
APPENDIX A

Mathematical
Background

This is not a tutorial, just background material.  It contains two interleaved
texts.  One is rather formal, with definitions, mainly, and occasionally,
proofs, arranged in logical order:  Things are defined in terms of primitive
concepts and of previously defined things.  The other part, where examples
will be provided, is a commentary on why and how these notions and
properties can be useful in computational electromagnetism.  There, of
course, one feels free to invoke not yet formally defined entities.

The treatment is neither exhaustive nor balanced.  The space devoted
to each notion does not necessarily reflect its intrinsic importance.  Actually,
most important notions will be familiar to the reader already and will
cursorily be treated, just enough to provide a context for the ones I have
chosen to emphasize:  those that are (in my opinion) both important and
generally underrated.

Most definitions in the formal part are implicit:  When a new concept
or object is introduced, its name is set in i ta l ics,1 and the context provides
a definition.  The index should help locate such definitions, when needed.

A.1  BASIC NOTIONS

Notions we choose to consider as primitive, and that we shall not define,
are those of set theory:  sets, elements, subsets, equality, inclusion (symbols
=, ∈, and  ⊆), finite and infinite sets, and of logic:  propositions, or
“predicates”, true or false.  Basic notions that follow are defined in terms
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1Italics also serve to put emphasis on some words, according to standard practice.  This
should cause no confusion.

of primitive notions.
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A.1.1  Sets, properties

If  X  is a set,  P(X)  will denote the set of all its parts (or power set) , and
∅  the empty set.  Don’t confuse elements, such as  x, with one-element
subsets, denoted  {x}.  The Cartesian product of sets  X  and  Y  is denoted by
X × Y.  It is made of all pairs  {x, y}, with  x ∈ X  and  y ∈ Y.  The product
A × B  of two parts  A ⊆ X  and  B ⊆ Y  is the set of pairs  {x, y}, with  x ∈ A
and  y ∈ B.

When speaking of pairs, order counts:  x  first, then  y.  If  X  and  Y  are
different sets, no problem.  But some confusion may occur when  X = Y.  If  x
≠ y, are  {x, y}  and  {y, x}  different elements of  X × X ?  Yes, of course, so
{x, y} ≠ {y, x}.  But this same notation,  {x, y}, is often used also for something
else, namely, the subsets of  X  composed of two elements, and now,  {x, y}
and  {y, x}  point to the same object, an element of  P (X).  So we are
dealing with a different concept here, that of unordered pair.

Some have tried to promote the use of a different word for unordered
pairs (“couple”, for instance) to stress the difference.  But then it’s difficult
to remember which is which.  So if you see  {x, y}  at any place in this
book, be it called couple or pair, assume the order counts, unless the context
warns you otherwise.  (Fortunately, the confusion is most often harmless.)
The natural extension2 of the pair concept is the  n-tuple,  {x1, x 2, . . . , x n}.
Unordered   n-tuples are subsets containing  n  elements, all different.

Propositions and predicates are statements which can assume the value
t rue  or  fa lse  (with a special face, because  t rue  and  fa lse  are labels for
the two elements of a special set, “Boolean algebra”, to which we shall
return).  Some examples of predicates:  x ∈ X,  or  x ≠ y, or  A ⊆ B,  or else
x ∈ A and y ∉ B, etc.  (Again,  and  is a logical operation in Boolean
algebra, about which we shall have more to say.)  The difference between
“proposition” and “predicate” is semantical:  Predicates can contain
variables, whose values may affect the truth value of the predicate.  For
instance, speaking of real numbers,  x > 0  is a predicate, the truth value of
which depends on the value of the free variable 3  x, whereas  2 < 1  is just

2It’s recursively defined:  a triple  {x, y, z}  is the pair  {{x, y}, z}, where the first element
is itself a pair, and so forth.  Of course, only finite strings can be formed this way, but we’ll soon
do better.

3"Free variables” are those whose value matters to the expression containing them, like  x
in  x2 + 2x + 1  (whose value depends on  x), as opposed to “bound” or “dummy variables”,
like  y  in  ∫ f(y) dy.  I shall not attempt to be more rigorous (see [Ha] and the article “Symbolic
logic” in [It]).  Instead, I hope to convey some feeling for this by accumulating examples.

a proposition4 (its value is  fa lse) .
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Properties—for example, positivity of real numbers, positive-
definiteness of matrices, solenoidality of vector-fields, etc.—are
predicates involving such objects.  If  p  is a property, one denotes by
{x ∈ X :  p(x)}  the subset of  X  made of all elements for which this property
holds true.  For some immediate examples, consider a subset  R  of the
Cartesian product  X × Y.  Its  section by  x  is  R x = {y ∈ Y :  {x, y} ∈ R}.
(Beware it’s a part of  Y, not of  X !  Cf. Fig. A.1.)  Its projection on  X  is
pX(R) = {x ∈ X :  Rx ≠ ∅}.  Any property thus defines a subset, and a subset
A  defines a property, which is  x ∈ A.  Since subsets and properties are
thus identified, operations on sets translate into operations on properties:
thus, for example,  {x ∈ X :  p(x) and q(x)} = {x ∈ X :  p(x)} ∩ {x ∈ X :  q(x)},
and the same with  or  and  ∪.
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FIGURE A.1.  Notions of section and projection.

A.1.2  Relations and functions

A relation is a triple  r = {X, Y, R}, where  X  and  Y  are two sets and  R  a
subset of  X × Y, called the graph of the relation.  Objects  x  and  y  such
that  {x, y} ∈ R  are said to be related (or linked) by  r.  There are various
shorthands for the predicate  {x, y} ∈ R, such as  r(x, y)  or (more often) the
so-called “infix” notation  x r y.  (Familiar examples of the latter are  x ≤
y,  u ⊥ v, etc.)  The domain and codomain of  r  are the projections  pXR  and

4Of course, when a sentence such as  “x > 0”  or  “div b = 0”  appears in a text the aim of
which is not primarily mathematical, we assume this predicate has the value true.  In fact, the
author is usually telling us just that, but won’t risk the ridicule of saying “I have just proven
that the predicate  ‘div b = 0’  is true”.  However, the occurrence in such texts of bits of
formal reasoning, as for instance when discussing the truth of the statement, “if  div b = 0,
there exists some  a  such that  b = rot a”, clearly shows that maintaining the distinction
between a predicate and the assertion that this predicate is true (which is of course, another
predicate) is not only a formal game.  Sometimes, it’s the only way to settle an argument.

pYR, thus denoted:
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dom(r) = {x ∈ X :  Rx ≠ ∅},   cod(r) = {y ∈ Y :  Ry ≠ ∅} .

So, informally, the domain  dom(r)  contains all those  x  of  X  that relate
to some  y  in  Y, and the codomain  cod(r)  is the symmetrical concept:  all
y’s  related to some  x.  (The codomain of  r  is also called its range .)  The
inverse of  r  is the relation  r–1 = {Y, X, R}, and the domain of one is the
codomain of the other.
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FIGURE A.2.  Left:  Domain and codomain.  Right:  A functional graph  F.

The graph  F  of a relation  f = {X, Y, F}  is functional if each section  Fx
contains at most one element of  Y  (Fig. A.2, right).  The relation  f  is then
called a  function “from  X  to  Y”, or a “Y-valued function on  X”.  The
function  f  is surjective if  cod(f) = Y, one-to-one if its inverse  f −1  (which is
always defined, but only as a relation, a priori) is also a function, then
called the inverse function, or reciprocal of  f .  The set of all functions from
X  into  Y  will be denoted by  X → Y, and if  f  is such a function, we’ll say
that “the  type of  f  is  X → Y”.   The construct  “f ∈ X → Y” thus makes
sense, under the convention that “→” has precedence over “∈”, and I
occasionally use it, but “f :  X → Y” is the standard way to introduce a
function of type  X → Y.

Thus, all functions are a priori par t i a l, that is,  dom(f)  may be strictly
smaller than  X.  Total functions are those for which  dom(f) = X.  A total
function is  injective if it is one-to-one, surjective, as we just said, if  cod(f)
= Y, and bijective if both properties hold.  Total functions are called
mappings or maps, but again, excessive emphasis on such fine semantic
distinctions is not very productive.  Better take “function” and “mapping”
as synonyms, and call attention on whether  dom(f) = X  or not, when
necessary.  Most functions in this book are partial.

Some relations (in the common sense of the word) between physical
entities are better conceived as general relations than as functional ones.
A good example is provided by “Bean’s law”, an idealization of what
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happens in a type-II superconductor when all currents flow parallel to
some given direction.  The scalar components  j  and  e  of the current density
and the electric field along this direction are then supposed to be related
as follows:  if  e ≠ 0  at some point, then  j  at this point is equal to some
characteristic value  jc , called the  critical current, and the sign of  j  is
that of  e ;  if  e = 0, then any value of  j  between  – jc  and  j c  is possible, and
which one actually occurs at any instant depends on the past evolution of
e.  This relatively complex prescription is elegantly summarized by a (non-
functional) relation:  The pair  {e, j}  must belong to the graph of Fig. A.3,
left.
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FIGURE A.3.   Left:  Bean’s law, for type-II superconductors, expressed as a non-
functional relation  {IR, IR, γ}.  Right:  A similar idealization of the  b–h  characteristic
of a “soft” ferromagnetic material.

The same trick is useful to express  b–h  constitutive laws in similar
circumstances (horizontal currents, vertical magnetic field).  If, as it
happens for instance in induction heating simulations, one works over a
large range of values of  h  (some  105 A/m, say), the hysteretic cycle is so
narrow, relatively speaking, that one may as well ignore hysteresis.  Hence
the behavior depicted in Fig. A.3, right.  Again, this  b–h  relationship is
conveniently expressed by a non-functional relation, i.e., a graph.
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FIGURE A.4.  Image of  A  under  r = {X, Y, R}.
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Let’s proceed with concepts that are common to relations and functions.
If  A  is a part of  X, its image under  r, denoted by  r(A), is

r(A) = {y ∈ Y :  Ry ∩ A ≠ ∅}

(cf. Fig. A.4).  Note that  r(X) = cod(r).  If  A = {a}, a single element set, we
write  r(a)  instead of  r({a}), and call this set the image of  a  under  r.
Note that  r(x) = R x, hence the syntax  y ∈ r(x)  as another way to say that
x  and  y  are  r-related.  For  B ⊆ Y, the set  {x ∈ X :  Rx ∩ B ≠ ∅}, denoted
r–1(B), is called the inverse image  or pre-image of  B, and  r–1(Y) = dom(r).
Remark that  cod(r) = {y ∈ Y :  r −1(y) ≠ ∅}.  Relation  s = {X, Y, S}   is
stronger than relation  r  if  S ⊆ R.  This is obviously another relation,5

between relations, which can logically be denoted by  s ⊆ r.
We need mechanisms to build new relations from old ones.6  Since

relations are graphs, and hence sets, operations on sets apply to relations:
given  r = {X, Y, R}  and  s = {X, Y, S}, one can form the new relation
{X, Y, R ∩ S}  (stronger than both  r  and  s), which we denote by  r and s.
Similarly,  r or s = {X, Y, R ∪ S}  (weaker than both  r  and  s).  In the
special case  S = A × Y, where  A  is a part of  X,  r and s  is called the
restriction of  r  to  A  (Fig. A.5).  Its domain is  dom(r) ∩ A.  It’s usually
denoted by  r|A.  If  r = s|A  for some  A ⊆ X, one says that  s  is an  extension
of  r.
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FIGURE A.5.   Restricting relation  r = {X, Y, R}  to  A.  An alternative definition of
the restriction is  r|A = r o id(A), where  id(A) = {X, X, ∆ ∩ (A × X)}  (see the

5Can you describe its graph?  Is it an order (as defined below)?  A total one or only a
partial one?

6Computer programming is basically just that.  A program is a function  p  defined on the
set  S  of possible states of the machine;  entering data selects some  s ∈ S, and  p(s)  is the final
state, including output display;  the game consists in building  p  from a set of basic “instructions”,
which are, as one may show, functions of type  S → S.  So programming consists, indeed, in
building new functions from old ones.  (For serious developments on this, see a treatise on
“functional programming”, for instance [Hn].)  Here, we need not go so far as formally
presenting a programming language (the rare bits of programs that appear in this book should
be self-explanatory), but some awareness of the underlying mechanisms may be useful.

definition of  ∆  p. 270).
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Relations can also be composed, when their sets match properly:  Given
r = {X, Y, R}   and  s = {Y, Z, S}, the composition of  r  and  s, denoted
by  s  r, is

s  r = {X, Z, ∪ {r−1(y) × s(y) :  y ∈ Y}}.

This amounts to saying that  z ∈ (s  r)(x)  if and only if there is at least
one  y  such that  y ∈ r(x)  and  z ∈ s(y)  (Fig. A.6).  The composition  g  f  of
two functions of respective types  X → Y  and  Y → Z  is a function of
type  X → Z.
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FIGURE A.6.  Composing two relations.  When  {x, y}  and  {y, z}  span  R  and  S
respectively,  {x, z}  spans the graph of the relation  s ο r.

A.1.3  Families

Fami ly is just another name, more appropriate in some contexts, for “total
function”.  If  J  is a set (finite or not), and  X  is a set, a family of objects of
type  X,  indexed by  J, is a mapping from  J  into  X, denoted by  {xi :  i ∈ J} .
To each label  i, taken in  J, thus corresponds an object  xi, of type  X.  It is
convenient—although a bit confusing, perhaps—to denote the set of all
such families by  XJ.  The set  J  can be finite, in which case it may seem we
have redefined  n-tuples.  Not so:  for  J, finite or not, is not supposed to be
ordered.  So we really have a new concept7 here.

The distinction may sometimes be useful.  Think of the nodes of a finite

7It’s not “unordered  n-tuple”, either, which we chose earlier to interpret as an  n-element
subset of  X.  In the case of families, repetitions are allowed, and two labels  i  and  j  can point
to the same object,  x i = xj.  A part  Y  of  X  can always be considered as a family, however, by
indexing it over itself:  Y = {x y :  y ∈ Y}, where  xy = y.  So one should not worry too much
about such fine distinctions.

element mesh.  They form a set  N , usually finite.  Let us call  N  the
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number of nodes (that is,  N = #N , if one wishes to use this convenient
shorthand for the number of elements in a set).  Suppose a real-valued
“degree of freedom” (DoF) is assigned to each node.  We thus have a family
{un :  n ∈ N }  of  N  real numbers, indexed over  N , that will be denoted by
u , in boldface.  Here,  X  is the set  IR  of real numbers, the index set  J  is
N, and  u  is thus a member of  IRN, with the above notation.  If you think,
“This  u  is an  N-dimensional real vector”, you are right, for indeed,  IRN

is a real vector space of dimension  N.  But you should resist the natural
compulsion to say, “So, this is an element of  IRN  (the Cartesian product of
IR  by itself,  N  times) and hence, an  N-tuple”.  An  N-element family is
not an  N-tuple, because no order among its members is implied.  Nodes are
labelled, not numbered.  A family is less structured than an  N-tuple, in
this respect.
Remark A.1.   Nodes are not yet numbered, that is.  True, at some stage in
the process of finite element modelling, a numbering scheme is introduced:
When solving for the DoF, by using the Gauss–Seidel method for instance,
there will be a first DoF, a second DoF, etc.  But sound programming meth-
odology demands that this numbering be deferred to the very stage where
it becomes relevant and useful.  Moreover, one may have to deal with
several different numbering schemes for the same set of nodes—if only to
test numbering schemes [K B] for efficiency (they affect the bandwidth of
the matrices and the speed of iterative methods).  Such a numbering will
be a (bijective) mapping from  N  onto  [1, N], the segment of the first  N
nonzero integers, and it will assign to each  N-member family an  N-tuple,
in a one-to-one way.  So once a numbering is given, there is an identification
(an isomorphism—see Note 11, p. 276) between  IRN  and  IRN.  But this is
not a “canonical”  identification, since it depends on the numbering.  IRN

and  IRN  are definitely not the same object.  ◊

A.1.4  Binary relations

We now look at the case where  Y = X.  A relation  r = {X, X, R}, then
called a  binary relation in  X, confers on  X  some structure, that  X  alone
did not possess.  Thus, the compound  “X  as equipped with the relation  r”
(that is, the pair  {X, r}), is a new object, for which the notation  {X, r}  is
appropriate.

Two standard examples of binary relations, equivalence and order,
will come to mind.  Let us call the part  ∆  = {{x, y} ∈ X × X :  x = y}  of  X × X
the diagonal, and the relation  id = {X, X, ∆}  the identity.  A relation  r
is reflexive if its graph contains  ∆ , that is, if  id ⊆ r,  symmetric if  r −1 = r,
antisymmetric if  (r and r−1) ⊆ id, transitive if  (r  r) ⊆ r.  A reflexive,
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transitive, and symmetric (resp.  antisymmetric) relation is an equivalence
(resp.  an order, or ordering).  Cf. Fig. A.7.

Generic notation for equivalences and orders is  ≡  and  ≤  (or  ⊆), and
one uses expressions such as  lesser than , greater than,  etc., instead of
symbols, occasionally.  If  r = {X, X, R}  is an order (e.g., the relation  ≤  in
IR), one calls  {X, X, R − ∆}  the  strict associated relation (example:  <  in
IR  is thus associated with  ≤), enunciated as strictly lesser than , etc.  Such
relations, for which the generic notation is  <, are not orders (beware!), so
one tends to avoid them;  hence the use of contrived expressions, such as
nonnegative for  ≥, to avoid the ambiguous “positive” (is it  >  or  ≥  ?).
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FIGURE A.7.  Structure of the graph  R  (the shaded set) for an equivalence (left)
and a partial order (right).  Notice how  R, on the left, splits into separate parts of
the form  Xi × X i  (i = 1, 2, 3  here, corresponding to three different shading
textures), where each  Xi  is an equivalence class (see below, A.1.6).  The shaded
set includes  ∆  in both cases.  See also Fig. A.8.

A.1.5  Orders

An order  r  is total if  r ∪ r −1 = {X, X, X × X}, that is, for all pairs  {x, y},
either  x ∈ r(y)  or  y ∈ r(x).  Total orders, like  ≤  in  IR  or  IN, are also
called linear orders, which makes intuitive sense:  They line up things.

A nice standard example of partial order is divisibility in  IN.  (See
also Note 5.)  A more topical one, for us, is on the set  M  of all possible
finite element meshes of a given region:  A mesh  m'  is a refinement of a
mesh  m  (one may say  m'  is  finer than  m) if each edge, face or volume of
m  is properly meshed by a suitable restriction of  m'.  Two different meshes
may have a common refinement without any of them being finer than the
other, so the order is only partial.  

The supremum should not be confused with what is called a maximal
element in  A, that is, some  x  in  A  such that  x ≤ y  never holds, whatever
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y  in  A.  In Fig. A.8,  f  and  g  are maximal in  A,  d  and  e  are minimal
(and  a  is minimal in  X).  Maximal elements are not necessarily unique,
and may not exist at all (the open interval  ]0, 1[  has none).

a b c d e f g h i j k

:  members of subset  A

:  lower or upper bounds for  A

:  other members of  X
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FIGURE A.8.  A partial order on an 11-element set,  X = {a, b, .  . . , k}.  Right:
According to the graphic convention of Fig. A.7.  Left:  As a  sagittal graph (i.e.,
with arrows), which is much more convenient in the case of transitive relations
(because most arrows can be omitted, as for instance the one from  a  to  f).

Notions of  inf  and  sup  pass to functions
f ∈ X → Y, when  Y  is  ordered (Y = IR,
most often).  The infimum  inf(f)  of a
function is the infimum  inf(f(X))  of its
image.  More explicit notation, such as
inf{f(x) :  x ∈ X}, is generally used.  The
pre-image of  inf(f(X)), that is to say, the
subset of elements of  X  that realize the
minimum of  f, is denoted  arginf(f), or
arginf({f(x) :  x ∈ X})  (but one will not bother with the double system of
parentheses, usually).  Note that  arginf(f)  is not an element of  X  but of
P(X), which can be the empty set.  One says that  f  “reaches its minimum”
on  arginf(f).

The index set  J   of a family may be ordered.  If the order is total, a
family  {x i :  i ∈ J}  is called a sequence.  (The use of this  word, in general,
rather implies that  J = IN, or some subset of  IN.  If  J = IR, or some interval
of  IR, one will rather say something like trajectory.)  This is the
generalization of  n-tuples, when  J  is infinite.  If the order is only partial,

X
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arginf(f)

f
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we have a generalized sequence.  The family of all finite element approx-
imate solutions to a field problem is one.

Finally, a  minimizing sequence  for a function  f :  X → Y  is a family
{xn :  n ∈ IN}  of elements of  X  such that  inf{f(xn) :  n ∈ IN} = inf(f).  The
standard way to prove that  arginf(f)  is not empty is to look for the limit
of a minimizing sequence.

A.1.6  Equivalence classes, “gauging”

If  r  is an equivalence in  X, the set  r(x)  is called the equivalence class of
x.  Equivalence classes are disjoint, and their union is all of  X  (Fig. A.7,
left).  In other words, an equivalence relation generates a  partition of  X
into equivalence classes (and the other way around:  A partition induces
an equivalence relation).

X

x

r(x)

X/r

x
.

Y

FIGURE A.9.  Equivalence classes, quotient, representative section.

This provides one of the most powerful mechanisms for creating new
objects in mathematics (and this is why the previous notions deserved
emphasis).  When objects of some kind are equivalent in some respect, it’s
often worthwhile to deal with them wholesale, by dumping all of them
into an equivalence class, and treating the latter as a new, single object.  If
X  is the initial set and  r  the equivalence relation, the set of classes is
then called the quotient of  X  by  r, with various denotations, such as  X/r
for instance.  Don’t confuse the quotient, elements of which are not of type
X, with what one may call a representative section (Fig. A.9), which is a
subset of  X  “transverse to the classes”, so to speak, obtained by picking
one element  x  (the representative element ) in each equivalence class.
The quotient is in one-to-one correspondence with each representative
section.  Among such sections, some may be more remarkable than others,
depending on which structure  X  possesses.

Examples abound, and many appear in this book.  Let us just mention
the following, of special interest in electromagnetism.  If some field  b  is
divergence-free in some region of space, there may exist, under conditions
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which are not our present concern, a field  a  such that  b = rot a , called a
“vector potential” for  b.  Such a field is not unique (one may always add a
gradient to it).  Among vector potentials, the relation  rot a1 = rot a2  is an
equivalence, the classes of which are obviously in one-to-one relation with
the   b’s.

The various representations of the electric field  e  provide a more
involved example.  From Faraday’s law (∂tb + rot e = 0), and by using the
above representation  b = rot a, we have  e = – ∂ta – grad ψ, where  ψ  is
called the “scalar (electric) potential”.  Calling  A  and  Ψ   the sets of
suitable potentials  a  and  ψ  (they should satisfy some qualifying
assumptions, which we need not give here explicitly), we have an
equivalence relation in  A × Ψ  :  Two pairs  { a1, ψ1}  and  {a2, ψ2}  are
equivalent if they correspond to the same electric field, i.e., if  ∂t a 1 +
grad ψ1 = ∂t a 2 + grad ψ2, over some specified span of time.

One may conceive all pairs  {a, ψ}  in a given class as mere representa-
tions (all equivalent) of some electric field, but the mathematical point
of view is bolder:  The equivalence  class, taken as a whole,  is the same
object as the electric field.  Dealing with  e  (in numerical simulations, for
instance), or dealing with the whole class of  {a, ψ}s, is the same thing.
But of course, a vector field and a class of pairs of fields are objects of very
different nature, and doing the mental identification may not be easy.
Hence the more conservative approach that consists in selecting among
the members of an equivalence class some distinguished one, as representa-
tive of the class.

For instance, we may privilege among the pairs  {a, ψ}  of a given class
(i.e., a given  e) the one for which  div a = 0.  (There is only one, if we
work in the whole space.  Otherwise, additional boundary conditions are
needed to select a unique  a.)  Such a specification for selecting one member
in each equivalence class is called a  gauging procedure.  (The previous one
is “Coulomb gauge”.  Imposing  c 2 ∂ tψ + div a = 0  is “Lorenz8 gauge”.)
Now, one may feel more assertive in dealing with  the pair  {a, ψ}  as a
representation of  e.  Things go sour, however, when one entertains the
illusion that this pair would be more deserving, more “physical”, than its
siblings of the same class, that it would be the “right” one, in some way.
Such futile concerns about gauging have delayed the implementation of
3D eddy-current codes for years in some institutes.
Remark A.2.  The same delusion seems to be at the root of persistent misun-
derstanding about the Aharonov–Bohm effect.  (Cf. [AB]:  Interference

8According to [NC], it’s L. Lorenz, not H.A. Lorentz.

experiments on electrons detect the existence of an induction flux inside an
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extremely thin tightly wound solenoid, in spite of the field being null
outside it.  This is paradoxical only when one insists on thinking of electrons
as loca l ized classical objects which, according to such a naive view, “have
to pass” in the region where  b = 0  and thus “cannot feel the influence” of
b, whereas they could “feel” that of  a.)  The effect, some argue, points to
the vector potential  a  rather than the induction  b  as the “most
fundamental” descriptor 9 of the field.  If the issue really is,  “Of the two
mathemat ica l objects,  b  on the one hand, and the whole class of  a’s  such
that  b = rot a  on the other hand, which one must be considered as ‘the
primitive concept’ ?”, one may conceivably take sides.  This is a choice
between two different formalisms for the same theory, since the two objects
are in one-to-one correspondence and describe exactly the same physics
(which is why no experiment can resolve such an issue).  Undeniably, when
it comes to quantum field–particle interactions, having  a  in the equations
is more convenient.  But since the equations are gauge-invariant, none of
the representatives of the class is thus privileged, so there is nothing in
the AB effect that would give arguments to consider the “Coulomb gauged”,
or the “Lorenz gauged” vector potential as the phys ica l one.  The frequent
claim (cf., e.g., [Kn]) that AB would allow one to measure the Coulomb
gauged vector potential is totally misleading.  What can be measured, by
determining the electron’s phase shift, is the induction flux, from which
of course the Coulomb gauged  a  is readily derived in the axisymmetric
situation usually (and needlessly) assumed.  ◊

A.1.7  Operations, structured sets

Operations are functions of type  X → X  (unary operations),  X × X → X
(binary operations) etc., i.e., functional relations that map  n-tuples of  X
to elements of  X.  The reader may wish to translate the standard concepts
of commutativity and associativity of operations in terms of graphs of
such relations.

Sets under consideration in specific questions are not naked, but

9In some cases, which verge on the tendentious, the observed interferences are said to
be “due to the vector potential”, and hence (the reader is subtly led to conclude, although it’s
never explicitly said) “not due” to the (magnetic induction) field.  This is silly.  The involved
phase factor can be computed indifferently in terms of  a  (as  exp[–iq/h  ∫γ τ · a], where  γ  is a
loop around the solenoid), or  b  (as  exp[–iq/h ∫Σ  n · b], where  Σ  is some surface bounded by
γ, and therefore, pierced by the solenoid).  Both expressions yield the same value, by the
Stokes theorem.  The latter may be less convenient, in the thin-solenoid case usually discussed,
for  b  is then a distribution, but this is a side issue.  Anyhow, there is no need to postulate a
“thin” solenoid to discuss the AB effect (cf. Exers. 8.5 and 8.6).

structured, by relations and—mostly—operations.  We saw how an equiva-
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lence or an order could, already by itself, structure a set.  But usually there
is much more:  On  IR, for instance, there is order, addition, multiplication,
division, and all these relations interact to give the set the structure we
are used to.  The same goes for all standard sets, such as  IR, Q,  Û, C, and
so forth.  So what is called  IR  is in fact  { IR, ≤, +, ∗, . . . }, that is, the set in
full gear, equipped with all its structuring relations, and this is where the
concept of type is useful:  A type is a structured set.10

Moreover, objects of different types may interact via other relations,
hence an encompassing structure, informally called an algebra. (Appendix
B gives a detailed example), which further stretches the notion of type.
So when I say that  x  is “of type  X”, as has happened several times
already, I mean not only that  x  is a member of the set  X, but that  x  can
enter in relation with other objects, belonging to  X  or to other sets, to all
the extent allowed by the rules of the algebra.  For instance, when  X  is
IN, the integer  n  can be added to another integer  m, can be multiplied by
it, etc., but can also be added to a real number, serve as exponentiation
factor, etc.  The type of an object, in short, encompasses all one can do to it
and with it.11

The practice of denoting the type and the underlying set the same
way has its dark side:  If one is fond of very compact symbols, as
mathematicians are, some overloading is unavoidable, for the same symbol
will have to represent different types.  For example,  IR3  normally stands
for the set of triples of real numbers.  It is quite tempting to use  this
symbol also to denote structures which are isomorphic to  IR3, like the
three-dimensional real vector space, or ordinary 3D space.  This is highly
questionable, for the operations allowed on triples, on  3-vectors, and on
points of space are not the same.  (We’ll elaborate on that later.  But
already it is clear that points, as geometric objects, cannot be added or
multiplied by scalars, the way vectors can.)  Hence the occasional
appearance in this book of long symbols like POINT or VECTOR to denote
different types built upon the same underlying set (namely,  IR × IR × IR) .

We’ll work out the simple example of Boolean algebra, denoted  B , to
see how a few operations can give rich structure to even the less promising
set, one with two elements, labeled  t rue  and  fa lse.  Two relations will
structure it.  (The corresponding type is the one called LOGICAL in most

10An isomorphism between  {X, r 1, r2, .  . . }  and  {X', r' 1, r' 2, . . . }  is then a one-to-one map
f  such that  x ri y ⇔ f(x) r'i f(y)  for all  x, y, i, that is, a structure-preserving bijective map.  If
there is only one obvious sensible choice for  f, one says the isomorphism is canonical.

11“Object”, here, has the same sense as in “object-oriented programming” [Me].

programming languages.)  The first operation is  not = {B, B, NOT}, the
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graph of which,  NOT, is depicted in Fig. A.10.  It’s the subset of  B × B
consisting of the two pairs  { t rue, fa lse}  and  {fa lse, t rue}, out of four in
all.  This graph is functional, and the unary operation  not  it defines is
indeed what was expected, turning  t rue  into  fa lse, and vice versa.  The
second function is  and = {B × B, B, AND},  where the graph  AND, functional
again, now contains four elements out of the possible eight, as shown in
Fig. A.10 (where the limits of the graphical representation we used till
now become obvious;  hence the preferred use of tabular representations for
binary operations, as in Fig. A.11).  We may now define the new function
or  by  x or y = not(not(x), not(y)), and combine them in various ways.

B

B

false

false

true

true true false

true

false

false

true
B

B

FIGURE A.10.   Left:  Graph of the “unary” function  not.  Right:  Graph of the
binary function  and.
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xor
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T
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FT
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F

FIGURE A.11.  Some operations in Boolean algebra ( T  and  F  stand for  true  and
false), in tabular representation.  (Variable  x  spans rows of the table,  y  spans
columns, and the entry at  x—y  is the truth value of  x r y.)   Note how the
symmetry of relations, or lack thereof, is rendered.

A.1.8  Logic

Which leads us into propositional calculus, and logic.  Propositions, and
predicates more generally, can be seen as  B-valued functions, whose domain
is the set of all possible “well-formed” expressions (that is, all strings of
symbols that conform to some specific grammar, which only logicians and
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programming-language designers take the trouble to make explicit).  Since
predicates are thus relations, the above building mechanisms apply to
them.  For instance, if  p  and  q  are predicates,  p and q  is one, too:  Its
value, according to the above definition of  and, is  t rue  when both  p  and
q  assume the value  t rue, and  fa lse  otherwise.  The algebraic structure of
B  allows a lot of similar constructions:  not p,  p or q,  p and  (q or r),  etc.

One among these constructs,  q or not p, whose value is  fa lse  when  p
= t rue  and  q = fa lse, and  t rue  in all other cases (Fig. A.11), is so frequently
used that it deserves a special notation:  p ⇒ q.12  The abuse, and perhaps
even the use of this, should be discouraged.  Better use “if  p, then  q”.  The
difference is only a matter of concrete syntax,13 but it seems to matter
much, and such a plain sentence is less prone to confusion than  “p ⇒ q”.

Two other important shorthands should be known,  ∀  and  ∃.  They too
allow new predicates to be built from old ones.  Suppose  p(x)  is some
predicate containing the variable  x  in which  x  is free.  Then  p(x) ∀ x  is
a new predicate, the value of which is  t rue  if and only if  p(x) = t rue  for
all possible values of  x, and now the variable  x  is bound.14  Symmetrically,
the truth value of  p(x) ∃ x  (or, with a more readable syntax,  ∃ x :  p(x)) is
fa lse  if and only if  p(x) = fa lse  for all possible values of  x.  These
symbols are dreaded by many engineers, and perhaps not without some
reason, for their abuse in mathematical training during the 1970s has done
much harm, worldwide.  They should be used very sparingly, especially
the latter, and there is alternative concrete syntax, such as  p(x) for al l x,
or even “p(x)  holds for all  x” and “p(x)  holds for some  x”, much closer to

12So, be wary of the informal use of  p ⇒ q, voiced as  “p  implies  q”.  (See [Hr] for a nice
discussion of this and similar issues.)  The risk is high that “q  is true” will be understood,
which may be wrong.  The safe use of this in reasoning demands that two different statements
be proved:  that  p ⇒ q  is true (whatever the values of the free parameters in both  p  and  q,
which may affect their truth values) and that  p  is true.  One can then conclude that  q  is
true.  Misuses of this basic and celebrated logical mechanism are too often seen.  The most
common mistake consists in carefully proving that  p ⇒ q   holds, while overlooking that  p
can be false (for some values of the free variables that appear in it), and to go on believing
that  q  has been proved.

13Abstract syntax deals with the deep structure of formal expressions (including
programming languages).  Concrete syntax is concerned with the choice of symbols, their
position, how they are set, etc.  See [Mr].

14One may fear some logical loophole here, but no worry:  the definition of “free” and
“bound” (they are antonyms) is recursive.  If a variable appears at only one place, it’s free,
and the only way to bind two occurrences of the same variable is to invoke one among a
limited list of binding mechanisms, including the use of the so-called “quantifiers”  ∀  and  É,
as described above.

natural language, while still being unambiguous.
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There is no reason to deny oneself the convenience of a shorthand,
however—for instance, in constructs of the form “Find  h  such that

(p) iω  ∫ µ h · h' + ∫ σ rot h · rot h' = 0    ∀ h' ∈ IH.”

This one means that the equality  iω  ∫ µ h · h' + ∫ σ rot h · rot h' = 0  should
hold whatever the test field  h', provided the latter is selected within
the allowed class of such fields, which class is denoted by  IH.  The predicate
(p), in which variable  h'  is bound whereas  h  is free, thus expresses a
property of  h, the unknown field, the property that characterizes  h
as the solution to the problem at hand.  To say “ f ind  h  such that   ( . . . ) =
0  for all  h'  which belong to  IH” is the same prescription, only a little
more verbose.  But to omit the clause  “∀ h' . . . ”  or “for all  h' . . . ”,
whatever the concrete syntax, would be a capital sin, turning the precise
statement of a problem into gibberish.  The issue is not tidiness, or lack
thereof, but much more importantly,  meaning:  Without the clause
“∀ h' ∈ IH”, the problem is not posed at all.

A.1.9  A notation for functions

Before leaving this Section, I wish to explain an idiosyncrasy that you
also may find convenient at times.

Many functions are defined via algebraic expressions.  Take for instance
the expression 15  x2

 +  2x +  1.  The set   {{x, y} ∈ IR × IR :  y = x2 + 2x + 1}
defines a functional relation,  f  say.  I find convenient, time and again, to
write this

(e) f = x → x2 + 2x + 1,

which should be parsed as suggested by Fig. A.12 and understood as follows:
“Let’s name  f  the function that maps the real number  x  to the real
number that results from evaluating the expression  x 2 + 2x + 1.”  (Of course,
the arrow should not be read as “tends to”, according to the more standard
convention, which I avoid, except in unambiguous constructs such as

15An expression is just a combination of symbols that conforms to some definite syntax.  In
algebraic expressions, two kinds of symbols are allowed:  variables or constants, of definite
types (here, the real  x  and the integer  2), and relational symbols (here,  +  and the
exponentiation) that belong to a specific algebra (here, standard arithmetic).  To evaluate the
expression consists in assigning to the variables definite values, and doing the computation
according to the rules of the algebra.  Note that the same expression could make sense in
other algebras:  x  can be a matrix, for instance.

lim ε →  0 . . . , etc.)
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→ 2 f   =      x          x      +  2 x  + 1

FIGURE A.12.   Parsing  (e), that is, finding its logical structure, here indicated by
the hierarchy of nested boxes, as a syntactic analyzer would do, if instructed of
precedence rules:  Multiplication and exponentation take precedence over
addition, the arrow is weaker than all operational symbols, and  =  is the weakest
link of all.

On both sides of the equal sign in (e) we have the same mathematical
object, a function, only differently tagged:  by its name  f  on the left, and
by the whole expression  x → x2 + 2x + 1  on the right.  (Variable  x  is
bound in this expression:  another example of the binding mechanism.)  So
the equal sign is quite legitimate at this place.  On the other hand, the
arithmetic expression  x2 + 2x + 1  (where  x  is a free variable) is  not the
function, and to write  f = x2 + 2x + 1  would be highly incorrect.16

Why not simply  f(x) = x 2 + 2x + 1 ?  This is a bit ambiguous, because it
can also stand for the statement of an equality, unless you declare explicitly
your intention to use it as a function definition.  Hence the frequent use of a
special symbol,  è  or  :=, for “is defined as”, like this:  f(x) è x2 + 2x + 1.
But if special symbol there must be, better choose the arrow, which puts
emphasis on the right object, the defined one, which is  f, not17  f(x).
Also, the arrowed notation can be nested without limits, as the following
example will show.

Given a function  q  on 3D-space, which may represent for instance an
electric charge density, one may define its Newtonian  potential (the
electric potential, in that case, up to the factor  ε0) as follows:

ψ = x → 1
4π ∫

q(y

| x –  y|
dy,

where  dy  is the volume element and  |x − y|  the distance between  points

16If you think I insist too much on such trivia, pay attention to the practice of physics
journals:  most often,  f(x)  refers to a function, and  f  to its value.  Mathematicians do exactly
the opposite:  f  is the function,  f(x)  its value at  x.  This schism is all the more detrimental to
science in that it goes generally unnoticed.

17One might argue that  f(x) è x 2 + 2x + 1  needs some quantifier, such as perhaps  ∀, to
really define  f.  Actually, a quantifier has been designed for just that purpose:  the  λ  of
“lambda-calculus”.  Cf. [Kr].

x  and  y.  (Observe that  y  is bound in the integral—yet another binding
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mechanism—and  x  free, and how the arrow binds  x.)  Now, one may
define a new function, of higher level:  G = q → ψ, that is, the operator
(named after Green) that maps  q  to  ψ.  Instead of this two-step definition,
we may, thanks to the arrowed notation, write

G = q → (x → 
1

4π ∫
q(y)

| x –  y|
dy ) ,

in one stroke.  (Parentheses force the correct parsing.)  This is a precious
shortcut at times, to be used sparingly, of course.

This is the first example we encounter of a function defined on a set
whose elements are themselves functions, and which maps them to other
functions.  For clarity, such functions are called  operators (especially when,
as in the present case, the correspondence is linear).  When the set they
map to is  IR, the word functional is used (cf. p. 62).

The arrowed notation is especially useful when variables and
parameters occur together.  Examine this:

grad(y → 
|x – y|

1 ) = y → 3|x –  y|

x – y

(an equality between two vector fields, since  x – y  is a vector).  Here,  x  is
the parameter,  y  the variable, and there is no ambiguity as to which
gradient, with respect to  x  or to  y, we mean.

Expressions other than arithmetic can be put on the right of the arrow:
conditional expressions, and even whole programs.   For example, we may
have this

g = x → i f  x ≥ 0  then  x2 + 2x + 1 e lse 0,

h = x → i f  x ≥ 0  then  x2 + 2x + 1.

The difference between  g  and the previously defined  f  (cf. (e))  is clear
(they differ for  x ≤ 0), but what about  h  with respect to  f  ?  They surely
differ, since  dom(f) = IR, whereas  dom(h) = {x ∈ IR :  x ≥ 0}.  Yet their
defining expressions are the same.  But  h  is the restriction of  f  to the
positive half-line.  As this example shows, the domain of a function should
always be described with precision, for the expression or fomula or recipe
for evaluating the function may well make sense beyond this domain.18

We’ll see this phenomenon recur when we study the differential

18Consider  f = x → (x2 – 2x + 1)/(x – 1), with  dom(f) = IR – {1}.

operators  grad,  rot,  div.   Different operators will similarly be called
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“gradient”, for instance, and will differ by the extent of their respective
domains.

A.2  IMPORTANT STRUCTURES
A.2.1  Groups

Groups are important, not only because many mathematical structures like
linear space, algebra, etc., are first and foremost groups, with added
features, but as a key to symmetry.

A group is a set equipped with an associative binary operation, with
a neutral element and for each element, an inverse.  Examples:  the group
Û  of relative integers, the regular matrices of some definite order, etc.

As these two examples show, the group operation may or may not be
commutative, hence a notational schism.  Commutative, or Abelian, groups,
like  Û, are often denoted additively.  But in the general case, the operation
is called a product, denoted without any symbol, by simple juxtaposition,
the neutral element is  1, and the inverse of  g  is  g–1.

A group  G  acts on a set  X  if for each  g ∈ G  there is a map from  X  to
X, that we shall denote by  π(g), such that  π(1)  is the identity map, and
π(gh) = π(g)  π(h) .19  Observe, by taking  h = g–1, that  π(g)  must be
bijective, so  π(g)  is a permutation of  X.  The set  {π(g) :  g ∈ G}  is thus a
group of permutations, 20 the group law being composition of maps.  Let’s
denote this set by  π(G).

The same abstract group can act in different ways on various related
geometric objects:  points, vectors, plane figures, functions, fields, tensors,
etc.  What counts with groups is their actions.  Hence the importance of
the related vocabulary, which we briefly sketch.

The action is f a i th fu l, or e f fect ive , if  π(g) = 1  implies  g = 1.  (Informally,
an action on  X  is effective if all group elements “do something” on  X.)  In
that case,  G  and  π(G)  are isomorphic, and  π(G)  can be seen as a “concrete”
realization of the “abstract” group  G.  This justifies writing  gx, instead of
π(g)x, for the image of  x  by  π(g).  The orbit of  x  under the action of  G  is

19This is called an action on the left, or left action, as opposed to a right action, which would
satisfy  π(gh) = π(h) o π(g), the other possible convention.  A non-Abelian group can act
differently from the left and from the right, on the same set.  All our group actions will be on
the left.

20A subgroup of the “symmetric group”  S(X), which consists of all permutations on  X,
with composition as the group law.

the set  {gx :  g ∈ G}  of transforms of  x.  Points  x  and  y  are in the same
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orbit if there exists some group element  g  that transforms  x  into  y.  This
is an equivalence relation, the classes of which are the orbits.  If all points
are thus equivalent, i.e., if there is a single orbit, one says the action is
transitive.  The isotropy group (or stabilizer, or little group)  of  x  is the
subgroup  Gx = {g ∈ G :  gx = x}  of elements of  G  that fix  x.  A transitive
action is regular if there are no fixed points, that is,  Gx = 1  for all  x
(where  1  denotes the trivial group, reduced to one element).

In the case of a regular action,  X  and  G  look very much alike, since
they are in one-to-one correspondence.  Can we go as far as saying they are
identical?  No, because the group has more structure than the set it acts
upon.  For a simple example, imagine a circle.  No point is privileged on
this circle, there is no mark to say “this is the starting point”.  On the
other hand, the group of planar rotations about a point (where there  is a
distinguished element, the identity transform) acts regularly on this circle.
Indeed, the circle and this group (traditionally denoted  SO2) can be
identified.  But in order to  do this identification, we must select a point of
the circle and decide that it will be paired with the identity transform.
The identification is not canonical, and there is no group structure on the
circle before we have made such an identification.

The concept of homogeneous space subsumes these observations.  It’s
simply a set on which some group acts transitively and faithfully.  If,
moreover, the little group is trivial (regular action), the only difference
between the homogeneous space  X  and the group  G  lies in the existence
of a distinguished element in  G, the identity.  Selecting a point  O  in  X
(the origin) and then identifying  gO  with  g —hence  O  in  X  with  1  in
G —provides  X  with a group structure.

So when homogeneity is mentioned, ask what is supposed to be
homogeneous (i.e., ask what the elements of  X  are) and ask about the
group action.  (As for isotropy and other words in tropy, it’s just a special
kind of homogeneity, where the group has to do with rotations in some
way.)

A.2.2  Linear spaces:  Vn,  An

I don’t want to be rude by recalling what a vector space  (or linear space)
is, just to stress that a vector space  V  is already a group (an Abelian one),
with the notion of scalar 21 multiplication added, and appropriate axioms.
The span  Ì {v i :  i ∈ J }  of a family of vectors of  V  is the set of all

21Unless otherwise specified, the field of scalars is  IR.

weighted sums  ∑ i ∈ J  α
i vi, with scalar coefficients  α i  only a f inite
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number of which are nonzero (otherwise there is nothing to give sense to
the sum).  This span, which is a vector space in its own right, is a  subspace
of  V.  A family is linearly independent if the equality  ∑ i α

i v i = 0  forces
all  α i = 0.  The highest number of vectors in a linearly independent family
is the dimension of its span, if finite;  otherwise we have an infinite
dimensional subspace.  The notion applies as a matter of course to the
family of all vectors of  V.  If the dimension  dim(V)  of  V  is  n, one may,
by picking a basis (n  independent vectors  e1, . . . , en), write the generic
vector  v  as  v1 e1 + . . . + vn en, hence a one-to-one correspondence  v ↔
{v1, . . . , v

n}  between  v  and the   n-tuple of its components.  So there is an
isomorphism (non-canonical) between  V  and  IRn, which authorizes one to
speak of t h e  n-dimensional real vector space.  That will be denoted  Vn.
Don’t confuse  V n  and  IRn, however, as already explained.  In an attempt
to maintain awareness of the difference between them, I use boldface for
the components,22 and call the  n-tuple  v = {v1, . . . , v

n}  they form, not
only a vector (which it is, as an element of the vector space  IRn), but a
vector.  Notation pertaining to  IRn  will as a rule be in boldface.

A relation  r = {V, W, R}, where  V  and  W  are vector spaces is l inear
if the graph  R  is a vector space in its own right, that is, a subspace of the
product  V × W.  If the graph is functional, we have a linear map.  Linear
maps   s : V → W  are thus characterized by  s(x + y) = s(x) + s(y)  and  s(λx)
= λs(x)  for all factors.  Note that  dom(s)  and  cod(s)  are subspaces of  V
and  W.

Next, affine spaces.  Intuitively, take  Vn, forget about the origin, and
what you have got is  A n, the  n-dimensional affine space.  But we are now
equipped to say that more rigorously.  A vector space  V,  considered as an
additive group, acts on itself (now considered just as a set) by the mappings
π(v) = x → x + v, called translations.  This action is transitive, because for
any pair of points  {x, y}, there is a vector  v  such that  y = x + v, and
regular, because  x + v ≠ x  if  v ≠ 0, whatever  x.  The structure formed by  V
as a set23 equipped with this group action is called the affine space  A
associated with   V.  Each vector of  V  has thus become a point of  A, but
there is nothing special any longer with the vector  0, as a point in  A.

More generally, an affine space  A  is a homogeneous space with respect

22At least, when such components can be interpreted as degrees of freedom, in the
context of the finite element method.  Our DoF-vectors are thus vectors.  (Don't expect
absolute consistency in the use of such conventions, however, as this can't be achieved.)

23Be well aware that  V  is first stripped of its operations, thus becoming a mere set, then
refurnished with this group action, to eventually become something else, namely  A.

to the action of some vector space  V, considered as an additive group.  By
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selecting a point  0  in  A  to play origin,
we can identify vector  v  of  V  with
point  0 + v  of  A.  But there may be no
obvious choice for an origin.  For example
[Bu], having selected a point  x  and a
line  l  through  x  in 3D space, all planes
passing through  x  and not containing  l
form an affine space (inset).  None of
them is privileged, and the group action
is not obvious.24  For an easier example, consider a subspace  W  of some
vector space  V, and define an equivalence  r  by  u r v ⇔ v – u ∈ W.
Equivalence classes have an obvious affine structure (W  acts on them
regularly  by  v → v + w)  and are called affine subspaces of  V, p a r a l l e l to
W.  Of course, no point of an affine subspace qualifies more than any other
as origin.

Remark A.3.  The latter is not just any equivalence relation, but one which
is compatible25 with the linear structure:  if  x r y, then  λx r λy, and
(x + z)  r (y + z).  This way, the quotient
X/r  is a vector space.  Now if one wants
to select a representative section, it
makes sense to preserve this compati-
bility, by requesting this section to be a
vector subspace  U  of  V  (inset, to be
compared with Fig. A.9), which is said
to be complementary with respect to  W.
Then each  v ∈ V  can uniquely be written
as  v = u + w, with  u ∈ U  and  w ∈ W.  Again, don’t confuse the quotient
V/r  with the complement  U, although they are isomorphic.  ◊

Affine space is perhaps the most fundamental example of homogeneous
space.  From a philosophical standpoint, the fact that we chose to do
almost all our applied physics in the framework provided by  A3  (plus,
when needed, a time parameter) reflects the  observed homogeneity of the
space around us.

24Take a vector  u  parallel to  l, and  two parallels l '  and  l"  to  u, distinct from  l. They
pierce plane  x  at  x'  and  x".  The “translation” associated with  {λ', λ"} ∈ IR2  is the mapping
x → {the plane determined by  0,  x' + λ' u, x" + λ" u}.

25Note the importance of this concept of compatibility between the various structures
put on a same set.
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What you can do on VECTORS may not be doable on POINTS.  Indeed,
the product  λx  is meaningless in an affine space:   What makes sense is
barycenters.  The barycenter of points  x  and  y  with respective weights  λ
and  1 – λ  is  x + λ(y – x).  Generalizing to  n  points is easy.  Affine
independence, dimension of the affine space, and affine subspaces follow
from the similar concepts as defined about the vector space.  Barycentric
coordinates could be discussed at this juncture, if this had not already
been done in Chapter 3.26

Affine relations  are characterized by affine graphs.  If the graph is
functional, we have an affine map.  Affine maps on  An  are those that are
linear with respect to the  (n + 1)-vector  of barycentric coordinates.  Affine
subspaces are the pre-images of affine maps.  Affine subspaces of a vector
space are of course defined as the affine subspaces of its associate.  The
sets of solutions of equations of the form  Lx = k, where  L  is a linear map
(from  Vn  to  Vm,  m ≤ n) and  k  a vector, are affine subspaces, and those
corresponding to the same  L  and different  k’s  are parallel.  The one
corresponding to  k = 0  (called kernel of  L, denoted  ker(L)) is the vector
subspace parallel to them all.

If  x  is a point in affine space  A, vectors of the form  y – x  are called
vectors at   x.  They form of course a vector space isomorphic with the
associate  V, called tangent space at  x, denoted  Tx.  (In physics, elements
of  V  are often called free vectors , as opposed to bound vectors, which are
vectors “at” some point.)  The tangent space to a curve or a surface that
contains  x  is the subspace of  T x  formed by vectors at  x  which are tangent
to this curve or surface.  Note that vector fields are maps of type POINT
→ BOUND_VECTOR, actually, with the restriction that the value of  v
at  x, denoted  v(x), is a vector at  x.  The distinction between this and a
POINT → FREE_VECTOR  map,  which may seem pedantic when the
point spans ordinary space, must obviously be maintained in the case of
fields of tangent vectors to a surface.

A convex set in an affine space is a part  C  such that

(x ∈ C  and  y ∈ C) ⇔  λx + (1 – λ)y ∈ C   ∀ λ ∈ [0, 1].

Affine subspaces are convex.  The intersection of a family of convex sets is
a convex set.  The convex hull  of a part  K  is the intersection of all convex
sets containing  K, and thus the smallest of such sets.  It coincides with the
union of all barycenters, with nonnegative weights, of pairs of

26One may—but it’s a bit more awkward than the previous approach—define affine
spaces ab initio, without first talking of vector spaces, by axiomatizing the properties of the
barycentric map, which sends  {x, y, λ}  to  λx + (1 – λ)y.

points of  K.
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Let us finally discuss orientation of vector and affine spaces (cf. 5.2.3).
This cannot be ignored, because of the prominent role played in electromag-
netism by the cross product and the curl operator—both “sensitive to
orientation”, in a sense we shall discover later.

A f rame in  Vn  is an (ordered)  n-tuple of linearly independent vectors.
Select a basis (which is thus a frame among others), and look at the
determinant of the  n  vectors of a frame, hence a FRAME → REAL function.
This function is basis-dependent, of course.  But the equivalence relation
defined by “f ≡ f  '  if and only if frames  f  and  f  '  have determinants of
same sign” does not depend on the basis, and is thus intrinsic to the structure
of  Vn.  There are two equivalence classes with respect to this relation.

Orienting  Vn  consists in designating one of them as the class of
“positively oriented” frames.  This amounts to defining a function, which
assigns to each frame a label, like e.g., “direct” and “skew”.  There are
two such functions, therefore two possible orientations.  (Equivalently,
one may define an oriented vector space as a pair  {vector space, privileged
basis}, provided it’s well understood that this basis plays no other role
than specifying the orientation.)

Subspaces of  Vn  also can be oriented, by the same procedure, and
orientations on different subspaces are unrelated things.  Affine subspaces
are oriented by orienting the parallel vector subspace.  For consistency,
one agrees that the subspace  {0}  can be oriented, too, by giving it a sign,  +
1 or  – 1.   Connected patches of affine subspaces, such as polygonal faces,
or line segments (and also, after the previous sentence, points), can be
oriented by orienting the supporting subspace.  Lines and surfaces as a whole
are oriented by conferring orientations to all their tangents or tangent planes
in a consistent27 way, if that can be done.  (It cannot in the case of a Möbius
band, for instance.)

There is another kind of orientation of subspaces (and hence, of lines,
surfaces, etc.), called outer orientation.  By definition, an outer orientation
of a  p-dimensional subspace  W  of  V n  is an orientation of one of its
complementary subspaces  U, as previously defined (Remark A.3).  As we
saw in Chapter 5 in the case  n = 3, this formalizes the concepts of “crossing
direction” when  p = 2, and of “way of turning around” a line when  p = 1.
I f the ambient space is oriented, outer orientation of  W  determines an
inner orientation:  Given a frame in  W, made of  p  vectors,  one may add

27I hope this makes intuitive sense.  One cannot be more precise without introducing
manifolds and charts, that is, starting a differential geometry course.

to them the  n – p  vectors of a posit ive ly oriented frame in  U, hence a
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frame of  Vn, which falls into one of the two orientation classes, hence the
orientation of the original frame.

A.2.3  Metric spaces

A metric space   {X, d}  is a set  X  equipped with a distance, that is, a
function  d :  X × X → IR  such that  d(x, y) = d(y, x) ≥ 0  ∀ x, y ∈ X, with
d(x, y) > 0  if  x ≠ y, and  d(x, z) + d(z, y) ≥ d(x, y)  ∀ x, y, z.

Metric-related notions we may have to use are open ball  B(x, r) =
{y ∈ IR :  d(x, y) < r}, open set (a part  A  which if it contains  x  also
contains an open ball centered at  x), closed set (one the complement of
which is open), distance  d(x, A)  of a point  x  to a part   A  (which is
inf{d(x, y) :  y ∈ A}), adherence or closure  A  of a part  A  (all points  x  of
X  such that  d(x, A) = 0), interior of  A  (points such that  d(x, X – A) > 0,
set denoted  int(A)  when we need it), boundary  ∂A  of  A  (points for
which  d(x, A) = 0  and  d(x, X – A) = 0).  A sequence  {xn ∈ X :  n ∈ IN}
converges if  lim n → ∞ d(xn, x) = 0  for some  x ∈ X, called the l imi t, which
one immediately sees must then be unique.  By taking all the limits of all
sequences whose elements belong to a part  A, one obtains its closure.28  A
part  A  is dense in  B  if  A  contains  B, which means (this is what counts
in practice) that for any  b ∈ B  and any  ε > 0, there is some  a ∈ A  such
that  d(a, b) < ε.  This is strictly the same as saying that one can form a
sequence  {an ∈ A :  n ∈ IN}  that converges towards  b.  A metric space  X  is
separable if it contains a denumerable dense part.

Weaker than the notion of limit is that of accumulation point :  Let us
say (this is not part of the received terminology) that a family “clusters”
at  x  if one can extract from it a sequence that converges to  x  (then called
an accumulation point for this family).  Convergent sequences cluster at
their limit (and at no other point).  Some sequences may not cluster at all.
Compact parts of a metric space are closed parts in which any sequence
must cluster at some point.

These notions are useful in approximation theory (Chapter 4).  For
instance, the union of all approximation spaces, for all imaginable meshes
of a given domain, form a dense set in the set of all eligible fields, for the
energy distance.  Moreover, the family of approximate solutions, indexed
over these meshes, clusters at the right solution.  But knowing that is not
enough.  What one wants, which is more difficult, is to devise “refinement

28Beware:  This equivalence, like some others this list suggests, may not hold in topological
spaces whose topology cannot be described by a distance.

rules” which, starting from any mesh, generate a sequence of finer meshes
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with the property of convergence of the corresponding approximate
solutions.  (Incidentally, the functional space must be separable for this to
be possible, since elements of the form  ∑ i ∈ J ϕϕϕϕi λ

i, where the coefficients  ϕϕϕϕi
take rational values only, and  J  is the union of the sequence of Galerkin
bases, form a dense denumerable set.  Most usual functional spaces are
separable, as a corollary of the Weierstrass theorem 29 on polynomial
approximation of continuous functions.)

A function  f  from  {X, d}  to  {X', d'}  is continuous if it maps converging
sequences of  X  to converging sequences of  X'.  This is equivalent to saying
that the pre-image of a closed set is closed.  The function  f  is uniformly
continuous if for each  ε > 0, there exists  δ(ε)  such that, for any pair  {x, y}
of points taken in  dom(f),  d(x, y) <  δ(ε)  implies  d'(f(x), f(y)) <  ε.  Obviously
(this is a standard exercise in manipulating quantifiers), uniform continuity
is logically stronger than simple continuity, but the two notions coincide
when  f  is affine.  An isometry from  {X, d}  to  {X', d'}  is a function  f  such
that  d'(f(x), f(y)) = d(x, y)  for all  {x, y}  in  dom(f).  This implies
one-to-oneness, and uniform continuity of  f  and of its reciprocal, and
therefore, homeomorphism (existence of a one-to-one map continuous in
both directions), but is stronger.30

Remark A.4.  You may be excused for guessing that continuous functions are
functional relations with a closed graph, for this seems so natural.  But
it’s wrong . . .  For instance, the “weak gradient” of Chapter 5 has a closed
graph in  L2(D) × IL2(D), but is not continuous.  (Relations between continuity
of functions and closedness of their graphs are governed by the “Banach
theorem”, a deep result which belongs to the hard core of functional
analysis, but is not used here.  See [Br].)  ◊

If a sequence clusters, its image by a continuous function clusters, too, so
the continuous image of a compact part is compact.  In particular, a real-
valued continuous function whose domain is compact reaches its minimum
and its maximum, since its image is closed.
Remark A.5.   This obvious result is important in proving existence of
equilibrium configurations in many physical situations.  Suppose the set
of states  S  can be described as a normed space (see below), the norm of a
state being precisely its energy.  (This is what we do in Chapters 2, 3, and
4.)  States of bounded energy that satisfy specific constraints (of the kind

29Given a nonempty compact subset  K  of  IRn, a continuous function  f :  K → IR, and  ε
> 0, there exists a polynomial  p :   IRn → IR  such that  |f(x) – p(x)| < ε  for all  x ∈ K.

30So strong actually, that it implies much more.  For instance, a theorem by Mazur and
Ulam asserts that a surjective isometry between real Banach spaces is affine [MU].

f(x) = 0, where  f  is a continuous function) then form a closed bounded set.
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Such a set is compact if  S  is of finite dimension, because then any bounded
sequence must cluster somewhere (as shown by the well-known
Bolzano–Weierstrass proof).  But such a sequence need not cluster in infinite
dimension, since there are an infinity of directions in which to go.  This is
why existence proofs for variational problems in infinite-dimensional
functional spaces always require some structural element to supply, or
replace, the missing compactness.  Quite often (as will be the case with
the projection theorem proved a little later, and in 3.2.1) convexity,
associated with completeness (see A.4.1 below) is this element.  ◊

The support of a real- or vector-valued function  f  on a metric space  X
is the closure of the set  {x ∈ X :  f(x) ≠ 0}.  Don’t confuse support and
domain.

A useful density result, often invoked is this book, can informally be
expressed as follows:  Smooth fields over  E3  form a dense set among fields,
in the energy norm.  To be more precise, let  h  be a vector field such that
∫E3

 |h(x)|2 dx < ∞, and denote by  ||h ||  the square root of this energy-like
integral.  Take a moll i f ier  ρ, that is, a real-valued  C∞  function on  E 3,
nonnegative, with bounded support, and such that  ∫ ρ = 1.   Define the
sequence  hn  by31

(∗) h n(x) = ∫E3 
 ρ(y) h(x – y/n) dy,

or in more compact notation,  hn = ρn ∗ h, where  ∗  denotes the convolution
product, and  ρn = x → n1/3 ρ(nx).  The outcome of such a product is as smooth
as the smoothest factor (“regularizing property” of convolution), so  hn  is
C∞.  (This result, if not its proof, is intuitive:  If  ρ  is smooth, one can
differentiate under the summation sign in (∗), indefinitely.)  Now, evaluate
the quadratic norm of  h – hn :  A tricky computation, which makes use of
Fubini’s theorem (see, e.g., [Pr]), and thus roots deeply in Lebesgue
integration theory, will show that this norm tends to 0.  Hence the density.
The result is easily extended to fields over  D  by restriction.

We made repeated use of this when invoking the following argument,
either in this form or in a closely related one:  Suppose  f ∈ L2(D)  and  ∫ f ϕ
= 0  for all  ϕ ∈ C∞(D).  By density, there is a sequence  ϕn  in  C∞(D)  which
converges towards  f.  Each term of the sequence  ∫ f ϕn  is zero, and its limit
is  ∫ | f |

2  by continuity of the scalar product, hence  f = 0  a.e.  See for

31This way,  h n(x)  is a weighted average of values of  h  at points close to  x.  One often
assumes a nice shape for the graph of  ρ  (centered at the origin, invariant by rotation, etc.),
but this is not required, as far as theory is concerned.

instance the proof of Prop. 2.1, p. 43.
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A p a t h in a metric space is a continuous mapping  c :  [0, 1] → X.  A
circuit,32 or l oop, is a path that closes on itself (c(0) = c(1)).  Let’s call
p a t c h  a continuous mapping  C :  [0, 1] × [0, 1] → X.  A part of a metric space
is connected if two of its points,  x  and  y, can always be joined by a path  c,
that is, with  c(0) = x  and  c(1) = y.  A connected open set is called a
domain.  We know the word in a different sense already, but this dual use
should not be too confusing, for the “domain of definition” of a function or
a field is often a domain in the present topological sense, and the context
always makes clear what one means.

Two circuits  c0  and  c1  are homotopic if there is a patch  C  such that
c0 = s → C(s, 0)  and   c1 = s → C(s, 1), with  C(0, t) = C(1, t)  for  all  t  in
[0, 1].   This means one can be continuously deformed into the other, all
intermediate steps being loops.33  A metric space  X  is simply connected  if
any circuit is continuously reducible to a point, that is, homotopic to a
circuit of the form  c(t) = x  ∀ t ∈ [0, 1], where  x  is a point of  X.

A.2.4  Normed spaces, Euclidean norms

Being metric and being a vector or affine space are two different things,
but if a set bears both structures, they had better be compatible.  Suppose
X  is an affine space, with associated vector space  V, and a distance  d.
The two structures are compatible if  d(x + v, y + v) = d(x, y), for all points
x, y  and all translation vectors  v ∈ V.  Then, once selected an origin  0, the
real-valued function on  V  defined by  ||v|| = d(0, 0 + v)  has the following
properties, which characterize, by definition, a norm:  ||v|| > 0  unless  v =
0,  ||λv|| = |λ|||v||  for all  v  in  V  and real  λ, and  ||v + w|| ≤ ||v|| + ||w||.  If,
conversely, a vector space has a norm  ||  ||, the distance this induces on the
associated affine space,  d(x, y) = ||x – y ||, is compatible with the affine
structure.  A normed space  is, in principle, a vector space  V  equipped
with a norm, but you will often realize, thanks to the context, that what
is really implied is the associated affine metric space.

Norms often stem from a scalar product,  that is, a real-valued mapping,
denoted  (  ,  ), from  V × V  to  IR, linear with respect to both arguments,

32For some, “circuit” implies more smoothness than mere continuity of  c.
33More generally, two maps  g0  and  g1  from  Y  into  X  are homotopic if there is a

continuous map  f  from  Y × [0, 1]  into  X  such that  f(s, 0) = g0(s)  and  f(s, 1) = g 1(s).  One of
the rare merits of some recent science-fiction movies has been to popularize this notion, since
it happens to be the formalization of the concept of “morphing”.  The case of loops is when  Y
is a circle.

symmetrical (i.e.,  (v, w) = (w, v)  for all  {v, w}), and overall, posit ive
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def inite, that is

(v, v) > 0  ⇔  v ≠ 0.

The norm of a vector  v  is then defined as  ||v|| = [(v, v)]1/2.  Thereby,
notions such as orthogonality (v  and  w  are orthogonal if  (v, w) = 0,
which one may denote  v ⊥ w) and angle (the angle of two nonzero vectors
v  and  w  is  arc cos((v, w)/||v|| ||w||)) , make sense.  A vector space with
scalar product is a “pre-Hilbertian space”, a structure we shall study in
its own right later.

The most familiar example is when  V = Vn.  Then we rather denote
the norm  ||v||  by  |v|, the scalar product  (v, w)  by  v · w, call them the
modulus and the dot product respectively, and say that they confer a
Euclidean structure (or a metric) on  Vn  and its affine associate  An, via the
Euclidean distance  d(x, y) = |x – y|.  Euclidean geometry  is the study of
the affine metric space  {An, d}, called  n-dimensional Euclidean space.
(Why the singular in “space” will be discussed below.)

B
5

B
6

B1

B 2

B 3

B 4

FIGURE A.13.  Convex sets  B 1, B2, B5, and  B 6  are barrels, but  B3  (not bounded)
and  B4  (not absorbing) are not.  Observe the various degrees of symmetry of
each barrel.  Only those on the right generate Euclidean norms.

Other norms than Euclidean ones can be put on  Vn, as suggested by Fig.
A.13.  All it takes is what is aptly called a barrel, that is a bounded,
closed, absorbing, and balanced convex set  B:  Balanced means that
– v ∈ B  if  v ∈ B, absorbing that for every  v, there exists  λ > 0  such that
λv  belongs to  B, closed, that the real interval  I(v) = {λ :  λv ∈ B}  is
closed for all  v, and bounded, that  I(v)  is bounded for all  v ≠ 0.  One then
sets  |v|B = 1/sup{λ :  λ ∈ I(v)}, and this function (the inverse of which is
called the gauge associated with  B) is easily seen to be a norm.  (Check
that  |v|B =  inf{λ :  v ∈ λB}.)  The closed unit ball for this norm is then the
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barrel  B  itself.  (Notice how the two different notions of closedness we
had up to now are thus reunited.)

Barrels that generate Euclidean norms (that is, ellipsoids) are
obviously “more symmetrical” than others (Fig. A.13).  A bit of group theory
confirms this intuition.  Let’s denote by  GL n, and call linear group , the
group of all bijective linear maps on  Vn.  (It’s isomorphic, via a choice of
basis, with the group of  n × n  regular matrices, but should not be confused
with it.)  Let us set  G(B) = {g ∈ GLn :   v ∈ B ⇔ gv ∈ B}, the subgroup of
linear transforms that leave  B  globally invariant, that is to say, the
little group of  B  relative to the action of  GLn  on subsets of  Vn.  We see
immediately, on the examples of Fig. A.13, where  n = 2, what “more
symmetrical” means:  G(B1)  has only two elements (the identity and the
reflection  v → – v  with respect to the origin),  G(B2)  has four, whereas
G(B5)  and  G(B 6)  have an infinity (both groups are isomorphic with  SO2,
actually).  It can be shown (but this is beyond our reach here) that Euclidean
barrels are those with maximal34 isotropy groups, and thus indeed, the
most symmetrical barrels that can exist.

This symmetry is what is so special about Euclidean norms.  A bit
earlier, we remarked that physical homogeneity of the space around us
was reflected in the choice of affine space as framework for most our
modellings.  One may add to this that isotropy of physical space is reflected
in the use of Euclidean norms, hence their prominent role.  Indeed, a
Euclidean norm privileges no direction :35  If  v  and  w  both belong to the
surface of a Euclidean barrel  B, there is a linear transform  g ∈ G(B)  such
that  w = gv.  In other words, the action of  G(B)  on the surface of  B, that
is to say, its action on directions, is transitive.  This is not true of other
barrels.

Alternatively (as one easily sees, the two properties are equivalent),
one may say that  GLn  acts transitively on the set of all Euclidean barrels.

34More precisely:  Define the unimodular group  SLn  as the subgroup of linear maps that
are represented, in some basis, by matrices of determinant 1.  (This definition is in fact basis
independent.)  Then maximal proper subgroups of  SLn, all isomorphic with the group of
orthogonal  n × n  matrices, are the isotropy groups of Euclidean barrels.

35In spite  of what Fig. 13, right part, seems to suggest:  One may feel like objecting “what
about the principal directions of the ellipsoids  B 5  or  B6 ?”  But there is nothing special with
these directions.  They are spurious, due to the fact that we commit ourselves to a specific
basis just to do the drawing.   They will disappear if one selects the eigenvectors as basis (then  B
becomes a disk).  Contrast this with the two “axes” of  B2, which no change of basis can erase.
Denizens of a flat world with a metric governed by the barrel  B 2  would be able to recognize
the existence of privileged directions in their universe.  Ask any New Yorker.

In other words, given two scalar products  “ · “ and  “ .  “, there is a linear
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invertible map  L  such that  v .  w = L  v · Lw.  Which is why one can speak
of t h e Euclidean geometry, t h e Euclidean norm, in the face of apparent
evidence about their multiplicity.  For after all, each choice of basis in
Vn  generates a particular dot product, to wit  v · w = ∑ i v

i wi, where  v  and
w  are the component vectors, so there seems to be as many Euclidean
geometries as possible bases.  Why then t h e Euclidean space?  Because all
Euclidean structures on  Vn  are equivalent, up to linear transformation.
We shall see this in more concrete terms in the next Section.

A.3  OUR FRAMEWORK FOR ELECTROMAGNETISM:  E3

In this book, we work in 3D affine space, and it is assumed all along that
a specific choice of dot product and orientation has been made once and for
all.  Thus, what is called  E3  in the main text is always oriented Euclidean
three-dimensional space.

Note that the all-important notion of cross product would not make
sense without orientation:  By definition,  u × v  is orthogonal to both  u
and  v  and its modulus is  |u||v| sin θ, where  θ = arc cos(u · v/|u||v|), but
all this specifies  u × v  only up to sign, hence the rule that  u,  v, and  u × v,
in this order, should make a “positively oriented” frame (cf. p. 287).  This
assumes that one of the two classes of frames has been designated as the
“positive”, or “direct” one.

A.3.1  Grad,  rot, and  div

This subsection discusses the classical differential operators in relation
with these structures.

We pointed out the essential uniqueness of Euclidean space, all
Euclidean structures being equivalent via linear transformations.  This is
so ingrained in us that we forget about the multiplicity of Euclidean metrics,
and it may be appropriate to tip the scales the other way for a while.

Consider two different Euclidean structures on  A3, as provided by two
different dot products “ · ” and “ .  ”, and denote them  E3  and  E3  respectively.
(No orientation yet.)  Let  ϕ :  A3 → IR, a smooth scalar field, be given.  Its
existence owes nothing to the Euclidean structure, obviously.  But what of
its gradient?  If we define  grad ϕ  as the vector field such that
(grad ϕ)(x) · v(x)  = lim λ → 0 (ϕ(x + λv) – ϕ(x)) —and who would object to
that?36—then  grad ϕ  does depend on the Euclidean structure, and we
have two different gradients:  one, grad, for  E 3, and another one,  g r a d
say, for  E3.  Coming back to  A3, where the notions of scalar field and
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vector field do make intrinsic sense, without any need for a metric, we
have obtained two differential operators of type  SCALAR_FIELD →
VECTOR_FIELD, respectively  grad  and  g r a d, which are different.  Of
course—and this is where the equivalence of Euclidean structures lets itself
be felt—they are closely related:  As a consequence of  (g r a d ϕ)(x) .  v =
(grad ϕ)(x) · v, one has  LtL(g r a d ϕ)(x) = (grad ϕ)(x), at all points, hence
LtL g r a d = grad, which corresponds to a change of basis.

Such equivalence suggests that all these different gradients are mere
avatars of a single, intrinsically defined, operator that would make sense
on  A3.  Indeed, this operator exists:  It’s the “exterior derivative” of
differential geometry, denoted  d ;  but to develop the point would lead us
into this “radical way” alluded to in 2.2.3, but not taken.

The situation with the  curl  operator is even worse, because not only
the Euclidean structure, but the orientation of space plays a role in its
definition.

Given  u, we may—by using the Stokes theorem backwards—define
rot u  as the vector field such that its flux through a surface equals the
circulation of  u  along this surface’s boundary.  Both words “through” and
“along” refer to orientation, but the former connotes outer orientation of
the surface, and the latter, inner orientation of the rim.  Since both
orientations can be defined independently, defining  rot  requires they be
related in some arbitrary but definite way.  When the ambient space is
oriented, it becomes possible to establish such a relation (by the corkscrew
rule), as we saw in 5.2.1 and p. 287.  So it’s only in oriented three-dimensional
Euclidean space that  rot  makes sense.  Another way to express this is to
say that for a given dot product, there are two curl operators in three-space,
one for each possible orientation, which deliver opposite fields when fed
with one.

So if we insist on imitating the previous development on  E 3,  E3,  grad
and  g r a d, we must distinguish  +E3  and  –E3, say, to account for the two
possible orientations, as well as  +E3  and  –E3, hence four operators  –rot,
+rot,  –r o t,  +r o t, of type  VECTOR_FIELD → VECTOR_FIELD, defined in
A3.  Again, if the new metric  .   is given by  u .  v = Lu · Lv, and if  L

36Well . . .  One often sees  (grad f)(x)  defined as the vector of coordinates  {∂ 1f, ∂ 2f, ∂3f}
at point  x.  This is a different notion:  The entity thus defined is a covector, that is to say, an
element of the dual of  V3, not a vector.  The  ∂ if’s  are what is called “covariant components”
of  grad f.  Only in the case of an orthonormal frame do they coincide with its ordinary
(“contravariant”) components.

37The new cross-product  ×   is then given by  L(u ×  v) = Lu × Lv.  The reader is
challenged to prove the formulas of Fig. A.14 by proper application of the Stokes theorem.

preserves orientation (which one can always assume), one has37  +r o t =
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det(L–1) +rot LtLu, and this plus the obvious relations  +rot u = – –rot u  and
+r o t u = – –r o t u  makes such changes of metric and orientation manageable
(cf. Fig. A.14), but the lesson is clear:  Classical differential operators are
definitely impractical 38 when it comes to such changes.  Better stay with
the same metric and the same orientation all over.  Problems where this
is too cumbersome, such as computations involving moving (and possibly,
deformable) conductors, call for the more elaborate framework provided
by differential geometry, as discussed in 2.2.3.

•      — grad →        •       — rot →       •       — div →     •
                    ↑                                     ↑                                ↑                                ↑

           1                                   LtL                          det(L)                    det(L)
                    |                                     |                                 |                                 |

•      — g r a d →      •        — rot →     •       — d i v →   •

FIGURE A.14.   Relations between the differential operators associated with two
different dot products.  This is what is called a commutative diagram:  Each arrow
is marked with an operator, and by composing operators along a string of arrows
that joins two dots, one obtains something which depends only on the extreme
points, not on the path followed.  Note that  d i v v = div v.

A.3.2  Digression:  the so-called “axial vectors”

As if this was not complicated enough, someone invented the following
devilish device.  Let’s start from  V3  with a metric, but no orientation.
Using our freedom to create new geometric objects thanks to the mechanism
of equivalence relations and classes, let’s introduce pairs  {v, Or}, where  v
is a vector, and  Or  one of the two classes of frames, decree that  {v, Or}
and  {–  v, – Or}, where  – Or  is of course the other class, are equivalent,
and call the equivalence class an axial vector .  To soothe the vexed ordinary
vector, call it a polar vector.  (As
suggested in inset, the right icon for
an axial vector is not the arrow, but
a segment with a sense of rotation around it.  Note how, just as a polar
vector orients its supporting line, an axial vector "outer orients" this line.
Note also that axial and polar vectors can be associated in one-to-one

38Some solace can be found in the invariance of the divergence with respect to changes
of metric:  div v = d i v v.  If  v  is interpreted as the velocity field of a fluid mass, its
divergence is the rate of change of the volume occupied by this mass, and though the volume
depends on the metric, volume ratios do not.

correspondence, but in two different ways, one for each orientation of

{ , } ≡ { , } =
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ambient space.)  Now define a new operator  rot‘   as follows.  Start from a
field  v   of axial vectors.  Select a representative  {v,  Or}, and define
rot‘ v   as  Orrot v, where  Orrot  is the operator associated with t h i s choice
of orientation.  This is a consistent definition, because  –Orrot(– v) = Orrot(v),
and thus  rot‘ v  is a well-defined polar (yes, polar!) vector field.  Now, lo
and behold, the new operator  rot‘   does not depend on orientation.39

To make use of it, one must then confer the axial status to some of the
vector fields in Maxwell equations.  The electric field, akin to a force, has
nothing to do with orientation and is thus polar.  Then  b  must be axial,
and also  h, because of  b = µh, and of course  d  and  j  are polar.  Excessive
emphasis on such notions, sometimes combined with obscure considerations
of the “axial character” of some physical entities, on “the way vectors
behave under mirror reflection”, and so on, generates much undue confusion.
The tiny advantage of not depending on orientation ( rot‘   continues to depend
on the metric, anyway), is thus dearly paid for.

The key to clarity is to stay aware of the distinction between physical
entities and their mathematical representations.  A vector field is a vector
field is a vector field  . . .  But it often happens to be just an element, the
main one but not the only one, in the description of a physical entity, to
which other elements, standing in background, also contribute.

For instance, the electric field, as a physical object, can be represented
by three mathematical objects, acting in conjunction:  affine space, a dot
product, and (the main item) a vector field denoted  e.  The magnetic
field, still as a physical object, demands a little more:  space, dot product,
an orientation, and (the main item, again) a vector field  b.  Among these
four elements, the first three can be fixed once and for all, thus forming a
background, or “mathematical framework”, here symbolized by  E3, which
can be used for all electromagnetic entities.  Hence the expression of a
physical law such as, for instance, Faraday’s, as a differential relation
between vector fields, namely  ∂tb + rot e = 0.

However, there is some leeway in the choice of items that will be
kept in background.  As the concept of axial vector suggests, one may decide
not to include orientation among them, and have the actors on the stage
(now axial vectors and polar vectors, depending) carry this information
with them all the time.  Hence such orientation-free but also, terribly
contrived, formulations as  – ∂t d‘  + rot‘ h = j‘, and symmetrically,  ∂t b  +

39A similar operator,  rot , also orientation-independent, will act on a polar vector to give
an axial one:  Just define  rot v‘   as the class of the pair  {Orrot v, Or}.

rot e‘  = 0, where rot  is the operator of Note 39.
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But then, why not also bring metric, which is at least as versatile as
orientation, to the foreground?  This is possible by treating  b  and  e  as
differential forms.  Then Faraday’s law takes the form  ∂tb + de = 0, where
d  is the exterior derivative, which is metric- and orientation-independent.
Axial vectors thus appear as an awkward device, which leaves us with a
job less than half-done, at the price of considerable conceptual complexity.

A.3.3  The Poincaré lemma

Curl-free fields are gradients, locally, and divergence-free fields are curls.
The Poincaré lemma is the precise statement of this well-known and
important property.

A domain  D  of  E3  is star-shaped if it contains a privileged point  x 0
such that if  x ∈ D, then  x 0 + λ(x – x0)  belongs to  D  for all  λ ∈ [0, 1].  One
may always select  x0  as origin, which we do in what follows.
Poincaré’s lemma.  Let  e,  b, and  q  be two vector fields and a function,
smooth over a star-shaped domain  D, such that  rot e = 0  and  div b = 0  in
D.  There exists a smooth function  ψ  and smooth fields   a  and  j  such t h a t
e = grad ψ,  b = rot a, and  q = div j, in all  D.

There are explicit formulas for  ψ,
a, and  j, as follows:

(p1) ψ(x) = ∫0
1 x · e(λx) dλ, 

(p2) a(x) = − ∫0
1 x × b(λx) λ dλ,

(p3) j(x) = ∫0
1 x q(λx) λ2 dλ,

where  x  is a fixed point of  D  and  λ  the integration variable, and the
proof is a verification—not that straightforward.  For (p2), for instance,
take the circulation of  a  along a small loop  γ   (inset), compare the result
with the flux of  b  across the surface of the cone centered at  0  generated
by  γ , and apply Stokes to the sole of the cone.

Note that an open ball is star-shaped, so the lemma is always valid
l oca l ly, in the neighborhood of a point.  What is at stake here is the
global result (“in a l l  D”).  It holds in all dimensions, and studying the
proof (as given in [BS], after pp. 94–95 of [Sp], or [Co], or [Sc], p. 140) reveals
what is important in the hypothesis:  not  D  being star-shaped in the
strict sense, but the existence of a deformation–retract, that is, a family  gt
of maps from  D  into itself, continuous with respect to  t  and  x, which
satisfies  g1(x) = x  and  g0(x) = x0  for  all  x ∈ D.  (In the language of Note

τ      
0

x   .

(x) .

γ  
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33, this is a homotopy between the identity map  x → x  and the constant
map  x → x0. )  A metric space is contractible if it can be, so to speak,
collapsed onto one of its points by such a deformation-retract (here,  g t(x)
= tx).  The Poincaré lemma is thus valid for contractible domains of  E3,
actually, even if simple formulas like (p1)–(p3) may not be available.

All simply connected sets of  E2  are contractible.  In  E 3, this condition
is implied by contractibility, but the latter is stronger.  One can prove
that bounded simply connected regular domains with a connected boundary
are contractible.  (This is the criterion we use in Chapter 5.)  For simply
connected regions with non-connected boundary, it is still true that curl-free
fields are gradients, although solenoidal fields may not be curls.

Note that, contrary to what is often lightly asserted, domains where
all irrotational fields are global gradients need not be simply connected.
Figure 8.8, Chapter 8, offers a counter-example.

Formula (p2) is important in electromagnetism, where it is called
“Poincaré gauge” [BS].  A “gauge”, as we saw on p. 274, is a rule by which,
given a solenoidal  b, one can select a particular representative in the
class of vector potentials  a  that satisfy  rot a = b —if there is one, which
Poincaré lemma shows to be the case in contractible regions.  As pointed
out in [Sk], the gauge implied by (p2) is the obvious condition  x · a(x) = 0,
which does not coincide with either the Coulomb or the Lorenz gauge.  In
particular, note that  div a ≠ 0  in (p2).  Poincaré gauge might have useful
applications in some modellings [Ma], and should be better known.

The central importance of Poincaré’s lemma, however, lies elsewhere:
the fact that, for a contractible domain of  E3, the  sequence

               grad                 rot                   div

C∞(D‹)   →   C∞(D‹)   →   C∞(D‹)   →   C∞(D‹)

is exact, in the sense of Chapter 5 (the codomain of each operator fills out
the kernel of the next operator in the sequence).  Moreover, when the
sequence is not exact, i.e., when either of the quotients

ker(rot ;  C∞(D‹))/grad(C∞(D‹)),       ker(div ;  C∞(D‹))/rot(C∞(D‹))

has nonzero dimension, some topological peculiarities of  D  (presence of
“loops” and “holes”, respectively, as explained in Chapter 5) can be
inferred.
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A.3.4  Symmetry in  E3

In most modellings, there is some geometrical symmetry of the domain of
interest, that can be exploited to reduce the size of the computational
domain, hence substantial economies.  The idea is to perform the computa-
tion on a subdomain, called the symmetry cell, containing only one point
per orbit under the action of the symmetry group.  Thus, the union of images
of the closure of the cell is identical with the closure of the original
computational domain.  But this supposes a proper setting of boundary
conditions on “new boundaries” thus introduced (on symmetry planes, for
instance), and for this, the formal notions about symmetry that follow
may be helpful.

The isometries of a metric space  X  are the transformations (functions
of type  X → X, defined over all  X) that preserve distances.  (This implies
bijectivity.)  Isometries  of  E 3  are the rotations, the translations, the
mirror symmetries, and their compositions.  We’ll say an isometry is skew
or direct, according to whether it changes the orientation of a reference
frame or not.  (Alternatively, one could say o d d or even, but we reserve
these words for a different use.)

Let  D  be a regular bounded domain in  E3.
Definition A.1.   An isometry40  i  o f  E3  is a  symmetry of domain   D  if it
leaves  D  global ly unchanged:  i(D) = D.

Symmetries of  D  form of course a group (denoted  GD  or simply  G  in
what follows).41  This group has two elements in the case that first comes
to mind when symmetry is mentioned, which is bilateral symmetry:  the
identity and the mirror symmetry  h  with respect to a plane  Σ  (group
denoted  C1h).  But there may be much more:  for instance, all the  2π/n
rotations around some straight line  a  (called a “repetition axis of order
n”), group denoted  Cn 

.  Other frequently encountered symmetry groups are
Dn ,  Cnh ,  Cnv, obtained by combining the rotations in  C n  with, respectively,
the half-turn around an axis orthogonal to  a, the reflection  h  with
respect to a plane orthogonal to  a, and the reflection  v  with respect to a
plane containing  a, and  Dnh , which is obtained by composing the rotations
of  Dn  with  h.  For concrete examples, think of a three-blade propeller
(group  D3  or  C3, depending on whether the propeller’s action is reversible

40Some interesting symmetries are not isometries.  One may conceive of objects with
“fractal” structure, invariant with respect to some non-distance-preserving transformations,
dilatations for instance.  The exploitation of symmetries of this kind is an open problem.

41The little group of  D  under the action of isometries on parts of  E3.

or not), a triumph arch (C2v), the Eiffel tower (C4v), a brick (D2h) .
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A symmetry of  D  is direct or skew according to whether the isometry
it comes from is itself direct or skew.  Elements of  GD  which are direct
symmetries form a subgroup of  GD.

Let  i  be an isometry of  E3.  If  v  is a vector at  x  which has its tip at
y  (which is another way to say that  y = x + v), it is natural to define the
transform of  v  under  i  as the vector at  ix  which has its tip at  iy, that
is,  iy – ix.  We shall denote this vector by  i∗v.

By restriction to  D, one may similarly define the effect of a symmetry
s  of  D  on a vector at  x, for  x  in  D  or its boundary.  If now  v = x → v(x)  is
a vector field over  D, we’ll denote by  Sv  the transform of  v  under the
action of  s, thus defined:

(1) (Sv)(sx) = s∗(v(x)),

that is to say,  Sv = x → s∗(v(s−1x)).  Thus if  s  is, for instance, the mirror
reflection in a plane, and if  v  is represented, according to a popular (and
quite unfortunate) graphic convention, by a bundle of arrows,  Sv  is imaged
by the set of reflections of these arrows.  Functions transform under a
symmetry the same way vector fields do:  If  ϕ  is a  function defined over
D, we may set  (Sϕ)(sx) = ϕ(x), on the model of (1), that is  Sϕ = x → ϕ(s−1x)
(the “push-forward” of  ϕ  by  s, cf. Note 7.10).  All this suggests the
following definition:

Definition A.2.   A symmetry  s  o f  D  is a symmetry of the vector field  v
[resp.  of the function  ϕ] if and only if  Sv = v  [resp.  Sϕ = ϕ].

Note how this provides a concrete example of a family of group actions,
all different, of the same group, here  GD, on different geometrical objects.
General notions as given earlier apply.  In particular, the symmetries of a
vector field or a function form a subgroup of  GD, denoted  Gv  or  Gϕ  if a
name is needed, called as we know the isotropy group (or little group) of  v
or  ϕ.  By the Stokes theorem, the little group of a function  ϕ  [resp.  of a
field  h, a field  j] can be embedded42 in the little group of  grad ϕ  [resp.  of
rot h, of  div j].

When we refer to the symmetries of a problem, it means more than
the symmetries of  D.  Symmetries of the material properties also should
be considered.  This is, in all generality, a difficult subject, if one wishes
to take into account the deformability of materials, and possible
anisotropies.  For homogeneous materials and non-changing geometries,

42It’s not simply an isomorphism, because  rot v, for instance, may be much more symmetrical
than  v.  (Think of some undistinguished  v  for which  rot v = 0.)

however, it’s simple.  All we have to do is consider the symmetry groups
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of the functions  σ,  µ, and  ε, and take their intersection with  GD.  The
subgroup of  GD  thus obtained is the symmetry group of the problem.

Many symmetries are involutions, in the sense that  s 2 = 1 (the identity):
symmetries with respect to a point, a straight line or a plane, are
involutions.  For these, the following notion applies:
Definition A.3.  A function  ϕ  is said to be even [resp.  odd] with respect to
the involutive symmetry  s  if  Sϕ = ϕ  [resp.  Sϕ = − ϕ].  A vector field  v  i s
even [resp.  odd] i f  Sv = v, that is to say  s∗v = v  at all points [resp.
s∗v = − v].

It’s easy to see that if a function is even or odd, its gradient has the
same property, and that the divergence of a vector field has the same
parity as the field.  In contrast, the curl of an even or odd field has opposite
parity in the case of a skew symmetry (reflection with respect to a point
or a plane) and the same parity in the case of a direct symmetry (half-turn
around some axis).  This reflects the “sensitivity to orientation” of  rot, as
earlier remarked.

These properties rule the setting of boundary conditions, in a quite
simple way, at least as far as mirror symmetries are concerned.  Suppose
(which is the general case) the source of the field is a given current density
jg.  If  j g  is even43 [resp.  odd],  j  has the same property, and hence  e  (at
least in conductors) is even [resp.  odd], provided  σ  is even with respect to
this mirror.  By Faraday’s law,  b  then has the symmetry of  rot e, which
means odd [resp.  even].  And so forth, for all fields.  Once the parity of all
fields has thus been determined, boundary conditions follow from simple
rules:  For fields which are, like  b, associated with surfaces (fields  d
and  j), the boundary condition is  n · b  = 0  in case of even fields, no condition
at all in case of odd fields.  For fields like  h  which are associated with
lines (fields  e  and  a), it’s the opposite:  The boundary condition is  n × h
= 0  in case of odd fields, no condition at all in case of even fields.  Since  h
and  b  (or  d  and  e,  or  j  and  e) have same parity, boundary conditions on
symmetry planes are complementary:  n · b = 0  on some,  n × h = 0  on
others.  We had a concrete example of this with the Bath-cube problem.

For more on this subject, see [B1, B2].
Let’s now give a few other practical examples, also borrowed from the

4 3
It’s always possible to express  j g  as the sum of an even and an odd component, and to

do this repeatedly for all mirror symmetries, thus forming kind of “Fourier components” of the
source.  One then solves one reduced problem (on the symmetry cell) for each of these
components, and adds the results.

TEAM workshop trove.
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FIGURE A.15.  Sketch of TEAM Pbs. 7, 14, with common symmetry  D 2.  (Only the
“material symmetry cell”, below  S  and behind  Σ,  is shown.  This is a part of the
passive conductor that generates all of it by letting the symmetry operations act.)
The inductor, not represented here, may not share the symmetries of the passive
conductor, but this does not impede the exploitation of symmetry [B1].  TEAM
Problems 8, on the detection of a crack inside an iron piece, and 19, on a microwave
cavity, have the same kind of symmetry.

Problems 7 (the misnamed “asymmetrical” plate with a hole), 8 (coil
over a crack) and 14 (the “Euratom casing” [R&]) fall into a category
described by the group  C 2v, with four elements.  It is generated by reflections
s  and  σ  with respect to two orthogonal planes  S  and  Σ.  Its elements are
thus  {1, s, σ, s σ}  (Fig. A.15).

Π

S

Σ

FIGURE A.16.  Symmetry  D 2h, common to Pbs. 3, 4, 1.  (The example shown is the
symmetry cell of the “Felix brick”.)

When the group is generated by reflections  s,  σ,  π  with respect to
th r e e orthogonal planes, it is called  D2h  (Fig. A.16).  It has 8 elements,
and is relevant to Pbs. 3 (the “Bath ladder”) and  4  (the “Felix brick”
[T&]).  Problem 12 (the cantilevered flexible plate [C&]) should be included
in this category, because all computations relative to it can be conducted
in the so-called “reference configuration” of the conductive plate, with
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negligible error (because of small deformations), and the symmetry group
of this reference configuration is  D2h.

Some problems are “much more symmetrical” than any of the above,
having infinite symmetry groups.  The frequent (and never formally
explained . . . ) references in this book to ”2D modelling” have to do with
geometrical symmetry:  2D modelling is relevant when the symmetry group
of the problem contains all translations along some direction.  Symmetry
reduction by one spatial dimension also occurs in case of axisymmetry (group
SO2  or larger).  For instance, TEAM Pbs. 1 and 2, the “Felix cylinders”,
and Pb. 9 on the far-field effect in a tube, have symmetry group  O 2, composed
of all rotations around a fixed axis, combined with reflections with respect
to an axial plane.

Even more extended symmetry can happen.  Problems 6 and 11 on eddy
currents induced in a hollow sphere have symmetry group  O3:  all rotations
around a fixed point, combined with reflections with respect to the origin.
Fourier series is the right (and well known) tool for such cases.  It goes
quite far, up to giving exact solutions, by formulas, in some cases (the hollow
sphere, for instance).

A.4  GLIMPSES OF FUNCTIONAL ANALYSIS

A.4.1  Completion, principle of extension by continuity

Cauchy sequences in a metric space  {X, d}  are sequences  {x n :  n ∈ IN}  such
that  d(xn, x m)  tends to zero when both indices  n  and  m  tend to infinity.
Convergent sequences are Cauchy.  A space is complete if, conversely, all
its Cauchy sequences converge.  A normed vector space with this property
is called a Banach space.

In applied mathematics, the only good spaces are complete spaces, as
we experienced in Chapter 3.  So let’s give in full this construction of
complete spaces that proved so important then:
Theorem A.1 (of completion).  Given a metric space  {X, d}, there exists a
space  {XÓ , dÓ}  and an isometry  i ∈ X → X Ó , such that  X Ó  be complete and
cod(i)  dense in  X Ó.
Proof.  The key proof-ideas were given in 3.2.3, and we just fill in details.
X°  being the set of all Cauchy sequences  x° = {x 1, . . . , xn, . . . }  of elements
of  X, set  x° ~ y°  if  lim n → ∞ d(xn, yn) = 0.  This is an equivalence, because  x°
~ y°  and  y° ~ z°  imply that  d(xn, zn) ≤ d(x n, yn) + d(y n, zn), tends to  0, by
the triangular inequality.  Now define  X Ó  as the quotient  X° /~, and set
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dÓ( x , y ) = lim n → ∞  d(xn, y n).  Then  d Ó( x , z) ≤ dÓ( x , y ) + d Ó( y , z), still by
the triangular inequality, it’s obvious that  dÓ( y , x ) = dÓ( x , y ), and if
dÓ( x , y ) = 0, classes  x   and y   coincide, since two representatives  x°  and
y°  will satisfy  lim n → ∞ d(xn, yn) = 0  and thus be equivalent.  Let  i(x)  be
the sequence  {x, .  . . , x, .  . . }.  Then  d Ó(i(x), i(y)) = d(x, y), so  i  is an
isometry.  The image  i(X)  is dense in  XÓ, because if  x° = {x 1, . . . , xn, . . . }  is
a representative of x, then  dÓ( x , i(xn)) = lim  m → ∞ d(xm, xn), which tends to
0  by definition of a Cauchy sequence.  Finally, if  { x n :  n ∈ IN}  is a Cauchy
sequence of  XÓ, select a sequence  {εn :  n ∈ IN}  of reals which tend to 0, and
for each  n, choose  x n ∈ X  such that dÓ(i(xn), x n) ≤ εn, which the density of
i(X)  makes possible.  As  d(xn, x m) = dÓ(i(xn), i(xm)) ≤ d Ó(i(xn), x n) +
dÓ( x n, x m) + dÓ( x m, i(xm)) ≤ εn + dÓ( x n, x m) + εm, which tends to  0, the  xns
form a Cauchy sequence.  Let  x   be its class.  Then  dÓ(( x , x n) ≤d Ó( x , i(xn) )
+ dÓ(i(xn), x n) ≤ limm dÓ(xm, xn) + εn, which goes to  0  as  n  increases,
showing that   x   is the limit of   { x n}.  ◊

Note that one can legitimately refer to t h e completion, because if one
can find, by some other method, another dense injection  j  of  X  into some
complete space  Xˆ, then elements of  XÓ  and  Xˆ  are in isometric
correspondence, so the completion is unique up to isometry.  The proof is
constructive, giving us one of these isometric complete spaces in explicit
form.  One can argue that  XÓ  is not necessarily “the right one”, however.
Indeed, our intuitive notion of completion seems to require embedding  X
into a space made of objects of the same type as those of  X.  Hence the
search, in most cases, for such a “concrete” complete space.  For instance, if
X  is a space of functions defined on a domain of  E 3, one will try44 to
identify its completion with a similar functional space.  An important
example will be given below, where  L 2(D), the completion of  C(D), is
embedded in a space of functions defined on  D, thanks to Lebesgue
integration theory.

There is a companion result to the completion theorem:
Theorem A.2 (of extension by continuity).  Let  X  and  Y  be metric spaces,
bo th complete,  U  a dense part of  X, and  fU ∈ X → Y, with  dom(fU) = U, a
uniformly continuous function.  There is an extension  f  of  fU  to all  X  that
is continuous, and it’s the only one.

Proof.  Take  x ∈ X  and let  {xn ∈ U}  be a sequence that converges to  x.
Because of uniform continuity, the  fU(xn)  form a Cauchy sequence, which
converges, since  Y  is complete, towards a point that one can denote  f(x),

44And when this fails, never mind:  A cunning extension of the very notion of function
will often save the day.

because it does not depend on the chosen sequence.  As  f(x) = f U(x)  if  x ∈ U,
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one thus obtains an extension of  fU  the domain of which is all  X, and one
easily checks that  f  is (uniformly) continuous.  If  g  is another continuous
extension of  fU , then  lim n → ∞  g(xn) = g(x)  by continuity, so  g(x) = f(x).  ◊

Obviously, continuity of  fU  might not be enough (Fig. A.17).

Y

0
] ]

a

fU

FIGURE A.17.  Here,  X = [0, a], part of  IR,  U = ]0, a]  and  Y = IR.  In spite of its
continuity,  fU  has no continuous extension to  X.

This result is almost often applied to the extension of l inear (or affine)
maps, between normed spaces, and then continuity is enough, because affine
continuous maps are uniformly continuous.  It works as follows:  When a
linear map (or as one prefers to say then, an “operator”)  L :  X → Y  of
domain  U  is continuous, one can extend it into an operator from the
completion  X  of  U  to the completion of  Y, since  U  is dense in  X;  just
apply the previous result to the composition  iY  L, where  iY  is the
canonical injection of  Y  into its completion.

A.4.2  Integration

I assume you know about integration, though not necessarily about Lebesgue
integration theory.  It’s an ample and difficult theory, which cannot even
be sketched here.  And yet, some of its results are absolutely essential
when it comes to weak formulations, complete spaces, existence proofs,
etc.  Fortunately, one can live in blissful ignorance of the theory, provided
one is aware of what it does better than the older and (only apparently)
easier Riemann theory.45

What Riemann’s theory does, and does fairly well, is to give sense to
the concept of average value of a continuous function over a set where

45As stressed in [Bo], the standard comment, “in one case you divide up the  x-axis and
in the other you divide up the  y-axis”, is totally misleading in its emphasis on a tiny technical
difference.

concepts such as “length”, “area”, or “volume” make sense.  (The generic
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term is “measure”.  For instance, on the real line, the measure of an interval
[a, b]  is  |b – a|, in both theories.)  After some work on so-called “Riemann
sums”, one obtains a sensible definition of the integral  I([a, b], f) = ∫[a, b] f
of  f  over  [a, b], also denoted  ∫[a, b]  f(x) dx, or  ∫a

b f(x) dx, which embodies
the concept of “area under the graph”, when  f ≥ 0.  (The average is then
I/|b – a|.)  Extensions to sets other than intervals, and to several variables,
then follow;  hence a map, the type of which is

PART_OF_A_MEASURED_SPACE × FUNCTION → REAL,

with the right properties:  additivity with respect to the set, linearity
with respect to the function.  The integral of  f  over  A  is denoted    ∫A f .
Remark A.6.  This reduced notation, recommended in Note 1.8 and largely
used in this book, reflects the functional character of integration:  All
that is left is the operator symbol  ∫  and the two arguments,  A  and  f.
There is no ambiguity when  A  is a part of a set  X  on which exists a
standard measure (which is the case of  E3), and if  A  is all  X, one may
even not mention it.  Developed notation such as  ∫X f(x) dx  or  ∫X f(x) dµ(x)
may be useful when one must be explicit about the underlying measure
(because several of them can appear simultaneously, for instance, or to
sort out multiple integrals:  several examples appear in Chapter 1), but in
such cases,  x  is a bound variable, that must appear (at least) twice in an
expression, as argument of the function and of the measure element.
Expressions like  ∫X f(x) dV, for instance, are not well-formed in this respect,
and should not be used.  ◊

There is however an essential flaw in this theory.  When a sequence
of functions  fn  converges pointwise46 towards some function  f, one cannot
assert that  ∫X f = limn → ∞ ∫X fn, if only because the limit  f  may be outside
the domain of the above mapping, and thus not be “integrable in the
Riemann sense”.  Because of this shortcoming, one cannot safely permute
integration and passage to the limit, like this:  ∫X limn → ∞  f = limn → ∞ ∫X fn.
The Lebesgue theory corrects that by enlarging the domain of the map:
There are more functions integrable “in the Lebesgue sense”, on more exotic
sets.  This advantage, by itself, is marginal, for it’s not so often that one
must compute the average of an everywhere discontinuous function on a
Cantor set, or similar.  The point is elsewhere:  In Lebesgue theory, one can
permute limit and integration, under the condition of dominated
convergence, that is, when there exists a function  g, integrable itself, such
that  |f n(x)| ≤ g(x)  whatever  x  and  n.  This commutativity between two

46That is,  fn(x)  tends to  f(x), as a sequence of real numbers, for a fixed  x.

such fundamental operations is the great triumph of Lebesgue’s theory,
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because it legitimizes a series of basic manipulations in calculus:
differentiation under a summation sign (hence the possibility to permute
differentiation and convolution alluded to p. 290), change of order of
summation in multiple integrals (Fubini’s theorem), and so forth.

How is this achieved?  Very roughly, take the space of continuous
functions  C(X)  on some metric space  X,  and give it a norm, by setting  || f ||1
= ∫X |f(x)| dx, where the integral is understood in the Riemann sense.  This
is not a complete space (as discussed in 3.2.1).  So take its completion, call
this enlarged space  L1(X), and now that every Cauchy sequence does
converge, define the integral of the limit  f  of  {fn}  (which has just been
defined into existence by the process of completion) as the limit of the
integrals  ∫ fn.   It’s so simple that one may wonder where the difficulty is
that makes books so thick [Ha, Lo]:  Again, it comes from the completion
being an abstract space, not a priori a functional one (the above limit  f  is
an abstract object, not yet a function), and the hard work consists in
embedding this abstract completion  L1(X)  into some functional space.

One thus introduces (after a copious measure of measure theory) a
concept of “measurable function”, which is very encompassing,47 and an
equivalence relation, the “almost everywhere equal (a.e.)” relation
alluded to at places in this book:  f a.e.= g  (or  f(x) = g(x)  a.e.) if points  x
where  f(x) ≠ g(x)  form a “negligible” set, that is, one to which Lebesgue’s
measure theory attributes the measure  0.  Once all this, which is an
impressive piece of work, is said and done, one can identify the elements
of  L1(X)  with equivalence classes of a.e.-equal measurable functions.  Yet,
one continues to call “functions” the elements of  L1(X), and this abuse is
natural enough:  Two almost everywhere equal functions belong to the same
class and have the same integral , so from the point of view of integration
theory they are “the same” indeed.  This is even more justified when one
realizes that a continuous function is alone in its own class (because two
a.e.-equal continuous functions must coincide).

Once in possession of  L1(X), one can define  L2(X)  as the space of
“functions” the square of which is in  L1(X), or more precisely, as the
completion of  C(X)  with respect to the quadratic norm,  ||f ||2 = (∫|f|2)1/2

instead of the  L1-norm  || f  ||1 = ∫|f|.  This  L2-norm is associated with a
scalar product,  namely  (f, g) = ∫ f(x) g(x) dx ≡ ∫ fg, so  L2  is pre-Hilbertian,
and being also complete, is a Hilbert space, t h e essential concrete
realization of this abstract notion.

47It’s such a large class that no constructive examples of non-measurable functions exist;
one must invoke the axiom of choice to get them.
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Most of the time, it’s convenient to think of elements of  L2(X)  as
functions, though they are actually classes of functions.  But there is one
case in which awareness of the real nature of  L2  is important:  when one
tries to define the restriction of a function of  L2(D),  where  D  is our usual
“computational domain”, to its boundary  S.  The boundary being a negligible
set, values of  f  on  S  can be changed at will without changing the class  f
belongs to, which means that “restriction to  S” is a meaningless expression
as regards elements of  L2(D).  And yet we need such a concept to deal with
boundary-value problems!  Hence the introduction of the relatively
sophisticated notion of trace:  The trace  γ  f  of a continuous function  f  is
just its restriction to  S.  Now if  f  is a generic element of  L2(D), there is, by
construction, a Cauchy sequence of continuous functions  fn  which tends
towards  f  in quadratic norm.  So we define  γ  f , the trace of  f, as the limit
in  L2(S)  of the sequence of restrictions  γ  fn , provided this sequence converges,
which may not be the case:  Some “functions” of  L 2(D)  have traces, some
have not.  The question is discussed in Chapter 7, where it is shown in
detail how functions the gradient of which (in the weak sense) is square
summable in  D  do have traces, even though they need not be continuous.
All this makes only the beginning of the (difficult) theory of Sobolev
spaces, but what precedes is enough baggage for our needs.

Apart from this all-important extension of scope, Lebesgue theory does
not bring anything new when it comes to the more mundane aspects of
integration as used in calculus, such as integration by parts, change of
variables, and the like.  Let’s just stress two points of special importance,
the definition of circulations and fluxes.

Let  c  denote a bounded curved line in  E3.  On  c, the Euclidean distance
existing in  E 3  induces a notion of length of curved segments, which turns  c
into a measured space, on which integration makes sense:  If  f  is a function
whose domain contains  c, the integral  ∫c f  is the average of  f  on  c,
multiplied by the length of  c.

Now, let’s equip  c  with a field of tangent vectors.  For this, take a
parameterization of  c, that is to say, a smooth map, still denoted  c, from
[0, 1]  into  E3, having the curved line as codomain.  (The deliberate confusion
between the path  c :  [0, 1] → E3  and the curve proper, which is only the
codomain of this path, has obvious advantages, provided one stays aware
of the distinction.)  Assume the derivative  ∂tc(t), which is a vector of  V3,
does not vanish for  t ∈ [0, 1].  Set  τ(t) = ∂tc(t)/|∂tc(t)|:  This is the unit
tangent vector at point  c(t).  (Obviously, whatever the parameterization,
there are only two possible fields  τ, each corresponding to one of the two
possible orientations of  c.  Cf. p. 287 and 5.2.1.)
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Finally, let  u  be a smooth vector field, the domain of which contains
c.  By taking the dot product  τ(x) · u(x)  for each point  x  of  c, one obtains a
smooth real-valued function of domain  c, naturally denoted by  τ · u.   This
function can be integrated on  c, hence a number  ∫c τ · u.  This is, by definition,
the circulation o f the vector field  u  along  c, as oriented by   τ.  (Of course
it reverses sign with orientation.)

The same things exactly can be said about a smooth patch  C, mapping
[0, 1] × [0, 1]  into  E3, and such that vectors  ∂sC  and  ∂ tC  at point  C(s, t)
don’t vanish.  One then forms a normal field  n(s, t) = N(s, t)/|N(s, t)|,
where  N(s, t) = ∂ sC × ∂tC, again with only two possible outcomes,
corresponding to orientations of  C.  Again,  n · u  is a scalar function on  C,
whose integral  ∫C n · u  is called the flux of  u  through  C  as oriented by   n.
By sewing patches together, and orienting them consistently, one can thus
define fluxes relative to smooth orientable surfaces.  This is the case, in
particular, of the surface  S  of a computational domain  D, and we have
often had to deal with integrals like  ∫S n · u, especially when using the
two basic integration by parts formulas, established in 2.3.1 and 2.3.2:

(2) ∫D ϕ div b = – ∫D b · grad ϕ + ∫S  n · b  ϕ,

(3) ∫D h · rot a = ∫D a · rot h – ∫S  n × h · a.

These formulas concern smooth fields, but thanks to the good behavior of
Lebesgue integrals with respect to passages to the limit, one can extend
these formulas by continuity to  ϕ ∈ L2

grad(D),  b ∈ IL2
div(D),  h  and  a  in

IL2
rot(D), as defined in Chapter 5, thus giving them enlarged validity.  See

Section 5.1 for this important development.

A.4.3  Hilbert spaces

A real48 vector space  X  is pre-Hilbertian when equipped with a scalar
product, as previously defined.  The function  ||  || = x → (x, x)1/2  is then a
norm, which confers a metric on  X.  (The triangular inequality comes from

(4) |(x, y)|≤ ||x|| ||y||,

which is the Cauchy–Schwarz inequality.)  Note that   (  ,  )  is continuous
with respect to both its arguments.  A simple computation yields the

48That is, built on  IR  as scalar field.  Complex spaces are not less important, but there is
some gain in simplicity in treating them apart, as we do a little later.

following parallelogram equality:
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(5) ||x − y||2 + ||x + y||2 = 2(||x||2 + ||y||2)        ∀ x, y ∈ X.

The existence of a scalar product gives sense to the notions of
orthogonality in  X  (x  and  y  are orthogonal if  (x, y) = 0, which one may
denote  x ⊥ y) and angle (the angle of two nonzero vectors  x  and  y  is
arccos((x, y)/||x|| ||y||)) , so all the concepts of Euclidean geometry make sense:
The Pythagoras theorem holds, and (5) is nothing else than a
generalization of the metric relation between median and sides in
elementary geometry of the triangle (Fig. A.18).  Such things cannot be
said of any normed vector space, only if (5) is valid for the given norm  ||  ||,
for then one can prove that  {x, y} → ( ||x + y ||2 − ||x − y||2)/4  is a scalar
product.  Pre-Hilbertian spaces, and their affine associates, are therefore
those spaces in which notions and concepts of ordinary Euclidean geometry
hold, without any restriction on the dimension:  their theory extends
intuitive geometry to infinite dimension.

A Hilbert space is a complete pre-Hilbertian space, and we saw many
examples, almost all of them related with the spaces  L2  or  IL2.

The basic result about Hilbert spaces is this:
Theorem A.3 (of projection).  Let  C  be a closed convex part of a Hilbert
space  X.  The function “distance to  C”, i.e.,  dC = x → inf{||x − y|| :  y ∈ C},
reaches its lower bound at a unique point of  C, called the projection of   x
on  C, here denoted  pC(x).
Proof.  Most of the proof appears in 3.2.1, the only difference being that
there,  C  was not only convex but an affine subspace.  In particular, the
key concept of minimizing sequence was introduced there.  So let’s be terse:
The lower bound  d = dC(x) = inf{||x − y || :  y ∈ C}  can’t be reached, if it is
reached at all, at more than one point, for if  ||x − y || = ||x − z|| = d  for  y ≠ z,
then  u = (y + z)/2  would belong to  C  by convexity, whereas  ||x − u || <  d
after (5), hence a contradiction.  As for existence, let  yn ∈ C  be a minimizing
sequence, i.e.,  ||x − y n||  converges towards  dC(x).  It’s a Cauchy sequence,
because

||yn − ym||2 + 4 d2 ≤ ||yn − ym||2 + 4 ||x − (yn + ym)/2||2

                            = 2(||x − yn||
2 + ||x − ym||2) ,

thanks to (5) and to the convexity of  C, and the right-hand side tends to
4d2.  Since  X  is complete, there is a limit, which belongs to  C, since  C  is
closed.  ◊
Remark A.7.  The inequality that characterizes the projection, that is

(6) ||pC(x) − x||2 ≤ ||y − x||2      ∀ y ∈ C,
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can also be written as (develop the scalar product)

(7) (x − pC(x), y − pC(x)) ≤ 0   ∀ y ∈ C.

This is called a “variational inequality”, or variational inequation, if
considered as the problem “given  x, find  pC(x)”.  Observe how this is
“read off” Fig. A.18, right, confirming the remark on Hilbertian geometry
as the natural extension of Euclidean geometry to infinite dimensions.
Equation (7) is called the Euler equation of the variational problem (6).  ◊

x
C

y

p  xC

x

y
0

x + y
2

FIGURE A.18.  The parallelogram equality (left) and inequality (7).

Remark A.8.  The map  pC  is a contraction, in the sense that

||pC(x) − pC(y)|| ≤ ||x − y||     ∀ x, y ∈ X.

To see it, replace  y  by  pC(y)  in (7), permute  x  and  y, add, and apply
Cauchy–Schwarz.  ◊

In the particular case when  C  is a closed subspace  Y  of  X, (7) becomes
an equality, or variational equation:

(x − pYx, y) = 0      ∀ y ∈ Y.

The vector subspace formed by all elements of  X  orthogonal to  Y  is
called the orthocomplement of  Y, or more simply, its orthogonal, denoted
Y⊥.  It is closed, as easily checked (cf. Remark A.9).  One can therefore
apply Theorem A.3 to it, and the projection of  x  on  Y⊥  appears to be
x − pYx.  Thus, any  x  in  X  can be written as the sum of two orthogonal
vectors, one in  Y, one in its orthocomplement.  Moreover, this decomposition
is unique, for  y1 + z1 = y2 + z2, with  y i  in  Y  and  zi  in  Y⊥,  i = 1, 2, implies
y1 – y 2 = z2 – z1  at the same time as  y1 – y 2 ⊥ z2 – z1, and hence  y1 = y2  and
z1 = z2.  One says that  Y  and  Y⊥  have  X  as direct sum , and this is
denoted  X = Y ⊕ Y⊥.  Note that  Y⊥⊥ = Y.
Remark A.9.   If the subspace  Y  is not closed, one may still define its
orthocomplement by  Y⊥ = {z ∈ X :  (y, z) = 0  ∀ y ∈ Y}.  It’s closed, because if
zn ∈ Y⊥  converges to  z, then  (y, z) = lim n → ∞  (y, z n) = 0  for all  y  in  Y, by
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continuity of the scalar product.  By applying the projection theorem to
Y⊥, one sees that  Y⊥⊥  is not  Y, but its closure in  X.  ◊

A second special case is when  Y  is the kernel of a linear continuous
functional  f : X → IR.  Then  Y  is closed indeed, and does not coincide with
X  if  f  is not trivial, so there exists in  Y⊥  some nonzero vector  z.  The
equality  x = x − θz + θz  then holds for all  x  and all real  θ.  But  x − θz
belongs to  Y  if  θ = f(x)/f(z), so  z ⊥ (x − θz)  for this value  θ, and hence
(x, z) = θ ||z||2, that is, finally,

f(x) = (x, z f(z)/||z||2)    ∀ x ∈ X.

So there exists a vector  zf  that “represents  f  ”, in the precise sense that
its scalar product with  x  is  f(x), and this vector is  z f = z f(z)/||z||2.  Moreover
(apply (4)),  ||zf|| = sup{|f(x)|/ ||x|| :  x ≠ 0}, that is  ||zf|| = || f ||.  The correspondence
between  f  and  zf  thus achieved is therefore a linear isometry, and we
may conclude:
Theorem A.4  (F. Riesz).  To each linear continuous real-valued function  f
on  a real Hilbert space  X,  there corresponds a unique vector  z f  such that
f(x) = (x, zf)  ∀ x ∈ X, and  || f || = || zf ||.

In this respect, a Hilbert space is “its own dual”.  But beware there
can be other isomorphisms between a concrete Hilbert space and its dual
than the Riesz one, which is both an asset (one can solve boundary-value
problems that way) and an inexhaustible source of puzzlement.  See for
example the several isomorphisms between  H1/2(S)  and its dual in
Section 7.4.

Third special case:  when  C  is some a f f ine closed subspace  Xg, with
X0  as parallel vector subspace, and the point to be projected is the origin.
Calling  x  the projection, we see that  x  solves the problem, f ind  x ∈ Xg

such t h a t  (x, x') = 0  ∀ x' ∈ X0.  As the slight change in notation should
help one to realize, this result is the paradigm of our existence proofs in
Chapters 4 and 6:  By adopting the energy-related scalar product, we were
able to  apply the projection theorem directly in this form.  It’s not always
convenient, however, and the following generalization then comes handy:
Lax–Milgram’s lemma .  Let  a :  X × X → IR  be a bilinear map, continuous
with respect to both arguments, and such that

(8) a(x, x) ≥ α ||x||2   ∀ x ∈ X,

w h e r e  α  is a strictly positive real number (coercivity o f  a).  Given a
linear continuous functional  f ∈ X → IR, the problem find  x ∈ X  such that

(9) a(x, x') = f(x')   ∀ x' ∈ X
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has a unique solution  xf, and the mapping  f → xf  is continuous.
Proof.  Since  x' → a(x, x')  is continuous, there exists, by the Riesz theorem,
some element of  X, which can be denoted  Ax  (a single symbol, for the
time being), such that  (Ax, x') = a(x, x')  for all  x'.  This defines a linear
continuous operator  A  from  X  into itself, injective by virtue of (8), and
Eq. (9) can then be written as  Ax = zf, where  z f  is the Riesz vector of  f.
This is equivalent to  x − ρ(Ax −  zf) = x, where  ρ ≠ 0  is a parameter that
can be chosen at leisure.  Let  {xn}  be the sequence defined by  x0 = 0  and
xn + 1  = (1 − ρA)xn + ρ zf.  If it does converge, the limit is the solution  x f  of
Ax = zf, and  α ||xf|| ≤ ||zf|| ≡ ||f ||  after (9), hence the continuity of  f → xf.
The sequence will converge if  ||1 − ρA|| < 1, so let’s compute:

             ||x − ρAx||2 ≤ ||x||2 − 2ρ (Ax, x) + ρ2 ||Ax||2 ≤  ||x||2 − 2ρα||x||2 + ρ2 ||Ax||2

after (8), so  ||1 − ρA|| < 1  if  0 < ρ < ||A||2/2α.  (Note that no symmetry of  a
was assumed or used.)  ◊

The standard application is then to the problem, f ind  x ∈ Ug  such
t h a t  a(x, x') = 0  ∀ x' ∈ U0, where  a  is a continuous bilinear map.  By
picking some  xg  in  Ug, this amounts to finding  x  in  U 0  such that
a(x0 + xg, x')  = 0  ∀ x' ∈ U0.  As seen by setting  f(x') = – a(xg, x')  and  X = U0,
the lemma applies if the restriction of  a  to  U0  is coercive.

As mentioned in Note 48, the need arises to extend all these notions
and results to complex spaces.  This is most easily, if not most compactly,
done by complexification.  The complexified  Uc  of a vector space  U  is
the set  U × U  with composition laws induced by the following prescription:
An element  U = {uR, u I}  of  Uc  being written in the form  U = uR + iuI, one
applies the usual rules of algebra, with  i2 = −1.  Thus,  U + U' = uR + iuI +  u'R
+ iu'I = uR + u'R + i(uI + u'I), and if  Λ = λR + i λI, then

ΛU = (λR + i λI)(uR + iuI) = λRuR – λIuI + i(λRuI – λIuR) .

The Hermitian scalar product  (U, V)  of two complex vectors  U = uR + iuI
and  V = vR + ivI  is by convention the one obtained by developing the
product  (uR + iuI, vR – ivI)  after the same rules, so  (U, V) = (uR, vR) + (u I, vI)
+ i(u I, vR) – i (uR, vI).  The norm of  U  is given by  |U|2 = (U, U).  (Be aware
that a different convention is adopted in Chapters 8, where expressions
such as  (rot U)2  are understood as  rot U · rot U, not as  |rot U|2. )

Now, when  X  is complex, all things said up to now remain valid, if
(x, y)  is understood as the Hermitian scalar product, with obvious
adjustments:  f  is complex-valued, and the Riesz vector is no longer linear,
but anti-linear with respect to  f  (to multiply  f  by  λ  multiplies  xf  by
λ*).  The form  a  in the Lax–Milgram lemma becomes “sesqui”-linear
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(anti-linear with respect to the second argument), and the same
computation as above yields the same result, provided

Re[a(x, x)] ≥ α ||x||2   ∀ x ∈ X,

with  α > 0, which is what “coercive” means in the complex case.
Remark A.10.   The lemma remains valid if  λa  is coercive, in this sense,
for some complex number  λ.  We make use of this in 8.1.3, where the
problem is of the form f ind  x ∈ Ug  such t h a t  a(x, x') = 0  ∀ x' ∈ U0, with
(1 – i)a  coercive over  U0.  ◊

The theory does not stop there.  Next steps would be about orthonormal
bases and Fourier coefficients, whose treatment here would be out of
proportion with the requirements of the main text.  Let’s just mention
(because it is used once in Chapter 9) the notion of weak convergence:  A
sequence  {xn :  n ∈ IN}  weakly converges toward  x  if

lim n → ∞ (xn, y) = (x, y)   ∀ y ∈ X.

This is usually denoted by  xn  x.  By continuity of the scalar product,
convergence in the standard sense (then named “strong convergence” for
contrast) implies weak convergence, but not the other way around:  for
instance, the sequence of functions  x → sin nx, defined on  [–1, 1], converges
to  0  weakly, but not strongly.  However, weak convergence plus convergence
of the norm is equivalent to strong convergence.

Compact operators are those that map weakly convergent sequences to
strongly convergent ones.  It’s not possible to do justice to their theory here.
Let’s just informally mention that, just as Hilbert space is what most closely
resembles Euclidean space among infinite-dimensional functional spaces,
compact operators are the closest kin to matrices in infinite dimension,
with in particular similar spectral properties (existence of eigenvalues
and associated eigenvectors).  An important result in this theory,
Fredholm’s alternative , is used in Chapter 9.  Cf. (for instance) [Yo] on
this.

A.4.4  Closed linear relations, adjoints

The notion of adjoint is essential to a full understanding of the relations
between  grad  and  div, the peculiarities of  rot, and integration by parts
formulas involving these operators.

We know (p. 284) what a linear relation  A : X → Y  is:  one the graph
A  of which is a subspace of the vector space  X × Y.  If the relation is
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functional, i.e., if the section  A x  contains no more than one element, we
have a linear operator.  By linearity, this amounts to saying that the
only pair in  X × Y  of the form  {0, y}  that may belong to  A  is  {0, 0}.

Suppose now  X  and  Y  are Hilbert spaces, with respective scalar
products  (  ,  )X  and  (  ,  )Y .  Whether  A  is closed, with respect to the
metric induced on  X × Y  by the scalar product  ({x, y}, {x', y'}) =  (x, x')X +
(y, y')Y , is a legitimate question.  If  A  is continuous, its graph is certainly
closed, for if a sequence of pairs  {xn, Axn}  belonging to  A  converges to some
pair  {x, y}, then  y = Ax.  The converse is not true (Remark A.4), so we are
led to introduce the notion of closed operator, as one the graph of which is
closed.

Now if the graph of a linear relation  {X, Y, A}  is not closed, why not
consider its closure  {X, Y, A‰}?  We get a new relation this way, which is
an extension of the given one.  But it may fail to be functional, because
pairs of the form  {0, y}  with  y ≠ 0  may happen to be adherent to  A.
Hence the following definition:  An operator is closable if the closure of
this graph is functional.  In Chapter 5, we work out in detail the case of
div:  IL2(D) → L2(D), with domain   C

∞(D‹), find it closable, and define the
“weak” divergence as its closure.  The new operator thus obtained has an
enlarged domain (denoted  IL2

div(D)) and is, of course, closed, but not
continuous on  IL2(D).

There is a way to systematically obtain closed operators.  Start from
some operator  A, and take the orthogonal  A ⊥  of its graph in  X × Y.   This
is, as we know, a closed subspace of the Cartesian product.  Now consider
the relation  {Y, X, A⊥ }, with  X  as target space.  I f this happens to be a
functional relation, we denote by  – A*  the corresponding operator, which
thus will satisfy the identity

(11) (x, A* y)X = (y, Ax)Y   ∀ {x, y} ∈ A,

and call  A*—an operator of type  Y → X—the adjoint49 of  A.

So when is  A ⊥  functional? The following statement gives the answer:

Proposition A.1.  Let  A = {X, Y, A }  be a given linear relation.  The
relation  {Y, X, A ⊥ }  is functional if and only if  dom(A)  is dense in  X.

Proof.  If  {x, 0} ∈ A ⊥ , then  (x, ξ)X = (0, Aξ)Y ≡ 0  for all  ξ ∈ dom(A), after
(11).  So if  dom(A)  is dense, then  x = 0, and  A ⊥  is functional.

49Not to be confused with the dual of  A, similarly defined, but going from the dual  Y'  of
Y  to the dual   X'  of  X.  The notion of adjoint is specifically Hilbertian.

Conversely, if  dom(A)  is  not dense, there is some  x ≠ 0  in the
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orthocomplement of  dom(A)  with respect to  X, and hence a nontrivial
pair  {x, 0} ∈ A ⊥.  ◊

Remark A.11.   After (11), the domain of  A*  is made of all  y  such that
the linear partial function  x → (y, Ax)Y  be continuous on  dom(A), with
respect to the metric of  X.  This can be used as an alternative definition of
A*:  first define its domain this way, then define the image  A*y  as the
Riesz vector of the linear continuous mapping obtained by extending
x → (y, Ax)Y  to the closure of  dom(A), i.e., all  X, by continuity.  ◊

If  dom(A)  is not dense, we can always consider  A  as being of type
X0 → Y, where  X0  is the closure of dom(A)  (equipped with the same
scalar product as  X, by restriction), and still be able to define an adjoint,
now of type  Y → X0.

Note that  (A ⊥)⊥  is the closure of  A.  Therefore, if an operator  A  has
an adjoint, and if  dom(A*)  is dense, the closure of  A  is  A**, the adjoint
of its adjoint.  Therefore,
Proposition A.2.   Let  A : X → Y  be a linear operator  with dense domain.
I f  dom(A*)  is dense in  Y,  A  is closable.
Its closure is then  A**.  This is how we proved that  div  was closable, in
Chapter 5:  The domain of its adjoint is dense because it includes all functions
ϕ ∈ C0

∞(D).  Indeed, the  map  b → ∫D ϕ div b ≡ – ∫D b · grad ϕ  is  IL2-continuous
for such a  ϕ, due to the absence of a boundary term.  As we see here, the
weak divergence is simply the adjoint of the operator  grad :  C0

∞(D) →
C0

∞(D), the closure of which in  L2(D) × IL2(D), in turn, is a strict restriction
(beware!) of the weak gradient.

The reader is invited to play with these notions, and to prove what
follows:  The boundary of  D  being partitioned  S = Sh ∪ Sb  as in the main
chapters, start from  grad  and  – div, acting on smooth fields, but restricted
to functions which vanish on  Sh  and to fields which vanish on  Sb,
respectively.  Show that their closures (that one may then denote  gradh
and  – divb) are mutual adjoints.  Same thing with  roth  and  rotb.
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