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� Discretizing

It�s a good thing to keep in mind a representative of the family of problems one wishes to
model� Here� we shall have wave�propagation problems in view� but heuristic considerations
will be based on the much simpler case of static �elds� The following example can illustrate
both things� depending on whether the exciting current� source of the �eld� is transient or
permanent� and lends itself to other useful variations�

��� A model problem

In a closed cavity with metallic walls �Fig� ��	� which has been free from any electromagnetic
activity till time t 
 �� suppose a �ow of electric charge is created in an enclosed antenna after
this instant� by some unspeci�ed agency� An electromagnetic �eld then develops� propagating
at the speed of light towards the walls which� as soon as they are reached by the wavefront�
begin to act as secondary antennas� Dielectric or magnetizable bodies inside the cavity�
too� may scatter waves� Hence a complex evolution� which one may imagine simulating by
numerical means� �How else
	

Figure ��� Situation and notation �dimension ��� Region D is the left half of the cavity� Its boundary S
has a part Se in the conductive wall and a part �h in the symmetry plane� Region A� the left �antenna�� is
the support of the given current density J �mirrored on the right�� for which some generator� not represented
and not included in the modelling� is responsible�

For the sake of generality� let�s assume a symmetry plane� and a symmetrically distributed
current� �In that case� the plane acts as a magnetic wall�	 The computation will thus be
restricted to a spatial domain D coinciding with one half of the cavity� on the left of the
symmetry plane� say� Calling Se and �h� as Fig� �� shows� the two parts of its surface� an
electric wall and a magnetic wall respectively� we write the relevant equations in D as

�tb� de 
 �� ��td� dh 
 j�

���	 d 
 �e� b 
 �h�

te 
 � on Se� th 
 � on �h�

The coe�cients � and � which generate their Hodge namesakes are real� constant in time� but
not necessarily equal to their vacuum values �� and ��� and may therefore depend on x� �They
could even be tensors� as observed earlier�	 The current density j is given� and assumed to
satisfy j�t	 
 � for t � �� All �elds� besides j� are supposed to be null before t 
 �� hence
initial conditions e��	 
 � and h��	 
 �� Notice that dj 
 � is not assumed� some electric
charge may accumulate at places in the antenna� in accordance with the charge�conservation
equation ���	�

Proving this problem well�posed�� is not our concern� Let�s just recall that it is so� under
reasonable conditions on j� when all �elds e and h are constrained to have �nite energy�

�� Its physical relevance has been challenged 	
��� on the grounds that assuming a given current density �which

��



Two further examples will be useful� Suppose j has reached a steady value for so long that
all �elds are now time�independent� The magnetic part of the �eld� i�e�� the pair fb� hg� can
then be obtained by solving� in domain D�

db 
 �� dh 
 j�

���	 b 
 �h�

tb 
 � on Se� th 
 � on �h�

This is also a well�posed problem �magnetostatics	� provided dj 
 �� As for the electric part
of the �eld� which has no reason to be zero since the asymptotic charge density q 
 q��	 

�
R
�

� dj�t	 dt does not vanish� as a rule� one will �nd it by solving

dd 
 q� de 
 ��

���	 d 
 �e�

te 
 � on Se� td 
 � on �h

�electrostatics	� The easy task of justifying the boundary conditions in ���	 and ���	 is left to
the reader� One should recognize in ���	� thinly veiled behind the present notation� the most
canonical example there is of elliptic boundary�value problem���

Finally� let�s give an example of eddy�current problem in harmonic regime� assuming a
conductivity � � � in D and � 
 � in A� This time� all �elds are of the form u�t� x	

 Re�exp�i�t	u�x	�� with u complex�valued �small capitals will denote such �elds	� The
given current in A� now denoted j

s �s for �source�	� is solenoidal� displacement currents are
neglected� and Ohm�s law j 
 �e � j

s is in force� where � is of course understood as a Hodge�
like operator� but positive semi�de�nite only� The problem is then� with the same boundary
conditions as above�

dh 
 �e� j
s� h 
 �b� de 
 �i�b�

and b and h can be eliminated� hence a second�order equation in terms of e�

���	 i��e� d�d e 
 �i�js�

with boundary conditions te 
 � on Se and t�de 
 � on �h�

Nothing forbids � and � there to be complex�valued too� �Let�s however request them to
have Hermitian symmetry�	 A complex � can sometimes serve as a crude but e�ective way
to model ferromagnetic hysteresis� And since the real � can be replaced by � � i��� we are
not committed to drop out displacement currents� after all� Hence� ���	 can well be construed
as the general version of the Maxwell equations in harmonic regime� at angular frequency ��
with dissipative materials possibly present� In particular� ���	 can serve as a model for the
�microwave oven� problem� Note that what we have here is a Fredholm equation� Omitting
the excitation term j

s and replacing � by i�� gives the �resonant cavity problem� inD� namely�
to �nd frequencies � at which d�d e 
 ���e has a nonzero solution e�

��� Primal mesh

Let�s de�ne what we shall call a �cellular paving�� This is hardly di�erent from a �nite�element
mesh� just a bit more general� but we need to be more fussy than is usual about some details�

is routinely done in such problems� neglects the reaction of the antenna to its own radiated 
eld� This is
of course true�and there are other simpli
cations that one might discuss�but misses the point of what
modelling is about� See 	���� and 	���� p� ���� for a discussion of this issue�

�� Mere changes of symbols would yield the stationary heat equation� the equation of steady �ow in porous
media� etc� Notice in particular how the steady current equation� with Ohm�s law� can be written as
dj � �� j � �e�de � �� plus boundary conditions �non�homogeneous� to include source terms��

��
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We pretend to work in n�dimensional Euclidean space En� but of course n 
 � is the case in
point� The cells we use here are those introduced earlier�� �Fig� �	� with the important caveat
that they are all �open� cells� in the sense of x���� i�e�� do not include their boundaries� �The
only exception is for p 
 �� nodes� which are both open and closed�	 The corresponding closed
cell will be denoted with an overbar �also used for the topological closure	�

This being said� a cellular paving of some region R of space is a �nite set of open p�cells
such that ��	 Two distinct cells never intersect� ��	 The union of all cells is R� ��	 If the
closures of two cells c and c� meet� their intersection is the closure of some �unique	 cell c��� It
may well happen that c�� is c� or c�� In such a case� e�g�� if c � c� 
 c� we say that c is a face

of c�� For instance� on Fig� ��� left� c� is a face of c�� If c is a face of c� which itself is a face
of c��� then c is a face of c��� Cells in ambient dimension � or lower will be called nodes� edges�

facets� and volumes� with symbols n� e� f� v to match�

We�ll say we have a closed paving if R is closed� �Figure ��� left� gives a two�dimensional
example� where R 
 D�	 But it need not be so� Closed pavings are not necessarily what is
needed in practice� as one may rather wish to discard some cells in order to deal with boundary
conditions� Hence the relevance of the following notion of �relative closedness�� C being a
closed part of R� we shall say that a paving of R is closed modulo C if it can be obtained by
removing� from some closed paving� all the cells which map into C� The case we shall actually
need� of a paving of R 
 D � Se which is closed modulo Se� is displayed on the right of Fig�
��� Informally said� �pave D �rst� then remove all cells from the electric boundary��

Figure ��� Left� A few p�cells� contributing to a closed cellular paving of D� �This should be imagined
in dimension ��� Right� A culled paving� now �closed relative to� Se� This is done in anticipation of the
modelling we have in mind� in which cells of Se would carry null degrees of freedom� so they won�t be missed�

Each cell has its own inner orientation� These orientations are arbitrary and independent�
In three dimensions� we shall denote by N � E �F �V � the sets of oriented p�cells of the paving�
and by N�E� F� V the number of cells in each of these sets� �The general notation� rarely
required� will be Sp for the set of p�cells and Sp for the number of such cells�	

Two cells � and c� of respective dimensions p and p��� are assigned an incidence number�
equal to �� if � is a face of c� and to � otherwise� As for the sign� recall that each cell orients
its own boundary �x���	� so this orientation may or may not coincide with the one attributed
to �� If orientations match� the sign is �� else it�s �� Figure �� illustrates this point� �Also
refer back to Fig� ���	

Collecting these numbers in arrays� we obtain rectangular matrices G� R� D� called
incidence matrices of the tesselation� For instance �Fig� ��	� the incidence number for edge
e and facet f is denoted Re

f � and makes one entry in matrix R� whose rows and columns are

�� Topologically simple smooth cells� therefore� But the latter condition is not strict and we shall relax it to
piecewise smooth� in the sequel� without special warning�

��
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indexed over facets and edges� respectively� The entry Gn
e of G is �� in the case displayed�

because n� positively oriented� is at the start of edge e �cf� Fig� �c	� And so on� SymbolsG� R�
D are of course intentionally reminiscent of grad� rot� div� but we still have a long way to go
to fully understand the connection� Yet� one thing should be conspicuous already� contrary to
grad� rot� div� the incidence matrices are metric�independent entities� so the analogy cannot
be complete� Matrices G� R� D are more akin to the �metric�independent	 operator d from
this viewpoint� and the generic symbol d� indexed by the dimension p if needed� will make
cleaner notation in spatial dimensions higher than �� with d� 
 G� d� 
 R� d� 
 D� The
mnemonic value of G� R� D� however� justi�es keeping them in use�

Figure ��� Sides� Individual oriented cells� Middle� The same� plus a ��cell� as part of a paving� showing
respective orientations� Those of v and f match� those of f and e� or of e and n� don�t� SoGn

e � ��� Re
f � ���

and Df
v � ��

Just as rot � grad 
 � and div � rot 
 �� one has GR 
 � and DR 
 �� Indeed� for an
edge e and a volume v� the fv� eg�entry of DR is

P
f�F D

f
vR

e
f � Nonzero terms occur� in this

sum over facets� only for those which both contain e and are a face of v� which happens only
if e belongs to v� In that case� there are exactly two facets f and g of v meeting along e
�Fig� ��	� and hence two nonzero terms� As Fig� �� shows� they have opposite signs� whatever
the orientations of the individual cells� hence the result� DR 
 �� By a similar argument� RG

 �� and more generally� dp��dp 
 ��

Remark� The answer to the natural question� �then� is the kernel of R equal to the range
of G 
�� is �yes� here� because D � Se has simple topology� �See the Remark at the end of
x��� about homology� This time� going further would lead us into cohomology�	 For the same
reason� ker�D	 
 cod�R	� This will be important below� �

Figure ��� Relation DR � �� and how it doesn�t depend on the cells� individual orientations� In both cases�
one has Df

vR
e
f � Dg

vR
e
g � ��

It is no accident if this proof of d � d 
 � evokes the one about � � � 
 � in x���� and the
caption of Fig� ��� The same basic observation� �the boundary of a boundary is zero� ���� ����
underlies all proofs of this kind� In fact� the above incidence matrices can be used to �nd the
boundaries� chainwise� of each cell� For instance� f being understood as the ��chain based on
facet f with weight �� one has �f 


P
e�E R

e
f e� So if S is the straight ��chain

P
f w

f f with
weights wf �which we shall call a primal ��chain� or �m�surface�� using m as a mnemonic for

��
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the underlying mesh	� its boundary�	 is the ��chain

���	 �S 

X
e�E

X
f�F

Re
fw

f e�

More generally� let�s write ��p� boldface�
�
 for the transpose of the above matrix dp��� Then� if

c 

P

��Sp
w�� is a p�chain� its boundary is �c 


P
fs 	 Sp�� � ���pw	s sg� where w stands for

the vector of weights� Thus� �� is to � what d is to d� Moreover� the duality between d and �
is matched by a similar duality between their �nite�dimensional counterparts d and ���

��� Dual mesh

The dual mesh of D is also a cellular paving� though not of the same region exactly� and with
outer orientation of cells� Let�s explain�

Figure ��� Inner orientations of edge e and facet f � respectively� give crossing direction through �e and
gyratory sense around �f �

To each p�cell c of the primal mesh� we assign a unique �n�p	�cell� called the dual of c and
denoted �c� which meets c at a single point xc� Hence a one�to�one correspondence between
cells of complementary dimensions� Thus� for instance� facet f is pierced by the dual edge
�f �a line	� node n is inside the dual volume �n� and so forth� Since the tangent spaces at xc

to c and �c are complementary� the inner orientation of c provides an outer orientation for �c
�Fig� ��	� Incidence matrices �G� �R� �D can then be de�ned� as above� the sign of each nonzero
entry depending on whether outer orientations match or not�

Figure ��� A dual paving� overlaid on the primal one�

Moreover� it is required that� when c is a face of c�� the dual �c� be a face of �c� and the other
way round� This has two consequences� First� we don�t really need new names for the dual
incidence matrices� Indeed� consider for instance edge e and facet f � and suppose Re

f 
 ��

i�e�� e is a face of f and their orientations match� Then the dual edge �f is a face of the dual

facet �e� whose outer orientations match� too� So what we would otherwise denote �R
�f
�e is equal

to Re
f � Same equality if Re

f 
 ��� and same reasoning for other kinds of cells� from which we

conclude that the would�be dual incidence matrices �G� �R� �D are just the transposesDt�Rt�Gt

of the primal ones�

�	 More accurately� its boundary relative to �h�
�
 Boldface� from now on� connotes mesh�related things� such as DoF arrays� etc�
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Second consequence� there is no gap between dual cells� which thus form a cellular paving
of a connected region �R� the interior �D of which is nearly D� but not quite �Fig� ��	� A part
of its boundary is paved by dual cells� We name it �Se� owing to its kinship with Se �not so
obvious on our coarse drawing� but the �ner the mesh� the closer �Se and Se will get	� The
other part is denoted ��h� So the cellular paving we now have is closed modulo ��h� whereas
the primal one was closed modulo Se�

Given the meshm� all its conceivable duals have the same combinatorial structure �the same
incidence matrices	� but can di�er as regards metric� which leaves much leeway to construct
dual meshes� Two approaches are noteworthy� which lead to the �barycentric dual� and the
�Voronoi Delaunay dual�� We shall present them as special cases of two slightly more general
procedures� the �star construction� and the �orthogonal construction� of meshes in duality�
For this we shall consider only polyhedral meshes �those with polyhedral ��cells	� which is not
overly restrictive in practice�

Figure ��� Left� Orthogonal dual mesh� �Same graphic conventions as in Fig� ��� slightly simpli
ed�� Right�
Star construction of a dual mesh �close enough� here� to a barycentric mesh� but not quite the same�� Notice
the isolated dual edge� and the arbitrariness in shaping dual cells beyond �h�

The orthogonal construction consists in having each dual cell orthogonal to its primal
partner� �Cf� Figs �� and ��� left�	 A particular case is the Voronoi Delaunay tesselation �����
under the condition that dual nodes should be inside primal volumes� Alas� as Fig� �� shows�
orthogonality can be impossible to satisfy� if the primal mesh is imposed� If one starts from a
simplicial primal for which all circumscribed spheres have their center inside the tetrahedron�
all goes well� �One then takes these circumcenters as dual nodes�	 But this property� desirable
on many accounts� is not so easily obtained� and certainly not warranted by common mesh
generators�

Figure �	� Left� How hopeless the orthogonal construction can become� even with a fairly regular primal
mesh� Right� Likely the simplest example of a �D mesh without any orthogonal dual�

Hence the usefulness of the star construction� more general� because it applies to any primal
mesh with star�shaped cells� A part A of An is star�shaped if it contains a point a� that we
shall call a center� such that the whole segment �a� x� belongs to A when x belongs to A� Now�
pick such a center in each primal cell �the center of a primal node is itself	� and join it to
centers of all faces of the cell� This way� simplicial subcells are obtained �tetrahedra and their
faces� in �D	� One gets the dual mesh by rearranging them� as follows� for each primal cell c�
build its dual by putting together all k�subcells� k � n� p� which have one of their vertices at
c�s center� and other vertices at centers of cells incident on c� Figures �� and ��� right� give
the idea� If all primal cells are simplices to start with� taking the barycenters of their faces as

��
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centers will give the barycentric dual mesh evoked a bit earlier�

Figure �
� Left� A facet f and its dual edge �f in the orthogonal construction ��v and �v� are the dual nodes
which lie inside the volumes v and v� just above and just below f�� From �v� all boundary facets of v can
directly be seen at right angle� but we don�t require more� �v is neither v�s barycenter nor the center of its
circumscribed sphere� if there is such a sphere� Right� A dual facet and a dual edge� in the case of a simplicial
primal mesh and of its barycentric dual� Observe the orientations�

Remark� The recipe is imprecise about cells dual to those of �h� whose shape outside D can
be as one fancies �provided the requirements about duality are satis�ed	� Nothing there to
worry about� Such choices are just as arbitrary as the selection of the centers of cells� It�s all
part of the unavoidable approximation error� which can be reduced at will by re�nement��� �

Remark� If� as suggested above ��pave D �rst � � � �	� the primal mesh has been obtained by
culling from a closed one� subcells built from the latter form a re�nement of both the primal
mesh and the dual mesh� The existence of this common �underlying simplicial complex� will
be an asset when designing �nite elements� �

��� A discretization kit

We are ready� now� to apply the afore�mentioned strategy� Satisfy the balance equations ���	
and ���	 for a selected �nite family of surfaces�

Let�s �rst adopt a �nite� approximate representation of the �elds� Consider b� for instance�
As a ��form� it is meant to be integrated over inner oriented surfaces� So one may consider
the integrals

R
f b� denoted bf � for all facets f � as a kind of �sampling� of b� and take the

array of such �degrees of freedom� �DoF	� fb 
 bf � f 	 Fg� indexed over primal facets� as
a �nite representation of b� This does not tell us about the value of the �eld at any given
point� of course� But is that the objective
 Indeed� all we know about a �eld is what we can
measure� and we don�t measure point values� These are abstractions� What we do measure is�
indirectly� the �ux of b� embraced by the loop of a small enough magnetic probe� by reading o�
the induced e�m�f� The above sampling thus consists in having each facet of the mesh play the
role of such a probe� and the smaller the facets� the better we know the �eld� Conceivably� the
mesh may be made so �ne that the bf �s are su�cient information about the �eld� in practice�
�Anyway� we�ll soon see how to compute an approximation of the �ux for any surface� knowing
the bf �s�	 So one may be content with a method that would yield the four meaningful arrays
of degrees of freedom� listing


 the edge e�m�f��s� e 
 fee � e 	 Eg�


 the facet �uxes� b 
 fbf � f 	 Fg�


 the dual�edge m�m�f��s� h 
 fhf � f 	 Fg�


 and the dual�facet displacement currents� d 
 fde � e 	 Eg�

all that from a similar sampling� across dual facets� of the given current j� encoded in the DoF
array j 
 fje � e 	 Eg�

�� A re�nement of a paving is another paving of the same region� which restricts to a proper cellular paving of
each original cell�

��



In this respect� considering the integral form ���	 and ���	 of the basic equations will prove
much easier than dealing with so�called �weak forms� of the in�nitesimal equations ���	 and
���	� In fact� this simple shift of emphasis �which is the gist of Weiland�s ��nite integration
theory� ����� and of Tonti�s �cell method� ���� ���	 will so to speak force on us the right and
unique discretization� as follows�

����� Network equations� discrete Hodge operator

Suppose the chain S in ���	 is the simplest possible in the present context� that is� a single

primal facet� f� The integral of e along �f is the sum of its integrals along edges that make
�f � with proper signs� which are precisely the signs of the incidence numbers� by their very
de�nition� Therefore� eq� ���	 applied to f yields

�tbf �
X
e�E

Re
fee 
 ��

There is one equation like this for each facet of the primal mesh� that is!thanks for having
discarded facets in Se� for which the �ux is known to be �!one for each genuinely unknown
facet��ux of b� Taken together� in matrix form�

���a	 �tb�Re 
 ��

they form the �rst group of our network di�erential equations�

The same reasoning about each dual facet �e �the simplest possible outer�oriented surface
that � in ���	 can be	 yields

��tde �
X
f�F

Re
fhf 
 je�

for all e in E � i�e�� in matrix form�

���b	 ��td�Rth 
 j�

the second group of network equations�

To complete this system� we need discrete counterparts to b 
 �h and d 
 �e� i�e�� network
constitutive laws� of the form

���	 b 
 ��h� d 
 �� e�

where �� and �� are appropriate square symmetric matrices� Understanding how such matrices
can be built is our next task� It should be clear that no canonical construction can exist!for
sure� nothing comparable to the straightforward passage from ���	���	 to ���a	���b	!because
the metric of both meshes must intervene �eq� ���	 gives a clue in this respect	� Indeed� the
exact equivalent of ���	� up to notational details� can be found in most published algorithms
�including those based on the Galerkin method� see e�g�� ����	� whereas a large variety of
proposals exist as regards �� and ��� These �discrete Hodge operators� are the real issue�
Constructing �good� ones� in a sense we still have to discover� is the central problem�

Our approach will be as follows� First!just not to let the matter dangling too long!we
shall give one solution� especially simple� to this problem� which makes �� and �� diagonal� a
feature the advantages of which we shall appreciate by working out a few examples� Later �in
Section �	� a generic error analysis method will be sketched� from which a criterion as to what
makes a good ��  �� pair will emerge� Finite elements will enter the stage during this process�
and help �nd other solutions to the problem� conforming to the criterion�

The simple solution is available if one has been successful in building a dual mesh by the
orthogonal construction �Figs �� and ��� left	� Then� in the case when � and � are uniform�

one sets �� ee� 
 � if e �
 e�� ��ff � 
 � if f �
 f �� and �cf� ���		

���	 �� ee 
 �
area��e	

length�e	
� ��ff 
 �

area�f	

length��f	
�

��
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which does provide diagonal matrices �� and ��� �The inverse of �� will be denoted by ���	
The heuristic justi�cation ���� is that if the various �elds happened to be piecewise constant
�relative to the primal mesh	� formulas ���	 would exactly correspond to the very de�nition
���	 of the Hodge operator� �Section ��� will present a stronger argument�	 In the case of
non�uniform coe�cients� formulas such as

���	 ��ff 

���� area�f	

��length��f�	 � ��length��f�	
�

where �f� and �f� are the parts of �f belonging to the two volumes adjacent to f � apply instead
�Fig� ��	� Observe the obvious intervention of metric elements �lengths� areas� angles	 in these
constructions�

Remark� Later� when edge elements we and facet elements wf will enrich the toolkit� we shall
consider another solution� that consists in setting �� ee� 


R
D �w

e�we� and ��ff � 

R
D �

��wf�wf � �
For reference� let�s call this the �Galerkin approach� to the problem� We shall use loose
expressions such as �the Galerkin �� �� or �the diagonal hodge�� to refer to various brands of
discrete Hodge operators� �

Figure ��� The case of a discontinuous permeability ��� and �� in primal volumes T� and T�� separated

by facet f�� We denote by �f the vectorial area of f and by �f
�

�
� �f

�

�
� the vectors along both parts of �f � Let

u and v be arbitrary vectors� respectively normal and tangent to f � and let H� � u� v in T�� Transmission

conditions across f determine a unique uniform 
eld B� � ��u � ��v in T�� Then bf � ���f � u and ��hf �

�� �f
�

�
� u� �� �f

�

�
� u� As �f � �f

�

�
� and �f

�

�
are collinear� u disappears from the quotient bf�hf � yielding �����

����� The toolkit

At this stage� we have obtained discrete counterparts �Fig� ��	 to most features of the �Maxwell
building� of Fig� ��� but time di�erentiation and wedge product still miss theirs� Some thought
about how the previous ideas would apply in four dimensions should quickly suggest the way
to deal with time derivatives� 	t being the time step� call bk� hk� the values of b� h at

time k	t� for k 
 �� �� � � �� call jk�
���� dk����� ek�

��� those of j� d� e at time �k � �
�		t� and
approximate �tb� at time �k � �
�		t� by �bk�� � bk	
	t� and similarly� �td� now at time k	t�

by �dk���� � dk����	
	t�

Figure ��� A �discretization toolkit� for Maxwell�s equations

As for the wedge product� to
R
D b � h corresponds the sum �f�Fbfhf � which we shall

denote by �b�h	� with bold parentheses� Similarly�
R
D d � e corresponds to �e�Edeee� also

�	



denoted �d� e	� Hence we may de�ne �discrete energy� quadratic forms� �
����b�b	� �
����h�h	�
�
���� e� e	� and �
���� ��d�d	� all quantities with� indeed� the physical dimension of energy �but
be aware that �j� e	 is a power instead� like

R
D j� e	� Some notational shortcuts� Square roots

such as ���b�b	
���� or ��� e� e	

���� etc�� will be denoted by jjjbjjj� � or jjjejjj�� in analogy with the above
jbj� � or jej�� and serve as various� physically meaningful norms on the vector spaces of DoF
arrays� We�ll say the ���norm�� the ���norm�� etc�� for brevity�

Proposition �� If equations ��� ��	 are satis�ed� one has

���	 dt ��
����b�b	� �
���� e� e	� 
 ��j� e	�

Proof� Take the bold scalar product of ���a	 and ���b	 by h and �e� add� and use the equality
�Re�h	 
 �e�Rth	� �

Remark� The analogue of
R
S h � e� when S is some m�surface� is �f�F
S�� e�ER

e
fhfee� where

F�S	 stands for the subset of facets which compose S� �Note how this sum vanishes if S is the
domain�s boundary�	 By exploiting this� the reader will easily modify ���	 in analogy with the
Poynting theorem� In spite of such formal correspondences� energy and discrete energy have�
a priori� no relation� To establish one� we shall need �interpolants�� such as �nite elements�
enabling us to pass from degrees of freedoms to �elds� For instance� facet elements will generate
a mapping b
 b� with b 
 �fbfw

f � If �� is the Galerkin hodge� then
R
D �b�b 
 ���b�b	� Such

built�in equality between energy and discrete energy is an exception� a distinctive feature of
the Ritz Galerkin approach� With other discrete hodges� even convergence of discrete energy�
as the mesh is re�ned� towards the true one� should not be expected� �

��
 Playing with the kit� Full Maxwell

Now we have enough to discretize any model connected with Maxwell�s equations� Replacing�
in ���	� rot by R or Rt� � and � by �� and ��� and �t by the integral or half�integral di�erential
quotient� depending on the straight or twisted nature of the di�erential formin consideration�
we obtain this�

���	
bk�� � bk

	t
�Rek�

��� 
 �� ���
ek�

��� � ek�
���

	t
�Rt��bk 
 jk

�where jk is the array of intensities through dual facets� at time�� k	t	� with initial conditions

���	 b� 
 �� e�
��� 
 ��

In the simplest case where the primal and dual mesh are plain rectangular staggered grids�
���	���	 is the well known Yee scheme ������ So what we have here is the closest thing to
Yee�s scheme in the case of cellular meshes�

A similar numerical behavior can therefore be expected� Indeed�

Proposition �� The scheme ���	���	 is stable for 	t small enough� provided both �� and ��
are symmetric positive de�nite�

Proof� For such a proof� one may assume j 
 � and nonzero initial values in ���	� satisfying
Db� 
 �� Eliminating e from ���	� one �nds that

���	 bk�� � �bk � bk�� � �	t	�R�� ��Rt��bk 
 ��

Since DR 
 �� the �loop invariant� Dbk 
 � holds� so one may work in the corresponding
subspace� ker�D	� Let�s introduce the �generalized	 eigenvectors vi such that R�� ��Rtvi 

�i��vi� which satisfy ���vi�vj	 
 � if i 
 j� � if i �
 j� In this ���orthogonal� basis�
bk 
 ���i�

k
i vi� and ���	 becomes

�k��
i � ��� �i�	t	

�	�k
i � �k��

i 
 �

�� For easier handling of Ohm�s law� j�k�t� may be replaced by �jk�
��� � jk�

�������

�
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for all i� The �k
i s� and hence the bks� stay bounded if the characteristic equation of each of

these recurrences has imaginary roots� which happens �Fig� ��	 if � 
 �j	t 
 � for all j� �

In the case of the original Yee scheme� eigenvalues could explicitly be found� hence the
well�know relation ����� between the maximum possible value of 	t and the lengths of the
cell sides� For general grids� we have no explicit formulas� but the thumbrule is the same�
	t should be small enough for a signal travelling at the speed of light �in the medium under
study	 not to cross more than one cell during this lapse of time�

Figure ��� The white spot lies at the sum of roots of the characteristic equation r� � �� � �i��t�
��r � � �

�� Stability is lost if it leaves the interval 	��� ���

This stringent stability condition makes the scheme unattractive if not fully explicit� or
nearly so� �� should be diagonal� or at the very least� block�diagonal with most blocks of size
� and a few small�size ones� and �� should be sparse� If so is the case� each time step will only
consist in a few matrix vector products plus� perhaps� the resolution of a few small linear
systems� which makes up for the large number of time steps� Both conditions are trivially
satis�ed with the orthogonal construction �cf� ���	���		� but we have already noticed the
problems this raises� Hence the sustained interest for so�called �mass�lumping� procedures�
which aim at replacing the Galerkin �� by a diagonal matrix without compromising convergence
����� ����� ����� �See ���� for a coordinate�free reinterpretation of �����	

Remark� Obviously� there is another version of the scheme� in h and d� for which what is
relevant is sparsity of �� �� and diagonality of ��� i�e�� of ��� Unfortunately� the diagonal lumping
procedure that worked for edge elements fails whan applied to the Galerkin ��� i�e�� to the
mass�matrix of facet elements ����� �

There are of course other issues than stability to consider� but we shall not dwell on them
right now� For convergence �to be treated in detail later� but only in statics	� cf� ����� �����
����� On dispersion properties� little can be said unless the meshes have some translational
and rotational symmetry� at least locally� and this is beyond our scope� As for conservation
of some quantities� it would be nice to be able to say� in the case when j 
 �� that �total
discrete energy is conserved�� but this is only almost true� Conserved quantities� as one will

easily verify� are �
����hk���hk	 � �
���� ek�
���� ek�

���	 and �
����hk�hk	 � �
���� ek�
���� ek�

���	�
both independent of k� So their half�sum� which can suggestively be written as

Wk 
 �
����h
k�����hk	� �
���� e

k� ek�
���	�

if one agrees on hk���� and ek as shorthands for �hk�hk���
� and �ek�
����ek�

����
�� is conserved�
Not the discrete energy� de�nitely� however close�

��� Playing with the kit� Statics

Various discrete models can be derived from ���	 by the usual maneuvers �neglect the
displacement current term �� e� omit time�derivatives in static situations	� but it may be more
instructive to obtain them from scratch� Take the magnetostatic model ���	� for instance�
Replace forms b and h by the DoF arrays b and h� the d by the appropriate matrix� as read
o� from Fig� ��� and obtain

���	 Db 
 �� h 
 ��b� Rth 
 j�

��



which automatically includes the boundary conditions� thanks for having discarded�� �passive�
boundary cells� Observe thatGtj 
 � must hold for a solution to exist� But this is the discrete
counterpart� as Fig� �� shows� of dj 
 �� i�e�� of div J 
 � in vector notation�

In the next Section� we shall study the convergence of ���	� When it holds� all schemes
equivalent to ���	 that can be obtained by algebraic manipulations are thereby equally valid!
and there are lots of them� First� let hj be one of the facet�based arrays�� such that Rthj 
 j�
Then h in ���	 must be of the form h 
 hj �Dt��� Hence ���	 becomes

���	 D��Dt�� 
 �D��hj�

This� which corresponds to � div���grad" � H
j		 
 �� the scalar potential formulation of

magnetostatics� is not interesting unless �� is diagonal� or nearly so� since �� is full otherwise�
So it requires the orthogonal construction� and is not an option in the case of the Galerkin
��� It�s a well�studied scheme ��� ��� ��� ��� ��� ���� called �block�centered� in other sectors
of numerical engineering ���� ����� because degrees of freedom� assigned to the dual nodes�
appear as lying inside the primal volumes� or �blocks�� Uniqueness of �� is easily proved���

which implies the uniqueness!not so obvious� a priori!of h and b in ���	�

Symmetrically� there is a scheme corresponding to the vector potential formulation �i�e��
rot�� rotA	 
 J	�

���	 Rt��Ra 
 j�

obtained by setting b 
 Ra� where the DoF array a is indexed over �active	 edges� �If �� is
the Galerkin hodge� ���	 is what one obtains when using edge elements to represent the vector
potential�	 Existence in ���	 stems from Gtj 
 �� No uniqueness this time� because ker�R	
does not reduce to �� but all solutions a give the same b� and hence the same h 
 ��b�

Remark� Whether to �gauge� a in this method� that is� to impose a condition that would
select a unique solution� such as Gt�� a 
 � for instance� remains to these days a contentious
issue� It depends on which method is used to solve ���	� and on how well the necessary
condition Gtj 
 � is implemented� With iterative methods such as the conjugate gradient
and its variants� and if one takes care to use Rthj instead of j in ���	� then it�s better not to
gauge ����� �

This is not all� If we refrain to eliminate h in the reduction from ���	 to ���	� but still set
b 
 Ra� we get an intermediate two�equation system�

���	

�
��� R

Rt �

��
h

a

�



�
�

j

�
�

often called a mixed algebraic system ���� �Again� little interest if �� is full� i�e�� unless �� was
diagonal from the outset�	 The same manipulation in the other direction �eliminating h by h

 hj �Dt��� but keeping b	 gives

���	

�
��� Dt

D �

��
b

��

�



�
�hj

�

�
�

�� Alternatively �and this is how non�homogeneous boundary conditions can be handled�� one may work with
enlarged incidence matrices R and D and enlarged DoF arrays� taking all cells into account� then assign
boundary values to passive cells� and keep only active DoFs on the left�hand side�

�� There are such arrays� owing to Gtj � �� because ker�Gt� � cod�Rt�� by transposition of cod�G� � ker�R��
in the simple situation we consider� Finding one is an easy task� which does not require solving a linear
system� Also by transposition of cod�R� � ker�D�� one has ker�Rt� � cod�Dt�� and hence Rt�h � hj� � �
implies h � hj �Dt		�

�� It stems from ker�Dt� � �� Indeed� Dt

 � � means that �vD
f
v

v � � for all primal facets f � For some

facets �those in �h�� there is but one volume v such that Df
v �� �� which forces 

v � � for this v� Remove all

such volumes v� and repeat the reasoning and the process� thus spreading the value � to all 

vs�

��



We are not yet through� There is an interesting variation on ���	� known as the mixed�
hybrid approach� It�s a kind of �maximal domain decomposition�� in the sense that all volumes
are made independent by �doubling� the degrees of freedom of b and h �two distinct values
on sides of each facet not in �h	� Let�s rede�ne the enlarged arrays and matrices accordingly�
and call them b�h� ���D�R� Constraints on b �equality of up� and downstream �uxes	 can be
expressed as Nb 
 �� where N has very simple structure �one � � � block� with entries � and
��� for each facet	� Now� introduce an array �� of facet�based Lagrange multipliers� and add
����Nb	 to the underlying Lagrangian of ���	� This gives a new discrete formulation �still
equivalent to ���	� if one derives b and h from b and h the obvious way	��

���� D
t

Nt

D � �
N � �

�
A
�
� b
��
��

�
A 


�
��h

j

�
�

�
A �

Remark that the enlarged �� is block�diagonal �as well as its inverse ��	� hence easy elimination
of b� What then remains is a symmetric system in �� and �� ��

D��D
t

D��Nt

N��D
t

N��Nt

��
��
��

�

 �

�
D��h

j

N��h
j

�
�

The point of this manipulation is that D��D
t
is diagonal� equal to K� say� So we may again

eliminate ��� which leads to a system in terms of only ���

���	 N���� ��D
t
K��D���Nt�� 
 N���D

t
K��D��� ���h

j
�

Contrived as it may look� ���	 is a quite manageable system� with a sparse symmetric matrix�
�The bracketed term on the left is block�diagonal� like ���	

Remark� In ����Nb	� each ��f multiplies a term �Nb	f which is akin to a magnetic charge�
Hence the ��fs should be interpreted as facet�DoFs of a magnetic potential� which assumes
the values necessary to reestablish the equality between �uxes that has been provisionally
abandoned when passing from b to the enlarged �double size	 �ux vector b� �

There is a dual mixed�hybrid approach� starting from ���	� where dual volumes are made
independent� hence �in the case of a simplicial primal mesh	 three DoF�s per facet� for both b
and h� and two Lagrange multipliers to enforce their equality� This leads to a system similar
to ���	!but with twice as many unknowns� which doesn�t make it attractive�

Systems ���	� ���	� ���	� ���	 and ���	 all give the same solution pair fb�hg� Which one
e�ectively to solve� therefore� is uniquely a matter of algorithmics� in which size� sparsity�
and e�ective conditioning should be considered� The serious contenders are the one�matrix
semi�de�nite systems� i�e�� ���	� ���	� and ���	� An enumeration of the number of o��diagonal
terms �which is a fair �gure of merit when using conjugate gradient methods on such matrices	�
shows that ���	 rates better than ���	� as a rule� The block�centered scheme ���	 outperforms
both ���	 and ���	� but is not available�� with the Galerkin hodge� Hence the enduring interest
���� ��� ��� ��� for the �mixed�hybrid� method ���	�

Each of the above schemes could be presented as the independent discretization of a speci�c
mixed or mixed�hybrid variational formulation� and the literature is replete with sophisticated
analyses of this kind� Let�s reemphasize that all these schemes are algebraically equivalent�
as regards b and h� Therefore� an error analysis of one of them applies to all� For instance�
if �� is the Galerkin hodge� the standard variational convergence proof for ���	� or if �� is the
diagonal hodge of ���	� the error analysis we shall perform next Section� on the symmetrical
system ���	�

�� unless one messes up with the computation of the terms of the mass�matrix� by using ad�hoc approximate
integration formulas� This is precisely one of the devices used in mass�lumping�

��



��
 Playing with the kit� Miscellanies

The advantage of working at the discrete level from the outset is con�rmed by most examples
one may tackle� For instance� the discrete version of the eddy�current problem ���	 is� without
much ado� found to be

���	 i���E�Rt��RE 
 �i�Js�

As a rule� � vanishes outside of a closed region C 
 D�# of the domain� C for �conductor��
�Assume� then� that A� which is supp�J

s
	� is contained in #�	 The system matrix then has

a non�trivial null space� ker���	 � ker�R	� and uniqueness of E is lost� It can be restored by
enforcing the constraint Gt���E 
 �� where ��� is derived from �� by setting to zero all rows and
columns which correspond to edges borne by C� Physically� this amounts to assume a zero
electric charge density outside the conductive region C 
 supp��	� �Beware� the electric �eld
obtained this way can be seriously wrong about A� where this assumption is not warranted�
in general� However� the electric �eld on C is correct�	 Mathematically� the e�ect is to limit
the span of the unknown E to a subspace over which i��� �Rt��R is regular�

In some applications� however� the conductivity is nonzero in all D� but may assume values
of highly di�erent magnitudes� and the above matrix� though regular� is ill�conditioned� One
then will �nd in the kit the right tools to �regularize� such a �sti�� problem� See ���� for
an example of the procedure� some aspects of which are studied in detail in ����� Brie�y� it
consists in adding to the left�hand side of ���	 a term� function of E� that vanishes when E

is one of the solutions of ���	� which supplements the Rt��R matrix by� so to speak� what
it takes to make it regular �and hence� to make the whole system matrix well conditioned�
however small � can be at places	� The modi�ed system is

���	 i���E�Rt��RE� ��G		Gt��E 
 �i�Js�

where 		 is a Hodge�like matrix� node based� diagonal� whose entries are 		nn 

R
�n �
��

�� A
rationale for this can be found in ����� In a nutshell� the idea is to �load the null space� of
Rt��R� and dimensional considerations motivate the above choice of 		� Our sole purpose here
is to insist that all this can be done at the discrete level�

Remark� One might motivate this procedure by starting from the following equation�
here obtained from ���	 by simply using the toolkit in the other direction ��discrete� to
�continuous�	�

���	 i��E� rot�� rotE	� � grad�
�

���
div��E		 
 �i�Js�

but which can be seen as a natural regularization of ���	� �We revert to vector proxies here
to call attention on the use of a variant of the �# 
 rot � rot� grad � div formula� which is
relevant when both � and � are uniform in ���	�	 This is a time�honored idea ����� Part of its
present popularity may stem from its allowing standard discretization via node�based vector�
valued elements �the discrete form is then of course quite di�erent�� from ���		� because E in
���	 has more a priori regularity than e in ���	� Even if one has reasons to prefer using such
elements� the advantage is only apparent� because the discrete solution may converge towards
something else than the solution of ���	 in some cases �e�g�� reentrant corners� cf� ����	� where
the solution of ���	 has too much regularity to satisfy ���	� This should make one wary of
this approach� �

Many consider the nullspace ofRt��R as a matter of concern� too� as regards the eigenmode
problem�

���	 Rt��RE 
 ���� E�

�� When �� and �� are the Galerkin hodges� ���� corresponds to the edge�element discretization of �����

��



because � 
 � is an eigenvalue of multiplicity N �the number of active nodes	� Whether
the concern is justi�ed is debatable� but again� there are �xing tools in the kit� First�
regularization� as above�

���	 �Rt��R� ��G		Gt�� �E 
 ���� E�

with 		nn 

R
�n �
��

� this time� Zero is not an eigenvalue any longer� but new eigenmodes
appear� those of ��G		Gt�� E 
 ���� E under the restriction E 
 G��� As remarked in ������ we
have here �again� assuming uniform coe�cients	 a phenomenon of �spectral complementarity�
between the operators rot � rot and � grad � div� The new modes� or �ghost modes� ������
have to be sifted out� which is in principle easy�� �evaluate the norm jjjGt�� Ejjj�	� or �swept to
the right� by inserting an appropriate scalar factor in front of the regularizing term� Second
solution ������ Restrict the search of E to a complement of ker�Rt��R	� which one can do
by so�called �tree�cotree� techniques ��� ���� This verges on the issue of discrete Helmholtz

decompositions� another important tool in the kit� which cannot be given adequate treatment
here �see ����	�

�� These ghost modes are not the �in�famous �spurious modes� which were such a nuisance before the advent
of edge elements 	���� Spurious modes occur when one solves the eigenmode problem rot�� rotE� � ��
E
by using nodal vectorial elements� Then �barring exceptional boundary conditions� the rot�� rot� matrix is
regular �because the approximation space does not contain gradients� contrary to what happens with edge
elements�� but also�and for the same reason� as explained in 	����poorly conditioned� which is the root of
the evil� It would be useful not to take �ghost modes� and �spurious modes� as synonyms� in order to avoid
confusion on this tricky point�

��


