
CHAPTER 9

Maxwell’s Model
in Harmonic Regime

9.1  A CONCRETE PROBLEM:  THE MICROWAVE OVEN

9.1.1  Modelling

Our last model, about the microwave oven, is typical of the class of time-
harmonic problem w i t h displacement currents taken into account, in
bounded regions.

Such an oven is a cavity enclosed in metallic walls, containing an
antenna and something that must be heated, called the “load” (Fig. 9.1).
One may model the antenna by a current density  jg, periodic in time (the
typical frequency is 2450 MHz), hence  jg(t) = Re[J

g exp(iω t)], the support
of  Jg  being a part of the cavity.  Note that this current has no reason to be
divergence-free.  The average power necessary to sustain it, which will
be retrieved in part as thermal power in the load, is  − 1

2 Re[ ∫ J
g · E*].  The

load occupies a part of the cavity and is characterized by complex-valued
coefficients  ε  and  µ, for reasons we shall explain.
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FIGURE 9.1.  Notations for the microwave oven problem.
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The conductivity of metallic walls is high enough to assume  E = 0
there, so the equations are

(1) − iω  D + rot H = Jg + σ E   in  D,  

(2)        iω  B + rot E = 0   in  D,

(3) n × E = 0   on  S.

The load, as a rule, is an aqueous material with high permittivity,
hence a strong polarization in presence of an electric field.  Moreover,
because of the inertia of dipoles, the alignment of the polarization vector
p  on the electric field is not instantaneous, as we assumed in Chapter 1.  If
one sticks to the hypothesis of linearity of the constitutive law, then
p(t) = ∫ t  f(t − s) e(s) ds, where the function  f  is a characteristic of the
medium.  After Fourier transformation, this becomes

P(ω  ) = √2π F(ω ) E(ω ) ,

(F  is the transfer function  of the polarized medium), hence  D(ω ) = ε0 E(ω )
+ P(ω ) ≡ ε  E(ω ), with  ε(ω ) = ε0 E + √2π F(ω ), a complex and frequency-
dependent permittivity.  It is customary to set  ε = ε' − i  ε", with real  ε'
and  ε".  It all goes (transfer  i  ε"  to the right-hand side in (1)) as if one
had a real permittivity  ε, a conductivity  ε"ω   (in addition to the normal
ohmic conductivity—but the latter can always be accounted for by the  ε"
term, by adding  σ/ω  to it), and a current density  j(t) = Re[J exp(iω t)],
where  J = ω ε" E.  The reason for the minus sign can be seen by doing the
following computation, where  T = 2π/ω   is the period:

                 T
1  ∫t

t

− T ds ∫D j(s) · e(s) = T
1  ∫t

t

− T ds ∫D Re[J exp(iω t)] · Re[E exp(iω t)]

                                  = Re[J · E*]/2 ≡ ω  ε" |E|2 /2,

since this quantity, which is the thermal power yielded to the EM
compartment (cf. Chapter 1, Section 3), now agrees in sign with  ε" .

Of course,  f  cannot directly be measured, just theorized about (cf.

 1As real and imaginary parts of the Fourier transform of one and the same function,  ε'
and  ε "  are not independent (they are “Hilbert transforms” of each other).  One could thus,
in theory, derive one from the other, provided one of them is known over all the spectrum,
and with sufficient accuracy.  This is of course impossible in practice, and  ε'  and  ε"  are
independently measured (as real and imaginary parts of the impedance of a sample) on an
appropriate frequency range.

[Jo]).  But  ε'  and  ε"  can (cf. Fig. 1.4).1
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For the sake of symmetry and generality, let’s also write  µ =
µ' − i µ", hence the definitive form of the equations:

(4) − iω  ε  E + rot H = Jg,   iω  µ H + rot E = 0  in  D,   n × E = 0  on  S,

with  ε = ε' − i ε"  and  µ = µ' − i µ".  They will normally be coupled with
the heat equation, the source-term being the average thermic power
iω  ε"|E|2/2  (plus  iω  µ"|H|2/2, if this term exists).  The parameter  ε,
temperature-dependent, will therefore change during the heating.

9.1.2  Position of the problem

We want a variational formulation of (4), for  J
g  given in  IL2

div(D), where
the unknown will be the field  E, after elimination of  H.  Let  IE(D)  denote
the (complex) space  IL2

rot(D), and

IE0(D) = {E ∈ IE(D) :  n × E = 0   on  S}.

The scalar product of two complex vectors  U  and  V  is as in Chapter  8 (no
conjugation on the right), but we shall adopt a space-saving notational
device, as follows:  If  U  and  V  are two complex f i e lds, we denote by
(U, V)D, or simply  (U, V), the expression  ∫D U(x) · V(x) dx  (which, let’s stress
it again, is not the Hermitian scalar product).

A precise formulation of (4) is then:  f ind  E ∈ IE0(D)  such that

(5) ( iω  ε E, E') + ((iω  µ)−1 rot E, rot E') = − (J
g, E')   ∀  E' ∈ IE0(D).

Unfortunately, the existence question is not trivial, because the bilinear
form  a(E, E')  on the left-hand side of (5) is not coercive.  Indeed,

Re[a(E, E*)] = ω  ∫D ε" |E|2 + ω−1 ∫D µ"/|µ|2 |rot E|2,

which vanishes if the support of  E  does not overlap with those of  ε"  and
µ", and

Im[a(E, E*)] = ω  ∫D ε' |E|2 − ω−1 ∫D µ'/|µ|2 |rot E|2

has no definite sign (and no premultiplication by a scalar will cure that).
But the restriction to a bounded domain (finite volume is enough,

actually) introduces some compactness which makes up for this lack of
coercivity, at least for non-singular values of  ω , thanks to the Fredholm
alternative.
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9.2  THE “CONTINUOUS” PROBLEM

9.2.1  Existence

Let’s first prove an auxiliary result.  Let  D  be a
regular bounded domain in  E3, with boundary  S.  For
simplicity (but this is not essential), assume  D
simply connected.  Let  Ψ 0  be the space of restrictions
to  D  of functions  Ψ  of  L2

grad(E3)  for which  grad Ψ =
0  outside  D.  (If  S  is connected, they belong to the
Sobolev space  H1

0(D), but otherwise, it’s a slightly
larger space, for  Ψ  can be a nonzero constant on some
parts of  S, as shown in inset.)  Call  V  the following closed subspace of
IL2(D):

V = {v ∈ IL2(D) :  (v, grad ψ') = 0   ∀  ψ' ∈ Ψ 0} .

Proposition 9.1.  Let  J  be given in  IL2(E3), w i t h  div J = 0  and  supp(J) ⊂ D.
Suppose  µ' ≥ µ0  in  D.  There exists a unique  A ∈ IE0(D)  such that

(6) (µ−1 rot A, rot A') = (J, A')   ∀ A' ∈ IE0

as well as  εA ∈ V, and the map  G = J → εA  i s compact in  V .

Before giving the proof, note that such a field  A  verifies

(6') rot(µ−1 rot A) = J,   div εA = 0   in  D,   n × A = 0  on  S,

but these conditions are not enough to determine it, unless  S  is connected.
In that case,  V = {v ∈ IL2(D) :  div v = 0}.  But otherwise,  V  is a strictly
smaller subspace, characterized by  ∫ n · v = 0  on each connected component
of  S, hence as many similar conditions 2 on  A, to be appended to the
“strong formulation” (6).  Note also that  J ∈ V, under the hypotheses of
the statement, so  G  does operate from  V  to  V.
Proof of Prop. 1.  Uniqueness holds, because the kernel of  rot  in  IE0  is
precisely  grad Ψ

0  (this is why  Ψ  
0  was defined this way).  The proof

will consist in showing that one passes from  J  to  εA  by composing
continuous maps, one of which at least is compact.

Set  U = χ ∗ J, with  χ = x → 1/(4π  |x|), and take its restriction  D
U

to  D.  The map  J → DU  thus defined is compact in  IL2(D)  [Yo].  Therefore,

 2This is one of the advantages of weak formulations:  They foster thoroughness, by
reminding one of conditions which one might have overlooked in the first place.

the map  J → rot U ∈ IL2(E3)  is compact, too, for if  { Jn}  is a sequence of  V

D

ψ = 0

c, ≠ 0ψ =
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such that  Jn  J  (weak convergence—cf. A.4.3), then  Un  U  by continuity,
and hence (dot-multiply by a test field  A'  and integrate by parts)
rot Un  rot U.  Moreover,  ∫ |rot Un|

2 = ∫D  Jn · Un* , and  D
Un  tends to  DU, so the

norm of  rot Un  converges towards that of  rot U, therefore  rot Un  tends to
rot U.  Setting  H = rot  

D
U, one has thus proved the compactness of the

map  J → H.
Now let  Φ ∈ L2

grad(D)  be such that

(µ (H + grad Φ), grad Φ') = 0   ∀ Φ' ∈ L2
grad(D).

The solution of this problem is unique up to an additive constant only, but
grad Φ  is unique, and the map  H → grad Φ  is continuous.  Let us set  B =
µ(H + grad Φ) .  Then  div B = 0  and  n · B = 0, so the prolongation by  0  of  B
outside  D  is divergence-free.  If one sets  A0 = D(rot(χ ∗ B)) —again, the
restriction to  D —then  rot A0 = B, and the mapping  H → A0  is continuous.

Notice that the tangential trace of  A0  is a gradient, by the Stokes
theorem, for the flux of  B  through a closed circuit  drawn on  S  vanishes,
since  n · rot A0 = n · B = 0.  For this reason, the set of the  Ψ ∈ L2

grad(D)  for
which  n × (A0 + grad Ψ) = 0  is not empty, and there is one among them
(unique up to an additive constant) for which

 (ε (A0 + grad Ψ), grad Ψ') = 0   ∀ Ψ' ∈ Ψ 0.

Then  A = A0 + grad Ψ  is the desired solution, and  grad Ψ  continuously
depends on  A0, with respect to the norm of  IL2(D).  The map  J → A  is
therefore compact, hence the compactness of the operator  G = J → εA,
whose domain is the subspace  V.  ◊

Let’s call singular (or resonating) the nonzero values of  ω   for which
the homogeneous problem associated with (5) has a nontrivial solution,
i.e.,  E ≠ 0  such that

(7) ( iω  ε E, E') + ((iω  µ)−1 rot E , rot E') = 0   ∀ E' ∈ IE0.

Such an  E  verifies  ε  E ∈ V  (take  E' ∈ grad Ψ 0) as well as  rot(µ−1 rot E) =
ω 2 ε  E  (integrate by parts).  In other words,  ε  E = ω 2 G ε  E.  Thus,  ε  E  is an
eigenvector of  G, corresponding to the eigenvalue  ω−2.  (One says that the
pair  {E, H}, where  H = −  (rot E)/iωµ, is an “eigenmode” of the cavity, for
the angular frequency  ω .)  By Fredholm’s theory, there exists a denumer-
able infinity of eigenvalues for  G, each with finite multiplicity, and not
clustering anywhere except at the origin in the complex plane.3  The

 3Owing to uniqueness in (6),  0  is not an eigenvalue of  G.

singular values are thus the square roots of the inverses of the eigenvalues
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of  G.  (A priori, eigenvalues are complex, unless both  ε  and  µ  are real.)
Theorem 9.1.  For each non-singular value of  ω , problem (5) is well posed,
i.e., has a unique solution  E, and the map   J

g → E  is continuous from   IL2(D)
into  IE(D).
Proof.  Since  ω   is not singular, uniqueness holds.  Let’s look for a solution
of the form  E = − iω  A − grad Ψ, with  A ∈ IE0,  ε  A  ∈ V, and  Ψ ∈ Ψ 0.  Set  E' =
grad Ψ'  in (5), with  Ψ' ∈ Ψ 0.  This yields

( iω  ε (A + grad Ψ), grad Ψ') = (J
g, grad Ψ')   ∀ Ψ' ∈ Ψ 0,

and hence, since  εA  is orthogonal to all  grad Ψ' ,

(8) ( iω  ε grad Ψ, grad Ψ') = (J
g, grad Ψ')   ∀ Ψ' ∈ Ψ 0,

a well-posed problem in  Ψ 0, hence the continuity of  Jg → grad Ψ  in  IL2(D).
This leaves  A  to be determined.  After (5), one must have

(µ−1 rot A, rot A') = (J
g + iω  ε E, A')   ∀ A' ∈ IE0

                                 = (J
g − iω  ε grad Ψ, A') + ω 2 (εA, A')   ∀ A' ∈ IE0.

But this is the Fredholm equation of the second kind,

(1 − ω 2G) ε  A = G (J
g − iω  ε grad Ψ) ,

hence  A  by the Fredholm alternative, if  ω   is not a singular value, and
provided  Jg − iω  ε grad Ψ ∈ V —which is what (8) asserts.  ◊

9.2.2  Uniqueness

Hence the question:  Are there singular values?  For an empty cavity  (µ =
µ0  and  ε = ε0), or with lossless materials (µ  and  ε  real and positive),
yes, since all eigenvalues of  G  are then real and positive.  If  ω  ≠ 0  is one
of them and  E = eR  a nonzero associated real solution of (7)  (there i s a
r e a l one), then  H = i h I, with real  h I ·  The existence of such a solution
means that a time-periodic electromagnetic field, of the form  e(x, t) =
Re[E(x) exp(iω t)] ≡ eR(x) cos  ω t  and  h(x, t) = − h I(x) sin  ω t  can exist
forever in the cavity, without any power expense, and also of course without
loss.

To verify this point, let’s start from the equations  iω εE − rot H = 0
and  iωµ H + rot E  = 0, dot-multiply by  E  and  H, add, and integrate over
D :  by the curl integration-by-parts formula, and because of  n × E = 0, this



9.2   THE "CONTINUOUS" PROBLEM 253

gives  ∫D ε   E
2 + ∫D µ  H

2 = 0, that is, since  E = eR  and  H = i hI,

∫D ε  |eR|2 = ∫D µ |hI|
2.

But the energy contained in  D  at time  t, which is (cf. Chapter 1)

W(t) = 1
2  ∫D (ε |e(t)|2 + µ |h(t)|2)

            = 1
2  ∫D ε |eR|2 cos2 ω t + 1

2  ∫D µ |hI|
2 sin2 ω t

            ≡  1
2  ∫D ε |eR|2 ≡ 1

2  ∫D µ |hI|
2,

is indeed constant, and is the sum of two periodic terms of identical
amplitudes, “electric energy” and “magnetic energy” in the cavity, the
former vanishing at each half-period and the latter a quarter-period later.

Such a behavior seems unlikely in the case of a loaded cavity, since
the energy of the field decreases in the process of yielding heat to the
region  C = supp(ε") ∪ supp(µ").  How can this physical intuition be
translated into a proof?  It’s easy to see that  E  and  H  vanish in  C :
Setting  E' = E*  in (7), one gets

ω  ∫D ε" |E|2 + iω  ∫D ε' |E|2 + ∫D (ω  |µ|2)−1 µ" |rot E|2

                        + ∫D (iω  |µ|2)−1 µ' |rot E|2 = 0,

hence, taking the real part,  E = 0  or  rot E = 0  on  C, hence  H = 0, too, and
therefore  E = 0  after (2).  But what opposes the existence of a nonzero
mode  E  that would be supported in the complementary region  D − C,
what one may call an “air mode” ?

If such an air mode existed, both  n × E  and  n × H  would vanish on  ∂C,
which is impossible if  E  and  H  are to satisfy Maxwell’s equations in
region  D − C.  We shall prove this by way of a mathematical argument,
here encapsulated as a context-independent statement, cast in non-
dimensional form:

Proposition 9.2.  Let  Ω   be a regular domain of  E3.  Let  u  and  v  sat is fy

(13)  i rot u = v,              − i rot v = u  in   Ω ,   

(14)       n × u = 0,                  n × v = 0  on   Σ,

w h e r e  Σ  is a part of  Γ  with a smooth boundary and a non-empty interior
(relative to  Σ).  Then  u  and  v  vanish in all  Ω .

Proof.  (Though reduced to the bare bones by many oversimplifications,
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the proof will be long.)  Both  u  and  v  satisfy  div u = 0  and  − ∆u = u  in
Ω , after (13).  It is known (cf., e.g., [Yo]), that every  u  which satisfies
(∆  + 1)u = 0  in some open set is analytic there.  This is akin to the Weyl
lemma discussed in 2.2.1, and as mentioned there, this result of “analytic
ellipticity” is valid also for  div(a grad) + b, where  a  and  b  are smooth.
If we could prove that all derivatives of all components of  u  and  v
vanish at some point,  u  and  v  would then have to be  0  in all   Ω , by
analyticity.

The problem is, we can prove this
fact, but only for boundary points such
as  x  (inset), which is in the relative
interior of  Σ, not inside  Ω .  So we need
to expand  Ω   in the vicinity of  x, as
suggested by the inset, and to make some
continuation of the equations to this
expanded domain  Ω '  in a way which
preserves analytic ellipticity.  To do
this, first straighten out  Σ  around  x
by an appropriate diffeomorphism,
then consider the mirror symmetry  s
with respect to the plane where  Σ  now lies.  Pulling back this operation
to  Ω   gives a kind of warped reflexion with respect to  Σ, still denoted by
s.  Let us define continuations of  u  and  v  to the enlarged domain  Ω '  by
setting  uŸ(sy) = − su(y)  and  v Ÿ(sy) = s∗v(y), where  s∗  is the mapping
induced by  s  on vectors (cf. A.3.4, p. 301).  Now the extensions  uŸ  and  v Ÿ

satisfy in  Ω '  a system similar to (13–14), with some smooth coefficients
added, the solutions of which are similarly analytic.

The point about vanishing derivatives remains to be proven.  This is
done by working in an appropriate coordinate system  y → {y1, y 2, y 3}
with the above point  x  at the origin,  y1  and  y2  charting  Σ, and  y3  along
the normal.  In this system,  u = {u1, u 2, u3}, and  uj(x1, x 2, 0} = 0, for  j = 1, 2,
and the same for  v.  Derivatives  ∂ iu

 j  vanish for all  j  and  i = 1 or 2 at
point  x  by hypothesis.  One has also  ∂ 1u

3 = – i ∂1(∂1v
2 – ∂ 2v

1) = 0  on  Σ,
and in the same way,  ∂ 2v

3 = 0,  ∂1u
3 = 0,  ∂2u

3 = 0.  Since  rot u =
{∂2u

3 − ∂ 3u
2, ∂3u

1 − ∂1u
3, ∂ 1u

2 − ∂2u
1} ≡ {− ∂3u

2, ∂ 3u
1, 0}  is also  0  at  x, we have

∂3u
j(x) = 0  for  j = 1  and  2.  The last derivative to consider is  ∂3u

3 ≡ div u −
(∂1u

1 + ∂2u
2) = 0,  since  div u = div u Ÿ = 0  at point  x.  This disposes of

first-order derivatives.
What has just been proved for a generic point of  Σ  implies that all

first-order derivatives of  u  and  v  vanish on  Σ.  Thus, differentiating
(13) with respect to the  ith  coordinate, we see that  ∂iu  and  ∂ iv  satisfy

Ω

Γ

Σ

x

y sy
x

'Ω

Γ '
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(13–14), so the previous reasoning can be applied to derivatives of  u  and
v  of all order:  They all vanish at  x, and now the analyticity argument
works, and yields the announced conclusion.  ◊

The anti-air-mode result now comes by setting  Ω  = D − C  and  Σ = ∂C,
and by choosing a system of units in which  ε0 µ0 ω

2 = 1.  (Another corollary
is that one cannot simultaneously impose  n  × H  and  n × E  on a part of
nonzero area of the cavity boundary.)

We may thus conclude that no resonant modes exist if there is a charge
in a microwave oven, and that Maxwell equations have a unique solution
in that case, assuming the tangential part of one of the fields  H  or  E  is
specified at every point of the boundary.

9.2.3  More general weak formulations

Thus satisfied that (4), or better, its weak form (5), has a unique solution,
we shall try to get an approximation of it by finite elements.  But first,
it’s a good idea to generalize (5) a little, as regards source terms and
boundary conditions, without bothering too much about the physical
meaning of such generalizations.
 First, let’s exploit the geometrical symmetry, by assuming the source
current  Jg  is symmetrically placed with respect to plane  Σ.  Then, for
x ∈ Σ, one has  H(x) = − s∗H(x), where  s  is the mirror reflection with
respect to  Σ, and  s∗  the induced mapping on vectors.  The boundary condition
to apply is therefore, if  n  denotes the normal as usual,

(9) n × H = 0  on  Σ.

Therefore, our customary splitting of the boundary into complementary
parts is in order:  S = Se ∪ Sh, with  n × E = 0  and  n × H = 0, respectively, on
Se  and  Sh.

Second generalization:  Introduce a right-hand side  K
g  in the second

equation (4).  This term does not correspond to anything physical (it would
be a magnetic charge current, if such a thing existed), but still it pops up
in a natural way in some modellings.  For instance, if the field is decomposed
as  Hg + H

~ , where  Hg  is a known field, a term  K
g = − iω  µ Hg  appears on the

right-hand side of the equation relative to the reaction field  H
~ .

This suggests also preserving the possibility of non-homogeneous
boundary conditions:  n × E = n × Eg  in (4) and  n × H = n × H

g  in (9), where  Eg

and  H
g  are given fields, of which only the tangential part on  S  will
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matter.  For instance, in the case of Fig. 9.1, one might wish to limit the
computation to the oven proper, that is, the rightmost part of the cavity.
Indeed, the middle part is a waveguide, in which the s h a p e of the electric
field, if not its amplitude, is known in advance.  Hence the source–term  Eg,
up to a multiplicative factor.

All this considered, we shall treat a general situation characterized
by the following elements:  a regular bounded domain  D  limited  by  S,
the latter being partitioned as  S = S e ∪ Sh, and given fields  J

g,  K
g  (in

IL2
div(D)),  H

g,  E
g  (in  IL2

rot(D)).  We denote, with the dependence on  D
understood from now on,  IE = IL2

rot(D)  and also  IH = IL2
rot(D), then

IEg = {E ∈ IE :  n × E = n × Eg   on  Se} ,

IE0 = {E ∈ IE :  n × E = 0   on  Se} ,

IHg = {H ∈ IH :  n × H = n × Hg   on  Sh} ,

IH0 = {H ∈ IH :  n × H = 0   on  Sh} ,

and we set the following two problems:

f ind  E ∈ IEg  such that  ( iω  ε  E, E') + ((iω  µ)−1 rot E, rot E') =

(10)                 − (J
g, E') + ((iω  µ)−1 Kg, rot E') + ∫S n × Hg · E'  ∀ E' ∈ IE0,

f ind  H ∈ IHg  such that  ( iω  µ H, H') + ((iω  ε)−1 rot H, rot H') =

(11)                  (K
g, H') + ((iω  ε)−1 Jg, rot H') − ∫S n × Eg · H'  ∀ H' ∈ IH0.

(Beware, there is no relation, a priori, between  K
g  and  Hg, or between  Jg

and  Eg. )
Integrating by parts, one easily sees that e a c h weak formulation (10)

or (11) solves the following “strong” problem (compare with (4)) :

  − iω  ε  E + rot H = Jg   in  D,   n × E = n × Eg   on  Se,
(12)

    iω  µ H + rot E = Kg   in  D,   n × H = n × Hg   on  Sh.

One may therefore solve (12), approximately, by discretizing either  (10)
or (11).  But (and this is complementarity, again!) one obtains solutions
which slightly differ, and yield complementary information about the
exact solution.
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9.3  THE “DISCRETE” PROBLEM

9.3.1  Finite elements for (10) or (11)

Let  m = {N , E, F, T }  be a mesh of  D, and  W1
m(D)  (or, for shortness,

W1
m) the edge-element subspace of  IL2

rot(D)  of Chapter 5.  The idea is to
restrict the formulations (10) and (11) to this subspace.

For this, let us denote by  Ee  [resp.  Eh ]  the subset of  E  formed by
edges that belong to  Se  [resp.  to  Sh], and let  IEm  and  IHm  be two copies of
W1

m.  Set

IEg
m = {E ∈ IEm :  ∫e τ . E = ∫e τ . Eg  ∀ e ∈ Ee}, 

IE0
m = {E ∈ IEm :  ∫e τ . E = 0  ∀ e ∈ Ee} ,

IHg
m = {H ∈ IHm :  ∫e τ . H = ∫e τ . Hg  ∀ e ∈ Eh} ,

IH0
m = {H ∈ IHm :  ∫e τ . H = 0  ∀ e ∈ Eh} .

All we have to do now is to index by  m  all the spaces that appear in (10)
and (11) in order to obtain  approximate weak formulations for both
problems:

f ind  E ∈ IEg
m  such that  ( iω  ε E, E') + ((iω  µ)−1 rot E, rot E') =

(13)                − (J
g, E') + ((iω  µ)−1 Kg, rot E') + ∫S n × Hg · E'  ∀  E' ∈ IE0

m,

f ind  H ∈ IHg
m  such that  ( iω  µ H, H') + ((iω  ε)−1 rot H, rot H') =

(14)                (K
g, H') + ((iω  ε)−1 Jg, rot H') − ∫S n × Eg · H'  ∀  H' ∈ IH0

m.

These are linear systems, with a finite number of equations:  The choice  E'
= we, at the right-hand side, for all edges  e  not contained in  Ee  [resp.  H'
= we, for all  e  not in  Eh] does give one equation for each unknown edge
circulation.

By the usual notational shift, we shall cast these equations in matrix
form.  Let  E = ∑ e ∈ E Ee we  and  H = ∑ e ∈ E He we  be the required fields of  IEg

m
and  IHg

m , and denote  E = {Ee :  e ∈ E }
4  and  H = {He :  e ∈ E }  the DoF

vectors.  They span vector spaces  IEm  and  IHm , isomorphic to  CE, where
E  is the number of edges in  m.  Remind that, for  U  and  U'  both in  CE, one
denotes

                    (U, U') = ∑ e ∈ E Ue · U' e ≡ ∑ e ∈ E (Re[Ue] + i Im[Ue]) · (Re[U' e] + i Im[U' e]).

4In memoriam G.P.
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By sheer imitation of what precedes, let us set

IEg
m = {E ∈ IEm :  Ee = ∫e τ . Eg   ∀ e ∈ E e} ,

IE0
m = {E ∈ IEm :  Ee = 0   ∀ e ∈ E e} ,

IHg
m = {H ∈ IHm :  He = ∫e τ . Hg   ∀ e ∈ E h} ,

IH0
m = {H ∈ IHm :  He = 0   ∀ e ∈ E h} ,

and also, for ease in the expression of the right-hand sides,

F
g
e = − (J

g, we) + ((iω  µ)−1 Kg, rot we) + ∫S n × Hg · we,

G
g
e = (K

g, we) + ((iω  ε)−1 Jg, rot we) − ∫S n × Eg · we,

and  Fg = {F
g
e :  e ∈ E }, as well as  G

g = {G
g
e :  e ∈ E } .

Using the matrices  M1(µ),  R, etc., of Chapter 5, one may restate the
two problems as follows:

f ind  E ∈ IEg
m  such that

(15)    (iω  M1(ε) E, E') + (iω )−1 (Rt
  M2(µ−1) R E, E') = (F

g, E')  ∀ E' ∈ IE0
m,

f ind  H ∈ IHg
m  such that

(16)    (iω  M1(µ) H, H') + (iω )−1 (Rt
  M2(ε

−1) R H, H') = (G
g, H')  ∀ H' ∈ IH0

m.

Since  IEg
m  and  IE0

m  [resp.  IHg
m  and  IH0

m]  are parallel by their very
definition, they have same dimension, so there are as many equations as
unknowns in (15) [resp.  in (16)].  All that is left to do is to assess the
regularity, in the algebraic sense, of the corresponding matrices.

9.3.2  Discrete models

To this effect, let’s write the unknown vector  E  in the form  E = 0
E + 1

E, the
0’s  corresponding to edges of  E − E e  and the  1’s  to those of  E e, so  1E  is a
known item.  If  K  is some  E × E  matrix, the identity

    (K (0
E + 1E), 0

E + 1E) = (00K 0E , 0E) + (01K 1E , 0E)

                . . .  + (10K 0E , 1E) + (11K 1E , 1E)

defines a partition of  K  in blocks of dimensions  E − Ee  and  Ee, where  Ee

is the number of edges in  E e.  Set, for simplicity,  Kεµ(ω ) = iω  M1(ε) +
( iω )−1 Rt

 M2(µ−1)R, and let  00Kεµ(ω ),  01Kεµ(ω ), etc., be the corresponding
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blocks.  Same thing for the matrix  Kµε(ω ) = iω  M1(µ) + (iω )−1 Rt
 M2(ε

−1) R,
partitioned as  00Kµε(ω ), etc. Then (15) and (16) can be rewritten as

(17) 00Kεµ(ω ) 0
E = 0F

g − 01Kεµ(ω ) 1
E,  

(18)    00Kµε(ω ) 0
H = 0G

g − 01Kµε(ω ) 1
H,

two systems of orders  E − Ee  and  E − Eh, respectively.  The values of  ω
(not the same for both) for which they are singular are approximations of
the above singular values.

The question arises again:  In the case
of a loaded cavity, can there be r e a l such
values, i.e., discrete air modes?  Unfortu-
nately, no proof similar to the previous
one seems possible for the discretized
version of the problem, and the following
counter-example shakes hopes of finding
one without some qualifying assumptions,
which remain to be found.  Consider the
stiffness matrix of the air region, including
its boundary, and denote by  u  the vector
of degrees of freedom for all edges except
those on the boundary of the load, which form vector  v.  Write the discrete
eigenvalue problem as  Au + Bt v = λu,  Bu + Cv = λv.  The question is:  Can
one exclude solutions with  λ ≠ 0  but  v = 0, i.e., such that  Au = λu  and  Bu
= 0?  For the mesh in inset, and in 2D, where the equation reduces to  – ∆ϕ
= λϕ, one cannot.  Let  a, b, c, off-diagonal coefficients, repeat by six-fold
symmetry.  Let  u  be such that  Au = λu,  with  λ ≠ 0, and  u  antisymmetric,
that is, such that the degrees of freedom  x, y, etc., alternate as suggested.
(There i s such an eigenvector.)  Now, the row of  Au = λu  corresponding to
the marked node yields  (b – c)y + ax = 0, hence  Bu = 0.

Discrete air modes thus cannot so easily be dismissed.  Do they appear?
This would destroy well-posedness.  But even their existence for meshes
“close”, in some sense, to the actual one would be enough to create
difficulties, when solving  (– ω 2 A + B) u = f, that is, in the frequential
approach.  Note that, fortunately, alternative “time domain” approaches
exist (Remark 8.4), not prone to such difficulties [DM].

Note finally that problems (10) and (11) were equivalent, but (17)
and (18) are not.  They yield complementary views of the solution:  (17)
gives  E  (approximately, of course), hence  B = (K

g − rot E)/iω , whereas (18)
gives  H, whence  D = (rot H − J

g)/iω .  These four fields satisfy Maxwell

ab
c

x

y

– x

– y
x

L

A
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equations exactly.  But the constitutive relations  B = µH  and  D = εE  are not
rigorously satisfied, and the magnitude of the discrepancy is a good gauge
of the accuracy achieved in this dual calculation.  See [PB] for a
development of this idea, with applications to adaptive mesh refinement
in particular.

9.3.3  The question of spurious modes

Let’s end with a topic that much intrigued the microwave community during
the past 20 years (cf. [KT] for a review).

Let’s go back to (12), but for an empty cavity (ε = ε0  and  µ = µ0  all
over) and not excited by outside sources  (so  E

g  and  H
g  are zero).  The

equations reduce to

(19) − iω  ε0  E + rot H = 0  in  D,   n × E = 0   on  Se,

(20)   iω  µ0  H + rot E = 0   in  D,   n × H = 0   on  Sh,

and they have nonzero solutions for resonating values of  ω , which in this
case correspond to a l l the eigenvalues (since all are real).  So, if  ω  ≠ 0  is
such a value, one has  div B = 0  and  div D = 0, where  B = µ0  H  and  D = ε0 E :
The electric and magnetic induction fields are solenoidal.  (Note this is
not the case when  ω  = 0 :  There are solutions of the form  H = grad Φ  and  E

= grad Ψ, with  Φ  and  Ψ  non-harmonic.)  Of course, whatever the method,
one does not solve (19) and (20) with absolute accuracy, and one does not
expect the relations  div(µ0 H) = 0  and  div(ε0 E) = 0  to hold true, but at
least one may hope for the magnitudes5 of these divergences to be small,
and to get smaller and smaller when the mesh grain tends to zero under
the usual anti-flattening restrictions.  Yet, before the advent of edge
elements, such was not the case;  all meshes showed modes with sizable
divergence, which had to be rejected as “non-physical”.  The discussion in
Chapter 6 helps understand why the emergence of such “spurious modes”
is a defect inherent in the use of classical node-based vector-valued
elements, and indeed, using Whitney elements is a sufficient condition for

5Since  µH  is not normally continuous across faces, there is a problem of definition here,
for the divergence of  µH  is a distribution, not a function.  In order to assess the
“magnitude of the divergence” of  µH, one should evaluate the norm of the mapping
ϕ' → ∫D µ H · grad ϕ', that is

              sup{|∫D µH · grad ϕ'|/[∫D|ϕ'|2]1/2 :  ϕ' ∈ L2
grad(D),  ϕ' ≠ 0}.

In practice, a weighted sum of the “flux losses” at faces makes a good indicator.

such spurious modes not to appear, as we now show.
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The “continuous” spectral problem consists in finding the values of  ω
for which, all source data being zero, and  µ  and  ε  real positive, Problem
(11), that is, f ind  H ∈ IH0  such that

( iω  µ H , H') + ((iω  ε)−1 rot H , rot H') = 0   ∀ H' ∈ IH0,

has a nonzero solution.  (The situation with respect to (10) is symmetrical,
as we have seen.)  Let’s consider some Galerkin approximation to this
problem, by which one wants to f ind  H ∈ Hm  such that

(21) ( iω  µ H , H') + ((iω  ε)−1 rot H , rot H') = 0   ∀ H' ∈ Hm,

where  H m  is a f inite-dimensional subspace of  IH0.  (This is  IH0
m, for the

same mesh  m, if edge elements are used.)  This problem has no nonzero
solution, except for a finite number of values of  ω , corresponding to the
eigenvalues of the matrix that represents, in some basis of  Hm, the bilinear
form of the left-hand side in (21).

Now, consider the kernel of  rot  in the space  H m.  It’s some subspace
K m  which is, if one assumes a simply connected  D, the image by  grad  of
some finite-dimensional space  Fm , composed of functions which belong to
L2

grad.  If, for some  ω  ≠ 0, (21) has a nonzero solution  H, the latter verifies,
a fortiori,

(22) ( µ H, grad Φ') = 0   ∀ Φ' ∈ Fm .

This is a familiar relation:  We spent most of Chapter 4 studying its
consequences, where we saw to which extent  µ H  is satisfactory, as an
“m-weakly solenoidal” field.  This happens when  Fm  is a good approxi-
mation space for  L2

grad, that is, “big enough”, in an intuitively clear sense.
When  H m  is  IH0

m, that is, with edge elements, the subspace  Fm  is
indeed big enough, as we saw in Chapter 5;  thereby, spurious modes are
effectively eliminated [Bo, PR, WP].  In contrast, the use of nodal elements
entails spaces  Fm  of very small dimensions, possibly  0, as we saw in
Chapter 6.  In such a case, nothing warrants any kind of weak solenoidality
of  µ H, hence the occurrence of spurious modes, so often observed and deplored
[KT] before the advent of edge elements.

You stop, but that does not mean you have come to the end.

P. AUSTER, “In the Country of Last Things”
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