On “Generalized Finite Differences”:
Discretization of Electromagnetic Problems

. 1
Alain Bossavit#

1 Preliminaries: Euclidean space

What we shall do in this first Section can be described as “deconstructing Fuclidean space”.
Three-dimensional Fuclidean space, denoted by Fs here, is a relatively involved mathematical
structure, made of an affine 31} space (more on this below), equipped with a metric and an
orientation. By taking the Cartesian product of that with another Euclidean space, one-
dimensional and meant to represent Time, one gets the mathematical framework in which
most, of classical physics is described. This framework is often taken for granted, and should
not.

By this we do not mean to challenge the separation between space and (absolute) time,
which would be getting off to a late start, by a good century. Relativity is not our concern
here, because we won’t deal with moving conductors, which makes it all right to adopt a
privileged reference frame (the so-called laboratory frame) and a unique chronometry. The
problem we perceive is with Fj itself, too rich a structure in several respects. For one thing,
orientation of space is not necessary. (How could it be? How could physical phenomena
depend on this social convention by which we class right-handed and left-handed helices, such
as shells or staircases?) And yet, properties of the cross product, or of the curl operator,
so essential tools in electromagnetism, crucially depend on orientation. As for metric (i.e.,
the existence of a dot product, from which norms of vectors and distances between points are
derived), which also seems to be involved in the two main equations, 3;B+rot E = 0 (Faraday’s
law) and —3,D + rot H = J (Ampere’s theorem), since the definition of rot depends on the
metric, we shall discover that it plays no role there, actually, because a change of metric, in
the description of some electromagnetic phenomenon, would change both rot and the vector
fields E, B, etc., in such a way that the equations would stay unchanged. Metric is no less
essential for that, but its intervention is limited to the expression of constitutive laws, that is,
to what will replace in our notation the standard B = yH and D = ¢E.!

Qur purpose, therefore, is to separate the various layers present in the structure of Fj, to be
able to use exactly what is needed, and nothing more, for each subpart of the Maxwell system
of equations. That this can be done is no news: As reported by Post [76], the metric-free
character of the two main Maxwell equations was independently pointed out by Cartan, as
early as 1924, by Kottler [61] and by van Dantzig [31]. But the exploitation of this remark
in the design of numerical schemes is a contemporary thing, which owes much to (again,
working independently) Tonti [99, 98, 65] and Weiland [36, 104]. See also [93, 54, 97]. ven
more recent [19, 65] is the realization that such attention to the underlying geometry would
permit to soften the traditional distinctions between finite-difference, finite-element, and finite-
volume approaches. In particular, it will be seen here that a common approach to error analysis
applies to the three of them, which does rely on the existence of finite elements, but not on the
variational methods that are often considered as foundational in finite element theory. These
finite elements, moreover, are not of the Lagrange (node based) flavor. They are differential
geometric objects, created long ago for other purposes, the Whitney forms [109], whose main
characteristic is the interpretation they suggest of degrees of freedom (Dol") as integrals over
geometric elements (edges, faces, ...) of the discretization mesh.
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1 We shall most often ignore Ohm’s law here, for shortness, and therefore, treat the current density J as a

data. It would be straightforward to supplement the equations by the relation J = ¢E + J°, where only the
“source current” J° is known in advance.



As a preparation to this deconstruction process, we need to recall a few notions of geometry
and algebra which do not seem to get, in most curricula, the treatment they deserve. First on
this agenda is the distinction between vector space and affine space.

1.1 Affine space

A vector space® on the reals is a set of objects called vectors, which one can (1) add together
(in such a way that they form an Abelian group, the neutral element being the null vector) and
(2) multiply by real numbers. No need to recall the axioms which harmonize these two groups
of features. Our point is this: The three-dimensional vector space (for which our notation will
be V;) makes an awkward model of physical space,® unless one deals with situations with a
privileged point, such as for instance a center of mass, which allows one to identify a spatial
point z with the translation vector that sends this privileged point to xz. Otherwise, the
idea to add points, or to multiply them by a scalar, is ludicrous. On the other hand, taking
the midpoint of two points, or more generally, barycenters, makes sense, and is an allowed
operation in affine space, as will follow from the definition.

An affine space is a set on which a vector space, considered as an additive group, acts
effectively, transitively and regularly. Let’s elaborate.

A group G acts on a set X if for each g € G there is a map from X to X, that we shall
denote by @, such that g, is the identity map, and a,, = a,a,. (Symbol 1 denotes the neutral
element, and will later double for the group made of this unique element.) The action is
effective if a, = 1 implies ¢ = 1, that is to say, if all nontrivial group elements “do something”
to X. The orbit of  under the action is the set {a,(z) : ¢ € G} of transforms of z. Belonging
to the same orbit is an equivalence relation between points. One says the action is transitive if
all points are thus equivalent, i.e., if there is a single orbit. The isotropy group (or stabilizer,
or little group) of z is the subgroup G, = {g € G : a,(z) = 2} of elements of G which fix z. In
the case of a transitive action, little groups of all points are conjugate (because ¢.,Gy, = G20y,
where g¢,, is any group element whose action takes & to y), and thus “the same” in some sense.
A transitive action is regular (or free) if it has no fixed point, that is, if G, = 1 for all z. If
so is the case, X and G are in one-to-one correspondence, so they look very much alike. Yet
they should not be identified, for they have quite distinctive structures. Hence the concept
of homogeneous space: A set, X here, on which some group acts transitively and effectively.
(A standard example is given by the two-dimensional sphere S, under the action of the group
SO, of rotations around its center.) If, moreover, the little group is trivial (regular action),
the only difference between the homogeneous space X and the group G lies in the existence
of a distinguished element in G, the neutral one. Selecting a point 0 in X (the origin) and
then identifying a,(0) with ¢ (and hence 0 in X with the neutral element of G) provides X
with a group structure, but the isomorphism with G thus established is not canonical, and
this group structure is most often irrelevant, just like the vector-space structure of 3D space.

Affine space is a case in point. Intuitively, take the n-dimensional vector space V,,, and
forget about the origin: What remains is A,,, the affine space of dimension n. More rigorously,
a vector space V, considered as an additive group, acts on itself (now considered as just a set,
which we acknowledge by calling its elements points, instead of vectors) by the mappings*

¥ Most definitions will be implicit, with the defined term set, on first appearance, in slanted style. The same
style is also used, occasionally, for emphasis.

3 Taking IR®, the set of triples of real numbers, with all the topological and metric properties inherited from
IR, is even worse, for this implies that some basis {3,, J,, s} has been selected in Vs, thanks to which a vector
v writes as v = ) . v'8;, hence the identification between v and the triple {v*} of components (or coordinates
of the point v stands for). In most situations which require mathematical modelling, no such basis imposes
itself. There may exist privileged directions, as when the device to be modelled has some kind of translational
invariance, but even this does not always mandate a choice of basis.

! We’ll find it convenient to denote a map f by 2 — Expr(z), where Expr is the defining expression, and to
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a, = ¢ — = + v, called translations. This action is transitive, because for any pair of points
{z,y}, there is a vector v such that y = = + v, and regular, because z + v # z if v # 0,
whatever z. The structure formed by V as a set equipped with this group action is called the
affine space A associated with V. Each vector of V' has thus become a point of A, but there
is nothing special any longer with the vector 0, as a point in A. Reversing the viewpoint, one
can say that an affine space A is a homogeneous space with respect to the action of some
vector space V, considered as an additive group. (Points of A will be denoted z,y, etc., and
y — z will stand, by a natural notational abuse, for the vector that translates z to y.) The
most common example is obtained by considering as equivalent, in some vector space V, two
vectors u and v such that » — u belong to some fixed vector subspace W. Fach equivalence
class has an obvious affine structure (W acts on it regularly by v — v + w). Such a class is
called an affine subspace of V, parallel to W.* Of course, no vector in such an affine subspace
qualifies more than any other as origin, and calling its elements “points” rather than “vectors”
is therefore appropriate.

Figure 1. No point in the affine subspace A, parallel to W, can claim the role of “origin” there.

At this stage, we may introduce the barycenter of points # and y, with weights A and 1 — A,
as the translate 2+ A(y—z) of z by the vector A(y—z), and generalize to any number of points.
The concepts of affine independence, dimension of the affine space, and affine subspaces follow
from the similar ones about the vector space. Barycentric coordinates, with respect to n + 1
affinely independent points {ag,...,a,} in A4, are the weights A*(z) such that 3, X(z) = 1
and >, X(z)(z — a;) = 0, which we shall feel free to write z = 3°; A'(z)a,. Affine maps on
A, are those that are linear with respect to the barycentric coordinates. If z is a point in
affine space A, vectors of the form y — z are called vectors at x. They form of course a vector
space isomorphic to the associate V, called the tangent space at z, denoted T,. (I will call
free vectors the elements of V, as opposed to vectors “at” some point, dubbed bound (or
anchored) vectors. Be aware that this usage is not universal.) The tangent space to a curve or
a surface that contains z is the subspace of T, formed by vectors at & which are tangent to this
curve or surface.® Note that vector fields are maps of type POINT — BOUND_VECTOR,
actually, subject to the restriction that the value of v at z, notated v(z), is a vector at z. The
distinction between this and a POINT — FREE_VECTQOR map, which may seem pedantic
when the point spans ordinary space, must obviously be maintained in the case of tangent
vector fields defined over a surface or a curve.

Homogeneous space is a key concept: Here is the mathematical construct by which we

link name and definition by writing f = # — Expr(z). (The arrow is a “stronger link” than the equal sign in
this expression.) In the same spirit, X — Y denotes the set of all maps “of type X — Y™, that is, maps from
X to Y, not necessarily defined over all X. Points z for which f is defined form its domain dom(f) C X, and
their images form the codomain cod(f) C Y, also called the range of f.

5 Notice how the set of all affine subspaces parallel to W also constitutes an affine space under the action of
V, or more pointedly—because then the action is regular—of the quotient space V/W. A “point”, there, is a
whole affine subspace.

5 For a piecewise smooth manifold (see below), such a subspace may fail to exist at some points, which will
not be a problem.



can best model humankind’s physical experience of spatial homogeneity. Translating from
a spatial location to another, we notice that similar experiments give similar results, hence
the concept of invariance of the structure of space with respect to the group of such motions.
By taking as mathematical model of space a homogeneous space relative to the action of
this group (in which we recognize V3, by observing how translations compose), we therefore
acknowledge an essential physical property of the space we live in.

Remark. In fact, translational invariance is only approximately verified, so one should
perhaps approach this basic modelling issue more cautiously: Imagine space as a seamless
assembly of patches of affine space, each point covered by at least one of them, which is
enough to capture the idea of local translational invariance of physical space. This idea gets
realized with the concept of smooth manifold (see below) of dimension 3. What we shall
eventually recognize as the metric-free part of the Maxwell’s system (Ampere’s and Faraday’s
laws) depends on the manifold structure only. Therefore, postulating an affine structure is a
modelling decision, one that goes a trifle beyond what would strictly be necessary to account
for the homogeneity of space, but will make some technical discussions easier when (about
Whitney forms) barycentric coordinates will come to the fore. ¢

There is no notion of distance in affine space, but this doesn’t mean no topology: Taking
the preimages of neighborhoods of IR* under any one-to-one affine map gives a system of
neighborhoods, hence a topology—the same for all such maps. (So we shall talk loosely of a
“ball” or a “half ball” in reference to an affine one-to-one imageof B = {£ € R : 3_,(¢')? < 1}
or of BN {¢: & > 0}.) Continuity and differentiability thus make sense for a function f of
type A, — A,. In particular, the derivative of f at z is the linear map D f(z), from V, to
V., such that |f(z +v) — f(z) — Df(z)(v)|/|v] = o(|v|), if such a map exists, which does not
depend on which norms | | on V, and V, are used to check the property. The same symbol,
Df(z), will be used for the tangent map that sends a vector v anchored at z to the vector

Df(z)(v) anchored at f(z).
1.2 Piecewise smooth manifolds

We will do without a formal treatment of manifolds. Most often, we shall just use the word
as a generic term for lines, surfaces, or regions of space (p = 1,2,3, respectively), piecewise
smooth (as defined in a moment), connected or not, with or without a boundary. A 0-manifold
is a collection of isolated points.

For the rare cases when the general concept is evoked, suffice it to say that a p-dimensional
manifold is a set M equipped with a set of maps of type M — IR?, called charts, which
make M look, for all purposes, but only locally, like IR (and hence, like p-dimensional affine
space). Smooth manifolds are those for which the so-called transition functions ¢ o', for
any pair {¢, %} of charts, are smooth, i.e., possess derivatives of all orders. (So-called C*
manifolds obtain when continuous derivatives exist up to order k.) Then, if some property P
makes sense for functions of type IR¥F — X, where X is some target space, f from M to X
is reputed to have property P if all composite functions f o ¢!, now of type IRf — X, have
it. A manifold M with boundary has points where it “looks, locally, like” a closed half-space
of IRF; these points form, taken together, a (boundaryless) (p — 1)-manifold M, called the
boundary of M. Connectedness is not required: A manifold can be in several pieces, all of the
same dimension p.

In practice, our manifolds will be glued assemblies of cells, as follows.

First, let us define “reference cells” in IRF, as illustrated on Fig. 2. These are bounded
convex polytopes of the form

P
(1) Ki={eR:>0V1=1,...,p, Y o/ <1Vi=1,...,k},

J=1

where the a}’s form a rectangular (kX p)-matrix with nonnegative entries, and no redundant rows.
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Figure 2. Some cells in A;, of dimensions 0, 1, 2.

Now, a p-cell in A,,, with 0 < p < m, is a smooth map ¢ from some KJ¥ into A,, one-to-one,
and such that the derivative De(€) has rank p for all £ in K. (These restrictions, which
qualify ¢ as an embedding, are meant to exclude double points, and cusps, pleats, etc., which
smoothness alone is not enough to warrant.) The same symbol ¢ will serve for the map and
for the image ¢(K'). The boundary dc of the cell is the image under ¢ of the topological
boundary of K, i.e., of points £ for which at least one equality holds in (1). Remark that
dc is an assembly of (p — 1)-cells, which themselves intersect, if they do, along parts of their
boundaries.

Thus, a 0-cell is just a point. A 1-cell, or “path”, is a simple parameterized curve. The
simplest 2-cell is the triangular “patch”, a smooth embedding of the triangle {£ : &' > 0,£* >
0,&' +£* < 1}. The definition is intended to leave room for polygonal patches as well, and for
three-dimensional “blobs”, i.e., smooth embeddings of convex polyhedra.

We shall have use for the open cell corresponding to a cell ¢ (then called a closed cell for
contrast), defined as the restriction of ¢ to the interior of its reference cell.

A subset M of A, will be called a piecewise smooth p-manifold if (1) There exists a finite
family C = {¢, : i = 1,...,m} of p-cells whose union is M, (2) The open cell corresponding to
¢; intersects no other cell, (3) Intersections ¢; N ¢; are piecewise smooth (p — 1)-manifolds (the
recursive twist in this clause disentangles at p = 0), (4) The cells are properly joined at their
boundaries,” i.e., in such a way that each point of M has a neighborhood in M homeomorphic
to either a p-ball or half a p-ball.

Informally, therefore, piecewise smooth manifolds are glued assemblies of cells, obtained by
topological identification of parts of their respective boundaries. (Surface $ in Fig. 10, p. 12,
is typical.)

Having introduced this category of objects—which we shall just call manifolds, from now
on—we should, as it is the rule and almost a reflex in mathematical work, deal with maps
between such objects, called morphisms, that preserve their relevant structures. About cells,
first: A map between two images of the same reference cell which is bijective and smooth (in
both directions) is called a diffeomorphism. Now, about our manifolds: There is a piecewise
smooth diffeomorphism between two of them (and there too, we shall usually dispense with

" This is regrettably technical, but it can’t be helped, if M is to be a manifold. The assembly of three curves
with a common endpoint, for instance, is not a manifold. See also [50] for examples of 3D-spaces obtained by
identification of faces of some polyhedra, which fail to be manifolds. Condition (2) forbids self-intersections,
which is overly drastic and could be avoided, but will not be too restrictive in practice.



the “piecewise smooth” qualifier) if they are homeomorphic and can be chopped into two sets
of cells which are, two by two, diffeomorphic.

1.3 Orientation

To get oneself oriented, in the vernacular, consists in knowing where is South, which way
is uptown, etc. To orient a map, one makes its upper side face North. Pigeons, and some
persons, have a sense of orientation. And so forth. Nothing of this kind is implied by the
mathematical concept of orientation—which may explain why so simple a notion may be so
puzzling to many. Not that mathematical orientation has no counterpart in everyday’s life,
it has, but in something else: When entering a roundabout or a circle with a car, you know
whether you should turn clockwise or counterclockwise. That is orientation, as regards the
ground’s surface. Notice how it depends on customs and law. For the spatial version of it,
observe what “right-handed” means, as applied to a staircase or a corkscrew.

1.3.1 Oriented spaces

Now let us give the formal definition. A frame in V, is an ordered n-tuple of linearly
independent vectors. Select a basis (which is thus a frame among others), and for each frame,
look at the determinant of its » vectors, as expressed in this basis, hence a FRAMFE — REAL
function. This function is basis-dependent, but the equivalence relation defined by “f = f’
if and only if frames f and f’' have determinants of the same sign” does not depend on the
chosen basis, and is thus intrinsic to the structure of V,,. There are two equivalence classes
with respect to this relation. Orienting V,, consists in designating one of them as the class of
“positively oriented” frames. This amounts to defining a function, which assigns to each frame
a label, either direct or skew, two equivalent frames getting the same label. There are two
such functions, therefore two possible orientations. An oriented vector space is thus a pair
{V,Or}, where Or is one of the two orientation classes of V. (Equivalently, one may define an
oriented vector space as a pair {vector space, privileged basis}, provided it’s well understood
that this basis plays no other role than specifying the orientation.) We shall find convenient
to extend the notion to a vector space of dimension 0 (i.e., one reduced to the single element
0), to which also correspond, by convention, two oriented vector spaces, labelled + and —.

Remark. Once a vector space has been oriented, there are direct and skew frames, but there
is no such thing as direct or skew vectors, except, one may concede, in dimension 1. A vector
does not acquire new features just because the space where it belongs has been oriented! Part
of the confusion around the notion of “axial” (vs. “polar”) vectors stems from this semantic
difficulty [12, p. 296]. As axial vectors will not be used here, the following description should
be enough to deal with the issue. Let’s agree that, if Or is one of the orientation classes of
V, the expression —Or denotes the other class. Now, form pairs {v,Or}, where v is a vector
and Or any orientation class of V', and consider two pairs {v,0r} and {v',07r'} as equivalent
when v = —v' and Or = —0r'. Axial vectors are, by definition, the equivalence classes of
such pairs. (Polar vectors is just a redundant name, inspired by a well-minded sense of equity,
for vectors of V.) Notice that axial scalars can be defined in the same way: substitute a real
number for ». Hence axial vector fields and axial functions (more likely to be dubbed “pseudo-
functions” in the physical literature). The point of defining such objects is to become able to
express Maxwell’s equations in non-oriented Euclidean space, i.e., V3 with a dot product but
no specific orientation. See [13] or [14] for references and a discussion. ¢

An affine space, now, is oriented by orienting its vector associate: a bound frame at z in
A,, i.e., a set of n independent vectors at z, is direct [resp. skew]| if these n vectors form a
direct [resp. skew]| frame in V.

Vector subspaces of a given vector space (or affine subspaces of an affine space®) can have

8 An affine subspace is oriented by orienting the parallel vector subspace. A point, which is an affine subspace

6



their own orientation. Orienting a line, in particular, means selecting a vector parallel to it,
called a director vector for the line, which specifies the “forward” direction along it.

Such orientations of different subspaces are a priori unrelated. Orienting 3D space by the
corkscrew rule, for instance, does not imply any orientation in a given plane. This remark
may hurt common sense, for we are used to think of the standard orientation of space and
of, say, a horizontal plane, as somehow related. And they are, indeed, but only because we
think of vertical lines as oriented, bottom up. This is the convention known as Ampére’s rule.
To explain what happens there, suppose space is oriented, and some privileged straightline is
oriented too, on its own. Then, any plane transverse to this line (i.e., thus placed that the
intersection reduces to a single point) inherits an orientation, as follows: To know whether a
frame in the plane is direct or skew, make a list of vectors composed of, in this order, (1) the
line’s director, (2) the vectors of the planar frame; hence an enlarged spatial frame, which is
either direct or skew, which tells us about the status of the plane frame.

More generally, there is an interplay between the orientations of complementary subspaces
and those of the encompassing space. Recall that two subspaces U and W of V are comple-
mentary if their span is all V (i.e., each v in V can be decomposed as v = v + w, with u in
U and w in W) and if they are transverse (U N W = {0}, which makes the decomposition
unique). We shall refer to V' as the “ambient” space, and write V.= U + W. If both U and W
have orientation, this orients V', by the following convention: the frame obtained by listing the
vectors of a direct frame in U first, then those of a direct frame in W, is direct. Conversely,
if both U/ and V' are oriented, one may orient W as follows: to know whether a given frame
in W is direct or skew, list its vectors behind those of a direct frame of U, and check whether
the enlarged frame thus obtained is direct or skew in V. This is a natural generalization of
Ampere’s rule.

Figure 3. Left: Specifying a “crossing direction” through a plane W by inner-orienting a line U transverse
to it. Right: Outer-orienting U, i.e., giving a sense of going around it, by inner-orienting .

Now what if U is oriented, but ambient space is not? Is U’s orientation of any relevance to
the complement W7 Yes, as Fig. 3 suggests (left): For instance, if W has dimension n — 1, an
orientation of the one-dimensional complement U can be interpreted as a crossing direction
relative to W, an obviously useful notion. (Flow of something through a surface, for instance,
presupposes a crossing direction.) Hence the concept of external, or outer orientation of
subspaces of V: Outer orientation of a subspace is, by definition, an orientation of one® of its
complements. Outer orientation of V itself is thus a sign, + or —. (For contrast and clarity,
we shall call inner orientation what was simply “orientation” up to this point.) The notion
(which one can trace back to Veblen [102], cf. [32] and [87]) passes to affine subspaces of an
affine space the obvious way.

Note that if ambient space is oriented, outer orientation determines inner orientation

parallel to {0}, can therefore be oriented, which we shall mark by apposing a sign to it, + or —.

S Nothing ambiguous in that. There is a canonical linear map between two complements W, and W, of the
same subspace U/, namely, the “affine projection” wy; along U, thus defined: for v in Wy, set 7y (v) = v + u,
where u is the unique vector in I such that v+ v € W,. Use 7y to transfer orientation from W, to W,.



(Fig. 4). But otherwise, the two kinds of orientation are independent. As we shall see,
they cater for different needs in modelling.

@ @ (b) (b)

Figure 4. Left: How an externally oriented line acquires inner orientation, depending on the orientation of
ambient space. (Alternative interpretation: if one knows both orientations, inner and outer, for a line, one
knows the ambient orientation.) Right: Assigning to a surface a crossing direction (here from region “—”
below to region “+” above) will not by itself imply an inner orientation. But it does if ambient space is
oriented, as seen in (b) and (b’). Figures 42 and 4b can be understood as an explanation of Ampéere’s rule,
in which the ambient orientation is, by convention, the one shown here by the “right corkscrew” icon.

1.3.2 Oriented manifolds

Orientation can be defined for other figures than linear subspaces. Connected parts of
affine subspaces, such as polygonal faces, or line segments, can be oriented by orienting the
supporting subspace (i.e., the smallest one containing them). Smooth lines and surfaces as
a whole are oriented by attributing orientations to all their tangents or tangent planes in a
consistent way.

“Consistent”? Let’s explain what that means, in the case of a surface. First, subspaces
parallel to the tangent planes at all points in the neighborhood N(z) of a given surface point
z have, if N(z) is taken small enough, a common complement, characterized by a director
n(z) (not the “normal” vector, since we have no notion of orthogonality at this stage, but
the idea is the same). Then N(z) is consistently oriented if all these orientations correspond
via the affine projection along n(z) (cf. Note 9). But this is only local consistency, which can
always be achieved, and one wants more: global consistency, which holds if the surface can
be covered by such neighborhoods, with consistent orientation in each non-empty intersection
N(z)N N(y). This may not be feasible, as in the case of a Mobius band, hence the distinction
between (internally) orientable and non-orientable manifolds.

Cells, as defined above, are inner orientable, thanks to the fact that De¢ does not vanish.
For instance (cf. Fig. 5), for a path ¢, i.e., a smooth embedding ¢ — ¢(t) from [0, 1] to
A,,, the tangent vectors di¢(t) determine consistent orientations of their supporting lines,
hence an orientation of the path. (The other orientation would be obtained by starting
from the “reverse” path, ¢ — ¢(1 — t).) Same with a patch {s,t} — S(s,t) on the triangle
T={{s,t}:0<s,0<t s+t <1}: The vectors 8,5(s,t) and 8,9(s,t), in this order, form
a basis at S(s,t) which orients the tangent plane, and these orientations are consistent.

As for piecewise smooth manifolds, finally, the problem is at points z where cells join, for
a tangent subspace may not exist there. But according to our conventions, there must be a
neighborhood homeomorphic to a ball or half-ball, which is orientable, hence a way to check
whether tangent subspaces at regular points in the vicinity of z have consistent orientations,
and therefore, to check whether the manifold as a whole is or is not orientable.

Similar considerations hold for external orientation. Outer-orienting a surface consists in
giving a (globally consistent) crossing direction through it. For a line, it’s a way of “turning
around” it, or “gyratory sense” (Fig. 3, right). For a point, it’s an orientation of the space in
its neighborhood. For a connected region of space, it’s just a sign, 4+ or —.
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c(0)

Figure 5. A path and a patch, with natural inner orientations. Observe how their boundaries are themselves
assemblies of cells: de = ¢(0) — ¢(1) and S = ¢; — ¢3 + ¢5, With a notation soon to be introduced more
formally. Paths ¢; are ¢; = s — S(s,0), ¢; =t — 5(0,1), and e; = § — S(1 —6,6), each with its natural inner
orientation.

1.3.3 Induced orientation

Surfaces which enclose a volume V' (which one may suppose connected, though the boundary
AV itself need not be) can always be outer oriented, for the “inside out” crossing direction is
always globally consistent. Let us, by convention, take this direction as defining the canonical
outer orientation of 3V. No similarly canonical inner orientation of the surface results, as could
already be seen on Fig. 4, since there are, in the neighborhood of each boundary point, two
eligible orientations of ambient space. But if V is inner oriented, this orientation can act in
conjunction with the outer one of 3V to yield a natural inner orientation of V’s boundary
about this point. For example, on the left of Fig. 6, the 2-frame {v;, v, } in the tangent plane of
a boundary point is taken as direct because, by listing its vectors behind an outward directed
vector v, one gets the direct 3-frame {v, v;,v,}. Consistency of these orientations stems from
the consistency of the crossing direction. Ience Vs inner orientation induces one on each
part of its boundary.

(b)

Figure 6. Left: Induced orientation of the boundary of a volume (v, and v, are tangent to AV, v points
outwards). Middle: The same idea, one dimension below. The tangent to the boundary, being a complement
of (the affine subspace that supports) v, with respect to the plane tangent to the surface (in broken lines),
inherits from the latter an inner orientation. Right: Induced orientation of the endpoints of an oriented curve.

The same method applies to manifolds of lower dimension p, by working inside the affine
p-subspace tangent to each boundary point. See Fig. 6b for the case p = 2. The p-manifold,
thus, serves as ambient space with respect to its own boundary, for the purpose of inducing
orientation.

In quite a similar way (Fig. 7), outer orientation of a manifold induces an outer orientation
of each part of its boundary. (For a volume V, the induced outer orientation of 9V is the
inside-out, or outside-in direction, depending on the outer orientation, + or —, of V.)
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Figure 7. Left: To outer-orient 95 is to (consistently) inner-orient complements of the tangent, one at each
boundary point z. For this, take as direct the frame {»,,v}, where {v,} is a direct frame in the complement
of the plane tangent to S at , and v an outward directed vector tangent to S. That {v,} is direct is known
from the outer orientation of S. Right: Same idea about the boundary points of line ¢. Notice that v is
now appended behind the list of frame vectors. Consistency stems from the consistency of v, the inside-out
direction with respect to S. The icons near the endpoints are appropriate, since outer orientation of a point
is inner orientation of the space in its vicinity.

1.3.4 Inner vs outer orientation of submanifolds

We might (but won’t, as the present baggage is enough) extend these concepts to submanifolds
of ambient manifolds other that A,, including non-orientable ones. A two-dimensional example
will give the idea (I"ig. 8): Take as ambient manifold a Mdbius band M, and forget about the
3-dimensional space it is embedded in for the sake of the drawing. Then it’s easy to find in
M a line which (being a line) is inner orientable, but cannot consistently be outer oriented.
Note that the band by itself, i.e., considered as its own ambient. space, can be outer oriented,
by giving it a sign: Indeed, outer orientation of the tangent plane at each point of M, being
inner orientation of this point, is such a sign, so consistent orientation means attributing the
same sign to all points. (By the same token, any manifold is outer orientable, with respect to
itself as ambient space.)

Figure 8. Mébius band, not orientable. As the middle line [ does not separate two regions, it cannot be
assigned any consistent crossing direction, so it has no outer orientation with respect to the “ambient” band.

For completeness, let us give another example (Iig. 9), this time of an outer-orientable
surface without inner orientation, owing to non-orientability of the ambient manifold. The
latter (whose boundary is a Klein bottle) is made by sticking together the top and bottom sides
of a vertical cube, according to the rule of Iig. 9a. The ribbon shown in (b) is topologically a
Mobius band, a non-(inner )orientable surface. Yet, it plainly has a consistent set of transverse
vectors. (Follow the upper arrow as its anchor point goes up and reenters at the bottom, and
notice that the arrow keeps pointing in the direction of AB in the process. So it coincides
with the lower arrow when this passage has been done.) Contrast with the ordinary ribbon in
(c), orientable, but not outer orientable with respect to this ambient space.

The two concepts of orientation are therefore essentially different.
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Figure 9. Left: Non-orientable 3-manifold with boundary: Identify top and bottom by matching upper A
with lower A, etc. Middle: Embedded M6bius band, with a globally consistent crossing direction. Right:
Embedded ribbon.

In what follows, we shall use the word “twisted” (as opposed to “straight”) to connote
anything that is to do with outer (as opposed to inner) orientation.

1.4 Chains, boundary operator

It may be convenient at times to describe a manifold M as an assembly of several manifolds,
even if M is connected. Think for example of the boundary of a triangle, as an assembly of
three edges, and more generally of a piecewise smooth assembly of cells. But it may happen—
so will be the case here, later—that these various manifolds have been independently oriented,
with orientations which may or may not coincide with the desired one for M. This routinely
occurs with boundaries, in particular. The concept of chain will be useful to deal with such
situations.

A p-chain is a finite family M = {M, : 1 =1,...,k} of oriented connected p-manifolds,'® to
which we shall loosely refer below as the “components” of the chain, each loaded with a weight
p' belonging to some ring of coefficients, such as IR or Z (say IR for definiteness, although
weights will be signed integers in most of our examples). Such a chain is conveniently denoted
by the “formal” sum >, u'M; = p* My + - - - + u* M, thus called because the + signs do not
mean “add” in any standard way. On the other hand, chains themselves, as whole objects,
can be added, and there the notation helps: To get the sum Y, pi* M; + > v/ N;, first merge
the two families M and A/, then attribute weights by adding the weights each component has
in each chain, making use of the convention that uM' is the same chain as —uM when M’ is
the same manifold as M with opposite orientation. If all weights are zero, we have the null
chain, denoted 0. All this amounts, as one sees, to handling chains according to the rules of
algebra, when they are represented via formal sums, which is the point of such a notation.
Twisted chains are defined the same way, except that all orientations are external. (Twisted
and straight chains are not to be added, or otherwise mixed.)

If M is an oriented piecewise smooth manifold, all its cells ¢; inherit this orientation, but
one may have had reasons to orient them on their own, independently of M. (The same cell
may well be part of several piecewise smooth manifolds, for instance.) Then, it is natural
to associate with M the chain ), ¢, also denoted by M, with i-th weight —1 when the
orientations of M and ¢; differ. (Refer back to Fig. 5 for simple examples.)

Now, the boundary of an oriented piecewise smooth (p + 1)-manifold M is an assembly
of p-manifolds, each of which we assume has an orientation of its own. Let us assign each

10 For instance, cells. But we don’t request that. Each M, may be a piecewise smooth manifold already.
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of them the weight +1, according to whether its orientation coincides with the one inherited
from M. (We say the two orientations match when this coincidence occurs.) Hence a chain,
also denoted @M. By linearity, the operator & extends to chains: (3, ' M;) = >, p' 8M;. A
chain with null boundary is called a cycle. A chain which is the boundary of another chain is
called, appropriately, a boundary. Boundaries are cycles, because of the fundamental property

2) 80d =0,

i.e., the boundary of a boundary is the null chain. A concrete example, as in Fig. 10, will be
more instructive here than a formal proof.

Figure 10. Piecewise smooth surface S, inner oriented (its orientation is taken to be that of the curved
triangle in the fore, marked A), represented as the chain A — B — ' based on the oriented curved triangles
A, B,C. (Note the minus signs: B’s and C’s orientations don’t match that of 5.) One has 4 = a+b+c,
OB=¢+a—d, 0C =b+d+ f, where a,b,c,d, e, f are the boundary curves, arbitrarily oriented as indicated.
Now, 85 = §(A— B — C) = ¢— e — f: Observe how the “seams” a,b,c automatically receive null weights
in this 1-chain, whatever their orientation, because they appear twice with opposite signs. Next, since dc =
z—z,de =—y—z,and 8f= z+y, owing to the (arbitrary) orientations assigned to points w,z,y, z, one has
305 = 8(c — e — f) = 0, by the same process of cancellation by pairs. The reader is invited to work out a
similar example involving twisted chains instead of straight ones.

Remark. Beyond its connection with assemblies of oriented cells, no too definite intuitive
interpretation of the concept of chain should be looked for. Perhaps, when p = 1, one can
think of the chain Y, v;¢;, with integer weights, as “running along each ¢,, in turn, |7y,| times,
in the direction indicated by ¢;’s orientation, or in the reverse direction, depending on the sign
of ~;,”. But this is a bit contrived. Chains are better conceived as algebraic objects, based on
geometric ones in a useful way—as the example in Fig. 10 should suggest, and as we shall see
later. However, we shall indulge in language abuse, and say that a closed curve “is” a 1-cycle,
or that a closed surface “is” a 2-cycle, with implicit reference to the associated chain. {

So boundaries are cycles, after (2). Whether the converse is true is an essential question.
In affine space, the answer is positive: A closed surface encloses a volume, a closed curve
(even if knotted) is the boundary of some surface (free of self-intersections, amazing as this
may appear), called a Seifert surface ([89], [2], p. 224). But in some less simple ambient
manifolds, a cycle need not bound. In the case of a solid torus, for instance, a meridian circle
is a boundary, but a parallel circle is not, because none of the disks it bounds in Aj; is entirely
contained in the torus. Whether cycles are or aren’t boundaries is therefore an issue when
investigating the global topological properties of a manifold. Chains being algebraic objects
then becomes an asset, for it makes possible to harness the power of algebra to the study of
topology. This is the gist of homology [50, 51], and of algebraic topology in general.

1.5 Metric notions

Now, let us equip V, with a dot product: u - is a real number, linearly depending on vectors
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u and v, with symmetry (v -v = v - u) and strict positive-definiteness (u - u > 0 if u # 0).
Come from this, first the notions of orthogonality and angle, next a norm |u| = (u - )2 on
V., then a distance d(z,y) = |y — z|, translation-invariant by construction, between points of
the affine associate A4,,.

Definition. Euclidean space, E,, is the structure composed of A,, plus a dot product on
its associate V,, plus an orientation.

Saying “the” structure implies that two realizations of it (with two different dot products
and/or orientations) are isomorphic in some substantial way. This is so: For any other
dot product, “«” say, there is an invertible linear transform L such that w «v = Lu - Lv.
Moreover,!! one may have L “direct”, in the sense that it maps a frame to another frame
of the same orientation class, or “skew”. Therefore, two distinct Fuclidean structures on A4,
are linked by some L. In the language of group actions, the linear group GL,, composed of
the above L’s, acts transitively on Fuclidean structures, i.e., with a unique orbit, which is
our justification for using the singular. (These structures are said to be affine equivalent,'?
a concept that will recur.) The point can vividly be made by using the language of group
actions: the isotropy group of {-,0r} “cannot be any larger”. (More precisely, it is maximal,
as a subgroup, in the group of direct linear transforms.)

In dimension 3," dot product and orientation conspire in spawning the cross product: u X v
is characterized by the equality

(3) X of* + (u - )" = [uf*fo]

and the fact that vectors u, v and u X v form, in this order, a direct frame. The 3-volume of
the parallelotope built on vectors u,v, w, defined by vol(u, v, w) = (u X v) - w, is equal, up to
sign, to the above volumic measure, with equality if the frame is direct.!* Be well aware that
X doesn’t make any sense in non-oriented three-space.

We shall have use for the related notion of vectorial area of an outer oriented triangle
T, defined as the vector T = area(T)n, where n is the normal unit vector that provides the
crossing direction. (If an ambient orientation exists, two vectors u and » can be laid along two
of the three sides, in such a way that {u,v,n} is a direct frame. Then, T = 1/, u X v. Figure
11 gives an example.) More generally, an outer oriented surface of E; has a vectorial area:
Chop the surface into small adjacent triangular patches, add the vectorial areas of these, and
pass to the limit. (This yields 0 for a closed surface.)

For later use, we state the relations between the structures induced by {-,0r} and { «,Or},
where Or = £0r, the sign being that of det(L). (There is no ambiguity about “det(L)”,
understood as the determinant of the matrix representation of L: its value is the same in any
basis.) The norm (u » u)"/? will be denoted by |u]. The corresponding cross product is defined
by lux o] + (u .+ v)> = |[uff|v]* as in (3) (plus the request that {u,v,uxv} be Or-direct), and
the new volume is vol(u,v,w) = (uXv) « w. It’s a simple exercise to show that
(4) lul = |Lu|, L(uxv) = Lu x Lv, vol(u,v,w) = det(L) vol(u, v, w).

(It all comes from the equality det(Lu,Lv, Lw) = det(L) det(u,v,w), when u,v,w, and L
are represented in some basis, a purely affine formula.) Notice that, for any w, one has

11" 7, is not unique, since U L, for any unitary U (i.e., such that |[Uv| = |v|Vv), will work as well. In particular,
one might force I to be self-adjoint, but we won’t take advantage of that.

12 Guch equivalence is what sets Euclidean norms apart among all conceivable norms on V,, like for instance
[v] = >7.|v'|. As argued at more length in [12], choosing to work in a Euclidean framework is an
acknowledgment of another observed symmetry of the world we live in: its isotropy, in addition to its
homogeneity.

13 A binary operation with the properties of the cross product can exist only in dimensions 3 and 7 [90, 37].

14 An n-volume could directly be defined on V,, as a map {v,...,v,} — vol(vy,...,v,), multilinear and null
when two vectors of the list are equal. Giving an n-volume implies an orientation (direct frames are those
with positive n-volumes), but no metric (unless n = 1).
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L*L(uxv)-w = L(uxv)-Lw = det(L) (u x v) - w, where L* denotes the adjoint of L (defined
by Lu-v = u - L for all u,v), hence an alternative formula:

(5) uXv = det(L) (L°L)™' (u X v).
As for the vectorial area, denoted T in the “bold” metric, one will see that
(6) T = | det(L)| (I°T) 7,

with a factor |det(L)|, not det(L), because T and T, both going along the crossing direction,
point towards the same side of T.

We shall also need a topology on the space of p-chains, in order to define differential forms
as continuous linear functionals on this space. As we shall argue later, physical observables
such as electromotive force, flux, and so forth, can be conceived as the values of functionals
of this kind, the chain operand being the idealization of some measuring device. Such values
don’t change suddenly when the measurement apparatus is slightly displaced, which is the
rationale for continuity. But to make precise what “slightly displaced” means, we need a
notion of “nearness” between chains—a topology.

First thing, nearness between manifolds. Let us define the distance d(M, N) between two of
them as the greatest lower bound (the infimum) of d4(M, N) = sup{z € M : |z — ¢(z)|} with
respect to all orientation-preserving piecewise smooth diffeomorphisms (OPD) ¢ that exist
between M and N. There may be no such OPD, in which case we take the distance as infinite,
but otherwise there is symmetry between M and N (consider ¢~ from N to M), positivity, d
can’t be zero if M # N, and the triangle inequality holds. [Proof: Take M, N, P, select OPT)’s
¢ and ¥ from P to M and N, and consider z in P. Then |¢(z)—(z)| < |p(z)—z|+|z—¢¥(z)],
hence d,4-1(M,N) < dg(M, P)+dy(N, P), then minimize with respect to ¢ and %.] Nearness
of two manifolds, in this sense, does account for the intuitive notion'® of “slight displacement”
of a line, a surface, etc. The topology thus obtained does not depend on the original dot
product, although d does.

Next, on to chains. The notion of convergence we want to capture is clear enough: a
sequence of chains {¢, =3 .., piM;, : n € IN} should certainly converge towards the chain
C=) 1k p' M; when the sequences of components {M; , : n € IN} all converge, in the sense
of the previous distance, to M;, while the weights {y: : n € IN} converge too, towards u'. But
knowing some convergent sequences is not enough to know the topology. (For that matter,
even the knowledge of all convergent sequences would not suffice, see [13], p. 161.) On the
other hand, the finer the topology, i.e., the more open sets it has, the more difficult it is for
a sequence to converge, which tells us what to do: Define the desired topology as the finest
one which (1) is compatible with the vector space structure of p-chains (in particular, each
neighborhood of 0 should contain a convex neighborhood) (2) makes all sequences of the above
kind converge.

The space of straight [resp. twisted] p-chains, as equipped with this topology, will be
denoted by C, [resp. ép]. Both spaces are purely affine constructs, independent of the Fuclidean
structure, which only played a transient role in their definition.

It now makes sense to ask whether the linear map @ is continuous from C, to C, 1. The
answer is by the affirmative, thanks to the linearity of @ and the inequality d(0M,0N) <
d(M,N). [Proof: The restriction to M of an OPD ¢ is an OPD which sends it to N, so
d(@M,0N) < infysup{z € OM : |¢(z) — z|} < infysup{z € M : |¢(z) — z|} = d(M,N).]

1% More refined topologies, involving the derivatives of the charts, could be defined in the case of smooth
manifolds, but the very roughness of the present one will be an asset for what we have in view, which is,
keeping the topological dual of C, reasonably small.
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