�

The viewpoint thus adopted makes the next move obvious� Now� instead of a point x� we
deal with a vector v at x� small enough for the segment xy �where y 	 x� v� to be contained
in a single hexahedron� The above projections send x and y to facets� edges� etc� Ending the
downward recursion one step higher than previously� at the level of edges� we get projections
xeye of xy onto all edges e� The weight hxy �wei is the product of weights of x collected
along the way� but the last factor is now the algebraic ratio xeye�e �which makes obvious

	� thus called because 	� 
� and �� though cubic polynomials in terms of the Cartesian coordinates of x� are
a�ne functions of each of them� taken separately�

	� Be aware that p�faces need not be ��at	� i�e�� lie within an a�ne p�subspace for p � �� in dimension higher
than �� We assume a mesh generation which avoids this�

��



x
y

e

ξ

η

ζ

w  = ηζ dξe

e

x

y

m

n

k

l

sense� instead of 
� Hence the analytical expression of the corresponding Whitney form� for
instance� in the case of Fig� ��� we 	 ��d�� �Notice the built�in �partition of unity� property�
xy 	 �ehxy �weie�� The proxies� we 	 ��r� in this example� were proposed as edge elements
for hexahedra in �

���

Figure ��� Weight we�xy� is the 	
��volume of the �hinder region	 of xy with respect to edge e�

One may wonder whether weights such as hxy �wei have a geometric interpretation
there too� They have� hxy �wei is the relative volume� in the reference hexahedron		

H 	 f�� �� �g � 
 � � � 
� 
 � � � 
� 
 � � � 
� of the �hinder region� of Fig� ���
made of points �behind� xy with respect to edge e� This may seem fairly di�erent from the
situation in Fig� ��� middle� but a suitable reinterpretation of the system of projections in the
tetrahedron �Fig� �
� shows the analogy�

A similar reasoning gives facet elements� the last weight� for a small triangle xyz� is
xfyfzf�f � which again makes sense� Take the ratio of the areas �an a�ne notion� of the
images of these surfaces in the reference cube� with sign � if orientations of xfyfzf and f
match� � otherwise� Whitney forms such as wf 	 � d� d� �when f is the facet � 	 
� result�
The proxy of that particular one is �r� �r��

Figure ��� There too� weight we�xy� is the relative volume of the hinder region�

����� Prisms

So� Cartesian coordinates and barycentric coordinates provide two systems of projections
which make obvious the weight allocation� These systems can be mixed� one of them in use

		 Recall that all tetrahedra are a�ne equivalent� which is why we had no need for a reference one� The
situation is di
erent with hexahedra� which form several orbits under the action of the a�ne group�
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for p � n dimensions� the other one for the n� p remaining dimensions� In dimension �� this
gives only one new possibility� the prism �Fig� �
��

Such a variety of shapes makes the mesh generation more �exible ����� Yet� do the
elements of a given degree� edge elements say� �t together properly when one mixes tetrahedra�
hexahedra� and prisms Yes� because of the recursivity of the weight allocation� If a segment
xy lies entirely in the facet common to two volumes of di�erent kind� say a tetrahedron and a
prism� the weights hxy �wei for edges belonging to this facet only depend on what happens in
the facet� i�e�� they are the same as evaluated with both formulas for we� the one valid in the
tetrahedron� the one valid in the prism� This is enough to guarantee the tangential continuity
of such composite edge elements�

Figure ��� Projective system and edge elements for a prism� Observe the commutativity of the projections

����	 �Degeneracies�

Yet one may yearn for even more �exibility� and edge elements for pyramids have been
proposed ���� ���� A systematic way to proceed� in this respect� is to recourse to �degenerate�
versions of the hexahedron or the prism� obtained by fusion of one or more pair of nodes and
or edges�

To grasp the idea� let�s begin with the case of the degenerated quadrilateral� in two
dimensions �Fig� ���� With the notations of the Figure� where f�� �� �g are the barycentric
coordinates in the left triangle� the map f�� �g � f�� �g� where � 	 ����� �� and � 	 �� ��
sends the interior of the triangle to the interior of the right quadrilateral� When� by
deformation of the latter� x�
 merges with x

� the projective system of the quadrilateral
generates a new projective system on the triangle�

Figure ��� Projective systems for the same triangle� in the barycentric coordinates on the left� and by
degeneracy of the quadrilateral system on the right�

The weights assigned to the nodes� and hence the nodal elements� are the same in both
systems� for �� 	 � for point C �cf� ������ ��
 � �� 	 � for B� and the sum �
 � ���
 � ��

��



� �
 � ���� attributed to A by adding the loads of x

 and x
�� does equal �� But the edge
elements di�er� For AC� �d� � ��
� �����d� on the right instead of �d� � �d� on the left�
��
 � �����d� for AB� and d� � �
 � �����d� for BC� �The singularity of shape functions
at point A is never a problem� because integrals they enter in always converge��

In dimension �� the principle is the same� When two edges merge� by degeneration of a
hexahedron or of a prism� the Whitney form of the merger is the sum of the Whitney forms
of the two contributors� which one may wish to rewrite in a coordinate system adapted to the
degenerate solid� Figs �� and �� show seven degeneracies� all those that one can obtain from
a hexahedron or a prism with plane facets under the constraint of not creating curved facets
in the process� As one sees� the only novel shape is the pyramid� while the prism is retrieved
once and the tetrahedron four times�

Figure ��� Projective systems in four degenerations of the hexahedron� Thick lines indicate the merged
edges�

But� as was predictible from the ��dimensional case� it�s new Whitney forms� on these
solids� that are produced by the merging� because the projection systems are di�erent� In
particular� we have now �ve distinct projective systems on the tetrahedron �and two on the
pyramid and the prism�� and the equality of traces is not automatic any longer� One must
therefore care about correct assembly� in order to get the same projection system on each
facet�
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Figure ��� Projective systems in three degenerations of the prism� Note how the pyramid has two ways to
degenerate towards the tetrahedron�

The advantage of having the pyramid available is thus marred by the necessity of an
extended shape�functions catalogue �on at least two triangular facets of a pyramid� the
projection system cannot match the tetrahedron�s one�� and by the existence of cumbersome
assembly rules� Yet� �nding the new shape�functions is not too di�cult� as exempli�ed by
Figs �� and ���

Figure ��� Nodal and edge elements for the projective system of Fig� ��� One passes from the previous
coordinate system f	� 
� �g to the prism�adapted f�� �� 
� �g system by the formulas 	 � 
� �� 
 � ���
� ���
with �� 
� � � ��
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Figure ��� Degeneration of the prism of Fig� ��� Two edges disappear� and a new edge element� 
�������d�
is created by the merging� The coordinate system is the same here as in Fig� ��� so f�� 
� �g should not be
confused with barycentric coordinates of this tetrahedron� Denoting the latter by f��� ��� �
� ��g� and using the
formulas � � �� � �� and � � ������ � ���� hence 	 � �
� �� � �� � � � ��� � � ������ � ���� Thus� for instance� the
shape function 
��� ����d� rewrites as �
��� �����d�� in barycentric coordinates�

����� Star
shaped cells� dual cells

Let�s end all this by an indication on how to build Whitney forms on any star�shaped
polyhedron�

Suppose each p�cell of the mesh m� for all p� has been provided with a �center�� in the
precise sense of x���� i�e�� a point with respect to which the cell is star�shaped� Then� join the
centers in order to obtain a simplicial re�nement� m say� where the new sets of p�simplices are
Sp� the old sets of cells being Sp� In similar style� let u and u stand for DoF arrays indexed
over Sp and Sp respectively� with the compatibility relation us 	 �s� � us� for all s in Sp� the
sum running over all small simplices in the re�nement of cell s� and the signs taking care of
relative orientations� To de�ne p

m
u� knowing what p

m
u is� we just take the smallest� in the

energy norm� of the p
m
u�s� with respect to all u�s compatible with u�

The family of interpolants thus obtained is to the cellular mesh� for all purposes� what
Whitney forms were to a simplicial mesh� Whether they deserve to be called �Whitney forms�
is debatable� however� because they are metric�dependent� unlike the standard Whitney forms�
The same construction on the dual side provides similar pseudo�Whitney forms on the dual
mesh� �More precisely� there is� as we have observed at the end of x���� a common simplicial
re�nement of both m and em� The process just de�ned constructs forms on both� but it�s easy
to check that the pseudo�whitneys on the primal mesh are just the Whitney forms�� This �lls
a drawer in the toolkit the emptiness of which we took some pain to hide until now� although
it was conspicuous at places� on Fig� ��� for instance�
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